JP6175947B2 - Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion - Google Patents

Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion Download PDF

Info

Publication number
JP6175947B2
JP6175947B2 JP2013143278A JP2013143278A JP6175947B2 JP 6175947 B2 JP6175947 B2 JP 6175947B2 JP 2013143278 A JP2013143278 A JP 2013143278A JP 2013143278 A JP2013143278 A JP 2013143278A JP 6175947 B2 JP6175947 B2 JP 6175947B2
Authority
JP
Japan
Prior art keywords
limit line
metal material
coefficient
fracture
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013143278A
Other languages
Japanese (ja)
Other versions
JP2015017817A (en
Inventor
上田 秀樹
秀樹 上田
英介 中山
英介 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013143278A priority Critical patent/JP6175947B2/en
Publication of JP2015017817A publication Critical patent/JP2015017817A/en
Application granted granted Critical
Publication of JP6175947B2 publication Critical patent/JP6175947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、有限要素法解析(Finite Element Method解析。以下において「FEM解析」ということがある。)を用いた溶接部の破断限界性の予測方法、該予測方法を実施可能な予測システム、及び、溶接部を備えた部材を、上記予測方法を用いて製造する方法に関する。   The present invention relates to a method for predicting the fracture limit of a weld using a finite element method analysis (Finite Element Method analysis, hereinafter sometimes referred to as “FEM analysis”), a prediction system capable of performing the prediction method, and The present invention relates to a method for manufacturing a member having a welded portion using the prediction method.

溶接、特にスポット溶接は、自動車組立工程における鋼板の接合方法として広く用いられている。スポット溶接で組み立てた部材においては、溶接ナゲット径や打点位置が適切でない場合、衝突変形中に溶接部が破断してエネルギー吸収性能の低下を招くことがある。部材の衝突エネルギー吸収性能の評価に多用されているFEM解析の解析精度の向上には、スポット溶接部の破断を考慮することが重要であり、破断の発生を防ぐためのナゲット径や打点間隔の検討を可能にする方法が求められている。また、これらの検討は機械的特性が異なる多種の鋼板を対象に実施できることが望ましい。   Welding, particularly spot welding, is widely used as a method for joining steel plates in an automobile assembly process. In a member assembled by spot welding, if the welding nugget diameter and the spot position are not appropriate, the welded portion may break during collision deformation, leading to a decrease in energy absorption performance. In order to improve the analysis accuracy of FEM analysis, which is often used for evaluating the impact energy absorption performance of members, it is important to consider the fracture of the spot welded part. There is a need for a method that enables consideration. Moreover, it is desirable that these studies can be performed on various types of steel plates having different mechanical characteristics.

非特許文献1には、平行部が平滑形状の超小型試験片を用いた引張試験によりスポット溶接部の溶接金属部分、溶接熱影響部(Heat Affected Zone。以下において「HAZ部分」ということがある。)、及び、母材部分それぞれの、応力−歪み、引張強さ、破断伸び、破断絞りを個別かつ定量的に測定する方法や、その応力−歪み関係と破断絞りとから超小型試験片の引張試験を模擬したFEM解析によって各部位の局所的な破断ひずみ(以下において、「平滑破断ひずみ」ということがある。)を導出する方法が開示されている。かかる技術によれば、局所的な破断ひずみをスポット溶接部の各部位の破断基準としてFEM解析を行い、スポット溶接部の継手強度と破断部位とを高精度に予測することができる、とされている。   Non-Patent Document 1 includes a weld metal portion of a spot welded portion and a heat affected zone (Heat Affected Zone; hereinafter referred to as “HAZ portion”) by a tensile test using a microscopic test piece having a smooth parallel portion. )), And a method for individually and quantitatively measuring the stress-strain, tensile strength, elongation at break, and fracture drawing of each base material part, and the relationship between the stress-strain and the fracture drawing, A method of deriving a local breaking strain (hereinafter, also referred to as “smooth breaking strain”) at each site by FEM analysis simulating a tensile test is disclosed. According to such a technique, FEM analysis is performed using local fracture strain as a fracture criterion for each part of the spot welded part, and joint strength and fractured part of the spot welded part can be predicted with high accuracy. Yes.

また、非特許文献2には、非特許文献1記載の平滑形状に加え、新たに切欠付き形状の超小型試験片を用いた引張試験によりスポット溶接部の溶接金属部分、HAZ部分、及び、母材部分それぞれの、応力−歪み、引張強さ、破断伸び、破断絞りを個別かつ定量的に測定する方法や、その応力−歪み関係と破断絞りとから超小型試験片の引張試験を模擬したFEM解析によって応力三軸度がそれぞれ異なる各部位の局所的な破断ひずみ(以下において、「切欠破断ひずみ」ということがある。)を導出し、平滑破断ひずみ及び切欠破断ひずみを累乗関数で近似し、破断限界線(応力三軸度をパラメータにした破断ひずみ)を構築する方法が開示されている。かかる技術によれば、破断限界線をスポット溶接部の各部位の破断基準としてFEM解析を行い、溶接部にかかる負荷モードがそれぞれ異なる複数のスポット溶接継手の継手強度と破断部位とを高精度に予測することができる、とされている。   In addition to Non-Patent Document 1, in addition to the smooth shape described in Non-Patent Document 1, a weld metal part, a HAZ part, and a mother part of a spot weld are obtained by a tensile test using a new notched micro test piece. A method of individually and quantitatively measuring stress-strain, tensile strength, elongation at break, and fracture drawing of each material part, and FEM simulating a tensile test of a micro test piece from its stress-strain relationship and fracture drawing Deriving local fracture strains (hereinafter, referred to as “notch fracture strains”) of each part having different stress triaxiality by analysis, approximating smooth fracture strain and notch fracture strain by a power function, A method for constructing a fracture limit line (a fracture strain with the stress triaxiality as a parameter) is disclosed. According to such a technique, FEM analysis is performed using the fracture limit line as a fracture criterion for each part of the spot welded part, and the joint strength and fractured part of a plurality of spot welded joints with different load modes applied to the welded part are accurately determined. It can be predicted.

中山英介、外5名、「スポット溶接部の力学特性の測定と継手引張強度の予測」、自動車技術会論文集、Vol.36、No.1、(2005)、p.205−210Eisuke Nakayama and five others, “Measurement of mechanical properties of spot welds and prediction of joint tensile strength”, Automobile Engineering Society Proceedings, Vol. 36, no. 1, (2005), p. 205-210 上田秀樹、外3名、「破断ひずみと応力三軸度によるスポット溶接部破断予測技術の研究」、自動車技術会学術講演会前刷集、No.31−12、(2012)、p.11−14Hideki Ueda, three others, “Study on spot weld fracture prediction technology based on fracture strain and stress triaxiality”, Automotive Engineering Society academic lecture pre-print, No. 31-12, (2012), p. 11-14

非特許文献1に記載の技術では、スポット溶接継手の引張試験条件を対象にした破断予測、及び、詳細な破断因子の検討が可能である。また、この技術では、鋼種により破断ひずみが異なる場合があり、鋼種毎に平滑形状の超小型試験片の引張試験結果とFEM解析結果とから局所的な破断ひずみを求めている(以下において、この処理を「局所的平滑破断ひずみ導出プロセス」ということがある。)。   With the technique described in Non-Patent Document 1, it is possible to predict the fracture with respect to the tensile test conditions of the spot welded joint and to examine the detailed fracture factor. In this technique, the fracture strain may vary depending on the steel type, and the local fracture strain is obtained from the tensile test result and the FEM analysis result of a smooth micro-sized test piece for each steel type (hereinafter referred to as this The process is sometimes referred to as “local smooth fracture strain derivation process”.)

また、非特許文献2に記載の技術では、溶接部にかかる負荷モードがそれぞれ異なる、引張せん断継手、十字継手、及び、L字継手の破断形態と継手強度の予測と破断因子の検討が可能である。この技術では、非特許文献1に記載の平滑形状に加え、鋼種毎に切欠付き形状の超小型試験片の引張試験結果とFEM解析結果とから局所的な破断ひずみを求めている(以下において、この処理を「局所的切欠破断ひずみ導出プロセス」ということがある。)。また、この技術では、鋼種により破断限界線が異なる場合があり、鋼種毎に局所的平滑破断ひずみ導出プロセス及び局所的切欠破断ひずみ導出プロセスを行い、平滑破断ひずみ及び切欠破断ひずみを累乗関数で近似し、破断限界線を求めている(以下において、この処理を「破断限界線導出プロセス」ということがある。)。   In the technique described in Non-Patent Document 2, it is possible to predict the fracture mode and joint strength of tensile shear joints, cruciform joints, and L-shaped joints with different load modes applied to the welds, and study the fracture factors. is there. In this technology, in addition to the smooth shape described in Non-Patent Document 1, local fracture strain is obtained from the tensile test result and FEM analysis result of a micro test piece having a notched shape for each steel type (in the following, This process is sometimes referred to as “local notch fracture strain derivation process”.) In this technology, the fracture limit line may differ depending on the steel type. For each steel type, a local smooth fracture strain derivation process and a local notch fracture strain derivation process are performed, and smooth fracture strain and notch fracture strain are approximated by a power function. The fracture limit line is obtained (hereinafter, this process may be referred to as a “break limit line derivation process”).

しかしながら、例えば破断限界線が未導出である鋼種からなる継手を対象に破断予測FEM解析を行う場合、従来は、当該鋼種について、事前に破断限界線導出プロセスを行う必要があるため、作業時間と人的労力を要し問題であった。   However, for example, when performing fracture prediction FEM analysis for a joint made of a steel type for which the fracture limit line has not been derived, conventionally, since it is necessary to perform a fracture limit line derivation process for the steel type in advance, It required human labor and was a problem.

そこで本発明は、溶接部を構成する、破断限界線が未導出である金属材料について、破断限界線導出プロセスを行わずに破断限界線を精度良く予測することが可能な、溶接部の破断限界線の予測方法、当該予測方法を実施可能な予測システム、及び、当該予測方法を用いる、溶接部を備えた部材の製造方法を提供することを課題とする。   Therefore, the present invention is capable of accurately predicting a fracture limit line without performing a fracture limit line derivation process for a metal material that has not been derived from a fracture limit line, and that constitutes a welded part. It is an object of the present invention to provide a method for predicting a line, a prediction system capable of performing the prediction method, and a method for manufacturing a member having a weld using the prediction method.

代表的な母材強度クラスの鋼種を対象に、あらかじめ、破断限界線を複数導出して破断限界線基準データとする。図1に、例として引張強さ590MPa級鋼板及び980MPa級鋼板の溶接部の破断限界線を示す。一般に、破断ひずみは応力三軸度が大きいほど低下し、図1に示すように破断ひずみと応力三軸度は負の相関を示す。それゆえ、破断限界線は、式(1)に示す累乗関数で近似することができる。
εCR = a・σtriax^b …(1)
式(1)において、εCRは破断ひずみ、σtriaxは応力三軸度である。また、式(1)のa及びbは、それぞれ、例えば、鋼種の化学成分(C、Si、Mn、P、S、Mo、Cr、B、Ti、Nb)から算出する式(2)及び式(3)で表すことができる。
a = a + a・C + a・Si + a・Mn + a・P + a・S + a・Mo + a・Cr + a・B + a・Ti + a10・Nb …(2)
b = b + b・C + b・Si + b・Mn + b・P + b・S + b・Mo + b・Cr + b・B + b・Ti + b10・Nb …(3)
A plurality of fracture limit lines are derived in advance and used as the fracture limit line reference data for representative steel grades of the base metal strength class. FIG. 1 shows, as an example, fracture limit lines of welds of tensile strength 590 MPa grade steel plates and 980 MPa grade steel plates. Generally, the breaking strain decreases as the stress triaxiality increases, and the breaking strain and the stress triaxiality have a negative correlation as shown in FIG. Therefore, the break limit line can be approximated by a power function shown in Equation (1).
ε CR = a · σ triax ^ b (1)
In the formula (1), ε CR is failure strain, sigma TRIAX is stress triaxial degree. Moreover, a and b of Formula (1) are respectively calculated from Formula (2) and Formula calculated from, for example, chemical components (C, Si, Mn, P, S, Mo, Cr, B, Ti, Nb) of the steel type. (3).
a = a 0 + a 1 · C + a 2 · Si + a 3 · Mn + a 4 · P + a 5 · S + a 6 · Mo + a 7 · Cr + a 8 · B + a 9 · Ti + a 10 · Nb ... (2)
b = b 0 + b 1 · C + b 2 · Si + b 3 · Mn + b 4 · P + b 5 · S + b 6 · Mo + b 7 · Cr + b 8 · B + b 9 · Ti + b 10 · Nb (3)

本発明者らは、鋭意研究の結果、式(1)の係数a及びbを式(2)及び(3)で表すと、これらの式の各定数(a〜a10及びb〜b10)は、破断限界線基準データの破断限界線構成式における係数a及びbとの差が小さくなるように、最小2乗法で求めることが可能であることを知見した。このように、鋼種の化学成分を用いて式(1)の係数a及びbを導出することができれば、破断限界線が未導出である鋼種であっても、その化学成分を用いて容易に破断限界線を予測することができる。
本発明は、このような知見に基づいて完成させた。以下、本発明について説明する。
As a result of intensive studies, the inventors expressed the constants (a 0 to a 10 and b 0 to b) of the equations (2) and (3) when the coefficients a and b of the equation (1) are expressed by the equations (2) and (3). 10 ) has found that it can be obtained by the method of least squares so that the difference between the coefficients a and b in the rupture limit line constitutive equation of the rupture limit line reference data becomes small. In this way, if the coefficients a and b of the formula (1) can be derived using the chemical component of the steel type, even if the steel type has not yet been derived from the fracture limit line, the chemical component can be used to easily break. Limit lines can be predicted.
The present invention has been completed based on such findings. The present invention will be described below.

本発明の第1の態様は、有限要素法解析により溶接部の破断予測を実施する際に用いられる、溶接部の破断限界線の予測方法であって、上記破断限界線は、定数と金属材料の化学成分とを用いた多項式で表される係数を含む、破断限界線構成式で近似され、破断限界線導出プロセスにより予め特定された、複数の金属材料の破断限界線構成式を準備する準備工程と、上記複数の金属材料の化学成分から、それぞれの破断限界線構成式の係数を算出する第1係数算出工程と、準備工程で準備された破断限界線構成式の係数と、第1係数算出工程で算出した破断限界線構成式の係数との差が所定の範囲内に収まるように、多項式の定数を決定する定数決定工程と、該定数決定工程で決定された定数と金属材料の化学成分とを用いた多項式へ、溶接部を構成する金属材料の化学成分を入力することにより、該溶接部を構成する金属材料の破断限界線構成式の係数を算出する第2係数算出工程と、を有する、溶接部の破断限界線の予測方法である。   A first aspect of the present invention is a method for predicting a fracture limit line of a welded part used when performing fracture prediction of a welded part by a finite element method analysis, wherein the fracture limit line includes a constant and a metal material. Preparation for preparing fracture limit line constitutive equations for a plurality of metal materials, which are approximated by a rupture limit line constitutive equation, including coefficients represented by polynomials using the chemical components of A first coefficient calculating step for calculating a coefficient of each break limit line constitutive equation from the chemical components of the plurality of metal materials, a coefficient of the break limit line constitutive equation prepared in the preparation step, and a first coefficient A constant determining step for determining a constant of the polynomial so that a difference from the coefficient of the rupture limit line constitutive equation calculated in the calculating step is within a predetermined range; and the chemistry of the constant determined in the constant determining step and the metal material Welding to polynomials using components A second coefficient calculating step of calculating a coefficient of a fracture limit line constitutive equation of the metal material constituting the welded portion by inputting a chemical component of the metal material constituting the welded portion, This is a prediction method.

ここに、本発明の第1の態様及び以下に示す本発明の他の態様(以下において、これらをまとめて「本発明」ということがある。)において、「溶接部」とは、特に鋼材の溶接部分とすることが好ましく、溶接金属部分(或いはナゲット部分)、HAZ部分、母材部分に大別することができる。また、「破断限界線」の具体例としては、溶接部における母材部分の破断限界線、HAZ部分の破断限界線、溶接金属部分の破断限界線等を挙げることができる。本発明における「破断限界線」は、レーザ溶接等のその他溶接手段における溶接部にも適用可能な破断判定の基準値である。また、本発明において、「化学成分」とは、金属材料に含まれる成分の質量%濃度やモル濃度、体積%濃度や組成比等を挙げることができる。   Here, in the first aspect of the present invention and the other aspects of the present invention described below (hereinafter, these may be collectively referred to as “the present invention”), the “welded portion” particularly refers to a steel material. It is preferable to use a welded portion, which can be roughly divided into a weld metal portion (or nugget portion), a HAZ portion, and a base material portion. Specific examples of the “breaking limit line” include a breaking limit line of a base metal part, a breaking limit line of a HAZ part, a breaking limit line of a weld metal part, and the like. The “break limit line” in the present invention is a reference value for fracture determination that can also be applied to welds in other welding means such as laser welding. Further, in the present invention, the “chemical component” can include mass% concentration, molar concentration, volume% concentration, composition ratio, and the like of the component contained in the metal material.

また、上記本発明の第1の態様において、上記溶接部で、第1金属材料及び該第1金属材料とは異なる第2金属材料が接合される場合、溶接部を構成する金属材料の破断限界線構成式の係数は、溶接部における第1金属材料の体積分率を第1金属材料の破断限界線構成式の係数へと乗じた値、及び、溶接部における第2金属材料の体積分率を第2金属材料の破断限界線構成式の係数へと乗じた値の和で表されることが好ましい。   In the first aspect of the present invention, when the first metal material and the second metal material different from the first metal material are joined in the welded portion, the fracture limit of the metal material constituting the welded portion. The coefficient of the line constitutive equation is a value obtained by multiplying the volume fraction of the first metal material in the welded portion by the coefficient of the fracture limit line constitutive equation of the first metal material, and the volume fraction of the second metal material in the welded portion. Is preferably represented by the sum of values obtained by multiplying the coefficient of the fracture limit line constitutive equation of the second metal material.

また、上記本発明の第1の態様において、上記溶接部で、第1金属材料及び該第1金属材料とは異なる第2金属材料が接合される場合、溶接部を構成する金属材料の破断限界線構成式の係数は、該係数を表す前記多項式における化学成分に、溶接部における第1金属材料の体積分率を該第1金属材料の上記化学成分へと乗じた値、及び、溶接部における第2金属材料の体積分率を該第2金属材料の上記化学成分へと乗じた値の和、を入力する過程を経て算出することができる。   In the first aspect of the present invention, when the first metal material and the second metal material different from the first metal material are joined in the welded portion, the fracture limit of the metal material constituting the welded portion. The coefficient of the line constitutive equation is obtained by multiplying the chemical component in the polynomial representing the coefficient by the volume fraction of the first metal material in the welded portion and the chemical component in the first metal material, and in the welded portion. It can be calculated through a process of inputting the sum of values obtained by multiplying the volume fraction of the second metal material by the chemical component of the second metal material.

「該係数を表す前記多項式における化学成分に、溶接部における第1金属材料の体積分率を該第1金属材料の上記化学成分へと乗じた値、及び、溶接部における第2金属材料の体積分率を該第2金属材料の上記化学成分へと乗じた値の和、を入力する」の意味については後述するが、化学成分がCである場合を例示してその内容をここで概説する。例えば、溶接部で第1金属材料及び第2金属材料が接合される場合、係数aを表す式(2)の化学成分Cに入力する値として、第1金属材料における化学成分Cの質量%へ溶接部における第1金属材料の体積分率(溶接金属部分における第1金属材料の体積/溶接金属部分の全体の体積)を乗じることにより得られる値C1と、第2金属材料における化学成分Cの質量%へ溶接部における第2金属材料の体積分率(溶接金属部分における第2金属材料の体積/溶接金属部分の全体の体積)を乗じることにより得られる値C2との和(C=C1+C2)を用いることができる。同様に、係数bを表す式(3)の化学成分Cにも、C1+C2を用いることができ、他の化学成分(SiやMn等)についても以下同様に行うことができる。   “A value obtained by multiplying the chemical component in the polynomial representing the coefficient by the volume fraction of the first metal material in the welded portion to the chemical component in the first metal material, and the volume of the second metal material in the welded portion. The meaning of “input the sum of values obtained by multiplying the fraction by the above-mentioned chemical component of the second metal material” will be described later, but the contents thereof will be outlined here by exemplifying the case where the chemical component is C. . For example, when a 1st metal material and a 2nd metal material are joined in a welding part, as a value inputted into chemical component C of a formula (2) showing coefficient a, to mass% of chemical component C in the 1st metal material The value C1 obtained by multiplying the volume fraction of the first metal material in the welded portion (volume of the first metal material in the weld metal portion / total volume of the weld metal portion) and the chemical component C in the second metal material Sum (C = C1 + C2) obtained by multiplying mass% by the volume fraction of the second metal material in the weld zone (volume of the second metal material in the weld metal portion / total volume of the weld metal portion) Can be used. Similarly, C1 + C2 can be used for the chemical component C of the formula (3) representing the coefficient b, and the same can be applied to other chemical components (Si, Mn, etc.).

本発明の第2の態様は、有限要素法解析により溶接部の破断予測を実施する際に用いられる、溶接部の破断限界線を予測するシステムであって、上記破断限界線は、定数と金属材料の化学成分とを用いた多項式で表される係数を含む、破断限界線構成式で近似され、入出力部と、複数の金属材料の破断限界線構成式を蓄積したデータベースと、該データベースに破断限界線構成式が蓄積されている複数の金属材料の化学成分から、それぞれの破断限界線構成式の係数を算出する第1係数算出部と、データベースに蓄積された破断限界線構成式の係数と、第1係数算出部で算出した破断限界線構成式の係数との差が所定の範囲内に収まるように、多項式の定数を決定する定数決定部と、該定数決定部で決定された定数と金属材料の化学成分とを用いた多項式へ、入出力部から入力された溶接部を構成する金属材料の化学成分を代入することにより、該溶接部を構成する金属材料の破断限界線構成式の係数を算出する第2係数算出部と、を有する、溶接部の破断限界線の予測システムである。   A second aspect of the present invention is a system for predicting a fracture limit line of a welded part used when predicting fracture of a welded part by finite element method analysis, wherein the fracture limit line includes a constant and a metal. It is approximated by a rupture limit line constitutive equation including a coefficient represented by a polynomial using a chemical component of the material, an input / output unit, a database storing the rupture limit line constitutive equations of a plurality of metal materials, and the database A first coefficient calculation unit for calculating a coefficient of each break limit line constitutive expression from chemical components of a plurality of metal materials in which the break limit line constitutive expressions are accumulated, and a coefficient of the break limit line constitutive expression accumulated in the database And a constant determining unit that determines a constant of the polynomial so that a difference between the coefficient of the rupture limit line constitutive equation calculated by the first coefficient calculating unit falls within a predetermined range, and a constant determined by the constant determining unit And the chemical composition of the metal material 2nd coefficient calculation which calculates the coefficient of the fracture limit line constitutive formula of the metal material which constitutes the welding part by substituting the chemical composition of the metal material which constitutes the welding part inputted from the input / output part to the polynomial A fracture limit line prediction system for a welded portion.

本発明の第3の態様は、上記本発明の第1の態様に係る溶接部の破断限界線の予測方法により予測された破断限界線を用いて有限要素法解析を行い、その解析結果に基づいて部材の板組み、溶接部の大きさ及び/又は溶接位置を決定し、該決定された板組み、溶接部の大きさ及び/又は溶接位置にしたがって部材を溶接する工程を有する、溶接部を備えた部材の製造方法である。   According to a third aspect of the present invention, a finite element method analysis is performed using a fracture limit line predicted by the method for predicting a fracture limit line of a weld according to the first aspect of the present invention, and the analysis result is based on the analysis result. Determining the plate assembly of the member, the size and / or welding position of the welded portion, and welding the member according to the determined plate assembly, the size of the welded portion and / or the welding position. It is a manufacturing method of the member provided.

本発明では、対象金属材料の化学成分を用いて、未知の破断限界線構成式の係数と既知の破断限界線構成式の係数との誤差が所定の範囲内に収まるように、未知の破断限界線構成式の係数を算出する。これにより、破断限界線が未導出である金属材料の破断限界線を特定したい場合には、金属材料の化学成分を特定すれば破断限界線構成式の係数を算出することができ、算出された係数を用いて破断限界線構成式を特定することができる。すなわち、本発明によれば、破断限界線が未導出である金属材料について、従来のような破断限界線導出プロセスを行わずに破断限界線を精度良く予測することが可能な、溶接部の破断限界線の予測方法を提供することができる。また、本発明によれば、この予測方法を実施可能な予測システム、及び、当該予測方法を用いる、溶接部を備えた部材の製造方法を提供することができる。   In the present invention, using the chemical component of the target metal material, the unknown fracture limit is set so that the error between the coefficient of the unknown fracture limit line constitutive equation and the coefficient of the known fracture limit line constitutive formula falls within a predetermined range. Calculate the coefficient of the line constitutive equation. As a result, when it is desired to specify the fracture limit line of the metal material from which the fracture limit line has not been derived, the coefficient of the fracture limit line constitutive equation can be calculated by specifying the chemical component of the metal material. The break limit line constitutive equation can be specified using the coefficient. That is, according to the present invention, it is possible to accurately predict a fracture limit line without performing a conventional fracture limit line derivation process for a metal material for which a fracture limit line has not been derived. A limit line prediction method can be provided. Moreover, according to this invention, the manufacturing method of the member provided with the welding part using the prediction system which can implement this prediction method, and the said prediction method can be provided.

溶接金属の破断ひずみと応力三軸度との関係を示す図である。It is a figure which shows the relationship between the fracture | rupture distortion of a weld metal, and stress triaxiality. 本発明に係る溶接部の破断限界線の予測方法の一例を示す図である。It is a figure which shows an example of the prediction method of the fracture limit line of the welding part which concerns on this invention. スポット溶接継手引張試験条件のFEM解析において、本発明に係る破断限界線の予測方法を適用した例を説明するための図である。It is a figure for demonstrating the example which applied the prediction method of the fracture limit line which concerns on this invention in the FEM analysis of spot-welded joint tension test conditions. スポット溶接継手引張試験条件のFEM解析において、本発明に係る破断限界線の予測方法を適用した解析結果の例を説明するための図である。It is a figure for demonstrating the example of the analysis result which applied the prediction method of the fracture limit line which concerns on this invention in the FEM analysis of spot-welded joint tension test conditions. 本発明に係る溶接部の破断限界線の予測システムの一例を示す図である。It is a figure which shows an example of the prediction system of the fracture limit line of the welding part which concerns on this invention. 実施例における、評価対象鋼種の溶接金属部及びHAZ部分の破断限界線を示す図である。It is a figure which shows the fracture limit line of the weld metal part and HAZ part of an evaluation object steel type in an Example. 実施例における、評価対象鋼種の変形抵抗曲線を示す図である。It is a figure which shows the deformation resistance curve of the steel type for evaluation in an Example. 実施例における、スポット溶接継手引張試験モデルの継手形状を示す図である。It is a figure which shows the joint shape of the spot welded joint tension test model in an Example.

1.本発明完成までの経緯
上記非特許文献1及び2によれば、平滑形状及び切欠付き形状の超小型試験片の引張試験を模擬したFEM解析結果の試験部断面積が破断試験片での実測値に達したときの最大相当塑性ひずみを、その試験片の局所的な平滑破断ひずみ及び切欠破断ひずみと定義できる。同様に、破断限界の応力三軸度も定義できる。また、このプロセスを溶接金属部分、HAZ部分、及び、母材部分毎に行うことで、各部位(溶接金属部分、HAZ部分、及び、母材部分。以下において同じ。)での平滑破断ひずみ及び切欠破断ひずみと破断限界の応力三軸度を導出することができる。そして、破断ひずみと応力三軸度との関係を累乗関数で近似することにより、各部位の破断限界線を構築することができる。
1. Background to the completion of the present invention According to Non-Patent Documents 1 and 2 above, the cross-sectional area of the test part of the FEM analysis result simulating the tensile test of a smooth test piece and a notched micro test piece is the actual value of the fracture test piece. Can be defined as the local smooth fracture strain and notch fracture strain of the specimen. Similarly, the stress triaxiality at the breaking limit can be defined. In addition, by performing this process for each weld metal part, HAZ part, and base material part, the smooth fracture strain at each part (weld metal part, HAZ part, and base material part; the same applies hereinafter) and The notch breaking strain and the stress triaxiality at the breaking limit can be derived. And the fracture limit line of each part can be constructed by approximating the relation between the fracture strain and the stress triaxiality by a power function.

図1は、溶接金属の破断ひずみと応力三軸度との関係を示す図である。図1に示したように、破断限界線の破断ひずみは高強度材ほど応力三軸度の影響が大きく、低下傾向を示すため、上記式(1)における係数a及びbは高強度材ほど小さくなると考えられる。また、鉄鋼材料では、炭素以外の元素の影響力を炭素量に換算した炭素当量という指標があり、鉄鋼材料の引張強さに対応したもの、溶接部硬さに対応したもの等がある。このように、鉄鋼材料では、化学成分と機械的特性との間に相関性があると考えられている。一方、引張試験において、破断試験片の断面積は破断絞りに換算される。破断絞りは機械的特性の一つであるため、本発明者らは、破断絞り及びそれから導出される破断ひずみと化学成分との間にも相関性があると考えた。本発明者らは、鋭意研究の結果、上記式(2)及び式(3)を用いることで、破断限界線構成式(上記式(1))の係数a及びbを算出できることを知見した。   FIG. 1 is a diagram showing the relationship between fracture strain and stress triaxiality of a weld metal. As shown in FIG. 1, the breaking strain of the breaking limit line is more influenced by the stress triaxiality as the strength material is higher, and shows a decreasing tendency. Therefore, the coefficients a and b in the above formula (1) are smaller as the strength material is higher. It is considered to be. In addition, in steel materials, there is an index called carbon equivalent in which the influence of elements other than carbon is converted into carbon content, and there are materials corresponding to the tensile strength of steel materials and materials corresponding to welded portion hardness. Thus, in steel materials, it is considered that there is a correlation between chemical components and mechanical properties. On the other hand, in the tensile test, the cross-sectional area of the fracture test piece is converted into a fracture drawing. Since the fracture drawing is one of the mechanical properties, the present inventors considered that there is also a correlation between the fracture drawing and the fracture strain derived therefrom and the chemical composition. As a result of intensive studies, the present inventors have found that the coefficients a and b of the fracture limit line constitutive equation (the above equation (1)) can be calculated by using the above equations (2) and (3).

本発明は上記知見に基づいてなされたものである。すなわち、本発明においては、溶接部の破断部位(例えば、溶接金属部分、HAZ部分、母材部分)に係る破断限界線について、上記式(2)及び(3)を用いることで、破断限界線構成式(上記式(1))の係数a及びbを算出し、当該金属材料の溶接部の破断部位に係る破断限界線を適切に導出、予測することができる。   The present invention has been made based on the above findings. That is, in the present invention, the fracture limit line is used by using the above formulas (2) and (3) for the fracture limit line relating to the fracture site (for example, weld metal part, HAZ part, base metal part) of the welded part. The coefficients a and b of the constitutive formula (the above formula (1)) can be calculated, and the fracture limit line related to the fracture site of the welded portion of the metal material can be appropriately derived and predicted.

以下、本発明の実施の形態について説明する。なお、以下の説明では、金属材料が母材強度クラス270MPa級〜1500MPa級の鋼板であり、その溶接金属部分の破断限界線を予測する場合を主に例示するが、本発明は以下に説明する形態に限定されない。   Embodiments of the present invention will be described below. In the following description, the metal material is a steel plate of the base material strength class 270 MPa class to 1500 MPa class, and the case where the fracture limit line of the weld metal part is predicted is mainly exemplified, but the present invention will be described below. The form is not limited.

2.溶接部の破断限界線の予測方法
本発明の第1実施形態に係る溶接部の破断限界線の予測方法S10(以下において、「予測方法S10」という。)を図2に示す。図2に示すように、予測方法S10は、準備工程S1と、第1係数算出工程S2と、定数決定工程S3と、第2係数算出工程S4と、を有している。
2. 2. Method for Predicting Fracture Limit Line of Welded Part FIG. 2 shows a method for predicting a fracture limit line of a welded part according to the first embodiment of the present invention (hereinafter referred to as “prediction method S10”). As shown in FIG. 2, the prediction method S10 includes a preparation step S1, a first coefficient calculation step S2, a constant determination step S3, and a second coefficient calculation step S4.

2.1.準備工程S1
準備工程S1は、破断限界線導出プロセスにより予め特定された、複数の金属材料(例えば、母材強度クラス270MPa級〜1500MPa級の複数の鋼板。)の破断限界線構成式を準備する工程である。準備工程S1で準備する破断限界線構成式の数は、複数であれば特に限定されないが、予測精度を高めやすい形態にする観点からは、4以上とすることが好ましく、強化機構と引張強さが異なる4〜7種類程度の鋼種、例えば5鋼種とすることができる。以下の説明では、破断限界線導出プロセスによって破断限界線が既知である複数の鋼種として母材強度クラス270MPa級〜1500MPa級の鋼板(5鋼種)を用い、溶接金属部分の破断限界線構成式の係数を決定した例を示す。
2.1. Preparatory process S1
The preparation step S1 is a step of preparing a rupture limit line constitutive equation of a plurality of metal materials (for example, a plurality of steel plates having a base material strength class of 270 MPa class to 1500 MPa class) specified in advance by a rupture limit line derivation process. . The number of fracture limit line constitutive formulas prepared in the preparation step S1 is not particularly limited as long as it is plural, but from the viewpoint of making the prediction accuracy easy to increase, it is preferably 4 or more, and the strengthening mechanism and the tensile strength 4 to 7 types of steel, for example, 5 types of steel. In the following description, steel plates of the base material strength class 270 MPa class to 1500 MPa class (5 steel types) are used as a plurality of steel types whose fracture limit lines are known by the fracture limit line derivation process, and The example which determined the coefficient is shown.

2.2.第1係数算出工程S2
第1係数算出工程S2は、破断限界線導出プロセスにより破断限界線構成式が予め特定されている5鋼種の化学成分から、該5鋼種それぞれの溶接金属部分の破断限界線構成式の係数(上記式(1)の係数a及びb。以下において同じ。)を算出する工程である。鋼種の溶接金属部分の破断限界線は、まず、式(1)の構成式で表す。次に、式(1)の係数a及びbを化学成分(C、Si、Mn、P、S、Mo、Cr、B、Ti、Nb)から算出する式(2)及び(3)で表す。これを複数の鋼種(5鋼種すべて)について行う。
2.2. First coefficient calculation step S2
In the first coefficient calculation step S2, the coefficient of the fracture limit line constitutive equation of the weld metal portion of each of the five steel types (from the above) is determined from the chemical components of the five steel types for which the rupture limit line constitutive equation is specified in advance by the fracture limit line derivation process. This is a step of calculating the coefficients a and b in the equation (1) (the same applies hereinafter). First, the fracture limit line of the weld metal part of the steel type is expressed by the constitutive formula of Formula (1). Next, the coefficients a and b in the formula (1) are expressed by the formulas (2) and (3) calculated from the chemical components (C, Si, Mn, P, S, Mo, Cr, B, Ti, Nb). This is performed for a plurality of steel types (all five steel types).

2.3.定数決定工程S3
定数決定工程S3は、準備工程S1で準備された破断限界線構成式の係数と、第1係数算出工程S2で算出した破断限界線構成式の係数との差が所定の範囲内に収まるように、定数(上記式(2)の定数a〜a10及び上記式(3)の定数b〜b10)を決定する工程である。定数決定工程S3では、例えば最小二乗法を用いて、係数a及びbの誤差が所定の範囲内に収まるように、適正化した定数(a〜a10及びb〜b10)を決定する。定数決定工程S3において、「所定の範囲」は特に限定されないが、例えば、係数a、係数bの誤差の平均がそれぞれ5%未満となるように、定数(a〜a10及びb〜b10)を決定することができる。定数決定工程で適正化した定数を決定することにより、破断限界線の予測精度を高めることが可能になる。ここで、定数(a〜a10及びb〜b10)は、具体的には、a≧1.0、a〜a10≦0.0、b≧−0.5、b〜b10≦0.0である。
2.3. Constant determination step S3
In the constant determination step S3, the difference between the coefficient of the fracture limit line constitutive equation prepared in the preparation step S1 and the coefficient of the fracture limit line constitutive equation calculated in the first coefficient calculation step S2 is within a predetermined range. , Constants (the constants a 0 to a 10 in the above formula (2) and the constants b 0 to b 10 in the above formula (3)). In the constant determination step S3, optimized constants (a 0 to a 10 and b 0 to b 10 ) are determined using, for example, a least square method so that the errors of the coefficients a and b are within a predetermined range. . In the constant determination step S3, the “predetermined range” is not particularly limited. For example, the constants (a 0 to a 10 and b 0 to b are set so that the average error of the coefficient a and the coefficient b is less than 5%. 10 ) can be determined. By determining the optimized constant in the constant determining step, it is possible to increase the prediction accuracy of the fracture limit line. Here, the constants (a 0 to a 10 and b 0 to b 10 ) are specifically expressed as a 0 ≧ 1.0, a 1 to a 10 ≦ 0.0, b 0 ≧ −0.5, b 1 is a ~b 10 ≦ 0.0.

2.4.第2係数算出工程S4
第2係数算出工程S4は、定数決定工程S3で決定された定数(a〜a10及びb〜b10)と金属材料の化学成分とを用いた多項式(上記式(2)及び式(3)))へ、溶接部を構成する金属材料(ここでは破断限界線が未導出である鋼種)の化学成分(質量%)を入力することにより、破断限界線が未導出である鋼種の破断限界線構成式の係数(上記式(1)の係数a及びb)を算出する工程である。破断限界線構成式の係数a及びbを算出することにより、破断限界線構成式を特定することができるので、破断限界線が未導出であった鋼種の破断限界線を予測することができる。
2.4. Second coefficient calculation step S4
The second coefficient calculation step S4 is a polynomial (the above formulas (2) and (2) using the constants (a 0 to a 10 and b 0 to b 10 ) determined in the constant determination step S3 and the chemical components of the metal material. 3))) By inputting the chemical composition (mass%) of the metal material that constitutes the weld zone (here, the steel type from which the fracture limit line has not been derived), the fracture of the steel type from which the fracture limit line has not been derived. This is a step of calculating the coefficient of the limit line constitutive equation (coefficients a and b in the above equation (1)). Since the fracture limit line constitutive equation can be specified by calculating the coefficients a and b of the rupture limit line constitutive equation, the rupture limit line of the steel type from which the rupture limit line has not been derived can be predicted.

同種の金属材料を接合する場合には、上記の方法で破断限界線を予測できる。ただし、本発明は当該形態に限定されず、異なる材質の金属材料を接合した溶接金属にも適用することができる。この場合、複数の異なる金属材料を接合した溶接継手における溶接金属部分の破断限界線構成式の係数a及びb(amix及びbmix)は、下記式(4)及び(5)に示すように、溶接金属部分におけるそれぞれの金属材料の体積比を係数a及びbに乗じて算出することが好ましい。なお、溶接部を構成する金属材料の化学成分(質量%)については、当該金属材料の文献データ、又は、金属材料の材質情報を記載したミルシートのデータ等から特定することができる。
mix = awm×(V/Vmix) + awm×(V/Vmix) …(4)
mix = bwm×(V/Vmix) + bwm×(V/Vmix) …(5)
式(4)及び(5)において、awmは溶接部を構成する第1金属材料の溶接金属部分の破断限界線構成式の係数a、awmは溶接部を構成する第2金属材料の溶接金属部分の破断限界線構成式の係数a、bwmは溶接部を構成する第1金属材料の溶接金属部分の破断限界線構成式の係数b、bwmは溶接部を構成する第2金属材料の溶接金属部分の破断限界線構成式の係数b、Vは溶接金属部分における第1金属材料の体積、Vは溶接金属部分における第2金属材料の体積、Vmixは溶接金属部分の全体の体積、である。
When joining the same kind of metal materials, the fracture limit line can be predicted by the above method. However, this invention is not limited to the said form, It can apply also to the weld metal which joined the metal material of a different material. In this case, the coefficients a and b (a mix and b mix ) of the fracture limit line constitutive equation of the weld metal portion in the welded joint obtained by joining a plurality of different metal materials are as shown in the following equations (4) and (5). The volume ratio of the respective metal materials in the weld metal portion is preferably calculated by multiplying the coefficients a and b. In addition, about the chemical component (mass%) of the metal material which comprises a welding part, it can identify from the data of the said metal material, the data of the mill sheet | seat which described the material information of the metal material, etc.
a mix = awm s × (V s / V mix) + awm t × (V t / V mix) ... (4)
b mix = bwm s × (V s / V mix) + bwm t × (V t / V mix) ... (5)
In the formula (4) and (5), awm s welding the second metal material fracture limit line Constitutive factor a weld metal portion of the first metallic material, awm t is constituting the weld portion constituting the weld coefficient of fracture limit line structure type metal parts a, bwm s second metallic material fracture limit line constitutive equation coefficients b of the weld metal portion of the first metallic material, bwm t is constituting the weld portion constituting the weld The coefficient b, V s of the fracture limit line constitutive equation of the weld metal part of FIG. 5 is the volume of the first metal material in the weld metal part, V t is the volume of the second metal material in the weld metal part, and V mix is the entire weld metal part. Volume.

異なる材質の金属材料を接合した溶接金属に適用する別の方法として、入力する化学成分(質量%)を、下記式(6)に示すように、各々の金属材料の化学成分に溶接金属部分におけるそれぞれの金属材料の体積比を乗じて算出することもできる。なお、式(6)では一例として、複数の異なる金属材料を接合した溶接継手における溶接金属部分のCの化学成分(質量%)であるCmixの算出方法を示す。
mix = C×(V/Vmix) + C×(V/Vmix) …(6)
式(6)において、Cは溶接部を構成する第1金属材料のCの化学成分(質量%)、Cは溶接部を構成する第2金属材料のCの化学成分(質量%)である。Si、Mn等に関しても同様の式で算出し、算出した化学成分(質量%)を上記式(2)及び式(3)へ入力することにより、複数の異なる金属材料を接合した溶接継手における溶接金属部分の破断限界線構成式の係数(上記式(1)の係数a及びb)を算出する。
As another method of applying to a weld metal in which metal materials of different materials are joined, as shown in the following formula (6), the chemical component (mass%) to be input is changed to the chemical component of each metal material in the weld metal portion. It can also be calculated by multiplying the volume ratio of each metal material. In formula (6), as an example, a calculation method of C mix that is a chemical component (mass%) of C in a weld metal portion in a welded joint obtained by joining a plurality of different metal materials is shown.
C mix = C s × (V s / V mix) + C t × (V t / V mix) ... (6)
In the formula (6), C s chemical composition (mass%) of C in the first metallic material forming the weld, C t is C chemical component of the second metal material constituting the weld (wt%) is there. Si, Mn, etc. are also calculated by the same formula, and the calculated chemical composition (mass%) is input to the above formula (2) and formula (3), thereby welding in a welded joint in which a plurality of different metal materials are joined. The coefficient of the fracture limit line constitutive equation of the metal part (coefficients a and b in the above equation (1)) is calculated.

このように、予測方法S10では、準備工程S1乃至第2係数算出工程S4を経ることにより、破断限界線が未導出である金属材料の溶接部について、破断限界線を高精度に予測することが可能となる。   As described above, in the prediction method S10, the fracture limit line can be predicted with high accuracy for the welded portion of the metal material from which the fracture limit line has not been derived, through the preparation step S1 to the second coefficient calculation step S4. It becomes possible.

図3に、スポット溶接継手引張試験条件のFEM解析における、本発明の第1実施形態に係る溶接部の破断限界線の予測方法(以下において、「本発明の予測方法」ということがある。)の適用例を示す。ここでは、比較のため従来例も併せて示した。図3(a)は評価対象のスポット溶接継手である。図3(b)に示す従来技術では、評価対象の継手と同条件で溶接したスポット溶接部から採取した超小型試験片の引張試験とそれを模擬したFEM解析により破断ひずみを算出し、破断ひずみと応力三軸度との関係を累乗関数で近似して破断限界線を導出する。引張試験では、スポット溶接作業と超小型試験片の加工作業が必要となり、FEM解析では、解析メッシュと材料特性データの作成、境界条件の設定等の一連の解析作業が必要となる。また、破断限界線を導出するには、切欠形状が異なる複数の切欠付き試験片の引張試験とFEM解析を実施するため、作業時間と人的労力を要することとなる。   FIG. 3 shows a method for predicting a fracture limit line of a weld according to the first embodiment of the present invention in FEM analysis under the spot weld joint tensile test conditions (hereinafter, also referred to as “prediction method of the present invention”). An application example is shown. Here, a conventional example is also shown for comparison. FIG. 3A shows a spot welded joint to be evaluated. In the prior art shown in FIG. 3 (b), the fracture strain is calculated by a tensile test of an ultra-small test piece taken from a spot weld welded under the same conditions as the joint to be evaluated and FEM analysis simulating the tensile strain. The fracture limit line is derived by approximating the relationship between stress and triaxiality by a power function. In the tensile test, a spot welding work and a micro work piece processing work are required, and in the FEM analysis, a series of analysis work such as creation of analysis mesh and material property data, setting of boundary conditions, and the like are required. Further, in order to derive the fracture limit line, a tensile test and FEM analysis of a plurality of test pieces with notches having different notch shapes are performed, which requires work time and human labor.

一方、図3(c)に示すように本発明の予測方法では、例えば上記準備工程S1乃至第2係数算出工程S4によって破断限界線構成式の係数を算出するのみで、破断限界線を高精度に予測することができる。また、本発明の予測方法は溶接部を構成する材料の化学成分に基づいて破断限界線を予測する方法であるため、材料の強化機構や化学成分のマイナーチェンジにも臨機応変に対応することができ、高精度に破断限界線を予測できる。図3(d)はスポット溶接継手引張試験条件のFEM解析のメッシュデータであり、z軸方向に対して1/2対称形でモデル化をしている。図3(e)はスポット溶接部分周辺の拡大図である。材料特性データと破断限界線は、溶接金属部分11、HAZ部分12、及び、母材部分13にそれぞれ設定する。   On the other hand, as shown in FIG. 3C, in the prediction method of the present invention, the fracture limit line is calculated with high accuracy only by calculating the coefficient of the fracture limit line constitutive equation by, for example, the preparation step S1 to the second coefficient calculation step S4. Can be predicted. In addition, since the prediction method of the present invention is a method of predicting the fracture limit line based on the chemical composition of the material constituting the welded portion, it can respond flexibly to material strengthening mechanisms and chemical component minor changes. The fracture limit line can be predicted with high accuracy. FIG. 3D shows mesh data of FEM analysis under the spot welded joint tensile test condition, which is modeled in a ½ symmetry with respect to the z-axis direction. FIG. 3E is an enlarged view around the spot welded portion. The material property data and the fracture limit line are set in the weld metal portion 11, the HAZ portion 12, and the base material portion 13, respectively.

図4に、スポット溶接継手引張試験条件のFEM解析へ、本発明の予測方法を適用した解析結果の例を示す。図4(f)は図3(d)のメッシュデータを用いたFEM解析の結果である。図4(g)〜(j)は破断過程を示した解析結果で、溶接部近傍要素の相当塑性ひずみが破断限界線に到達して、その要素を削除した状態である。本例では市販汎用ソルバAbaqusのDamage機能を適用して破断した要素を削除して剛性低下を模擬しているが、同等の機能を持つ他のソルバを用いても良い。図4(g)は変位5mm、図4(h)は変位6mm、図4(i)は変位9mm、図4(j)は変位11mmにおける解析結果で、破断起点と最大荷重時の変形形態を確認することができる。図4(k)は試験結果とFEM解析結果で、荷重の履歴を比較している。FEM解析結果は、破断限界線が未導出である金属材料については破断しないと仮定して解析する従来手法(FEM(破断なし))と本発明による破断考慮手法(FEM(破断考慮))でも比較している。この結果から明らかなように、従来手法は最大荷重を試験結果より大きく見積ってしまうが、本発明の予測方法を適用したFEM解析結果は最大荷重が試験結果と一致している。この結果から、本発明の予測方法によれば、破断限界線が未導出である鋼種の破断限界線を高精度に予測できることが分かる。このように、本発明の予測方法を用いることにより、破断の起点となる部位と破断経路を適切に検討することができる。したがって、本発明の予測方法は、破断による荷重低下を低減するための板組み、溶接部分の大きさ、溶接位置等の検討に活用することができる。   In FIG. 4, the example of the analysis result which applied the prediction method of this invention to the FEM analysis of spot-welded joint tensile test conditions is shown. FIG. 4 (f) shows the result of FEM analysis using the mesh data of FIG. 3 (d). 4 (g) to 4 (j) are analysis results showing the fracture process, in which the equivalent plastic strain of the weld vicinity element reaches the fracture limit line, and the element is deleted. In this example, the damage function is simulated by applying the damage function of the commercially available general-purpose solver Abaqus to delete the fractured element. However, other solvers having equivalent functions may be used. 4 (g) is the displacement 5mm, FIG. 4 (h) is the displacement 6mm, FIG. 4 (i) is the displacement 9mm, and FIG. 4 (j) is the analysis result at the displacement 11mm. Can be confirmed. FIG. 4 (k) shows the test results and the FEM analysis results, comparing the load histories. The FEM analysis results are compared between the conventional method (FEM (no fracture)) and the fracture consideration method according to the present invention (FEM (fracture consideration)), assuming that the metal material for which the fracture limit line has not been derived will not break. doing. As is clear from this result, the conventional method estimates the maximum load larger than the test result, but the FEM analysis result to which the prediction method of the present invention is applied agrees with the test result. From this result, it can be seen that according to the prediction method of the present invention, the fracture limit line of the steel type from which the fracture limit line has not been derived can be predicted with high accuracy. In this way, by using the prediction method of the present invention, it is possible to appropriately examine the site that is the starting point of the fracture and the fracture path. Therefore, the prediction method of the present invention can be used for examination of a plate assembly, a size of a welded portion, a welding position, and the like for reducing a load drop due to fracture.

3.溶接部の破断限界線の予測システム
本発明の第2実施形態に係る溶接部の破断限界線の予測システム10(以下において、「予測システム10」という。)の形態例を図5に示す。図5に示すように、予測システム10は、データベース1と、破断限界線構成式の係数を算出する第1係数算出部2と、破断限界線構成式の係数を多項式で表した時の定数を決定する定数決定部3と、破断限界線が未導出である金属材料の破断限界線構成式の係数を算出する第2係数算出部4と、入出力部5と、を有している。
3. FIG. 5 shows an example of a prediction system 10 (hereinafter referred to as “prediction system 10”) of a fracture limit line of a weld according to a second embodiment of the present invention. As shown in FIG. 5, the prediction system 10 includes a constant when the database 1, the first coefficient calculation unit 2 that calculates the coefficient of the break limit line constitutive equation, and the coefficient of the break limit line constitutive expression are expressed by a polynomial. A constant determining unit 3 for determining, a second coefficient calculating unit 4 for calculating a coefficient of a rupture limit line constitutive equation of a metal material from which a rupture limit line has not been derived, and an input / output unit 5 are provided.

データベース1には、複数の金属材料の破断限界線構成式が蓄積されている。予測システム10において、データベース1の形態は特に限定されない。データベース1には、金属材料の化学成分と破断限界線構成式とを関連付けて記録されていることが好ましい。   The database 1 stores fracture limit line constitutive equations for a plurality of metal materials. In the prediction system 10, the form of the database 1 is not particularly limited. It is preferable that the database 1 records the chemical composition of the metal material and the fracture limit line constitutive equation in association with each other.

第1係数算出部2は、データベース1に破断限界線構成式が蓄積されている複数の金属材料の化学成分から、それぞれの破断限界線構成式の係数(係数a及びb)を算出する部位である。このような機能を実現可能であれば、第1係数算出部2の形態は特に限定されず、表計算ソフトウェア等がインストールされた公知の演算装置等を用いることができる。第1係数算出部2には、データベース1に記録された破断限界線構成式の係数のうちの複数が、対応する化学成分とともに入力され、破断限界線構成式の係数が算出される。   The first coefficient calculation unit 2 is a part that calculates coefficients (coefficients a and b) of each fracture limit line constitutive equation from the chemical components of a plurality of metal materials whose fracture limit line constitutive equations are stored in the database 1. is there. As long as such a function can be realized, the form of the first coefficient calculation unit 2 is not particularly limited, and a known arithmetic device in which spreadsheet software or the like is installed can be used. The first coefficient calculation unit 2 receives a plurality of the break limit line constitutive coefficients recorded in the database 1 together with the corresponding chemical components, and calculates the break limit line constitutive coefficients.

定数決定部3は、データベース1に蓄積されている破断限界線構成式の係数と、第1係数算出部2で算出した破断限界線構成式の係数との差が所定の範囲内に収まるように、破断限界線構成式の係数を表す多項式に用いられる定数(a〜a10及びb〜b10)を決定する部位である。このような機能を実現可能であれば、定数決定部3の形態は特に限定されず、表計算ソフトウェア等がインストールされた公知の演算装置等を用いることができる。定数決定部3には、データベース1に蓄積されている破断限界線構成式の係数、及び、第1係数算出部2で算出した破断限界線構成式の係数が、対応する化学成分とともに入力され、これらの誤差が所定の範囲内に収まるように、表計算ソフトウェアによって定数(a〜a10及びb〜b10)が決定される。具体的な計算方法については上述の通りであるため、ここでは説明を省略する。 The constant determining unit 3 is configured so that the difference between the coefficient of the break limit line constitutive equation stored in the database 1 and the coefficient of the break limit line constitutive formula calculated by the first coefficient calculating unit 2 falls within a predetermined range. This is a part for determining constants (a 0 to a 10 and b 0 to b 10 ) used for the polynomial representing the coefficient of the fracture limit line constitutive equation. As long as such a function can be realized, the form of the constant determination unit 3 is not particularly limited, and a known arithmetic device in which spreadsheet software or the like is installed can be used. The constant determination unit 3 receives the coefficient of the fracture limit line constitutive equation stored in the database 1 and the coefficient of the break limit line constitutive equation calculated by the first coefficient calculation unit 2 together with the corresponding chemical components, The constants (a 0 to a 10 and b 0 to b 10 ) are determined by the spreadsheet software so that these errors fall within a predetermined range. Since the specific calculation method is as described above, the description is omitted here.

第2係数算出部4は、定数決定部3で決定された定数(a〜a10及びb〜b10)と金属材料の化学成分とを用いた多項式(上記式(2)及び(3))へ、入出力部5から入力された溶接部を構成する金属材料の化学成分を代入することにより、溶接部を構成する金属材料の破断限界線構成式の係数(係数a及びb)を算出する部位である。このような機能を実現可能であれば、第2係数算出部4の形態は特に限定されず、表計算ソフトウェア等がインストールされた公知の演算装置等を用いることができる。第2係数算出部4では、定数決定部3で決定された定数(a〜a10及びb〜b10)を用いた式(2)及び(3)に、入出力部5から送られてきた溶接部を構成する金属材料の化学成分をパラメータ値として代入することにより、破断限界線構成式の係数a及びbが算出される。具体的な計算内容については上述の通りであるため、ここでは説明を省略する。 The second coefficient calculation unit 4 is a polynomial (the above formulas (2) and (3) using the constants (a 0 to a 10 and b 0 to b 10 ) determined by the constant determination unit 3 and the chemical components of the metal material. )), By substituting the chemical composition of the metal material constituting the welded portion inputted from the input / output portion 5, the coefficients (coefficients a and b) of the fracture limit line constitutive equation of the metal material constituting the welded portion are obtained. This is the part to be calculated. As long as such a function can be realized, the form of the second coefficient calculation unit 4 is not particularly limited, and a known arithmetic device installed with spreadsheet software or the like can be used. The second coefficient calculation unit 4 sends the equations (2) and (3) using the constants (a 0 to a 10 and b 0 to b 10 ) determined by the constant determination unit 3 from the input / output unit 5. By substituting the chemical composition of the metal material constituting the welded portion as a parameter value, the coefficients a and b of the fracture limit line constitutive equation are calculated. Since the specific calculation contents are as described above, description thereof is omitted here.

このように、予測システム10は、予測方法S10における準備工程S1で用いるデータを蓄積したデータベース1と、第1係数算出工程S2を実施可能な第1係数算出部2と、定数決定工程S3を実施可能な定数決定部3と、第2係数算出工程S4を実施可能な第2係数算出部4を有しているので、予測方法S10を実施することができる。したがって、かかる形態とすることにより、本発明によれば、破断限界線が未導出である金属材料の溶接部について、破断限界線を高精度に予測することが可能な、予測システム10を提供することができる。   As described above, the prediction system 10 performs the database 1 storing data used in the preparation step S1 in the prediction method S10, the first coefficient calculation unit 2 capable of performing the first coefficient calculation step S2, and the constant determination step S3. Since the possible constant determination unit 3 and the second coefficient calculation unit 4 capable of performing the second coefficient calculation step S4 are provided, the prediction method S10 can be performed. Therefore, by adopting such a configuration, according to the present invention, the prediction system 10 is provided that can predict the fracture limit line with high accuracy for the welded portion of the metal material from which the fracture limit line has not been derived. be able to.

予測システム10に関する上記説明では、それぞれ別々の、第1係数算出部2、定数決定部3、及び、第2係数算出部4を有している形態を例示したが、本発明の第2実施形態に係る溶接部の破断限界線の予測システムは当該形態に限定されない。一の演算装置を第1係数算出部2、定数決定部3、及び、第2係数算出部4として機能させても良い。   In the above description regarding the prediction system 10, an example in which the first coefficient calculation unit 2, the constant determination unit 3, and the second coefficient calculation unit 4 are provided separately has been described, but the second embodiment of the present invention. The system for predicting the fracture limit line of a welded part according to the present invention is not limited to this form. One arithmetic unit may function as the first coefficient calculation unit 2, the constant determination unit 3, and the second coefficient calculation unit 4.

4.溶接部を備えた部材の製造方法
本発明の第3実施形態に係る溶接部を備えた部材の製造方法(以下において、「本発明の製造方法」ということがある。)は、本発明の第1実施形態に係る溶接部の破断限界線の予測方法により予測された破断限界線を用いて有限要素法解析を行い、その解析結果に基づいて部材の板組み、溶接部の大きさ及び/又は溶接位置を決定し、このようにして決定された板組み、溶接部の大きさ及び/又は溶接位置にしたがって部材を溶接する工程を有している。
4). Manufacturing method of member provided with welded portion A manufacturing method of a member provided with a welded portion according to the third embodiment of the present invention (hereinafter, also referred to as “manufacturing method of the present invention”) is the first of the present invention. The finite element method analysis is performed using the fracture limit line predicted by the prediction method of the fracture limit line of the welded portion according to the embodiment, and based on the analysis result, the plate assembly of the member, the size of the welded portion, and / or The welding position is determined, and the member is welded according to the plate assembly determined in this way, the size of the welded portion, and / or the welding position.

本発明の製造方法では、例えば、予測方法S10により予測された破断限界線を用いて有限要素法解析を行い、その解析結果に基づいて継手の板組み、溶接ナゲット径の大きさ、及び/又は、打点間隔を決定する。そして、決定された板組み、溶接ナゲット径の大きさ、及び/又は、打点間隔にしたがって部材をスポット溶接することにより、スポット溶接部を備えた継手を製造する形態、とすることができる。本発明の製造方法によれば、破断による荷重低下を低減するうえで板組み、溶接部の大きさ、及び/又は、溶接位置が適切に調整された溶接部材を製造することができる。これを、例えば自動車部材等の設計に反映させることにより、自動車の衝突変形中における溶接部破断を抑制し、適切にエネルギーを吸収することが可能な自動車構造部材を製造することが可能になる。   In the manufacturing method of the present invention, for example, the finite element method analysis is performed using the fracture limit line predicted by the prediction method S10, and based on the analysis result, the joint plate assembly, the size of the weld nugget diameter, and / or Determine the dot interval. And it can be set as the form which manufactures the joint provided with the spot weld part by carrying out spot welding of the member according to the determined board assembly, the magnitude | size of a welding nugget diameter, and / or a hitting point space | interval. According to the manufacturing method of the present invention, it is possible to manufacture a welded member in which the plate assembly, the size of the welded portion, and / or the welding position are appropriately adjusted in order to reduce the load drop due to breakage. By reflecting this in the design of, for example, an automobile member or the like, it is possible to manufacture an automobile structural member that can suppress welding portion breakage during collision deformation of the automobile and appropriately absorb energy.

本発明に関する上記説明では、主に、本発明がスポット溶接部の解析に適用される形態を例示したが、本発明は当該形態に限定されない。レーザ溶接等のその他溶接手段により溶接された部材を解析する場合にも、本発明を適用することが可能である。また、上記説明では、本発明が溶接材料として鉄鋼材料を用いた場合に適用される形態について主に言及したが、本発明は当該形態に限定されない。チタンやアルミニウム等、他の金属材料で構成される溶接部材を解析する場合であっても、本発明を適用することができる。   In the above description regarding the present invention, the form in which the present invention is applied to the analysis of spot welds is mainly exemplified, but the present invention is not limited to this form. The present invention can also be applied when analyzing a member welded by other welding means such as laser welding. Moreover, in the said description, although mentioned mainly about the form applied when this invention uses steel materials as welding material, this invention is not limited to the said form. The present invention can be applied even when analyzing a welded member made of another metal material such as titanium or aluminum.

実施例を参照しつつ、本発明の予測方法についてさらに説明を続ける。   The prediction method of the present invention will be further described with reference to the examples.

破断限界線導出プロセスにより特定された、強化機構及び引張強さが異なる5鋼種の破断限界線構成式を準備し、これら5鋼種の化学成分から破断限界線構成式の係数(係数a及びb)を算出した。その後、算出した係数(係数a及びb)と破断限界線導出プロセスにより特定された破断限界線構成式の係数(係数a及びb)との差が所定の範囲内に収まるように、適正化した定数(a〜a10及びb〜b10)を決定した。 Prepare rupture limit line constitutive equations for five steel types with different strengthening mechanisms and tensile strengths identified by the rupture limit line derivation process. Coefficients (coefficients a and b) of rupture limit line constitutive equations from the chemical components of these five steel types Was calculated. After that, it was optimized so that the difference between the calculated coefficients (coefficients a and b) and the coefficients (coefficients a and b) of the rupture limit line constitutive equation specified by the rupture limit line derivation process was within a predetermined range. Constants (a 0 -a 10 and b 0 -b 10 ) were determined.

このようにして決定した定数(a〜a10及びb〜b10)と、破断限界線構成式が特定されていない金属材料の化学成分(質量%)とから、当該破断限界線構成式が特定されていない金属材料の破断限界線構成式の係数(係数a及びb)を算出した。なお、破断限界線構成式が特定されていない金属材料の化学成分は、以下の通りであった。
C:0.09質量%
Si:0.72質量%
Mn:1.5質量%
P:0.018質量%
S:0.004質量%
Cr:0.02質量%
これらの化学成分を代入して算出した破断限界線構成式の係数は、a=0.43、b=−1.59であった。
From the constants determined in this way (a 0 to a 10 and b 0 to b 10 ) and the chemical composition (% by mass) of the metal material for which the fracture limit line constitutive formula is not specified, the rupture limit line constitutive formula. The coefficients (coefficients a and b) of the rupture limit line constitutive equation of the metal material for which no is specified were calculated. In addition, the chemical component of the metal material in which the fracture limit line constitutive formula is not specified was as follows.
C: 0.09 mass%
Si: 0.72 mass%
Mn: 1.5% by mass
P: 0.018 mass%
S: 0.004 mass%
Cr: 0.02 mass%
The coefficients of the fracture limit line constitutive equation calculated by substituting these chemical components were a = 0.43 and b = −1.59.

係数a及びbを上記式(1)へ代入することにより、金属材料の溶接金属部分の破断限界線構成式を特定した。次に、溶接金属部分をHAZ部分にするほかは同様にして、金属材料のHAZ部分の破断限界線構成式を特定した。特定した溶接金属部分の破断限界線構成式で表される溶接金属部分の破断限界線、及び、特定したHAZ部分の破断限界線構成式で表されるHAZ部分の破断限界線を、図6に示す。図6に示したように、今回の金属材料では、溶接金属部分の破断限界線及びHAZ部分の破断限界線は、ほぼ重なっていた。   By substituting the coefficients a and b into the above equation (1), the fracture limit line constitutive equation of the weld metal portion of the metal material was specified. Next, the fracture limit line constitutive equation of the HAZ portion of the metal material was specified in the same manner except that the weld metal portion was changed to the HAZ portion. FIG. 6 shows the fracture limit line of the weld metal portion represented by the rupture limit line constitutive equation of the identified weld metal portion and the fracture limit line of the HAZ portion represented by the rupture limit line constitutive equation of the identified HAZ portion. Show. As shown in FIG. 6, in the present metal material, the fracture limit line of the weld metal portion and the fracture limit line of the HAZ portion almost overlapped.

本発明の予測方法により破断限界線を予測した金属材料は引張強さ590MPa級、ヤング率206GPa、ポアソン比0.3の鋼種である。この鋼種の変形抵抗曲線を図7に示す。図7に示した材料特性データと図6に示した破断限界線データを図8に示すスポット溶接継手の引張試験モデルに適用し、FEM解析を行った。図8において、(l)は引張せん断継手、(m)はL字継手引張、(n)は十字継手引張を示している。実験結果とFEM解析結果の比較を表1に示す。   The metal material whose fracture limit line is predicted by the prediction method of the present invention is a steel type having a tensile strength of 590 MPa, Young's modulus of 206 GPa, and Poisson's ratio of 0.3. The deformation resistance curve of this steel type is shown in FIG. The material property data shown in FIG. 7 and the fracture limit line data shown in FIG. 6 were applied to the tensile test model of the spot welded joint shown in FIG. 8, and FEM analysis was performed. In FIG. 8, (l) indicates a tensile shear joint, (m) indicates an L-shaped joint tension, and (n) indicates a cruciform joint tension. Table 1 shows a comparison between the experimental results and the FEM analysis results.

表1に示したように、本発明の予測方法により予測した破断限界線を用いたFEM解析結果は、何れの継手においても最大荷重及び破断形態が実験結果と良好に対応した。すなわち、本発明によれば、破断限界線未導出の金属材料について、従来のような破断限界線導出プロセス(破断限界線を導出するための引張試験や有限要素法解析)を省略しても、破断限界線を高精度に予測できることが分かった。   As shown in Table 1, in the FEM analysis results using the fracture limit line predicted by the prediction method of the present invention, the maximum load and the fracture mode corresponded well with the experimental results in any joint. That is, according to the present invention, even if the conventional fracture limit line derivation process (tensile test and finite element method analysis for deriving the fracture limit line) is omitted for the metal material from which the fracture limit line has not been derived, It was found that the fracture limit line can be predicted with high accuracy.

本発明によれば、溶接部を備えた各種部材のFEM解析時に用いられる溶接部の破断限界線を、精度良く予測することができる。これにより、FEM解析の際、個別に破断限界線導出プロセスを行う必要がなくなり、労力を低減することができる。本発明により予測された破断限界線は、例えば、スポット溶接継手の板組みや溶接ナゲット径を検討するためのFEM解析の際に用いることができ、さらにその結果を自動車の部材設計に反映させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the fracture limit line of the welding part used at the time of FEM analysis of the various members provided with the welding part can be estimated with sufficient accuracy. As a result, it is not necessary to perform the process of deriving the fracture limit line individually during the FEM analysis, and labor can be reduced. The fracture limit line predicted by the present invention can be used, for example, in FEM analysis for studying the plate assembly and weld nugget diameter of spot welded joints, and the results should be reflected in the design of automobile parts. Can do.

1…データベース
2…第1係数算出部
3…定数決定部
4…第2係数算出部
5…入出力部
10…溶接部の破断限界線の予測システム
11…溶接金属部分
12…HAZ部分
13…母材部分
DESCRIPTION OF SYMBOLS 1 ... Database 2 ... 1st coefficient calculation part 3 ... Constant determination part 4 ... 2nd coefficient calculation part 5 ... Input-output part 10 ... Prediction system of the fracture limit line of a welding part 11 ... Weld metal part 12 ... HAZ part 13 ... Mother Material part

Claims (5)

有限要素法解析により溶接部の破断予測を実施する際に用いられる、溶接部の破断限界線を予測する方法であって、
前記破断限界線は、下記の式(1)から式(3)となる、破断限界線構成式で近似され、
破断限界線導出プロセスにより予め特定された、複数の金属材料の破断限界線構成式を準備する、準備工程と、
前記複数の金属材料の化学成分から、それぞれの前記破断限界線構成式の前記係数を算出する、第1係数算出工程と、
前記準備工程で準備された前記破断限界線構成式の前記係数と、前記第1係数算出工程で算出した前記破断限界線構成式の前記係数との差が所定の範囲内に収まるように、前記多項式の定数を決定する、定数決定工程と、
前記定数決定工程で決定された前記定数と金属材料の化学成分とを用いた多項式へ、溶接部を構成する金属材料の化学成分を入力することにより、該溶接部を構成する金属材料の破断限界線構成式の前記係数を算出する、第2係数算出工程と、
を有する、溶接部の破断限界線の予測方法。
εCR=a・σtriax^b (1)
a=a+a・C+a・Si+a・Mn+a・P+a・S+a・Mo+a・Cr+a・B+a・Ti+a10・Nb (2)
b=b+b・C+b・Si+b・Mn+b・P+b・S+b・Mo+b・Cr+b・B+b・Ti+b10・Nb (3)
ただし、εCRは破断ひずみ、σtriaxは応力三軸度、a〜a10及びb〜b10は定数であり、a及びbは、前記定数と金属材料の化学成分であるC、Si、Mn、P、S、Mo、Cr、B、Ti及びNbとを用いた多項式で表される係数である。
A method for predicting a fracture limit line of a welded portion, which is used when performing fracture prediction of a welded portion by a finite element method analysis,
The break limit line is approximated by a break limit line constitutive equation, which is expressed by the following formula (1) to formula (3):
Preparing a rupture limit line constitutive equation of a plurality of metal materials specified in advance by a rupture limit line derivation process;
A first coefficient calculating step of calculating the coefficient of each rupture limit line constitutive equation from chemical components of the plurality of metal materials;
The difference between the coefficient of the rupture limit line constitutive equation prepared in the preparation step and the coefficient of the rupture limit line constitutive equation calculated in the first coefficient calculating step is within a predetermined range. A constant determining step for determining a constant of the polynomial;
By inputting the chemical component of the metal material constituting the welded portion into the polynomial using the constant determined in the constant determining step and the chemical component of the metal material, the fracture limit of the metal material constituting the welded portion A second coefficient calculating step of calculating the coefficient of the line constitutive equation;
A method for predicting a fracture limit line of a welded portion.
ε CR = a · σ triax ^ b (1)
a = a 0 + a 1 · C + a 2 · Si + a 3 · Mn + a 4 · P + a 5 · S + a 6 · Mo + a 7 · Cr + a 8 · B + a 9 · Ti + a 10 · Nb (2)
b = b 0 + b 1 · C + b 2 · Si + b 3 · Mn + b 4 · P + b 5 · S + b 6 · Mo + b 7 · Cr + b 8 · B + b 9 · Ti + b 10 · Nb (3)
However, epsilon CR is failure strain, sigma TRIAX stress three Jikudo, a 0 ~a 10 and b 0 ~b 10 is Ri constant der, a and b are the chemical components of the constant and the metal material C, It is a coefficient represented by a polynomial expression using Si, Mn, P, S, Mo, Cr, B, Ti, and Nb.
前記溶接部で、第1金属材料及び該第1金属材料とは異なる第2金属材料が接合される場合、
前記溶接部を構成する金属材料の破断限界線構成式の前記係数は、前記溶接部における前記第1金属材料の体積分率を前記第1金属材料の破断限界線構成式の前記係数へと乗じた値、及び、前記溶接部における前記第2金属材料の体積分率を前記第2金属材料の破断限界線構成式の前記係数へと乗じた値の和で表される、請求項1に記載の溶接部の破断限界線の予測方法。
When the second metal material different from the first metal material and the first metal material is joined at the weld,
The coefficient of the fracture limit line constitutive equation of the metal material constituting the welded portion is multiplied by the volume fraction of the first metal material in the welded portion to the coefficient of the fracture limit line constitutive equation of the first metal material. 2, and a sum of values obtained by multiplying the volume fraction of the second metal material in the weld by the coefficient of the fracture limit line constitutive equation of the second metal material. Method for predicting the fracture limit line of welded parts.
前記溶接部で、第1金属材料及び該第1金属材料とは異なる第2金属材料が接合される場合、
前記溶接部を構成する金属材料の破断限界線構成式の前記係数は、該係数を表す前記多項式における化学成分に、
前記溶接部における前記第1金属材料の体積分率を前記第1金属材料の前記化学成分へと乗じた値、及び、前記溶接部における前記第2金属材料の体積分率を前記第2金属材料の前記化学成分へと乗じた値の和、を入力する過程を経て算出される、請求項1に記載の溶接部の破断限界線の予測方法。
When the second metal material different from the first metal material and the first metal material is joined at the weld,
The coefficient of the fracture limit line constitutive equation of the metal material constituting the weld is the chemical component in the polynomial representing the coefficient,
The value obtained by multiplying the volume fraction of the first metal material in the weld by the chemical component of the first metal material and the volume fraction of the second metal material in the weld are the second metal material. The method of predicting a fracture limit line of a welded portion according to claim 1, wherein the fracture limit line is calculated through a process of inputting a sum of values obtained by multiplying the chemical component of.
有限要素法解析により溶接部の破断予測を実施する際に用いられる、溶接部の破断限界線を予測するシステムであって、
前記破断限界線は、下記の式(1)から式(3)となる、破断限界線構成式で近似され、
入出力部と、
複数の金属材料の破断限界線構成式を蓄積したデータベースと、
前記データベースに破断限界線構成式が蓄積されている前記複数の金属材料の化学成分から、それぞれの前記破断限界線構成式の前記係数を算出する、第1係数算出部と、
前記データベースに蓄積された前記破断限界線構成式の前記係数と、前記第1係数算出部で算出した前記破断限界線構成式の前記係数との差が所定の範囲内に収まるように、前記多項式の定数を決定する、定数決定部と、
前記定数決定部で決定された前記定数と金属材料の化学成分とを用いた多項式へ、前記入出力部から入力された溶接部を構成する金属材料の化学成分を代入することにより、該溶接部を構成する金属材料の破断限界線構成式の前記係数を算出する、第2係数算出部と、
を有する、溶接部の破断限界線の予測システム。
εCR = a・σtriax^b (1)
a=a+a・C+a・Si+a・Mn+a・P+a・S+a・Mo+a・Cr+a・B+a・Ti+a10・Nb (2)
b=b+b・C+b・Si+b・Mn+b・P+b・S+b・Mo+b・Cr+b・B+b・Ti+b10・Nb (3)
ただし、εCRは破断ひずみ、σtriaxは応力三軸度、a〜a10及びb〜b10は定数であり、a及びbは、前記定数と金属材料の化学成分であるC、Si、Mn、P、S、Mo、Cr、B、Ti及びNbとを用いた多項式で表される係数である。
A system for predicting a fracture limit line of a welded part used when performing fracture prediction of a welded part by finite element method analysis,
The break limit line is approximated by a break limit line constitutive equation, which is expressed by the following formula (1) to formula (3):
An input / output unit;
A database that stores rupture limit line constitutive equations for multiple metal materials;
A first coefficient calculating unit that calculates the coefficient of each of the breaking limit line constitutive formulas from the chemical components of the plurality of metal materials for which the breaking limit constitutive formula is accumulated in the database;
The polynomial so that a difference between the coefficient of the break limit line constitutive equation stored in the database and the coefficient of the break limit line constitutive equation calculated by the first coefficient calculation unit is within a predetermined range. A constant determining unit for determining a constant of
By substituting the chemical component of the metal material constituting the weld input from the input / output unit into the polynomial using the constant determined by the constant determination unit and the chemical component of the metal material, A second coefficient calculation unit for calculating the coefficient of the fracture limit line constitutive equation of the metal material constituting
A system for predicting a fracture limit line of a welded portion.
ε CR = a · σ triax ^ b (1)
a = a 0 + a 1 · C + a 2 · Si + a 3 · Mn + a 4 · P + a 5 · S + a 6 · Mo + a 7 · Cr + a 8 · B + a 9 · Ti + a 10 · Nb (2)
b = b 0 + b 1 · C + b 2 · Si + b 3 · Mn + b 4 · P + b 5 · S + b 6 · Mo + b 7 · Cr + b 8 · B + b 9 · Ti + b 10 · Nb (3)
However, epsilon CR is failure strain, sigma TRIAX stress three Jikudo, a 0 ~a 10 and b 0 ~b 10 is Ri constant der, a and b are the chemical components of the constant and the metal material C, It is a coefficient represented by a polynomial expression using Si, Mn, P, S, Mo, Cr, B, Ti, and Nb.
請求項1〜3のいずれか1項に記載の溶接部の破断限界線の予測方法により予測された破断限界線を用いて有限要素法解析を行い、その解析結果に基づいて部材の板組み、溶接部の大きさ及び/又は溶接位置を決定し、該決定された板組み、溶接部の大きさ及び/又は溶接位置にしたがって部材を溶接する工程を有する、溶接部を備えた部材の製造方法。   A finite element method analysis is performed using the fracture limit line predicted by the method of predicting the fracture limit line of a welded portion according to any one of claims 1 to 3, and a plate assembly of members based on the analysis result, A method of manufacturing a member having a welded portion, comprising: determining a size and / or a welding position of the welded portion, and welding the member according to the determined plate assembly, the size of the welded portion and / or the welded position. .
JP2013143278A 2013-07-09 2013-07-09 Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion Active JP6175947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143278A JP6175947B2 (en) 2013-07-09 2013-07-09 Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143278A JP6175947B2 (en) 2013-07-09 2013-07-09 Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion

Publications (2)

Publication Number Publication Date
JP2015017817A JP2015017817A (en) 2015-01-29
JP6175947B2 true JP6175947B2 (en) 2017-08-09

Family

ID=52438955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143278A Active JP6175947B2 (en) 2013-07-09 2013-07-09 Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion

Country Status (1)

Country Link
JP (1) JP6175947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238855A (en) * 2018-10-22 2019-01-18 中国科学院力学研究所 Constitutive parameter, the acquisition of dynamic failure parameter and verification method and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453144B2 (en) * 2015-03-31 2019-01-16 みずほ情報総研株式会社 Damage evaluation system and damage evaluation program
JP6459877B2 (en) * 2015-09-25 2019-01-30 新日鐵住金株式会社 Method for deriving fracture limit line of welded portion, method for manufacturing member having welded portion, program, and computer-readable recording medium recording program
KR102193948B1 (en) * 2016-10-05 2020-12-22 닛폰세이테츠 가부시키가이샤 Fracture determination device, fracture determination program and method thereof
JP6874600B2 (en) * 2017-08-25 2021-05-19 日本製鉄株式会社 Function determination method, function determination device, function determination program and fracture prediction program
JP6874599B2 (en) * 2017-08-25 2021-05-19 日本製鉄株式会社 Function determination method, function determination device, function determination program and fracture prediction program
JP7059665B2 (en) * 2018-02-06 2022-04-26 日本製鉄株式会社 Material property data calculation method, material property data calculation program, and material property data calculation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505793C1 (en) * 2010-04-07 2014-01-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method, device and program for analysis of destruction for point-welded part and machine readable data carrier
JP5742685B2 (en) * 2010-12-01 2015-07-01 新日鐵住金株式会社 Method for predicting fracture determination value of spot welded portion, prediction system, and method for manufacturing member having spot welded portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238855A (en) * 2018-10-22 2019-01-18 中国科学院力学研究所 Constitutive parameter, the acquisition of dynamic failure parameter and verification method and device

Also Published As

Publication number Publication date
JP2015017817A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP6175947B2 (en) Method for predicting fracture limit line of welded portion, prediction system, and method for manufacturing member having welded portion
JP6179356B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
Radaj et al. Recent developments in local concepts of fatigue assessment of welded joints
JP5742755B2 (en) Method for predicting fracture strain of welded portion, prediction system, and method for manufacturing member having welded portion
JP4980503B2 (en) Fracture analysis method, apparatus, program and computer-readable recording medium for spot welded portion
JP6119451B2 (en) Fatigue life prediction method for thin plate laser welds
JP5742685B2 (en) Method for predicting fracture determination value of spot welded portion, prediction system, and method for manufacturing member having spot welded portion
JP6459877B2 (en) Method for deriving fracture limit line of welded portion, method for manufacturing member having welded portion, program, and computer-readable recording medium recording program
JP6468149B2 (en) Method for calculating deformation resistance curve of welded portion, method for manufacturing member having welded portion, program, and computer-readable record recording program
JP6350270B2 (en) Fracture prediction method for adhesive joints
Bleck et al. Numerical and experimental analyses of damage behaviour of steel moment connection
JP2009236540A (en) Fracture performance evaluation method of welded structure, and database apparatus
Adib et al. Three-dimensional finite element analysis of tensile-shear spot-welded joints in tensile and compressive loading conditions
Hyde et al. Failure estimation of TIG butt-welded Inco718 sheets at 620 C under creep and plasticity conditions
JP6277779B2 (en) Method for calculating fracture limit line of welded portion, calculation system, and method for manufacturing member having welded portion
Cerit et al. Fracture mechanics-based design and reliability assessment of fillet welded cylindrical joints under tension and torsion loading
Ghaith Nonlinear finite element modeling of Charpy impact test
Vecchiato Theoretical development and experimental validation of the Peak Stress Method for the fatigue design of steel welded structures
Ertas et al. A parametric study on fatigue life behavior of spot welded joints
JP7280509B2 (en) Method for calculating deformation resistance curve of welded portion, program for calculating deformation resistance curve of welded portion, and device for calculating deformation resistance curve of welded portion
Padmanabhan Fatigue Analysis of 3D Printed 15-5 PH Stainless Steel-A Combined Numerical and Experimental Study
Kim Numerical Approach for Predicting Fatigue Crack Growth in Residual Stress Bearing Bodies
JP5333039B2 (en) Fracture index value correction method, fracture index value correction apparatus, fracture characteristic evaluation method for welded structure, and fracture characteristic evaluation apparatus for welded structure
Goyal A stress analysis method for fatigue life prediction of welded structures
Singaravadivelu et al. Fillet Weld Fatigue Lifetime: Parametric Finite Element Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R151 Written notification of patent or utility model registration

Ref document number: 6175947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350