JP7485956B2 - Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part - Google Patents

Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part Download PDF

Info

Publication number
JP7485956B2
JP7485956B2 JP2020209085A JP2020209085A JP7485956B2 JP 7485956 B2 JP7485956 B2 JP 7485956B2 JP 2020209085 A JP2020209085 A JP 2020209085A JP 2020209085 A JP2020209085 A JP 2020209085A JP 7485956 B2 JP7485956 B2 JP 7485956B2
Authority
JP
Japan
Prior art keywords
fracture limit
limit line
fracture
weld
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020209085A
Other languages
Japanese (ja)
Other versions
JP2022096148A (en
Inventor
秀樹 上田
博紀 富士本
高志 今村
恭平 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020209085A priority Critical patent/JP7485956B2/en
Publication of JP2022096148A publication Critical patent/JP2022096148A/en
Application granted granted Critical
Publication of JP7485956B2 publication Critical patent/JP7485956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、アーク溶接接手の強度評価を有限要素法解析(Finite Element Method解析。以下において「FEM解析」と記載することがある。)でシミュレーションする際の溶接部の破断限界線の算出に関する。 The present invention relates to the calculation of the fracture limit line of a weld when simulating the strength evaluation of an arc welded joint using finite element method analysis (hereinafter sometimes referred to as "FEM analysis").

自動車部材の接合方法として、スポット溶接が困難な閉断面部位やシャシー部材においてはアーク溶接が用いられている。一方、自動車部材の強度評価にはFEM解析が多用されており、アーク溶接により接合された部分についても強度評価にFEM解析を使用することが望まれる。ただし、その際には、解析精度の向上のために溶接部の破断限界線を精緻に設定することが重要である。 Arc welding is used as a method of joining automotive components for closed cross-section areas and chassis components where spot welding is difficult. On the other hand, FEM analysis is often used to evaluate the strength of automotive components, and it is desirable to use FEM analysis to evaluate the strength of parts joined by arc welding. However, when doing so, it is important to precisely set the fracture limit line of the weld in order to improve the accuracy of the analysis.

溶接部の破断限界線を精緻に設定する技術として非特許文献1には、自動車用鋼板を対象にしたスポット溶接部の破断予測方法に関する技術が開示されている。この技術を応用すればアーク溶接部の強度評価においても溶接部の破断限界線と破断基準を求めることができる。しかしながら、この技術では溶接部から試験片を採取すること、さらにはここから試験部が0.3mmの超小型試験片を加工して引張試験により破断絞りを採取し、本試験を模擬したFEM解析を実施する必要があるため、多くの手介入作業を必要とする。 As a technique for precisely setting the fracture limit line of a weld, Non-Patent Document 1 discloses a technique for predicting fracture of spot welds for automotive steel sheets. By applying this technique, the fracture limit line and fracture criteria of a weld can also be obtained in the strength evaluation of arc welds. However, this technique requires a lot of manual intervention, as it is necessary to take a test piece from the weld, and then machine an ultra-small test piece with a test area of 0.3 mm from this, take the fracture reduction by a tensile test, and then perform an FEM analysis simulating this test.

また、特許文献1には、事前に導出したスポット溶接部の破断限界線から冷却速度をパラメータにしてレーザ溶接部の破断限界線を推定する方法が開示されている。しかしながらこの方法では、アーク溶接部特有の溶接ワイヤの影響を考慮しておらず、溶接ワイヤと鋼板が混在したアーク溶接部の破断限界線を適正に求めることができない。 Patent Document 1 also discloses a method for estimating the fracture limit line of a laser welded part using the cooling rate as a parameter from the fracture limit line of a spot welded part derived in advance. However, this method does not take into account the influence of the welding wire, which is specific to arc welded parts, and it is not possible to properly determine the fracture limit line of an arc welded part where the welding wire and steel plate are mixed.

上田秀樹、他3名、「応力三軸度を考慮したスポット溶接部破断予測技術の研究(第1報)」、自動車技術会論文集、Vol.44、No.2、p727(2013)Hideki Ueda and 3 others, "Study on Spot Weld Fracture Prediction Technology Considering Stress Triaxiality (1st Report)", Transactions of the Society of Automotive Engineers of Japan, Vol. 44, No. 2, p. 727 (2013)

特開2017-062206号公報JP 2017-062206 A

そこで本発明は、破断限界線が未測定であるアーク溶接による溶接部の破断限界線を容易に算出することができる溶接部の破断限界線の算出方法を提供することを課題とする。また、そのための算出プログラム、及び、溶接部の破断限界線算出装置を提供する。 The present invention aims to provide a method for calculating the fracture limit line of a weld that can easily calculate the fracture limit line of a weld created by arc welding where the fracture limit line has not yet been measured. It also provides a calculation program for this purpose, and a device for calculating the fracture limit line of a weld.

アーク溶接部は、溶接ワイヤ及び鋼板のそれぞれが溶融凝固して生成されるため、溶接ワイヤの溶融凝固組織の破断限界線と、鋼板の溶融凝固組織(スポット溶接部の組織に置き換えることもできる)の破断限界線と、を混合したものがアーク溶接部の破断限界線になる。従って、発明者は、溶接ワイヤの溶融凝固組織の破断限界線及びスポット溶接部の破断限界線を超小型試験片の引張試験技術で導出し、アーク溶接条件に対応した比率(以下、「破断限界混合率」と記載することがある。)でそれぞれを混合することでアーク溶接部の破断限界線を求めることができるとの着想を得た。なお、ここで述べるアーク溶接条件とは溶接電流、電圧、送り速度、トーチ傾斜角であり、破断限界混合率はアーク溶接条件と鋼板及び溶接ワイヤの強度により変化する。
図1に980級鋼板を対象に590MPa級溶接ワイヤを用いた場合の破断限界線の一例を示した。図1において、◇マークは鋼板の溶融凝固組織すなわちスポット溶接部の破断限界線、●マークはアーク溶接部の破断限界線、△マークは溶接ワイヤ溶融凝固組織の破断限界線である。
Since the arc weld is produced by melting and solidifying the welding wire and the steel sheet, the fracture limit line of the arc weld is a mixture of the fracture limit line of the molten solidified structure of the welding wire and the fracture limit line of the molten solidified structure of the steel sheet (which can also be replaced with the structure of the spot weld). Therefore, the inventors came up with the idea that the fracture limit line of the arc weld can be obtained by deriving the fracture limit line of the molten solidified structure of the welding wire and the fracture limit line of the spot weld using a tensile test technique for ultra-small test pieces and mixing them at a ratio corresponding to the arc welding conditions (hereinafter sometimes referred to as the "fracture limit mixing ratio"). The arc welding conditions described here are the welding current, voltage, feed speed, and torch tilt angle, and the fracture limit mixing ratio varies depending on the arc welding conditions and the strength of the steel sheet and the welding wire.
An example of the fracture limit line when a 590 MPa class welding wire is used for a 980 class steel plate is shown in Figure 1. In Figure 1, the ◇ mark is the fracture limit line of the molten solidified structure of the steel plate, i.e., the spot weld, the ● mark is the fracture limit line of the arc weld, and the △ mark is the fracture limit line of the molten solidified structure of the welding wire.

ところで、アーク溶接条件が同じであっても、溶接ワイヤの強度を変更すると、破断限界混合率も変化することが分かった。例えば、図2は980MPa級鋼板を対象に950MPa級溶接ワイヤを用いたアーク溶接部の破断限界線の一例を示しており、図1に示した590MPa級溶接ワイヤを用いた場合と比較して、アーク溶接部の破断限界線は溶接ワイヤ溶融凝固組織の破断限界線に近づき、後述する破断限界混合率Rは大きくなり、破断限界混合率Rは若干減少傾向となる。
そこで、破断限界混合率は溶接ワイヤ強度の影響を受け、溶接ワイヤの強度をパラメータにすれば、アーク溶接部の破断限界線を算出できると考えた。
Incidentally, it has been found that even if the arc welding conditions are the same, the fracture limit mixture ratio also changes when the strength of the welding wire is changed. For example, Fig. 2 shows an example of the fracture limit line of an arc weld using a 950 MPa class welding wire for a 980 MPa class steel plate, and compared to the case shown in Fig. 1 where a 590 MPa class welding wire is used, the fracture limit line of the arc weld approaches the fracture limit line of the molten solidified structure of the welding wire, the fracture limit mixture ratio R A described later increases, and the fracture limit mixture ratio R B tends to decrease slightly.
Therefore, it was thought that the fracture limit mixing ratio is affected by the strength of the welding wire, and that if the strength of the welding wire is used as a parameter, it would be possible to calculate the fracture limit line of the arc weld.

本発明は、このような知見に基づいて完成させた。以下、本発明について説明する。 The present invention was completed based on these findings. The present invention is described below.

本発明の1つの態様は、アーク溶接部の破断限界線を算出する方法であって、鋼板の溶融凝固組織の破断限界線、アーク溶接部の破断限界線、及び、溶接ワイヤの溶融凝固組織の破断限界線を導出する個別破断限界線導出過程と、鋼板の溶融凝固組織の破断限界線の係数、アーク溶接部の破断限界線の係数、及び、溶接ワイヤの溶融凝固組織の破断限界線の係数を用いて、破断限界混合率を計算し、溶接ワイヤと破断限界混合率との関係を定式化する破断限界混合率算出過程と、評価対象となるアーク溶接部に用いる溶接ワイヤの引張強さから定式化した式より破断限界混合率を計算し、鋼板の溶融凝固組織の破断限界線、溶接ワイヤ溶融凝固組織の破断限界線、及び、破断限界混合率からアーク溶接部の破断限界線を算出する、破断限界線算出過程と、を有する溶接部の破断限界線算出方法である。 One aspect of the present invention is a method for calculating the fracture limit line of an arc weld, which includes an individual fracture limit line derivation process for deriving the fracture limit line of the molten solidified structure of the steel sheet, the fracture limit line of the arc weld, and the fracture limit line of the molten solidified structure of the welding wire; a fracture limit mixture ratio calculation process for calculating the fracture limit mixture ratio using the coefficient of the fracture limit line of the molten solidified structure of the steel sheet, the coefficient of the fracture limit line of the arc weld, and the coefficient of the fracture limit line of the molten solidified structure of the welding wire, and formulating the relationship between the welding wire and the fracture limit mixture ratio; and a fracture limit line calculation process for calculating the fracture limit mixture ratio from an equation formulated from the tensile strength of the welding wire used in the arc weld to be evaluated, and calculating the fracture limit line of the arc weld from the fracture limit line of the molten solidified structure of the steel sheet, the fracture limit line of the molten solidified structure of the welding wire, and the fracture limit mixture ratio.

上記溶接部の破断限界線算出方法において、鋼板の溶融凝固組織をスポット溶接部としてもよい。 In the above method for calculating the fracture limit line of a weld, the molten solidified structure of the steel plate may be the spot weld.

本発明の他の態様は、アーク溶接部の破断限界線を算出するプログラムであって、鋼板の溶融凝固組織の破断限界線、アーク溶接部の破断限界線、及び、溶接ワイヤの溶融凝固組織の破断限界線を導出する個別破断限界線導出ステップと、鋼板の溶融凝固組織の破断限界線の係数、アーク溶接部の破断限界線の係数、及び、溶接ワイヤの溶融凝固組織の破断限界線の係数を用いて、破断限界混合率を計算し、溶接ワイヤと破断限界混合率との関係を定式化する破断限界混合率算出ステップと、評価対象となるアーク溶接部に用いる溶接ワイヤの引張強さから定式化した式より破断限界混合率を計算し、鋼板の溶融凝固組織の破断限界線、溶接ワイヤ溶融凝固組織の破断限界線、及び、破断限界混合率からアーク溶接部の破断限界線を算出する、破断限界線算出ステップと、を有する溶接部の破断限界線算出プログラムである。 Another aspect of the present invention is a program for calculating the fracture limit line of an arc weld, the program having an individual fracture limit line derivation step for deriving the fracture limit line of the molten solidified structure of the steel sheet, the fracture limit line of the arc weld, and the fracture limit line of the molten solidified structure of the welding wire, a fracture limit mixture ratio calculation step for calculating the fracture limit mixture ratio using the coefficient of the fracture limit line of the molten solidified structure of the steel sheet, the coefficient of the fracture limit line of the arc weld, and the coefficient of the fracture limit line of the molten solidified structure of the welding wire, and formulating the relationship between the welding wire and the fracture limit mixture ratio, and a fracture limit line calculation step for calculating the fracture limit mixture ratio from an equation formulated from the tensile strength of the welding wire used in the arc weld to be evaluated, and calculating the fracture limit line of the arc weld from the fracture limit line of the molten solidified structure of the steel sheet, the fracture limit line of the molten solidified structure of the welding wire, and the fracture limit mixture ratio.

溶接部の破断限界線算出プログラムにおいて、鋼板の溶融凝固組織をスポット溶接部としてもよい。 In the program for calculating the fracture limit line of a weld, the molten solidified structure of the steel plate may be regarded as a spot weld.

本発明の他の態様は、アーク溶接部の破断限界線を算出する装置であって、上記溶接部の破断限界線算出プログラムが記憶された記憶手段と、プログラムに基づいて演算を行う演算手段と、演算手段により演算された結果を表示する表示手段と、を備え、演算手段は、上記各ステップにより演算が行われる、溶接部の破断限界線算出装置である。 Another aspect of the present invention is a device for calculating the fracture limit line of an arc weld, comprising a storage means in which a program for calculating the fracture limit line of the weld is stored, a calculation means for performing calculations based on the program, and a display means for displaying the results calculated by the calculation means, and the calculation means performs calculations according to each of the steps described above.

本発明では破断限界混合率を溶接ワイヤに関連づけて算出するため、破断限界線が未測定であるアーク溶接部の破断限界線を算出する場合であっても、破断限界混合率を用いてアーク溶接部の破断限界線を容易に算出することができる。
すなわち、本発明によれば、アーク溶接部の破断限界線が未測定である溶接部材に対しても、引張試験を行わずにアーク溶接部の破断限界線を精度良く算出できる。
In the present invention, the fracture limit mixing ratio is calculated in association with the welding wire, so that even in the case of calculating the fracture limit line of an arc welded part whose fracture limit line has not been measured, the fracture limit mixing ratio can be used to easily calculate the fracture limit line of the arc welded part.
That is, according to the present invention, even for welded components whose fracture limit lines have not yet been measured, the fracture limit lines of the arc welds can be calculated with high accuracy without conducting tensile tests.

980級鋼板を対象に590MPa級溶接ワイヤを用いた場合の破断限界線の一例を示す図である。FIG. 1 is a diagram showing an example of a fracture limit line when a 590 MPa class welding wire is used for a 980 class steel plate. 980級鋼板を対象に950MPa級溶接ワイヤを用いた場合の破断限界線の一例を示す図である。FIG. 1 is a diagram showing an example of a fracture limit line when a 950 MPa class welding wire is used for a 980 class steel plate. 溶接部の破断限界線算出方法S10の流れを示す図である。FIG. 10 is a diagram showing a flow of a method S10 for calculating a fracture limit line of a weld portion. 破断限界混合率と溶接ワイヤ強度の関係を示す図である。FIG. 1 is a diagram showing the relationship between the fracture limit mixture ratio and the strength of a welding wire. 溶接部の破断限界線算出装置10の構成を説明する図である。FIG. 1 is a diagram illustrating a configuration of a weld fracture limit line calculation device 10. (a)は引張試験モデル20の外観、(b)はその溶接部近傍を拡大して表した図である。1A is an external view of the tensile test model 20, and FIG. 1B is an enlarged view of the vicinity of the welded portion. (a)は解析結果、(b)は試験結果を表す図である。13A shows the analysis results, and FIG. 13B shows the test results. 解析結果及び試験結果の最大荷重を表した図である。FIG. 13 is a graph showing the maximum load of the analysis results and the test results.

[溶接部の破断限界線算出方法S10の構成]
本発明の1つの形態にかかる溶接部の破断限界線算出方法S10の流れを図3に示す。図3からわかるように、溶接部の破断限界線算出方法S10は、個別破断限界線導出過程S11と、破断限界混合率算出過程S12と、破断限界線算出過程S13とを備えている。
[Configuration of the method S10 for calculating the fracture limit line of a welded portion]
The flow of the method S10 for calculating the fracture limit line of a weld according to one embodiment of the present invention is shown in Fig. 3. As can be seen from Fig. 3, the method S10 for calculating the fracture limit line of a weld includes an individual fracture limit line derivation process S11, a fracture limit mixture ratio calculation process S12, and a fracture limit line calculation process S13.

<個別破断限界線導出過程S11>
個別破断限界線導出過程S11では、超小型試験片の引張試験技術を用いて鋼板の溶融凝固組織すなわちスポット溶接部、アーク溶接部、及び、溶接ワイヤの溶融凝固組織のそれぞれ個別の破断限界線を導出する。この時、鋼板の材質及びアーク溶接条件は同じものを用い、スポット溶接部は1つのケースで良いが、アーク溶接部及び溶接ワイヤ溶融凝固組織は、溶接ワイヤを変えた2ケース以上の破断限界線の導出が必要である。
ここで、超小型試験片の引張試験技術を用いて破断限界線を導出する方法は、例えば非特許文献1に記載された方法を用いることができる。すなわち、溶接部、HAZ(熱影響部)、及び、母材の各部位から超小型試験片(試験部の幅が0.3mm)をワイヤカット放電加工等により採取し、静的引張試験を行うものである。超小型試験片の引張試験を模擬したFEM解析結果の試験部断面積が破断試験片での実測値に達したときの最大相当塑性ひずみを、その試験片の局所的な破断ひずみと定義できる。同様に、破断限界の応力三軸度も定義できる。このプロセスを溶接部分、HAZ部分、および、母材部分毎に行うことで、各部位での破断ひずみと破断限界の応力三軸度を導出することが可能である。
<Individual fracture limit line derivation process S11>
In the individual fracture limit line derivation process S11, the tensile test technique of the ultra-small test piece is used to derive the individual fracture limit lines of the molten solidified structure of the steel plate, i.e., the spot welds, the arc welds, and the molten solidified structure of the welding wire. At this time, the same material of the steel plate and the same arc welding conditions are used, and one case is sufficient for the spot welds, but the fracture limit lines of the arc welds and the molten solidified structure of the welding wire must be derived for two or more cases using different welding wires.
Here, the method of deriving the fracture limit line using the tensile test technique of the ultra-small test piece can be, for example, the method described in Non-Patent Document 1. That is, ultra-small test pieces (with a test part width of 0.3 mm) are taken from each part of the weld, HAZ (heat-affected zone), and base material by wire-cut electric discharge machining or the like, and a static tensile test is performed. The maximum equivalent plastic strain when the cross-sectional area of the test part in the FEM analysis result simulating the tensile test of the ultra-small test piece reaches the actual measured value of the fractured test piece can be defined as the local fracture strain of the test piece. Similarly, the stress triaxiality of the fracture limit can also be defined. By performing this process for each of the weld, HAZ, and base material, it is possible to derive the fracture strain and the stress triaxiality of the fracture limit at each part.

そして、式(1)のように、破断ひずみと応力三軸度の関係を累乗関数で近似することにより破断限界線を構築することができる。ここで、εCRは破断限界ひずみ、σtriaxは応力三軸度を表し、A、及び、Bは係数である。「^」は累乗を意味する。
εCR=A・σtriax^B (1)
Then, as shown in formula (1), the fracture limit line can be constructed by approximating the relationship between fracture strain and stress triaxiality with a power function. Here, ε CR represents the fracture limit strain, σ triax represents the stress triaxiality, and A and B are coefficients. "^" means power.
ε CR =A·σ triax ^B (1)

個別破断限界線導出過程S11では、当該式(1)に基づいて、少なくとも1つの鋼板の溶融凝固組織(すなわちスポット溶接部)における破断限界線を式(2)、アーク溶接部の破断限界線を式(3)、溶接ワイヤの溶融凝固組織の破断限界線を式(4)のように得る。
すなわち、スポット溶接部については係数A、BをA、Bとし、アーク溶接部については係数A、BをA、Bとし、溶接ワイヤ溶接凝固組織については係数A、BをA、Bとしたとき、式(2)~式(4)のように個別の破断限界線であるεCRS、εCRai、εCRwiが表される。
εCRs=A・σtriax^B (2)
εCRai=A・σtriax^Bai (3)
εCRwi=A・σtriax^Bwi (4)
ここで例えば溶接ワイヤの種類が3種類であれば、iが1~3をとり、εCRaiはεCRa1~εCRa3、εCRwiはεCRw1~εCRw3である。
In the individual fracture limit line derivation process S11, based on the formula (1), the fracture limit line of the molten solidified structure of at least one steel plate (i.e., the spot weld) is obtained as formula (2), the fracture limit line of the arc weld is obtained as formula (3), and the fracture limit line of the molten solidified structure of the welding wire is obtained as formula (4).
That is, when the coefficients A and B for the spot weld are A s and B s , the coefficients A and B for the arc weld are A a and Ba , and the coefficients A and B for the welding wire weld solidification structure are A w and B w , the individual fracture limit lines ε CRS , ε CRai , and ε CRwi are expressed as shown in equations (2) to (4).
ε CRs =A s σ triax ^B s (2)
ε CRai = A s σ triax ^ B ai (3)
ε CRwi = A s σ triax ^ Bwi (4)
For example, if there are three types of welding wire, i takes values from 1 to 3, ε CRai takes values from ε CRa1 to ε CRa3 , and ε CRwi takes values from ε CRw1 to ε CRw3 .

<破断限界混合率算出過程S12>
破断限界混合率算出過程S12では、個別破断限界線導出過程S11で得たスポット溶接部の破断限界線の係数A、B、アーク溶接部の破断限界線の係数Aai、Bai、溶接ワイヤの溶融凝固組織の破断限界線の係数Awi、Bwiから式(5)、式(6)を用いて、Aの破断限界混合率RAi、Bの破断限界混合率RBiを算出する。なお、RAi、RBiは溶接ワイヤ溶融凝固組織の破断限界混合率であり、鋼板の溶融凝固組織すなわちスポット溶接部の破断限界混合率はそれぞれ、1-RAi、1-RBiで求めることができる。
Ai=(A-Aai)/(A-Awi) (5)
Bi=(B-Bai)/(B-Bwi) (6)
溶接ワイヤを変えた複数のアーク溶接部の破断限界線に対して同様の計算をする。例えば溶接ワイヤが3種類の場合、i-が1~3となり、破断限界混合率はRA1~RA3、RB1~RB3となる。
<Fracture limit mixing ratio calculation process S12>
In fracture limit mixture ratio calculation process S12, the fracture limit mixture ratios R Ai of A and R Bi of B are calculated using formulas (5) and (6) from the coefficients A s and B s of the fracture limit lines of the spot welds, the coefficients A ai and B ai of the fracture limit lines of the arc welds, and the coefficients A wi and B wi of the fracture limit lines of the molten solidified structure of the welding wire, which are obtained in individual fracture limit line derivation process S11. Note that R Ai and R Bi are the fracture limit mixture ratios of the molten solidified structure of the welding wire, and the fracture limit mixture ratios of the molten solidified structure of the steel plate, i.e., the spot welds, can be obtained by 1-R Ai and 1-R Bi , respectively.
R Ai = (A s -A ai ) / (A s -A wi ) (5)
R Bi = (B s - B ai ) / (B s - B wi ) (6)
Similar calculations are performed for the fracture limit lines of a plurality of arc welds using different welding wires. For example, when three types of welding wire are used, i- will be 1 to 3, and the fracture limit mixture ratios will be R A1 to R A3 and R B1 to R B3 .

複数の個別の破断限界混合率RAi、RBiのそれぞれについて、横軸に溶接ワイヤ強度(引張強さ)を取り、縦軸に破断限界混合率を取って整理すると、図4のようなグラフを得ることができる。そしてワイヤ強度と複数のRAiから直線近似により破断限界混合率Rの関係式である式(7)を得る。また、ワイヤ強度と複数のRBiから直線近似により破断限界混合率Rの関係式である式(8)を得る。これらの直線近似は表計算ソフトで求めることができる。
=-s・T+t (7)
=s・T+t (8)
ここで、破断限界混合率RA、破断限界混合率Rは溶接ワイヤ強度に関連づけられた破断限界混合率であることを意味する。また、Tは溶接ワイヤ引張強さ(溶接ワイヤ強度)である。また、s、sは近似式の傾き、t、tは近似式におけるいわゆるy切片である。通常、これらは0.00001以上の値をとる。
If the fracture limit mixing ratios R Ai and R Bi are arranged with the welding wire strength (tensile strength) on the horizontal axis and the fracture limit mixing ratio on the vertical axis for each of the multiple individual fracture limit mixing ratios R Ai and R Bi, a graph like the one shown in Fig. 4 can be obtained. Then, equation (7), which is the relational equation for the fracture limit mixing ratio R A , is obtained by linear approximation between the wire strength and the multiple R Ai. Furthermore, equation (8), which is the relational equation for the fracture limit mixing ratio R B, is obtained by linear approximation between the wire strength and the multiple R Bi . These linear approximations can be found using a spreadsheet software.
R A = -s A · T S + t A (7)
RB = sB · TS + tB (8)
Here, the fracture limit mixing ratios RA and RB are fracture limit mixing ratios associated with the strength of the welding wire. Furthermore, TS is the tensile strength of the welding wire (welding wire strength). Furthermore, sA and sB are the slopes of the approximation equations, and tA and tB are so-called y-intercepts in the approximation equations. Usually, these have values of 0.00001 or more.

このように、破断限界混合率算出過程S12により、個別破断限界線導出過程S11で得たスポット溶接部、アーク溶接部、及び溶接ワイヤ溶融凝固の破断限界線から、溶接ワイヤ強度に関連づけられた破断限界混合率を得ることができる。 In this way, the fracture limit mixture ratio calculation process S12 can obtain a fracture limit mixture ratio associated with the strength of the welding wire from the fracture limit lines of the spot welds, arc welds, and the molten and solidified welding wire obtained in the individual fracture limit line derivation process S11.

<破断限界線算出過程S13>
破断限界線算出過程S13では、評価対象となるアーク溶接部に使用した(使用する)溶接ワイヤの引張強さTを上記の式(7)、式(8)に代入して破断限界混合率R、Rを計算する。
得られた破断限界混合率R、R及び式(5)、式(6)に基づいて下記式(9)、式(10)を得る。
=(A-A)/(A-A) (9)
=(B-B)/(B-B) (10)
<Fracture limit line calculation process S13>
In the fracture limit line calculation step S13, the tensile strength T S of the welding wire used (to be used) in the arc welded portion to be evaluated is substituted into the above formulas (7) and (8) to calculate the fracture limit mixture ratios R A and R B.
Based on the obtained breaking limit mixing ratios R A and R B and formulas (5) and (6), the following formulas (9) and (10) are obtained.
R = (A - A ) / (A - A ) (9)
RB = (Bs - B a ) / (Bs - B w ) (10)

これを変形することで、式(11)及び式(12)を得る。
=A・R+A・(1-R) (11)
=B・R+B・(1-R) (12)
これにより評価対象のアーク溶接部の破断限界線を表す式(1)の係数A、Bを係数A、Bとして得ることができた。
By modifying this, equations (11) and (12) are obtained.
A a = A w · R A + A s · (1 - R A ) (11)
B a = B w · R B + B s · (1 - R B ) (12)
As a result, the coefficients A and B of the formula (1) that express the fracture limit line of the arc weld to be evaluated could be obtained as coefficients A a and Ba .

そして式(1)のAにA、BにBを代入することにより当該アーク溶接部の破断限界線εCRaを得ることができる。すなわち、次の式(13)である。
εCRa={A・R+A・(1-R)}・σtriax^{B・R+B・(1-R)} (13)
式(13)からわかるように、既知のスポット溶接部の破断限界線の係数A、B、及び、既知の溶接ワイヤ溶融凝固組織の破断限界線の係数A、Bから、任意のアーク溶接部の破断限界線を得ることができる。
Then, by substituting A a for A and B a for B in formula (1), the fracture limit line ε CRa of the arc weld can be obtained, as given by the following formula (13).
ε CRa = {A w · R A + A s · (1 - R A )} · σ triax ^ {B w · R B + B s · (1 - R B )} (13)
As can be seen from equation (13), the fracture limit line of an arbitrary arc weld can be obtained from the coefficients A s and B s of the fracture limit line of a known spot weld and the coefficients A w and B w of the fracture limit line of the known molten solidified structure of the welding wire.

[効果等]
以上のように本発明においては、破断限界混合率を溶接ワイヤの引張強さにより算出する。これにより、破断限界線が未測定のアーク溶接部を対象に強度評価のFEM解析を行う場合であっても、溶接ワイヤの引張強さを特定し、鋼板の溶融凝固組織すなわちスポット溶接部及び溶接ワイヤ溶融凝固組織の破断限界線が測定済みであれば破断限界混合率を用いてアーク溶接部の破断限界線を容易に算出・予測することができる。
本発明によれば、アーク溶接部の破断限界線が未測定である溶接ワイヤからなる部材に対しても、引張試験を行わずにアーク溶接部の破断限界線を精度良く算出することが可能となる。
[Effects, etc.]
As described above, in the present invention, the fracture limit mixing ratio is calculated based on the tensile strength of the welding wire. As a result, even when performing FEM analysis for strength evaluation on an arc welded portion whose fracture limit line has not been measured, if the tensile strength of the welding wire is specified and the fracture limit lines of the molten solidified structure of the steel sheet, i.e., the spot welded portion and the molten solidified structure of the welding wire, have been measured, the fracture limit mixing ratio can be used to easily calculate and predict the fracture limit line of the arc welded portion.
According to the present invention, it is possible to accurately calculate the fracture limit line of an arc weld without performing a tensile test, even for a member made of a welding wire whose fracture limit line of an arc weld has not yet been measured.

[破断限界線算出装置10]
図5は、上記したアーク溶接部の破断限界線算出方法S10に沿って具体的に演算を行う1つの形態にかかる溶接部の破断限界線算出装置10の構成を概念的に表した図である。溶接部の破断限界線算出装置10は、入力手段11、演算装置12、及び表示手段18を有している。そして演算装置12は、演算手段13、RAM14、記憶手段15、受信手段16、及び出力手段17を備えている。また、入力手段11にはキーボード11a、マウス11b、及び記憶媒体の1つとして機能する外部記憶装置11cが含まれている。
[Break Limit Line Calculation Device 10]
5 is a conceptual diagram showing the configuration of a weld fracture limit line calculation device 10 according to one embodiment that specifically performs calculations according to the above-mentioned arc weld fracture limit line calculation method S10. The weld fracture limit line calculation device 10 has an input means 11, a calculation device 12, and a display means 18. The calculation device 12 has a calculation means 13, a RAM 14, a storage means 15, a receiving means 16, and an output means 17. The input means 11 also includes a keyboard 11a, a mouse 11b, and an external storage device 11c that functions as one of the storage media.

演算手段13は、いわゆるCPU(中央演算子)により構成されており、上記した各構成部材に接続され、これらを制御することができる手段である。また、記憶媒体として機能する記憶手段15等に記憶された各種プログラム15aを実行し、これに基づいて上記した溶接部の破断限界線算出方法S10の各処理のためのデータ生成やデータベースからのデータの選択をする手段として演算を行うのも演算手段13である。 The calculation means 13 is composed of a so-called CPU (central processor), and is connected to each of the above-mentioned components and is capable of controlling them. The calculation means 13 also executes various programs 15a stored in the storage means 15, which functions as a storage medium, and performs calculations based on these programs as a means for generating data for each process of the above-mentioned weld fracture limit line calculation method S10 and selecting data from a database.

RAM14は、演算手段13の作業領域や一時的なデータの記憶手段として機能する構成部材である。RAM14は、SRAM、DRAM、フラッシュメモリ等で構成することができ、公知のRAMと同様である。 RAM 14 is a component that functions as a working area for the calculation means 13 and a temporary data storage means. RAM 14 can be composed of SRAM, DRAM, flash memory, etc., and is similar to known RAM.

記憶手段15は、各種演算の根拠となるプログラムやデータが保存される記憶媒体として機能する部材である。また記憶手段15には、プログラムの実行により得られた中間、最終の各種結果を保存することができてもよい。より具体的には記憶手段15には、プログラムが記憶(保存)されている。またその他情報も併せて保存されていてもよい。 The storage means 15 is a member that functions as a storage medium in which programs and data that are the basis for various calculations are stored. The storage means 15 may also be capable of storing various intermediate and final results obtained by executing the programs. More specifically, the storage means 15 stores (stores) programs. Other information may also be stored therein.

ここで、保存されているプログラムには、上記した溶接部の破断限界線算出方法S10の各処理を演算する根拠となるプログラムが含まれる。すなわち、プログラムは、図3に示した溶接部の破断限界線算出方法S10の各過程に対応するように、個別破断限界線導出ステップ、破断限界混合率算出ステップ、及び、破断限界線算出ステップを含んでいる。このプログラムの具体的な演算内容は上記した溶接部の破断限界線算出方法S10で説明した通りである。 The stored programs include programs that are the basis for calculating each process of the above-mentioned method S10 for calculating the fracture limit line of a welded part. That is, the programs include an individual fracture limit line derivation step, a fracture limit mixture ratio calculation step, and a fracture limit line calculation step, so as to correspond to each process of the method S10 for calculating the fracture limit line of a welded part shown in FIG. 3. The specific calculation contents of this program are as described in the above-mentioned method S10 for calculating the fracture limit line of a welded part.

より具体的には、個別破断限界線導出ステップでは、超小型試験片の引張試験の試験結果を取り込んで、式(2)~式(4)を算出する。
破断限界混合率算出ステップでは、得られた式(2)~式(4)に基づいて式(5)~式(8)を算出する。このとき、プログラムとして破断限界線算出装置10に組み込まれている表計算ソフトウエアが用いられてもよい。
破断限界線算出ステップでは破断限界混合率算出ステップで得られた破断限界混合率を用いて式(11)、式(12)を得て任意のアーク溶接部の破断限界線を算出することができる。
More specifically, in the individual fracture limit line derivation step, the test results of the tensile test of the micro-test piece are input and the formulas (2) to (4) are calculated.
In the step of calculating the breaking limit mixing ratio, the formulas (5) to (8) are calculated based on the obtained formulas (2) to (4). At this time, a spreadsheet software incorporated in the breaking limit line calculation device 10 as a program may be used.
In the fracture limit line calculation step, the fracture limit mixture ratio obtained in the fracture limit mixture ratio calculation step is used to obtain equations (11) and (12), making it possible to calculate the fracture limit line of any arc weld.

受信手段16は、外部からの情報を演算装置12に適切に取り入れるための機能を有する構成部材であり、入力手段11が接続される。いわゆる入力ポート、入力コネクタ等もこれに含まれる。 The receiving means 16 is a component that has the function of appropriately inputting information from the outside into the computing device 12, and is connected to the input means 11. This also includes so-called input ports, input connectors, etc.

出力手段17は、得られた結果のうち外部に出力すべき情報を適切に外部に出力する機能を有する構成部材であり、モニター等の表示手段18や各種装置がここに接続される。いわゆる出力ポート、出力コネクタ等もこれに含まれる。 The output means 17 is a component that has the function of appropriately outputting information that should be output from among the obtained results to the outside, and is connected to a display means 18 such as a monitor and various devices. This also includes so-called output ports, output connectors, etc.

入力装置11には、例えばキーボード11a、マウス11b、外部記憶装置11c等が含まれる。キーボード11a、マウス11bは公知のものを用いることができ、説明は省略する。
外部記憶装置11cは、公知の外部接続可能な記憶手段であり、記憶媒体としても機能する。ここには特に限定されることなく、必要とされる各種プログラム、データを記憶させておくことができる。例えば上記した記憶手段15と同様のプログラム、データがここに記憶されていても良い。
外部記憶装置11cとしては、公知の装置を用いることができる。これには例えばCD-ROM及びCD-ROMドライブ、DVD及びDVDドライブ、ハードディスク、各種メモリ等を挙げることができる。
The input device 11 includes, for example, a keyboard 11a, a mouse 11b, an external storage device 11c, etc. The keyboard 11a and the mouse 11b may be well-known devices, and therefore a description thereof will be omitted.
The external storage device 11c is a known storage means that can be connected externally and also functions as a storage medium. There is no particular limitation on the storage means, and various programs and data required can be stored here. For example, the same programs and data as those in the storage means 15 described above may be stored here.
The external storage device 11c may be a known device, such as a CD-ROM and a CD-ROM drive, a DVD and a DVD drive, a hard disk, or various types of memory.

また、その他、ネットワークや通信により受信手段16を介して演算装置に情報が提供されてもよい。同様にネットワークや通信により出力手段17を介して外部の機器に情報を送信することができてもよい。 In addition, information may be provided to the computing device via the receiving means 16 via a network or communication. Similarly, information may be transmitted to an external device via the output means 17 via a network or communication.

このような溶接部の破断限界線算出装置10によれば、上記説明したアーク溶接による溶接部の破断限界線算出方法S10を効率的に精度よく行うことが可能となる。このような溶接部の破断限界線算出装置10としては例えばコンピュータを用いることができる。 Such a weld fracture limit line calculation device 10 makes it possible to efficiently and accurately perform the above-described method S10 for calculating the fracture limit line of a weld by arc welding. A computer, for example, can be used as such a weld fracture limit line calculation device 10.

以下、実施例により、溶接部の破断限界線算出方法について、より詳しく説明する。本実施例は溶接部の破断限界線算出方法S10に基づく。 The following describes in more detail the method for calculating the fracture limit line of a weld using an example. This example is based on the method S10 for calculating the fracture limit line of a weld.

[破断限界線の算出]
<個別破断限界線導出過程S11>
個別破断限界線導出過程S11では次のように各々の破断限界線を導出した。
評価対象の鋼板は980MPa級とし、式(2)により、スポット溶接部の破断限界線(εCRs)を得た。
次に、溶接ワイヤ590MPa級、780MPa級、950MPa級のそれぞれについて式(4)により、溶接ワイヤ溶融凝固組織の破断限界線(εCRw1~εCRw3)を求めた。
そして、アーク溶接では溶接電流=120A、電圧=22V、送り速度=0.95m/min、トーチ傾斜角=60°を溶接条件とし、溶接ワイヤを590MPa級、780MPa級、950MPa級の3種類を用い、式(3)により、アーク溶接部の破断限界線(εCRa1~εCRa3)を求めた。
[Calculation of the breaking limit line]
<Individual fracture limit line derivation process S11>
In the individual fracture limit line derivation step S11, each fracture limit line was derived as follows.
The steel plate to be evaluated was of 980 MPa class, and the fracture limit line (ε CRs ) of the spot weld was obtained by the formula (2).
Next, the fracture limit lines (ε CRw1 to ε CRw3 ) of the molten solidified structures of the welding wires were determined for each of the 590 MPa class, 780 MPa class, and 950 MPa class welding wires by formula (4).
In the arc welding, the welding conditions were welding current = 120 A, voltage = 22 V, feed rate = 0.95 m/min, and torch tilt angle = 60°, and three types of welding wires, 590 MPa class, 780 MPa class, and 950 MPa class, were used, and the fracture limit lines (ε CRa1 to ε CRa3 ) of the arc welded portion were calculated using formula (3).

<破断限界混合率算出ステップS12>
破断限界混合率算出過程S12では、式(5)及び式(6)より、590MPa級、780MPa級、950MPaの溶接ワイヤに関する破断限界混合率RAi、RBiを計算した。すなわち、590MPa級の溶接ワイヤに関して破断限界混合率RA1、RB1、780MPa級の溶接ワイヤに関して破断限界混合率RA2、R、950MPa級の溶接ワイヤ条件について個別の破断限界混合率RA3、RB3を算出した。
<Fracture limit mixing ratio calculation step S12>
In the fracture limit mixture ratio calculation process S12, fracture limit mixture ratios R Ai and R Bi for the 590 MPa class, 780 MPa class, and 950 MPa class welding wires were calculated from formulas (5) and (6). That is, fracture limit mixture ratios R A1 and R B1 for the 590 MPa class welding wire, fracture limit mixture ratios R A2 and R B for the 780 MPa class welding wire, and individual fracture limit mixture ratios R A3 and R B3 for the 950 MPa class welding wire conditions were calculated.

次に表計算ソフトを用いて近似式(7)、近似式(8)の係数を、s=0.0007、t=0.9333、s=0.0001、t=0.5868と求めた。すなわち、次の式を得た。
=-0.0007・T+0.9333
=0.0001・T+0.5868
Next, using a spreadsheet software, the coefficients of approximation formula (7) and approximation formula (8) were calculated as s A =0.0007, t A =0.9333, s B =0.0001, and t B =0.5868. That is, the following formula was obtained.
R A = -0.0007 · T S +0.9333
R B = 0.0001 · T S + 0.5868

破断限界線算出過程S13では、490MPa級の溶接ワイヤを用いたアーク溶接部の破断限界線を算出した。そのため、まず、式(7)、式(8)に溶接ワイヤの引張強さT=490を代入し、破断限界混合率R、Rを計算した。
次に、式(11)、式(12)より490MPa級の溶接ワイヤを用いたアーク溶接部の破断限界線の係数A、Bを算出し、これを式(13)(式(1))により破断限界線を得た。
εCRa=0.46・σtriax^-0.77
In the fracture limit line calculation step S13, the fracture limit line of the arc welded portion using a 490 MPa class welding wire was calculated. To this end, the tensile strength T S of the welding wire was substituted into the formulas (7) and (8) to calculate the fracture limit mixture ratios R A and R B.
Next, the coefficients A a and B a of the fracture limit line of the arc welded portion using a 490 MPa class welding wire were calculated from equations (11) and (12), and the fracture limit line was obtained from these values using equation (13) (equation (1)).
ε CRa = 0.46 · σ triax ^ - 0.77

[検証]
アーク溶接継手の引張試験FEM解析モデルに対して、上記で求めたアーク溶接部の破断限界線(εCRa=0.46・σtriax^-0.77)を適用し精度を検証した。図6には重ねすみ肉溶接継手の引張試験解析モデル20を表した。図6(a)はモデル全体、図6(b)はアーク溶接部21の近傍を拡大して表している。このアーク溶接部21に、上記求めた破断限界線(εCRa=0.46・σtriax^-0.77)を設定した。
[verification]
The fracture limit line of the arc welded portion obtained above (ε CRa = 0.46·σ triax ^-0.77) was applied to a tensile test FEM analysis model of an arc welded joint to verify accuracy. Figure 6 shows a tensile test analysis model 20 of a lap fillet welded joint. Figure 6(a) shows the entire model, and Figure 6(b) shows an enlarged view of the vicinity of an arc welded portion 21. The fracture limit line obtained above (ε CRa = 0.46·σ triax ^-0.77) was set for this arc welded portion 21.

引張試験解析モデル20は板幅方向1/2の対称形でモデル化をしたものである。熱影響部22、母材部23にも既存の破断限界線を設定、モデル全体にはヤング率206GPa、ポアソン比0.3、各部位(アーク溶接部21、熱影響部22、母材部23)にはそれらに対応する破断限界線を設定し、鋼板の片側端部24を完全拘束、もう片方の端部25に引張負荷を付与した。 The tensile test analysis model 20 is modeled in a symmetrical shape in the plate width direction of 1/2. Existing fracture limit lines were also set for the heat-affected zone 22 and base material zone 23. The entire model had a Young's modulus of 206 GPa and a Poisson's ratio of 0.3, and each part (arc welded zone 21, heat-affected zone 22, base material zone 23) had a corresponding fracture limit line. One end 24 of the steel plate was fully restrained, and a tensile load was applied to the other end 25.

図7に解析結果(a)と同条件の引張試験結果(b)の破断部位を示した。本解析では破断限界線に到達した要素を削除して破断による剛性低下を再現しており、解析結果は試験結果と破断部位が一致した。
図8には解析結果と同条件の引張試験結果の最大荷重を示した。解析結果は試験結果と良好に対応しており、本発明によれば、アーク溶接部の破断限界線が未測定の溶接ワイヤについても、超小型試験片の引張試験技術を省略して、破断限界線を精度よく算出できることが分かった。
Figure 7 shows the fracture location of the analysis result (a) and the tensile test result (b) under the same conditions. In this analysis, the elements that reached the fracture limit line were deleted to reproduce the loss of rigidity due to fracture, and the fracture location of the analysis result matched that of the test result.
The maximum load of the tensile test results under the same conditions as the analysis results is shown in Figure 8. The analysis results correspond well to the test results, and it was found that according to the present invention, even for welding wires whose fracture limit lines of arc welds have not been measured, the fracture limit lines can be calculated with high accuracy without using the tensile test technique for ultra-small test pieces.

10 溶接部の破断限界線算出装置
11 入力手段
12 演算装置
18 表示手段
20 引張試験解析モデル
21 アーク溶接部
22 熱影響部
23 母材部
S10 溶接部の破断限界線算出方法
S11 破断限界線導出過程
S12 破断限界混合率算出方法
S13 破断限界線算出過程
REFERENCE SIGNS LIST 10 Weld fracture limit line calculation device 11 Input means 12 Calculation device 18 Display means 20 Tensile test analysis model 21 Arc weld 22 Heat-affected zone 23 Base metal S10 Weld fracture limit line calculation method S11 Fracture limit line derivation process S12 Fracture limit mixture ratio calculation method S13 Fracture limit line calculation process

Claims (5)

評価対象となるアーク溶接部の破断限界線を算出する方法であって、
鋼板の溶融凝固組織の破断限界線、アーク溶接部の破断限界線、及び、溶接ワイヤの溶融凝固組織の破断限界線を導出する個別破断限界線導出過程と、
前記鋼板の溶融凝固組織の破断限界線の係数、前記アーク溶接部の破断限界線の係数、及び、前記溶接ワイヤの溶融凝固組織の破断限界線の係数を用いて、破断限界混合率を計算し、前記溶接ワイヤと前記破断限界混合率との関係を定式化する破断限界混合率算出過程と、
前記評価対象となるアーク溶接部に用いる溶接ワイヤの引張強さから前記定式化した式より破断限界混合率を計算し、前記鋼板の溶融凝固組織の破断限界線、前記溶接ワイヤ溶融凝固組織の破断限界線、及び、前記破断限界混合率から前記評価対象となるアーク溶接部の破断限界線を算出する、破断限界線算出過程と、
を有する溶接部の破断限界線算出方法。
A method for calculating a fracture limit line of an arc weld to be evaluated, comprising the steps of :
An individual fracture limit line derivation process for deriving a fracture limit line of a molten solidified structure of a steel plate, a fracture limit line of an arc weld, and a fracture limit line of a molten solidified structure of a welding wire;
a fracture limit mixture ratio calculation process for calculating a fracture limit mixture ratio by using a coefficient of a fracture limit line of a molten solidified structure of the steel plate, a coefficient of a fracture limit line of the arc welded portion, and a coefficient of a fracture limit line of a molten solidified structure of the welding wire, and formulating a relationship between the welding wire and the fracture limit mixture ratio;
a fracture limit line calculation process for calculating a fracture limit mixture ratio from the tensile strength of a welding wire used in the arc welded portion to be evaluated by the formulated formula, and calculating a fracture limit line of the molten solidified structure of the steel plate, a fracture limit line of the molten solidified structure of the welding wire, and a fracture limit line of the arc welded portion to be evaluated from the fracture limit mixture ratio;
A method for calculating the fracture limit line of a weld having the following structure.
前記鋼板の溶融凝固組織をスポット溶接部とした請求項1に記載の破断限界線算出方法。 The fracture limit line calculation method according to claim 1, in which the molten solidified structure of the steel plate is a spot weld. 評価対象となるアーク溶接部の破断限界線を算出するプログラムであって、
鋼板の溶融凝固組織の破断限界線、アーク溶接部の破断限界線、及び、溶接ワイヤの溶融凝固組織の破断限界線を導出する個別破断限界線導出ステップと、
前記鋼板の溶融凝固組織の破断限界線の係数、前記アーク溶接部の破断限界線の係数、及び、前記溶接ワイヤの溶融凝固組織の破断限界線の係数を用いて、破断限界混合率を計算し、前記溶接ワイヤと前記破断限界混合率との関係を定式化する破断限界混合率算出ステップと、
前記評価対象となるアーク溶接部に用いる溶接ワイヤの引張強さから前記定式化した式より破断限界混合率を計算し、前記鋼板の溶融凝固組織の破断限界線、前記溶接ワイヤ溶融凝固組織の破断限界線、及び、前記破断限界混合率から前記評価対象となるアーク溶接部の破断限界線を算出する、破断限界線算出ステップと、
を有する溶接部の破断限界線算出プログラム。
A program for calculating a fracture limit line of an arc weld to be evaluated ,
An individual fracture limit line deriving step of deriving a fracture limit line of a molten solidified structure of a steel plate, a fracture limit line of an arc weld, and a fracture limit line of a molten solidified structure of a welding wire;
a fracture limit mixture ratio calculation step of calculating a fracture limit mixture ratio by using a coefficient of a fracture limit line of a molten solidified structure of the steel plate, a coefficient of a fracture limit line of the arc welded portion, and a coefficient of a fracture limit line of a molten solidified structure of the welding wire, and formulating a relationship between the welding wire and the fracture limit mixture ratio;
a fracture limit line calculation step of calculating a fracture limit mixture ratio from the tensile strength of a welding wire used in the arc welded portion to be evaluated by the formulated formula, and calculating a fracture limit line of the molten solidified structure of the steel plate, a fracture limit line of the molten solidified structure of the welding wire, and a fracture limit line of the arc welded portion to be evaluated from the fracture limit mixture ratio;
A program for calculating the fracture limit line of a weld having the above structure.
前記鋼板の溶融凝固組織をスポット溶接部とした請求項3に記載の破断限界線算出プログラム。 The fracture limit line calculation program according to claim 3, wherein the molten solidified structure of the steel plate is a spot weld. 評価対象となるアーク溶接部の破断限界線を算出する装置であって、
請求項3又は4に記載の溶接部の破断限界線算出プログラムが記憶された記憶手段と、
前記プログラムに基づいて演算を行う演算手段と、
前記演算手段により演算された結果を表示する表示手段と、を備え、
前記演算手段は、前記請求項3又は4に記載のステップにより演算が行われる、溶接部の破断限界線算出装置。
An apparatus for calculating a fracture limit line of an arc weld to be evaluated ,
A storage means for storing the weld fracture limit line calculation program according to claim 3 or 4;
A calculation means for performing calculations based on the program;
A display means for displaying the result calculated by the calculation means,
The calculation means performs calculations according to the steps of claim 3 or 4.
JP2020209085A 2020-12-17 2020-12-17 Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part Active JP7485956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020209085A JP7485956B2 (en) 2020-12-17 2020-12-17 Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020209085A JP7485956B2 (en) 2020-12-17 2020-12-17 Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part

Publications (2)

Publication Number Publication Date
JP2022096148A JP2022096148A (en) 2022-06-29
JP7485956B2 true JP7485956B2 (en) 2024-05-17

Family

ID=82163735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020209085A Active JP7485956B2 (en) 2020-12-17 2020-12-17 Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part

Country Status (1)

Country Link
JP (1) JP7485956B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326401A (en) 2004-04-13 2005-11-24 Nippon Steel Corp Device, method, computer program for predicting rapture of spot welding part, and computer-readable recording medium
WO2008115320A1 (en) 2007-03-20 2008-09-25 Exxonmobil Upstream Research Company Method to measure tearing resistance
JP2016065847A (en) 2014-09-22 2016-04-28 新日鐵住金株式会社 Fracture prediction method of adhesion joint
JP2017062206A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Derivation method of fracture limit line in weld zone, manufacturing method of component including weld zone, program, and computer readable-recording medium having program recorded thereon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326401A (en) 2004-04-13 2005-11-24 Nippon Steel Corp Device, method, computer program for predicting rapture of spot welding part, and computer-readable recording medium
WO2008115320A1 (en) 2007-03-20 2008-09-25 Exxonmobil Upstream Research Company Method to measure tearing resistance
JP2016065847A (en) 2014-09-22 2016-04-28 新日鐵住金株式会社 Fracture prediction method of adhesion joint
JP2017062206A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Derivation method of fracture limit line in weld zone, manufacturing method of component including weld zone, program, and computer readable-recording medium having program recorded thereon

Also Published As

Publication number Publication date
JP2022096148A (en) 2022-06-29

Similar Documents

Publication Publication Date Title
JP5314096B2 (en) Welding data processing method and program
Lindgren Finite element modeling and simulation of welding. Part 3: Efficiency and integration
JP6175947B2 (en) Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion
JP2008107322A (en) Fracture strain calculation method for spot welded zone, and standard fracture strain calculation method
JP5742755B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
Andrade-Campos et al. Integrated design in welding and incremental forming: Material model calibration for friction stir welded blanks
JP6350270B2 (en) Fracture prediction method for adhesive joints
JP7485956B2 (en) Method for calculating fracture limit line of welded part, program for calculating fracture limit line of welded part, and device for calculating fracture limit line of welded part
JP6459877B2 (en) Method for deriving fracture limit line of welded portion, method for manufacturing member having welded portion, program, and computer-readable recording medium recording program
JP2007024788A (en) Rupture determination device and collision simulation device
JP7469671B2 (en) Method for calculating deformation resistance curve of welded portion, program for calculating deformation resistance curve of welded portion, and device for calculating deformation resistance curve of welded portion
JP6468149B2 (en) Method for calculating deformation resistance curve of welded portion, method for manufacturing member having welded portion, program, and computer-readable record recording program
JP7280510B2 (en) Method for calculating fracture limit line of welded portion, program for calculating fracture limit line of welded portion, and apparatus for calculating fracture limit line of welded portion
JP7328516B2 (en) Welded Joint Fracture Prediction Method by Spot Welding, Welded Joint Fracture Prediction Program by Spot Welding, and Welded Joint Fracture Prediction Device by Spot Welding
Sheikhbahaee et al. Investigating sensitivity to process parameters in pulsed laser micro-welding of stainless steel foils
JP7280509B2 (en) Method for calculating deformation resistance curve of welded portion, program for calculating deformation resistance curve of welded portion, and device for calculating deformation resistance curve of welded portion
Ohata et al. Prediction of ductile fracture path in Charpy V-notch specimen for laser beam welds
JP7059665B2 (en) Material property data calculation method, material property data calculation program, and material property data calculation device
Singh et al. Analysis and optimization of various process parameters and effect on the hardness of SS-304 stainless steel welded joints
Shah et al. The effect of laser stitch welding residual stress on the dynamic behaviour of thin steel structure
JP7131064B2 (en) Boundary condition setting method, boundary condition setting program, and boundary condition setting calculation device
JP2015123501A (en) Analyzer, analysis method, and analysis program
Adewuyi et al. Modeling and simulation of welding temperature fields in cr-mo steel bar
JP7052353B2 (en) Design support device for touring and processing jigs
JP7328517B2 (en) Welded Joint Fracture Prediction Method by Spot Welding, Welded Joint Fracture Prediction Program by Spot Welding, and Welded Joint Fracture Prediction Device by Spot Welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7485956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150