JP7483399B2 - Observation optical system and observation device - Google Patents

Observation optical system and observation device Download PDF

Info

Publication number
JP7483399B2
JP7483399B2 JP2020024461A JP2020024461A JP7483399B2 JP 7483399 B2 JP7483399 B2 JP 7483399B2 JP 2020024461 A JP2020024461 A JP 2020024461A JP 2020024461 A JP2020024461 A JP 2020024461A JP 7483399 B2 JP7483399 B2 JP 7483399B2
Authority
JP
Japan
Prior art keywords
optical system
lens group
observation
lens
observation optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020024461A
Other languages
Japanese (ja)
Other versions
JP2021128310A (en
Inventor
宏治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020024461A priority Critical patent/JP7483399B2/en
Publication of JP2021128310A publication Critical patent/JP2021128310A/en
Application granted granted Critical
Publication of JP7483399B2 publication Critical patent/JP7483399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Telescopes (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、双眼鏡や望遠鏡等の観察装置に好適な観察光学系に関する。 The present invention relates to an observation optical system suitable for observation devices such as binoculars and telescopes.

観察光学系を通して物体を観察する際に、該光学系の倍率が高くなるほどユーザの手振れによる像振れが増加する。特許文献1には、対物レンズにより形成された物体像を正立プリズムで正立像とし、該正立像を接眼レンズを通して拡大観察する観察光学系であって、像振れを低減するために防振レンズ群を移動させる防振機能を有する観察光学系が開示されている。 When observing an object through an observation optical system, the higher the magnification of the optical system, the greater the image blur caused by the user's hand movement. Patent Document 1 discloses an observation optical system that converts an object image formed by an objective lens into an erect image using an erecting prism, and then magnifies and observes the erect image through an eyepiece, and has an anti-vibration function that moves an anti-vibration lens group to reduce image blur.

特開2016―166907号公報JP 2016-166907 A

しかしながら、特許文献1の観察光学系では、防振レンズ群の屈折力が弱く、そのサイズが大きい。このため、観察光学系の小型化に不利であるだけでなく、防振レンズ群を駆動するための機構が大型化したり消費電力が増加したりする。 However, in the observation optical system of Patent Document 1, the refractive power of the vibration-proof lens group is weak and its size is large. This is not only disadvantageous to miniaturizing the observation optical system, but also leads to an increase in the size of the mechanism for driving the vibration-proof lens group and increased power consumption.

本発明は、防振機能を有する小型の観察光学系およびこれを有する観察装置を提供する。 The present invention provides a compact observation optical system with vibration isolation and an observation device having the same.

本発明の一側面としての観察光学系は、物体側から像側へ順に配置された、対物光学系と、該対物光学系により形成された物体像を正立像にする正立光学系と、接眼光学系とを有する。対物光学系は、物体側から像側へ順に配置された、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群とを有する。第2レンズ群は、1枚の負レンズ、または1枚の負レンズと1枚の正レンズにより構成されている。第2レンズ群を対物光学系の光軸に対して移動させて防振を行う。対物光学系の焦点距離をf0、第2レンズ群の焦点距離をf2とするとき、
0.03≦-f2/f0≦0.24
なる条件を満足することを特徴とする。
An observation optical system according to one aspect of the present invention comprises, arranged in order from the object side to the image side, an objective optical system, an erecting optical system that converts an object image formed by the objective optical system into an erect image, and an eyepiece optical system. The objective optical system comprises, arranged in order from the object side to the image side, a first lens group having positive refractive power and a second lens group having negative refractive power. The second lens group is composed of one negative lens, or one negative lens and one positive lens. Vibration is reduced by moving the second lens group relative to the optical axis of the objective optical system. When the focal length of the objective optical system is f0 and the focal length of the second lens group is f2,
0.03≦−f2/f0≦0.24
The present invention is characterized in that it satisfies the following conditions.

なお、上記観察光学系を有する観察装置も本発明の他の一側面を構成する。 An observation device having the above observation optical system also constitutes another aspect of the present invention.

本発明によれば、防振機能を有する小型の観察光学系を実現することができる。 The present invention makes it possible to realize a compact observation optical system with vibration isolation.

実施例1の観察光学系の断面図。FIG. 2 is a cross-sectional view of the observation optical system according to the first embodiment. 実施例1の観察光学系の非防振時の縦収差図。5A to 5C are longitudinal aberration diagrams of the observation optical system of Example 1 when not subjected to image vibration correction. 実施例1の観察光学系の非防振時の横収差図。4A to 4C are lateral aberration diagrams of the observation optical system of Example 1 when not subjected to image vibration correction. 実施例1の観察光学系の防振時の横収差図。4A to 4C are lateral aberration diagrams of the observation optical system of Example 1 during vibration reduction. 実施例2の観察光学系の断面図。FIG. 11 is a cross-sectional view of an observation optical system according to a second embodiment. 実施例2の観察光学系の非防振時の縦収差図。11A to 11C are longitudinal aberration diagrams of the observation optical system of Example 2 when not subjected to image vibration correction. 実施例2の観察光学系の非防振時の横収差図。7A to 7C are lateral aberration diagrams of the observation optical system of Example 2 when not subjected to image vibration reduction. 実施例2の観察光学系の防振時の横収差図。8A to 8C are lateral aberration diagrams of the observation optical system of Example 2 during vibration reduction. 実施例3の観察光学系の断面図。FIG. 11 is a cross-sectional view of the observation optical system according to the third embodiment. 実施例3の観察光学系の非防振時の縦収差図。13A to 13C are longitudinal aberration diagrams of the observation optical system of Example 3 when not subjected to image vibration correction. 実施例3の観察光学系の非防振時の横収差図。13A to 13C are lateral aberration diagrams of the observation optical system of Example 3 when not subjected to image vibration correction. 実施例3の観察光学系の防振時の横収差図。13A to 13C are lateral aberration diagrams of the observation optical system of Example 3 during vibration reduction. 実施例1~3の観察光学系を備えた双眼鏡を示す図。FIG. 1 is a diagram showing binoculars equipped with the observation optical systems of Examples 1 to 3.

以下、本発明の実施例について図面を参照しながら説明する。まず具体的な実施例の説明に先だって、各実施例に共通する事項について図1に示す実施例1の観察光学系を用いて説明する。 Below, embodiments of the present invention will be described with reference to the drawings. Before describing specific embodiments, matters common to each embodiment will be described using the observation optical system of embodiment 1 shown in FIG. 1.

各実施例の観察光学系は、物体側から観察側(像側)に順に配置された、対物光学系と、該対物光学系により形成される物体像を正立像とする正立プリズム(正立光学系)と、接眼光学系とを有する。この構成を有する観察光学系を用いることで、物体像を正立像として観察することができる。図中のIPはアイポイントであり、ここに観察者の眼が位置することで物体像の観察が可能となる。 The observation optical system in each embodiment has, arranged in this order from the object side to the observation side (image side), an objective optical system, an erecting prism (erecting optical system) that converts the object image formed by the objective optical system into an erect image, and an eyepiece optical system. By using an observation optical system having this configuration, the object image can be observed as an erect image. IP in the figure is the eye point, and the object image can be observed by positioning the observer's eye here.

対物光学系は、 物体側から観察側に順に、正の屈折力を有する第1レンズ群L1と、負の屈折力を有する第2レンズ群L2とを有する。ユーザの手振れが生じた際に第2レンズ群L2を対物光学系(つまりは観察光学系)の光軸に直交する方向に移動(シフト)させることで像振れを低減(補正)する、すなわち防振を行うことができる。対物光学系をこのように構成することで、簡易かつ小型の構成により防振機能を実現することができる。 The objective optical system has, from the object side to the observation side, a first lens group L1 with positive refractive power and a second lens group L2 with negative refractive power. When a user's hand shake occurs, the second lens group L2 can be moved (shifted) in a direction perpendicular to the optical axis of the objective optical system (i.e. the observation optical system) to reduce (correct) image shake, i.e., to achieve vibration isolation. By configuring the objective optical system in this way, it is possible to achieve vibration isolation functionality with a simple and compact configuration.

防振レンズ群としての第2レンズ群L2は、1枚の負レンズ、または1枚の負レンズと1枚の正レンズの2枚のレンズにより構成されている。この構成により、防振レンズ群を小型軽量化することができ、かつ防振時においても良好な光学性能を維持することができる。 The second lens group L2, which serves as an anti-vibration lens group, is composed of one negative lens, or two lenses: one negative lens and one positive lens. This configuration allows the anti-vibration lens group to be made smaller and lighter, while maintaining good optical performance even during anti-vibration.

各実施例の観察光学系は、対物光学系の焦点距離をf0、第2レンズ群L2の焦点距離をf2とするとき、
0.03≦-f2/f0≦0.24 (1)
なる条件を満足する。-f2/f0が条件式(1)の上限値を超えると、第2レンズ群L2の屈折力が弱くなり過ぎて第2レンズ群L2が大型化したり防振のための移動量(シフト量)が増加したりするため、好ましくない。-f2/f0が条件式(1)の下限値を下回ると、第2レンズ群L2の屈折力が強くなり過ぎて防振時の光学性能が低下するため、好ましくない。
In the observation optical system of each embodiment, when the focal length of the objective optical system is f0 and the focal length of the second lens unit L2 is f2,
0.03≦−f2/f0≦0.24 (1)
The following condition is satisfied. If -f2/f0 exceeds the upper limit of conditional expression (1), the refractive power of the second lens group L2 becomes too weak, which causes the second lens group L2 to become large and the amount of movement (shift) required for vibration reduction to increase, which is not preferable. If -f2/f0 falls below the lower limit of conditional expression (1), the refractive power of the second lens group L2 becomes too strong, which causes a decrease in optical performance during vibration reduction, which is not preferable.

なお、条件式(1)の数値範囲を以下のように設定するとより好ましい。
0.04≦-f2/f0≦0.23 (1a)
また、条件式(1)の数値範囲を以下のように設定すると、さらに好ましい。
0.05≦-f2/f0≦0.22 (1b)
各実施例の観察光学系は、上述した条件式(1)に加えて、以下の条件式(2)~(5)のうち少なくとも1つを満足することが好ましい。
It is more preferable to set the numerical range of conditional expression (1) as follows:
0.04≦−f2/f0≦0.23 (1a)
It is more preferable to set the numerical range of conditional expression (1) as follows:
0.05≦−f2/f0≦0.22 (1b)
It is preferable that the viewing optical system of each embodiment satisfies at least one of the following conditional expressions (2) to (5) in addition to the above-mentioned conditional expression (1).

各実施例の観察光学系は、対物光学系における最も物体側の面から正立プリズムの最も物体側の面までの光軸上の距離をd0、第2レンズ群L2の最も観察側の面から正立プリズムの最も物体側の面までの光軸上の距離をd02とするとき、
0.020≦d02/d0≦0.220 (2)
なる条件を満足することが好ましい。d02/d0が条件式(2)の上限値を超えると、第2レンズ群L2と正立プリズムとの距離が遠くなり過ぎて第2レンズ群L2が大型化するため、好ましくない。d02/d0が条件式(2)の下限値を下回ると第2レンズ群L2と正立プリズムとの距離が近くなり過ぎて両者が干渉するおそれがあるため、好ましくない。
In the observation optical system of each embodiment, when the distance on the optical axis from the surface closest to the object in the objective optical system to the surface closest to the object in the erect prism is d0, and the distance on the optical axis from the surface closest to the observation in the second lens unit L2 to the surface closest to the object in the erect prism is d02,
0.020≦d02/d0≦0.220 (2)
It is preferable to satisfy the following condition. If d02/d0 exceeds the upper limit of conditional expression (2), the distance between the second lens group L2 and the erect prism becomes too far, which causes the second lens group L2 to become large, which is not preferable. If d02/d0 falls below the lower limit of conditional expression (2), the distance between the second lens group L2 and the erect prism becomes too close, which may cause interference between them, which is not preferable.

各実施例の観察光学系は、第2レンズ群L2の光軸上の厚みをt2とするとき、
0.010≦t2/d0≦0.110 (3)
なる条件を満足することが望ましい。t2/d0が条件式(3)の上限値を超えると、第2レンズ群L2の厚みが厚くなり過ぎて第2レンズ群L2の重量が増加し、防振時の第2レンズ群L2の駆動が困難となるため、好ましくない。t2/d0が条件式(3)の下限値を下回ると、第2レンズ群L2の厚みが薄くなり過ぎて第2レンズ群L2の製造が困難となるため、好ましくない。
In the observation optical system of each embodiment, when the thickness of the second lens unit L2 on the optical axis is t2,
0.010≦t2/d0≦0.110 (3)
It is desirable to satisfy the following condition. If t2/d0 exceeds the upper limit of conditional expression (3), the thickness of the second lens group L2 becomes too thick, the weight of the second lens group L2 increases, and it becomes difficult to drive the second lens group L2 during vibration reduction, which is not preferable. If t2/d0 falls below the lower limit of conditional expression (3), the thickness of the second lens group L2 becomes too thin, and it becomes difficult to manufacture the second lens group L2, which is not preferable.

各実施例の観察光学系は、第2レンズ群L2の横倍率をβ2とするとき、
1.0≦β2≦5.5 (4)
なる条件を満足することが好ましい。β2が条件式(4)の上限値を超えると、第2レンズ群L2の屈折力が強くなり過ぎて防振時の光学性能が低下するため、好ましくない。また、β2が条件式(4)の下限値を下回ると、第2レンズ群L2の屈折力が弱くなり過ぎて第2レンズ群L2が大型化したり防振時のシフト量が増加したりするため、好ましくない。
In the observation optical system of each embodiment, when the lateral magnification of the second lens unit L2 is β2,
1.0≦β2≦5.5 (4)
It is preferable to satisfy the following condition. If β2 exceeds the upper limit of conditional expression (4), the refractive power of the second lens group L2 becomes too strong, which degrades the optical performance during vibration reduction, which is not preferable. Also, if β2 falls below the lower limit of conditional expression (4), the refractive power of the second lens group L2 becomes too weak, which causes the second lens group L2 to become large and the shift amount during vibration reduction to increase, which is not preferable.

各実施例の観察光学系は、接眼光学系の焦点距離をfeとするとき、
9.0≦f0/fe≦31.0 (5)
なる条件を満足することが好ましい。f0/feが条件式(5)の上限値を超えると、観察光学系の倍率(観察倍率)が高くなり過ぎて物体の観察が困難となるため、好ましくない。f0/feが条件式(5)の下限値を下回ると、観察光学系の観察倍率が低くなり過ぎて防振機能自体の必要性が薄れるため、好ましくない。
In the observation optical system of each embodiment, when the focal length of the eyepiece optical system is fe,
9.0≦f0/fe≦31.0 (5)
It is preferable to satisfy the following condition. If f0/fe exceeds the upper limit of conditional expression (5), the magnification (observation magnification) of the observation optical system becomes too high, making it difficult to observe the object, which is undesirable. If f0/fe falls below the lower limit of conditional expression (5), the observation magnification of the observation optical system becomes too low, making the need for the image stabilization function itself less necessary, which is undesirable.

なお、条件式(2)~(5)の数値範囲を以下のように設定するとより好ましい。
0.025≦d02/d0≦0.215 (2a)
0.013≦t2/d0≦0.100 (3a)
1.4≦β2≦5.2 (4a)
9.5≦f0/fe≦30.0 (5a)
また、条件式(2)~(5)の数値範囲を以下のように設定すると、さらに好ましい。
0.030≦d02/d0≦0.210 (2b)
0.015≦t2/d0≦0.090 (3b)
1.8≦β2≦5.0 (4b)
10.0≦f0/fe≦29.0 (5b)
さらに各実施例の観察光学系では、第1レンズ群L1が正の屈折力を有するレンズ群(正レンズ群)L1fを含み、該正レンズ群L1fを光軸方向に移動させてフォーカシングを行う。この構成により、簡易な構成でフォーカス機能を実現することができる。
It is more preferable to set the numerical ranges of the conditional expressions (2) to (5) as follows:
0.025≦d02/d0≦0.215 (2a)
0.013≦t2/d0≦0.100 (3a)
1.4≦β2≦5.2 (4a)
9.5≦f0/fe≦30.0 (5a)
It is even more preferable to set the numerical ranges of the conditional expressions (2) to (5) as follows:
0.030≦d02/d0≦0.210 (2b)
0.015≦t2/d0≦0.090 (3b)
1.8≦β2≦5.0 (4b)
10.0≦f0/fe≦29.0 (5b)
Furthermore, in the observation optical system of each embodiment, the first lens group L1 includes a lens group (positive lens group) L1f having a positive refractive power, and focusing is performed by moving the positive lens group L1f in the optical axis direction. With this configuration, it is possible to realize the focusing function with a simple configuration.

以下、本発明の具体的な実施例(数値例)1~3について説明する。 Below, specific examples (numerical examples) 1 to 3 of the present invention are described.

図1は、実施例1(数値例1)の観察光学系の構成を示している。構成の詳細は前述した通りであり、第2レンズ群L2は1枚の正レンズと1枚の負レンズの接合レンズにより構成されている。本実施例の観察光学系は、観察倍率が20.0倍程度、瞳径が2.5mm程度、半画角が1.8°程度の観察光学系である。 Figure 1 shows the configuration of the observation optical system of Example 1 (Numerical Example 1). The details of the configuration are as described above, and the second lens group L2 is composed of a cemented lens of one positive lens and one negative lens. The observation optical system of this example has an observation magnification of about 20.0 times, a pupil diameter of about 2.5 mm, and a half angle of view of about 1.8°.

図2は、本実施例の観察光学系の非防振時(第2レンズ群L2の中心が光軸上に位置するとき)の縦収差である球面収差、非点収差、歪曲および色収差を示す。球面収差において実線はd線に対する球面収差を示し、二点鎖線はg線に対する球面収差を示す。非点収差において破線はメリディオナル像面での非点収差を、実線はサジタル像面での非点収差を示す。歪曲にはd線に対するものである。色収差にはg線に対する倍率色収差を示している。 Figure 2 shows the longitudinal aberrations of the observation optical system of this embodiment, including spherical aberration, astigmatism, distortion, and chromatic aberration, when not vibration-proof (when the center of the second lens group L2 is located on the optical axis). For spherical aberration, the solid line shows spherical aberration for the d-line, and the two-dot chain line shows spherical aberration for the g-line. For astigmatism, the dashed line shows astigmatism at the meridional image plane, and the solid line shows astigmatism at the sagittal image plane. Distortion is for the d-line. Chromatic aberration shows lateral chromatic aberration for the g-line.

図3および図4はそれぞれ、本実施例の観察光学系の非防振時および防振時(第2レンズ群L2を+1.938mmシフトさせて補正角1.0°の防振を行ったとき)における画角ごとの横収差を示す。半画角をωとするとき、各図は上から順に+10割(ω=1.8°)、+5割(ω=0.9°)、中心(ω=0°)、-5割(ω=-0.9°)および-10割(ω=-1.8°)の画角でのd線に対する横収差を示している。破線はサジタル像面での横収差を、実線はメリディオナル像面での横収差を示す。上記縦収差図および横収差図の説明は、防振時における第2レンズ群L2のシフト量を除いて後述する実施例2,3でも同じである。 Figures 3 and 4 respectively show the lateral aberration for each angle of view of the observation optical system of this embodiment when not anti-vibration and when anti-vibration is performed (when the second lens group L2 is shifted by +1.938 mm to perform anti-vibration with a correction angle of 1.0°). When the half angle of view is ω, each figure shows the lateral aberration for the d-line at the angles of view of +100% (ω = 1.8°), +50% (ω = 0.9°), center (ω = 0°), -50% (ω = -0.9°), and -100% (ω = -1.8°) from the top. The dashed line shows the lateral aberration at the sagittal image plane, and the solid line shows the lateral aberration at the meridional image plane. The explanation of the longitudinal aberration diagram and the lateral aberration diagram is the same for Examples 2 and 3 described later, except for the shift amount of the second lens group L2 during anti-vibration.

本実施例および実施例2,3の観察光学系の具体的な数値は以下にまとめて示す。 Specific values for the observation optical systems in this embodiment and in embodiments 2 and 3 are summarized below.

図2は、実施例2(数値例2)の観察光学系の構成を示している。構成の詳細は前述した通りであり、第2レンズ群L2は1枚の正レンズと1枚の負レンズの接合レンズにより構成されている。本実施例の観察光学系は、観察倍率が15.0倍程度、瞳径が3.33mm程度、半画角が2.4°程度の観察光学系である。 Figure 2 shows the configuration of the observation optical system of Example 2 (Numerical Example 2). The details of the configuration are as described above, and the second lens group L2 is composed of a cemented lens of one positive lens and one negative lens. The observation optical system of this example has an observation magnification of about 15.0 times, a pupil diameter of about 3.33 mm, and a half angle of view of about 2.4°.

図6は、本実施例の観察光学系の非防振時の縦収差を示す。図7および図8はそれぞれ、本実施例の観察光学系の非防振時および防振時(第2レンズ群L2を光軸に直交する方向に+1.862mmシフトさせて補正角1.0°の防振を行ったとき)における画角ごとの横収差を示す。 Figure 6 shows the longitudinal aberration of the observation optical system of this embodiment when not vibration-proof. Figures 7 and 8 show the transverse aberration for each angle of view of the observation optical system of this embodiment when not vibration-proof and when vibration-proof (when the second lens group L2 is shifted by +1.862 mm in the direction perpendicular to the optical axis to perform vibration proofing with a correction angle of 1.0°).

図9は、実施例3(数値例3)の観察光学系の構成を示している。構成の詳細は前述した通りであり、第2レンズ群L2は1枚の負レンズにより構成されている。また本実施例の対物光学系は、第2レンズ群L2より像側に、1枚のレンズにより構成される第3レンズ群を有する。本実施例の観察光学系は、観察倍率が12.0倍程度、瞳径が4.18mm程度、半画角が2.9°程度の観察光学系である。 9 shows the configuration of the observation optical system of Example 3 (Numerical Example 3). The details of the configuration are as described above, and the second lens group L2 is composed of one negative lens. The objective optical system of this example also has a third lens group composed of one lens on the image side of the second lens group L2. The observation optical system of this example is an observation optical system with an observation magnification of about 12.0 times, a pupil diameter of about 4.18 mm, and a half angle of view of about 2.9°.

図10は、本実施例の観察光学系の非防振時の縦収差を示す。図11および図12はそれぞれ、本実施例の観察光学系の非防振時および防振時(第2レンズ群L2を+1.883mmシフトさせて補正角1.0°の防振を行ったとき)における画角ごとの横収差を示す。 Figure 10 shows the longitudinal aberration of the observation optical system of this embodiment when not vibration-proof. Figures 11 and 12 show the transverse aberration for each angle of view of the observation optical system of this embodiment when not vibration-proof and when vibration-proof (when the second lens group L2 is shifted by +1.883 mm and vibration-proofing is performed with a correction angle of 1.0°), respectively.

以下、数値例1~3を示す。各数値例において、riは物体側からi番目の面の曲率半径(mm)、diはi番目と(i+1)番目の面間のレンズ厚または空気間隔(mm)、ndiはそれぞれi番目の光学部材(レンズおよびプリズム)の材料のd線における屈折率である。νdiはi番目の光学部材の材料のd線を基準としたアッベ数である。 Numerical examples 1 to 3 are shown below. In each numerical example, ri is the radius of curvature (mm) of the ith surface from the object side, di is the lens thickness or air space (mm) between the ith and (i+1)th surfaces, and ndi is the refractive index at the d-line of the material of the ith optical component (lens and prism). νdi is the Abbe number based on the d-line of the material of the ith optical component.

アッベ数νdは、フラウンホーファ線のd線(587.6nm)、F線(486.1nm)、C線(656.3nm)における屈折率をNd、NF、NCとするとき、
νd=(Nd-1)/(NF-NC)
で表される。
The Abbe number νd is expressed by the following formula, where Nd, NF, and NC are the refractive indices at the d line (587.6 nm), F line (486.1 nm), and C line (656.3 nm) of the Fraunhofer lines:
νd=(Nd−1)/(NF-NC)
It is expressed as:

面番号に付された「*」は、その面が非球面形状を有する面であることを意味する。非球面形状は、光軸方向をX軸、光軸に直交する方向をH軸、光の進行方向を正とし、Rを近軸曲率半径、Kを円錐定数、A4,A6,A8,A10を非球面係数とするとき、以下の式で表される。非球面係数の「e-x」は10-xを意味する。 An "*" next to a surface number means that the surface has an aspheric shape. The aspheric shape is expressed by the following formula, where the optical axis direction is the X-axis, the direction perpendicular to the optical axis is the H-axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant, and A4, A6, A8, and A10 are aspheric coefficients. The "e-x" in the aspheric coefficient means 10 -x .

(数値例1)
単位 mm

面データ
面番号 r d nd νd
1 44.966 9.75 1.49700 81.5
2 -645.511 17.86
3 46.689 7.42 1.43875 94.9
4 -59.386 2.70 1.80400 46.6
5 75.307 27.85
6 27.167 2.66 1.48749 70.2
7 72.012 6.17
8 -54.278 3.88 1.77250 49.6
9 -18.417 1.50 1.64000 60.1
10 21.646 6.79
11 ∞ 37.70 1.65844 50.9
12 ∞ 37.70 1.65844 50.9
13 ∞ 5.25
14* -9.489 2.12 1.53160 55.8
15 27.611 1.07
16 49.112 7.97 1.84666 23.8
17 -22.630 14.68
18 -103.919 2.00 1.84666 23.8
19 20.323 13.16 1.65160 58.5
20 -33.475 1.00
21 40.835 5.24 1.77250 49.6
22 -211.685 0.29
23 32.252 5.30 1.60311 60.6
24 ∞ 20.00

非球面データ
第14面
K = 0.00000e+000 A 4= 1.53388e-004 A 6= 2.72143e-006 A 8=-4.55814e-008 A10= 5.42766e-010

各種データ
対物光学系 始面 1 終面 10
正立プリズム 始面 11 終面 13
接眼光学系 始面 14 終面 24
第1レンズ群L1 始面 1 終面 7
レンズ群L1f 始面 6 終面 7
第2レンズ群L2 始面 8 終面 10

(数値例2)
単位 mm

面データ
面番号 r d nd νd
1 44.506 10.21 1.49700 81.5
2 -342.333 13.71
3 56.382 7.51 1.43875 94.9
4 -58.189 2.70 1.80400 46.6
5 109.473 16.57
6 36.841 3.47 1.48749 70.2
7 104.510 6.47
8 -67.921 2.43 1.77250 49.6
9 -24.593 1.50 1.64000 60.1
10 28.917 10.13
11 ∞ 42.00 1.65844 50.9
12 ∞ 42.00 1.65844 50.9
13 ∞ 5.80
14* -10.400 2.12 1.53160 55.8
15 30.857 2.43
16 453.338 10.26 1.84666 23.8
17 -18.743 13.45
18 -178.240 2.00 1.84666 23.8
19 25.953 13.27 1.69680 55.5
20 -37.800 1.00
21 39.700 5.41 1.60311 60.6
22 -378.542 0.29
23 33.731 5.30 1.48749 70.2
24 ∞ 20.00

非球面データ
第14面
K = 0.00000e+000 A 4= 1.03277e-004 A 6= 1.85689e-006 A 8=-2.83912e-008 A10= 2.50449e-010

各種データ
対物光学系 始面 1 終面 10
正立プリズム 始面 11 終面 13
接眼光学系 始面 14 終面 24
第1レンズ群L1 始面 1 終面 7
レンズ群L1f 始面 6 終面 7
第2レンズ群L2 始面 8 終面 10

(数値例3)
単位 mm

面データ
面番号 r d nd νd
1 42.953 10.32 1.49700 81.5
2 -509.782 13.23
3 41.042 9.13 1.43875 94.9
4 -63.321 2.70 1.80400 46.6
5 91.372 8.25
6 38.122 2.27 1.48749 70.2
7 52.304 6.32
8 -2466.075 1.50 1.64000 60.1
9 26.334 10.49
10 300.000 1.50 1.48749 70.2
11 ∞ 1.50
12 ∞ 43.60 1.65844 50.9
13 ∞ 43.60 1.65844 50.9
14 ∞ 5.12
15* -11.511 2.12 1.53160 55.8
16 30.000 1.71
17 96.659 8.75 1.84666 23.8
18 -20.514 12.46
19 -58.504 2.00 1.84666 23.8
20 30.661 14.61 1.69680 55.5
21 -27.837 1.00
22 37.656 8.21 1.60311 60.6
23 -225.736 0.29
24 49.786 5.30 1.48749 70.2
25 ∞ 20.00

非球面データ
第15面
K = 0.00000e+000 A 4= 1.56384e-004 A 6=-1.46641e-007 A 8= 4.27699e-009 A10= 1.91538e-011

各種データ
対物光学系 始面 1 終面 11
正立プリズム 始面 12 終面 14
接眼光学系 始面 15 終面 25
第1レンズ群L1 始面 1 終面 7
レンズ群L1f 始面 6 終面 7
第2レンズ群L2 始面 8 終面 9
第3レンズ群 始面 10 終面 11

各実施例(数値例)における条件式(1)~(5)の数値を表1にまとめて示す
(Numerical example 1)
Unit: mm

Surface data surface number rd nd νd
1 44.966 9.75 1.49700 81.5
2 -645.511 17.86
3 46.689 7.42 1.43875 94.9
4 -59.386 2.70 1.80400 46.6
5 75.307 27.85
6 27.167 2.66 1.48749 70.2
7 72.012 6.17
8 -54.278 3.88 1.77250 49.6
9 -18.417 1.50 1.64000 60.1
10 21.646 6.79
11 ∞ 37.70 1.65844 50.9
12 ∞ 37.70 1.65844 50.9
13∞5.25
14* -9.489 2.12 1.53160 55.8
15 27.611 1.07
16 49.112 7.97 1.84666 23.8
17 -22.630 14.68
18 -103.919 2.00 1.84666 23.8
19 20.323 13.16 1.65160 58.5
20 -33.475 1.00
21 40.835 5.24 1.77250 49.6
22 -211.685 0.29
23 32.252 5.30 1.60311 60.6
24∞20.00

Aspheric data No. 14
K = 0.00000e+000 A4= 1.53388e-004 A6= 2.72143e-006 A8=-4.55814e-008 A10= 5.42766e-010

Various data objective optical systems Start surface 1 End surface 10
Erecting Prism First Surface 11 Last Surface 13
Eyepiece optical system Start surface 14 End surface 24
First lens unit L1: starting surface 1, ending surface 7
Lens group L1f: starting surface 6, ending surface 7
Second lens unit L2: starting surface 8, ending surface 10

(Numerical Example 2)
Unit: mm

Surface data surface number rd nd νd
1 44.506 10.21 1.49700 81.5
2 -342.333 13.71
3 56.382 7.51 1.43875 94.9
4 -58.189 2.70 1.80400 46.6
5 109.473 16.57
6 36.841 3.47 1.48749 70.2
7 104.510 6.47
8 -67.921 2.43 1.77250 49.6
9 -24.593 1.50 1.64000 60.1
10 28.917 10.13
11 ∞ 42.00 1.65844 50.9
12 ∞ 42.00 1.65844 50.9
13∞5.80
14* -10.400 2.12 1.53160 55.8
15 30.857 2.43
16 453.338 10.26 1.84666 23.8
17 -18.743 13.45
18 -178.240 2.00 1.84666 23.8
19 25.953 13.27 1.69680 55.5
20 -37.800 1.00
21 39.700 5.41 1.60311 60.6
22 -378.542 0.29
23 33.731 5.30 1.48749 70.2
24∞20.00

Aspheric data No. 14
K = 0.00000e+000 A4= 1.03277e-004 A6= 1.85689e-006 A8=-2.83912e-008 A10= 2.50449e-010

Various data objective optical systems Start surface 1 End surface 10
Erecting Prism First Surface 11 Last Surface 13
Eyepiece optical system Start surface 14 End surface 24
First lens unit L1: starting surface 1, ending surface 7
Lens group L1f: starting surface 6, ending surface 7
Second lens unit L2: starting surface 8, ending surface 10

(Numerical Example 3)
Unit: mm

Surface data surface number rd nd νd
1 42.953 10.32 1.49700 81.5
2 -509.782 13.23
3 41.042 9.13 1.43875 94.9
4 -63.321 2.70 1.80400 46.6
5 91.372 8.25
6 38.122 2.27 1.48749 70.2
7 52.304 6.32
8 -2466.075 1.50 1.64000 60.1
9 26.334 10.49
10 300.000 1.50 1.48749 70.2
11∞1.50
12 ∞ 43.60 1.65844 50.9
13 ∞ 43.60 1.65844 50.9
14∞5.12
15* -11.511 2.12 1.53160 55.8
16 30.000 1.71
17 96.659 8.75 1.84666 23.8
18 -20.514 12.46
19 -58.504 2.00 1.84666 23.8
20 30.661 14.61 1.69680 55.5
21 -27.837 1.00
22 37.656 8.21 1.60311 60.6
23 -225.736 0.29
24 49.786 5.30 1.48749 70.2
25∞20.00

Aspheric data No. 15
K = 0.00000e+000 A4 = 1.56384e-004 A6 = -1.46641e-007 A8 = 4.27699e-009 A10 = 1.91538e-011

Various data objective optical systems Start surface 1 End surface 11
Erecting Prism Start surface 12 End surface 14
Eyepiece optical system: starting surface 15, ending surface 25
First lens unit L1: starting surface 1, ending surface 7
Lens group L1f: starting surface 6, ending surface 7
Second lens unit L2: starting surface 8, ending surface 9
Third lens group: starting surface 10, ending surface 11

Table 1 shows the values of conditional expressions (1) to (5) in each embodiment (numerical example) .

図13は、上記実施例1~3の観察光学系を用いた観察装置としての双眼鏡を示す。図13において各符号は図1中の符号に対応している。 Figure 13 shows binoculars as an observation device using the observation optical systems of Examples 1 to 3 above. Each symbol in Figure 13 corresponds to the symbol in Figure 1.

図13において、1Rは右眼用の観察光学系、1Lは左眼用の観察光学系である。振れセンサ1は振動ジャイロ等であり、縦振れを検出するピッチ振れセンサと、横振れを検出するヨー振れセンサを含む。これら2つの振れセンサの感度軸は互いに直交している。振れセンサ1は、双眼鏡の振れ(角加速度)を検出し、その情報をマイクロコンピュータ2に出力する。マイクロコンピュータ2は、角加速度の情報に基づいて、振れ補正用の第2レンズ群L2の駆動量を演算し、それをレンズアクチュエータ3に出力する。レンズアクチュエータ3は、マイクロコンピュータ2からの駆動量に応じて第2レンズ群L2を光軸に直交する方向に平行移動または光軸上の点を中心に回動させる。位置センサ4は第2レンズ群L2の位置を検出してその結果をマイクロコンピュータ2に出力する。マイクロコンピュータ2は、検出された位置が演算で求められた駆動量に対応する位置に一致するとレンズアクチュエータ3による第2レンズ群L2の駆動を停止させる。これにより双眼鏡の振れに起因する像振れが低減される。 In FIG. 13, 1R is an observation optical system for the right eye, and 1L is an observation optical system for the left eye. The shake sensor 1 is a vibration gyroscope or the like, and includes a pitch shake sensor that detects vertical shake and a yaw shake sensor that detects horizontal shake. The sensitivity axes of these two shake sensors are perpendicular to each other. The shake sensor 1 detects the shake (angular acceleration) of the binoculars and outputs the information to the microcomputer 2. The microcomputer 2 calculates the drive amount of the second lens group L2 for shake correction based on the angular acceleration information, and outputs it to the lens actuator 3. The lens actuator 3 translates the second lens group L2 in a direction perpendicular to the optical axis or rotates it around a point on the optical axis according to the drive amount from the microcomputer 2. The position sensor 4 detects the position of the second lens group L2 and outputs the result to the microcomputer 2. When the detected position coincides with the position corresponding to the drive amount calculated by the calculation, the microcomputer 2 stops the drive of the second lens group L2 by the lens actuator 3. This reduces image blur caused by the shake of the binoculars.

このように実施例1~3の観察光学系を用いることで、小型で防振時でも光学性能が良好な双眼鏡を実現することができる。 In this way, by using the observation optical systems of Examples 1 to 3, it is possible to realize binoculars that are small and have good optical performance even when vibration is reduced.

なお、実施例1~3の観察光学系は、双眼鏡に限らず、望遠鏡やカメラ用光学ファインダ等の各種観察装置にも用いることができる。 The observation optical systems of Examples 1 to 3 can be used not only in binoculars, but also in various observation devices such as telescopes and optical finders for cameras.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。 The embodiments described above are merely representative examples, and various modifications and alterations are possible when implementing the present invention.

L1 第1レンズ群
L1f 正レンズ群
L2 第2レンズ群
IP アイポイント
L1: first lens unit L1f: positive lens unit L2: second lens unit IP: eye point

Claims (7)

物体側から像側へ順に配置された、対物光学系と、該対物光学系により形成された物体像を正立像にする正立光学系と、接眼光学系とを有する観察光学系であって、
前記対物光学系は、物体側から像側へ順に配置された、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群とを有し、
前記第2レンズ群は、1枚の負レンズ、または1枚の負レンズと1枚の正レンズにより構成され、
前記第2レンズ群を前記対物光学系の光軸に対して移動させて防振を行い、
前記対物光学系の焦点距離をf0、前記第2レンズ群の焦点距離をf2とするとき、
0.03≦-f2/f0≦0.24
なる条件を満足することを特徴とする観察光学系。
An observation optical system having an objective optical system, an erecting optical system for making an object image formed by the objective optical system into an erect image, and an eyepiece optical system, which are arranged in this order from an object side to an image side,
The objective optical system is arranged in order from the object side to the image side,
a first lens group having a positive refractive power;
a second lens group having a negative refractive power,
the second lens group is composed of one negative lens, or one negative lens and one positive lens,
The second lens group is moved relative to the optical axis of the objective optical system to perform vibration isolation.
When the focal length of the objective optical system is f0 and the focal length of the second lens group is f2,
0.03≦−f2/f0≦0.24
An observation optical system characterized in that the following conditions are satisfied.
前記対物光学系における最も物体側の面から前記正立光学系における最も物体側の面までの光軸上の距離をd0、前記第2レンズ群における最も像側の面から前記正立光学系における最も物体側の面までの光軸上の距離をd02とするとき、
0.020≦d02/d0≦0.220
なる条件を満足することを特徴とする請求項1に記載の観察光学系。
When the distance on the optical axis from the surface closest to the object in the objective optical system to the surface closest to the object in the erect optical system is d0, and the distance on the optical axis from the surface closest to the image in the second lens group to the surface closest to the object in the erect optical system is d02,
0.020≦d02/d0≦0.220
2. The viewing optical system according to claim 1, which satisfies the following condition:
前記第2レンズ群の光軸上の厚みをt2とするとき、
0.010≦t2/d0≦0.110
なる条件を満足することを特徴とする請求項1または2に記載の観察光学系。
When the thickness of the second lens group on the optical axis is t2,
0.010≦t2/d0≦0.110
3. The viewing optical system according to claim 1, wherein the following condition is satisfied:
前記第2レンズ群の横倍率をβ2とするとき、
1.0≦β2≦5.5
なる条件を満足することを特徴とする請求項1から3のいずれか一項に記載の観察光学系。
When the lateral magnification of the second lens group is β2,
1.0≦β2≦5.5
4. The viewing optical system according to claim 1, wherein the following condition is satisfied:
前記接眼光学系の焦点距離をfeとするとき、
9.0≦f0/fe≦31.0
なる条件を満足することを特徴とする請求項1から4のいずれか一項に記載の観察光学系。
When the focal length of the eyepiece optical system is fe,
9.0≦f0/fe≦31.0
5. The viewing optical system according to claim 1, wherein the following condition is satisfied:
前記第1レンズ群は、正レンズ群を有し、該正レンズ群はフォーカシングのために光軸方向に移動することを特徴とする請求項1から5のいずれか一項に記載の観察光学系。 The observation optical system according to any one of claims 1 to 5, characterized in that the first lens group has a positive lens group, and the positive lens group moves in the optical axis direction for focusing. 請求項1から6のいずれか一項の観察光学系を有することを特徴とする観察装置。 An observation device having an observation optical system according to any one of claims 1 to 6.
JP2020024461A 2020-02-17 2020-02-17 Observation optical system and observation device Active JP7483399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020024461A JP7483399B2 (en) 2020-02-17 2020-02-17 Observation optical system and observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020024461A JP7483399B2 (en) 2020-02-17 2020-02-17 Observation optical system and observation device

Publications (2)

Publication Number Publication Date
JP2021128310A JP2021128310A (en) 2021-09-02
JP7483399B2 true JP7483399B2 (en) 2024-05-15

Family

ID=77488584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024461A Active JP7483399B2 (en) 2020-02-17 2020-02-17 Observation optical system and observation device

Country Status (1)

Country Link
JP (1) JP7483399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520552B (en) * 2023-06-30 2023-08-25 昆明朗特光学仪器有限公司 Optical system of target observation mirror

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093582A1 (en) 2008-01-23 2009-07-30 Nikon Vision Co., Ltd. Telescope optical system
JP2016166907A (en) 2013-07-11 2016-09-15 株式会社 ニコンビジョン Vibration-proof optical system
JP2018005138A (en) 2016-07-08 2018-01-11 キヤノン株式会社 Objective lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093582A1 (en) 2008-01-23 2009-07-30 Nikon Vision Co., Ltd. Telescope optical system
JP2016166907A (en) 2013-07-11 2016-09-15 株式会社 ニコンビジョン Vibration-proof optical system
JP2018005138A (en) 2016-07-08 2018-01-11 キヤノン株式会社 Objective lens

Also Published As

Publication number Publication date
JP2021128310A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP4904842B2 (en) Zoom lens having anti-vibration function and image pickup apparatus having the same
JP5423190B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP5407119B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5426653B2 (en) Zoom lens
JP7014253B2 (en) Variable magnification optics and optical equipment
JP4951370B2 (en) Zoom lens with image stabilization by lens eccentricity
JP5126668B2 (en) Photographic lens, optical device including the same, and image blur correction method
JP2008032924A (en) Zoom lens, image pickup device, zoom lens magnification change method, and zoom lens vibration-proofing method
JP6973611B2 (en) Variable magnification optics and optical equipment
JP2008203471A (en) Zoom lens, optical equipment and imaging method
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5426353B2 (en) Zoom lens with anti-vibration function
JP2021105746A (en) Optical system and optical apparatus
JP2012141600A (en) Optical system, imaging apparatus, and manufacturing method of optical system
JP6322969B2 (en) Large aperture lens with anti-vibration function
JP5082431B2 (en) Magnification optical system having image stabilization function, imaging device, and magnifying method
JP3365087B2 (en) Optical system with camera shake correction function
JP3335302B2 (en) Anti-vibration optical system of observation optical equipment
JP3272656B2 (en) Anti-vibration optical system of observation optical equipment
JP7483399B2 (en) Observation optical system and observation device
JP2008040065A (en) Observation optical system
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP6981478B2 (en) Optical system and optical equipment
JP2000089104A (en) Vibration-proof optical system for observation optical apparatus
JP7036124B2 (en) Optical system and optical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240501

R150 Certificate of patent or registration of utility model

Ref document number: 7483399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150