JP2021128310A - Observation optical system and observation device - Google Patents

Observation optical system and observation device Download PDF

Info

Publication number
JP2021128310A
JP2021128310A JP2020024461A JP2020024461A JP2021128310A JP 2021128310 A JP2021128310 A JP 2021128310A JP 2020024461 A JP2020024461 A JP 2020024461A JP 2020024461 A JP2020024461 A JP 2020024461A JP 2021128310 A JP2021128310 A JP 2021128310A
Authority
JP
Japan
Prior art keywords
optical system
lens group
observation
observation optical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020024461A
Other languages
Japanese (ja)
Other versions
JP7483399B2 (en
Inventor
宏治 青木
Koji Aoki
宏治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020024461A priority Critical patent/JP7483399B2/en
Publication of JP2021128310A publication Critical patent/JP2021128310A/en
Application granted granted Critical
Publication of JP7483399B2 publication Critical patent/JP7483399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Telescopes (AREA)
  • Lenses (AREA)

Abstract

To provide a compact observation optical system with an anti-shake function.SOLUTION: An observation optical system is provided, comprising an objective optical system, an erecting optical system for turning an object image formed by the objective optical system into an erect image, and an ocular optical system arranged in order from the object side to the image side. The objective optical system comprises, in order from the object side to the image side, a first lens group L1f having positive refractive power and a second lens group L2 having negative refractive power. The second lens group consists of one negative lens, or one negative lens and one positive lens. The second lens group is moved relative to an optical axis of the objective optical system to provide an anti-shake function. The observation optical system satisfies a condition expressed as: 0.03≤-f2/f0≤0.24, where f0 represents a focal length of the objective optical system and f2 represents a focal length of the second lens group L2.SELECTED DRAWING: Figure 1

Description

本発明は、双眼鏡や望遠鏡等の観察装置に好適な観察光学系に関する。 The present invention relates to an observation optical system suitable for an observation device such as binoculars and a telescope.

観察光学系を通して物体を観察する際に、該光学系の倍率が高くなるほどユーザの手振れによる像振れが増加する。特許文献1には、対物レンズにより形成された物体像を正立プリズムで正立像とし、該正立像を接眼レンズを通して拡大観察する観察光学系であって、像振れを低減するために防振レンズ群を移動させる防振機能を有する観察光学系が開示されている。 When observing an object through an observation optical system, the higher the magnification of the optical system, the greater the image shake due to the user's camera shake. Patent Document 1 is an observation optical system in which an object image formed by an objective lens is made into an erect image by an erecting prism, and the erect image is magnified and observed through an eyepiece. An observation optical system having an anti-vibration function for moving a group is disclosed.

特開2016―166907号公報Japanese Unexamined Patent Publication No. 2016-166907

しかしながら、特許文献1の観察光学系では、防振レンズ群の屈折力が弱く、そのサイズが大きい。このため、観察光学系の小型化に不利であるだけでなく、防振レンズ群を駆動するための機構が大型化したり消費電力が増加したりする。 However, in the observation optical system of Patent Document 1, the refractive power of the anti-vibration lens group is weak and its size is large. Therefore, not only is it disadvantageous in reducing the size of the observation optical system, but also the mechanism for driving the anti-vibration lens group becomes large and the power consumption increases.

本発明は、防振機能を有する小型の観察光学系およびこれを有する観察装置を提供する。 The present invention provides a small observation optical system having an anti-vibration function and an observation device having the same.

本発明の一側面としての観察光学系は、物体側から像側に順に配置された、対物光学系と、該対物光学系により形成された物体像を正立像にする正立光学系と、接眼光学系とを有する。対物光学系は、物体側から像側に順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群とを有する。第2レンズ群は、1枚の負レンズ、または1枚の負レンズと1枚の正レンズにより構成されている。第2レンズ群を対物光学系の光軸に対して移動させて防振を行う。対物光学系の焦点距離をf0、第2レンズ群L2の焦点距離をf2とするとき、
0.03≦−f2/f0≦0.24
なる条件を満足することを特徴とする。
The observation optical system as one aspect of the present invention includes an objective optical system arranged in order from the object side to the image side, an erect optical system that makes an object image formed by the objective optical system an erect image, and an eyepiece. It has an optical system. The objective optical system has a first lens group having a positive refractive power and a second lens group having a negative refractive power in this order from the object side to the image side. The second lens group is composed of one negative lens or one negative lens and one positive lens. Vibration isolation is performed by moving the second lens group with respect to the optical axis of the objective optical system. When the focal length of the objective optical system is f0 and the focal length of the second lens group L2 is f2,
0.03 ≦ −f2 / f0 ≦ 0.24
It is characterized by satisfying the above conditions.

なお、上記観察光学系を有する観察装置も本発明の他の一側面を構成する。 An observation device having the above observation optical system also constitutes another aspect of the present invention.

本発明によれば、防振機能を有する小型の観察光学系を実現することができる。 According to the present invention, it is possible to realize a small observation optical system having an anti-vibration function.

実施例1の観察光学系の断面図。FIG. 3 is a cross-sectional view of the observation optical system of the first embodiment. 実施例1の観察光学系の非防振時の縦収差図。FIG. 5 is a longitudinal aberration diagram of the observation optical system of Example 1 when vibration isolation is not performed. 実施例1の観察光学系の非防振時の横収差図。FIG. 5 is a lateral aberration diagram of the observation optical system of Example 1 when vibration isolation is not performed. 実施例1の観察光学系の防振時の横収差図。FIG. 3 is a lateral aberration diagram of the observation optical system of Example 1 at the time of vibration isolation. 実施例2の観察光学系の断面図。FIG. 5 is a cross-sectional view of the observation optical system of the second embodiment. 実施例2の観察光学系の非防振時の縦収差図。FIG. 5 is a longitudinal aberration diagram of the observation optical system of Example 2 when vibration isolation is not performed. 実施例2の観察光学系の非防振時の横収差図。FIG. 5 is a lateral aberration diagram of the observation optical system of Example 2 when vibration isolation is not performed. 実施例2の観察光学系の防振時の横収差図。FIG. 3 is a lateral aberration diagram of the observation optical system of Example 2 at the time of vibration isolation. 実施例3の観察光学系の断面図。FIG. 3 is a cross-sectional view of the observation optical system of Example 3. 実施例3の観察光学系の非防振時の縦収差図。FIG. 3 is a longitudinal aberration diagram of the observation optical system of Example 3 when vibration isolation is not performed. 実施例3の観察光学系の非防振時の横収差図。FIG. 3 is a lateral aberration diagram of the observation optical system of Example 3 when vibration isolation is not performed. 実施例3の観察光学系の防振時の横収差図。FIG. 3 is a lateral aberration diagram of the observation optical system of Example 3 at the time of vibration isolation. 実施例1〜3の観察光学系を備えた双眼鏡を示す図。The figure which shows the binoculars provided with the observation optical system of Examples 1-3.

以下、本発明の実施例について図面を参照しながら説明する。まず具体的な実施例の説明に先だって、各実施例に共通する事項について図1に示す実施例1の観察光学系を用いて説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings. First, prior to the description of specific examples, items common to each embodiment will be described using the observation optical system of Example 1 shown in FIG.

各実施例の観察光学系は、物体側から観察側(像側)に順に配置された、対物光学系と、該対物光学系により形成される物体像を正立像とする正立プリズム(正立光学系)と、接眼光学系とを有する。この構成を有する観察光学系を用いることで、物体像を正立像として観察することができる。図中のIPはアイポイントであり、ここに観察者の眼が位置することで物体像の観察が可能となる。 The observation optical systems of each embodiment are an objective optical system arranged in order from the object side to the observation side (image side), and an erect prism (upright) having an object image formed by the objective optical system as an erect image. It has an optical system) and an eyepiece optical system. By using an observation optical system having this configuration, an object image can be observed as an upright image. The IP in the figure is an eye point, and the object image can be observed by locating the observer's eye here.

対物光学系は、 物体側から観察側に順に、正の屈折力を有する第1レンズ群L1と、負の屈折力を有する第2レンズ群L2とを有する。ユーザの手振れが生じた際に第2レンズ群L2を対物光学系(つまりは観察光学系)の光軸に直交する方向に移動(シフト)させることで像振れを低減(補正)する、すなわち防振を行うことができる。対物光学系をこのように構成することで、簡易かつ小型の構成により防振機能を実現することができる。 The objective optical system has a first lens group L1 having a positive refractive power and a second lens group L2 having a negative refractive power in this order from the object side to the observation side. When the user's camera shake occurs, the image shake is reduced (corrected), that is, prevented by moving (shifting) the second lens group L2 in the direction orthogonal to the optical axis of the objective optical system (that is, the observation optical system). You can shake. By configuring the objective optical system in this way, it is possible to realize an anti-vibration function with a simple and compact configuration.

防振レンズ群としての第2レンズ群L2は、1枚の負レンズ、または1枚の負レンズと1枚の正レンズの2枚のレンズにより構成されている。この構成により、防振レンズ群を小型軽量化することができ、かつ防振時においても良好な光学性能を維持することができる。 The second lens group L2 as the anti-vibration lens group is composed of one negative lens or two lenses, one negative lens and one positive lens. With this configuration, the anti-vibration lens group can be made smaller and lighter, and good optical performance can be maintained even at the time of anti-vibration.

各実施例の観察光学系は、対物光学系の焦点距離をf0、第2レンズ群L2の焦点距離をf2とするとき、
0.03≦−f2/f0≦0.24 (1)
なる条件を満足する。−f2/f0が条件式(1)の上限値を超えると、第2レンズ群L2の屈折力が弱くなり過ぎて第2レンズ群L2が大型化したり防振のための移動量(シフト量)が増加したりするため、好ましくない。−f2/f0が条件式(1)の下限値を下回ると、第2レンズ群L2の屈折力が強くなり過ぎて防振時の光学性能が低下するため、好ましくない。
In the observation optical system of each embodiment, when the focal length of the objective optical system is f0 and the focal length of the second lens group L2 is f2,
0.03 ≦ −f2 / f0 ≦ 0.24 (1)
Satisfy the conditions. When −f2 / f0 exceeds the upper limit of the conditional expression (1), the refractive power of the second lens group L2 becomes too weak and the second lens group L2 becomes large or the amount of movement (shift amount) for vibration isolation. Is not preferable because it increases. If −f2 / f0 is less than the lower limit of the conditional expression (1), the refractive power of the second lens group L2 becomes too strong and the optical performance at the time of vibration isolation deteriorates, which is not preferable.

なお、条件式(1)の数値範囲を以下のように設定するとより好ましい。
0.04≦−f2/f0≦0.23 (1a)
また、条件式(1)の数値範囲を以下のように設定すると、さらに好ましい。
0.05≦−f2/f0≦0.22 (1b)
各実施例の観察光学系は、上述した条件式(1)に加えて、以下の条件式(2)〜(5)のうち少なくとも1つを満足することが好ましい。
It is more preferable to set the numerical range of the conditional expression (1) as follows.
0.04 ≦ −f2 / f0 ≦ 0.23 (1a)
Further, it is more preferable to set the numerical range of the conditional expression (1) as follows.
0.05 ≦ −f2 / f0 ≦ 0.22 (1b)
The observation optical system of each embodiment preferably satisfies at least one of the following conditional expressions (2) to (5) in addition to the above-mentioned conditional expression (1).

各実施例の観察光学系は、対物光学系における最も物体側の面から正立プリズムの最も物体側の面までの光軸上の距離をd0、第2レンズ群L2の最も観察側の面から正立プリズムの最も物体側の面までの光軸上の距離をd02とするとき、
0.020≦d02/d0≦0.220 (2)
なる条件を満足することが好ましい。d02/d0が条件式(2)の上限値を超えると、第2レンズ群L2と正立プリズムとの距離が遠くなり過ぎて第2レンズ群L2が大型化するため、好ましくない。d02/d0が条件式(2)の下限値を下回ると第2レンズ群L2と正立プリズムとの距離が近くなり過ぎて両者が干渉するおそれがあるため、好ましくない。
In the observation optical system of each embodiment, the distance on the optical axis from the surface on the most object side in the objective optical system to the surface on the most object side of the erecting prism is d0, and the distance on the optical axis is from the surface on the most observation side of the second lens group L2. When the distance on the optical axis to the surface of the upright prism on the most object side is d02,
0.020 ≦ d02 / d0 ≦ 0.220 (2)
It is preferable to satisfy the above conditions. If d02 / d0 exceeds the upper limit of the conditional expression (2), the distance between the second lens group L2 and the upright prism becomes too long, and the second lens group L2 becomes large, which is not preferable. If d02 / d0 is less than the lower limit of the conditional expression (2), the distance between the second lens group L2 and the upright prism may become too close and they may interfere with each other, which is not preferable.

各実施例の観察光学系は、第2レンズ群L2の光軸上の厚みをt2とするとき、
0.010≦t2/d0≦0.110 (3)
なる条件を満足することが望ましい。t2/d0が条件式(3)の上限値を超えると、第2レンズ群L2の厚みが厚くなり過ぎて第2レンズ群L2の重量が増加し、防振時の第2レンズ群L2の駆動が困難となるため、好ましくない。t2/d0が条件式(3)の下限値を下回ると、第2レンズ群L2の厚みが薄くなり過ぎて第2レンズ群L2の製造が困難となるため、好ましくない。
In the observation optical system of each embodiment, when the thickness of the second lens group L2 on the optical axis is t2,
0.010 ≦ t2 / d0 ≦ 0.110 (3)
It is desirable to satisfy the above conditions. When t2 / d0 exceeds the upper limit of the conditional expression (3), the thickness of the second lens group L2 becomes too thick and the weight of the second lens group L2 increases, so that the second lens group L2 is driven during vibration isolation. Is not preferable because it makes it difficult. If t2 / d0 is less than the lower limit of the conditional expression (3), the thickness of the second lens group L2 becomes too thin, which makes it difficult to manufacture the second lens group L2, which is not preferable.

各実施例の観察光学系は、第2レンズ群L2の横倍率をβ2とするとき、
1.0≦β2≦5.5 (4)
なる条件を満足することが好ましい。β2が条件式(4)の上限値を超えると、第2レンズ群L2の屈折力が強くなり過ぎて防振時の光学性能が低下するため、好ましくない。また、β2が条件式(4)の下限値を下回ると、第2レンズ群L2の屈折力が弱くなり過ぎて第2レンズ群L2が大型化したり防振時のシフト量が増加したりするため、好ましくない。
In the observation optical system of each embodiment, when the lateral magnification of the second lens group L2 is β2,
1.0 ≤ β2 ≤ 5.5 (4)
It is preferable to satisfy the above conditions. If β2 exceeds the upper limit of the conditional expression (4), the refractive power of the second lens group L2 becomes too strong and the optical performance at the time of vibration isolation deteriorates, which is not preferable. Further, when β2 falls below the lower limit of the conditional expression (4), the refractive power of the second lens group L2 becomes too weak, the second lens group L2 becomes larger, and the shift amount at the time of vibration isolation increases. , Not preferable.

各実施例の観察光学系は、接眼光学系の焦点距離をfeとするとき、
9.0≦f0/fe≦31.0 (5)
なる条件を満足することが好ましい。f0/feが条件式(5)の上限値を超えると、観察光学系の倍率(観察倍率)が高くなり過ぎて物体の観察が困難となるため、好ましくない。f0/feが条件式(5)の下限値を下回ると、観察光学系の観察倍率が低くなり過ぎて防振機能自体の必要性が薄れるため、好ましくない。
When the focal length of the eyepiece optical system is fe, the observation optical system of each embodiment is used.
9.0 ≤ f0 / fe ≤ 31.0 (5)
It is preferable to satisfy the above conditions. If f0 / fe exceeds the upper limit of the conditional expression (5), the magnification (observation magnification) of the observation optical system becomes too high, making it difficult to observe the object, which is not preferable. If f0 / fe is less than the lower limit of the conditional expression (5), the observation magnification of the observation optical system becomes too low and the necessity of the vibration isolation function itself diminishes, which is not preferable.

なお、条件式(2)〜(5)の数値範囲を以下のように設定するとより好ましい。
0.025≦d02/d0≦0.215 (2a)
0.013≦t2/d0≦0.100 (3a)
1.4≦β2≦5.2 (4a)
9.5≦f0/fe≦30.0 (5a)
また、条件式(2)〜(5)の数値範囲を以下のように設定すると、さらに好ましい。
0.030≦d02/d0≦0.210 (2b)
0.015≦t2/d0≦0.090 (3b)
1.8≦β2≦5.0 (4b)
10.0≦f0/fe≦29.0 (5b)
さらに各実施例の観察光学系では、第1レンズ群L1が正の屈折力を有するレンズ群(正レンズ群)L1fを含み、該正レンズ群L1fを光軸方向に移動させてフォーカシングを行う。この構成により、簡易な構成でフォーカス機能を実現することができる。
It is more preferable to set the numerical range of the conditional expressions (2) to (5) as follows.
0.025 ≦ d02 / d0 ≦ 0.215 (2a)
0.013 ≤ t2 / d0 ≤ 0.100 (3a)
1.4 ≤ β2 ≤ 5.2 (4a)
9.5 ≤ f0 / fe ≤ 30.0 (5a)
Further, it is more preferable to set the numerical range of the conditional expressions (2) to (5) as follows.
0.030 ≦ d02 / d0 ≦ 0.210 (2b)
0.015 ≤ t2 / d0 ≤ 0.090 (3b)
1.8 ≤ β2 ≤ 5.0 (4b)
10.0 ≦ f0 / fe ≦ 29.0 (5b)
Further, in the observation optical system of each embodiment, the first lens group L1 includes a lens group (normal lens group) L1f having a positive refractive power, and the positive lens group L1f is moved in the optical axis direction for focusing. With this configuration, the focus function can be realized with a simple configuration.

以下、本発明の具体的な実施例(数値例)1〜3について説明する。 Hereinafter, specific examples (numerical examples) 1 to 3 of the present invention will be described.

図1は、実施例1(数値例1)の観察光学系の構成を示している。構成の詳細は前述した通りであり、第2レンズ群L2は1枚の正レンズと1枚の負レンズの接合レンズにより構成されている。本実施例の観察光学系は、観察倍率が20.0倍程度、瞳径が2.5mm程度、半画角が1.8°程度の観察光学系である。 FIG. 1 shows the configuration of the observation optical system of Example 1 (Numerical Example 1). The details of the configuration are as described above, and the second lens group L2 is composed of a junction lens of one positive lens and one negative lens. The observation optical system of this embodiment is an observation optical system having an observation magnification of about 20.0 times, a pupil diameter of about 2.5 mm, and a half angle of view of about 1.8 °.

図2は、本実施例の観察光学系の非防振時(第2レンズ群L2の中心が光軸上に位置するとき)の縦収差である球面収差、非点収差、歪曲および色収差を示す。球面収差において実線はd線に対する球面収差を示し、二点鎖線はg線に対する球面収差を示す。非点収差において破線はメリディオナル像面での非点収差を、実線はサジタル像面での非点収差を示す。歪曲にはd線に対するものである。色収差にはg線に対する倍率色収差を示している。 FIG. 2 shows spherical aberration, astigmatism, distortion, and chromatic aberration, which are longitudinal aberrations when the observation optical system of this embodiment is non-vibration-proof (when the center of the second lens group L2 is located on the optical axis). .. In the spherical aberration, the solid line shows the spherical aberration with respect to the d line, and the two-point chain line shows the spherical aberration with respect to the g line. In the astigmatism, the broken line indicates the astigmatism on the meridional image plane, and the solid line indicates the astigmatism on the sagittal image plane. The distortion is for the d line. The chromatic aberration shows the chromatic aberration of magnification with respect to the g-line.

図3および図4はそれぞれ、本実施例の観察光学系の非防振時および防振時(第2レンズ群L2を+1.938mmシフトさせて補正角1.0°の防振を行ったとき)における画角ごとの横収差を示す。半画角をωとするとき、各図は上から順に+10割(ω=1.8°)、+5割(ω=0.9°)、中心(ω=0°)、−5割(ω=−0.9°)および−10割(ω=−1.8°)の画角でのd線に対する横収差を示している。破線はサジタル像面での横収差を、実線はメリディオナル像面での横収差を示す。上記縦収差図および横収差図の説明は、防振時における第2レンズ群L2のシフト量を除いて後述する実施例2,3でも同じである。 3 and 4 show vibration isolation of the observation optical system of this embodiment during non-vibration isolation and vibration isolation (when the second lens group L2 is shifted by +1.938 mm to perform vibration isolation with a correction angle of 1.0 °, respectively. ) Indicates the lateral aberration for each angle of view. When the half angle of view is ω, each figure shows + 100% (ω = 1.8 °), + 50% (ω = 0.9 °), center (ω = 0 °), and -50% (ω) in order from the top. It shows the lateral aberration with respect to the d line at the angle of view of −0.9 °) and −100% (ω = -1.8 °). The broken line shows the lateral aberration on the sagittal image plane, and the solid line shows the lateral aberration on the meridional image plane. The description of the longitudinal aberration diagram and the transverse aberration diagram is the same in Examples 2 and 3 described later except for the shift amount of the second lens group L2 at the time of vibration isolation.

本実施例および実施例2,3の観察光学系の具体的な数値は以下にまとめて示す。 Specific numerical values of the observation optical systems of this example and Examples 2 and 3 are summarized below.

図2は、実施例2(数値例2)の観察光学系の構成を示している。構成の詳細は前述した通りであり、第2レンズ群L2は1枚の正レンズと1枚の負レンズの接合レンズにより構成されている。本実施例の観察光学系は、観察倍率が15.0倍程度、瞳径が3.33mm程度、半画角が2.4°程度の観察光学系である。 FIG. 2 shows the configuration of the observation optical system of Example 2 (Numerical Example 2). The details of the configuration are as described above, and the second lens group L2 is composed of a junction lens of one positive lens and one negative lens. The observation optical system of this embodiment is an observation optical system having an observation magnification of about 15.0 times, a pupil diameter of about 3.33 mm, and a half angle of view of about 2.4 °.

図6は、本実施例の観察光学系の非防振時の縦収差を示す。図7および図8はそれぞれ、本実施例の観察光学系の非防振時および防振時(第2レンズ群L2を光軸に直交する方向に+1.862mmシフトさせて補正角1.0°の防振を行ったとき)における画角ごとの横収差を示す。 FIG. 6 shows the longitudinal aberration of the observation optical system of this embodiment when it is not vibration-proof. 7 and 8 show a correction angle of 1.0 ° by shifting the observation optical system of this embodiment by +1.862 mm in the direction orthogonal to the optical axis when the observation optical system is non-vibration-proof and vibration-proof (the second lens group L2 is shifted by +1.862 mm in the direction orthogonal to the optical axis, respectively. The lateral aberration for each angle of view at (when vibration isolation is performed) is shown.

図9は、実施例3(数値例3)の観察光学系の構成を示している。構成の詳細は前述した通りであり、第2レンズ群L2は1枚の負レンズにより構成されている。本実施例の観察光学系は、観察倍率が12.0倍程度、瞳径が4.18mm程度、半画角が2.9°程度の観察光学系である。 FIG. 9 shows the configuration of the observation optical system of Example 3 (Numerical Example 3). The details of the configuration are as described above, and the second lens group L2 is composed of one negative lens. The observation optical system of this embodiment is an observation optical system having an observation magnification of about 12.0 times, a pupil diameter of about 4.18 mm, and a half angle of view of about 2.9 °.

図10は、本実施例の観察光学系の非防振時の縦収差を示す。図11および図12はそれぞれ、本実施例の観察光学系の非防振時および防振時(第2レンズ群L2を+1.883mmシフトさせて補正角1.0°の防振を行ったとき)における画角ごとの横収差を示す。 FIG. 10 shows the longitudinal aberration of the observation optical system of this embodiment when it is not vibration-proof. 11 and 12 show vibration isolation of the observation optical system of this embodiment during non-vibration isolation and vibration isolation (when the second lens group L2 is shifted by +1.883 mm to perform vibration isolation with a correction angle of 1.0 °, respectively. ) Indicates the lateral aberration for each angle of view.

以下、数値例1〜3を示す。各数値例において、riは物体側からi番目の面の曲率半径(mm)、diはi番目と(i+1)番目の面間のレンズ厚または空気間隔(mm)、ndiはそれぞれi番目の光学部材(レンズおよびプリズム)の材料のd線における屈折率である。νdiはi番目の光学部材の材料のd線を基準としたアッベ数である。 Numerical examples 1 to 3 are shown below. In each numerical example, ri is the radius of curvature (mm) of the i-th surface from the object side, di is the lens thickness or air spacing (mm) between the i-th and (i + 1) -th surfaces, and ndi is the i-th optical. The refractive index of the material of the member (lens and prism) at line d. νdi is an Abbe number based on the d-line of the material of the i-th optical member.

アッベ数νdは、フラウンホーファ線のd線(587.6nm)、F線(486.1nm)、C線(656.3nm)における屈折率をNd、NF、NCとするとき、
νd=(Nd−1)/(NF−NC)
で表される。
The Abbe number νd is when the refractive indexes of the Fraunhofer line d line (587.6 nm), F line (486.1 nm), and C line (656.3 nm) are Nd, NF, and NC.
νd = (Nd-1) / (NF-NC)
It is represented by.

面番号に付された「*」は、その面が非球面形状を有する面であることを意味する。非球面形状は、光軸方向をX軸、光軸に直交する方向をH軸、光の進行方向を正とし、Rを近軸曲率半径、Kを円錐定数、A4,A6,A8,A10を非球面係数とするとき、以下の式で表される。非球面係数の「e−x」は10-xを意味する。 The "*" attached to the surface number means that the surface has an aspherical shape. For the aspherical shape, the optical axis direction is the X axis, the direction orthogonal to the optical axis is the H axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conical constant, and A4, A6, A8, and A10 are. When it is an aspherical coefficient, it is expressed by the following formula. The aspherical coefficient "ex " means 10-x.

Figure 2021128310
Figure 2021128310

(数値例1)
単位 mm

面データ
面番号 r d nd νd
1 44.966 9.75 1.49700 81.5
2 -645.511 17.86
3 46.689 7.42 1.43875 94.9
4 -59.386 2.70 1.80400 46.6
5 75.307 27.85
6 27.167 2.66 1.48749 70.2
7 72.012 6.17
8 -54.278 3.88 1.77250 49.6
9 -18.417 1.50 1.64000 60.1
10 21.646 6.79
11 ∞ 37.70 1.65844 50.9
12 ∞ 37.70 1.65844 50.9
13 ∞ 5.25
14* -9.489 2.12 1.53160 55.8
15 27.611 1.07
16 49.112 7.97 1.84666 23.8
17 -22.630 14.68
18 -103.919 2.00 1.84666 23.8
19 20.323 13.16 1.65160 58.5
20 -33.475 1.00
21 40.835 5.24 1.77250 49.6
22 -211.685 0.29
23 32.252 5.30 1.60311 60.6
24 ∞ 20.00

非球面データ
第14面
K = 0.00000e+000 A 4= 1.53388e-004 A 6= 2.72143e-006 A 8=-4.55814e-008 A10= 5.42766e-010

各種データ
対物光学系 始面 1 終面 10
正立プリズム 始面 11 終面 13
接眼光学系 始面 14 終面 24
第1レンズ群L1 始面 1 終面 7
レンズ群L1f 始面 6 終面 7
第2レンズ群L2 始面 8 終面 10

(数値例2)
単位 mm

面データ
面番号 r d nd νd
1 44.506 10.21 1.49700 81.5
2 -342.333 13.71
3 56.382 7.51 1.43875 94.9
4 -58.189 2.70 1.80400 46.6
5 109.473 16.57
6 36.841 3.47 1.48749 70.2
7 104.510 6.47
8 -67.921 2.43 1.77250 49.6
9 -24.593 1.50 1.64000 60.1
10 28.917 10.13
11 ∞ 42.00 1.65844 50.9
12 ∞ 42.00 1.65844 50.9
13 ∞ 5.80
14* -10.400 2.12 1.53160 55.8
15 30.857 2.43
16 453.338 10.26 1.84666 23.8
17 -18.743 13.45
18 -178.240 2.00 1.84666 23.8
19 25.953 13.27 1.69680 55.5
20 -37.800 1.00
21 39.700 5.41 1.60311 60.6
22 -378.542 0.29
23 33.731 5.30 1.48749 70.2
24 ∞ 20.00

非球面データ
第14面
K = 0.00000e+000 A 4= 1.03277e-004 A 6= 1.85689e-006 A 8=-2.83912e-008 A10= 2.50449e-010

各種データ
対物光学系 始面 1 終面 10
正立プリズム 始面 11 終面 13
接眼光学系 始面 14 終面 24
第1レンズ群L1 始面 1 終面 7
レンズ群L1f 始面 6 終面 7
第2レンズ群L2 始面 8 終面 10

(数値例3)
単位 mm

面データ
面番号 r d nd νd
1 42.953 10.32 1.49700 81.5
2 -509.782 13.23
3 41.042 9.13 1.43875 94.9
4 -63.321 2.70 1.80400 46.6
5 91.372 8.25
6 38.122 2.27 1.48749 70.2
7 52.304 6.32
8 -2466.075 1.50 1.64000 60.1
9 26.334 10.49
10 300.000 1.50 1.48749 70.2
11 ∞ 1.50
12 ∞ 43.60 1.65844 50.9
13 ∞ 43.60 1.65844 50.9
14 ∞ 5.12
15* -11.511 2.12 1.53160 55.8
16 30.000 1.71
17 96.659 8.75 1.84666 23.8
18 -20.514 12.46
19 -58.504 2.00 1.84666 23.8
20 30.661 14.61 1.69680 55.5
21 -27.837 1.00
22 37.656 8.21 1.60311 60.6
23 -225.736 0.29
24 49.786 5.30 1.48749 70.2
25 ∞ 20.00

非球面データ
第15面
K = 0.00000e+000 A 4= 1.56384e-004 A 6=-1.46641e-007 A 8= 4.27699e-009 A10= 1.91538e-011

各種データ
対物光学系 始面 1 終面 11
正立プリズム 始面 12 終面 14
接眼光学系 始面 15 終面 25
第1レンズ群L1 始面 1 終面 7
レンズ群L1f 始面 6 終面 7
第2レンズ群L2 始面 8 終面 9

各実施例(数値例)における条件式(1)〜(5)の数値を表1にまとめて示す
(Numerical example 1)
Unit mm

Surface data Surface number rd nd ν d
1 44.966 9.75 1.49700 81.5
2 -645.511 17.86
3 46.689 7.42 1.43875 94.9
4-59.386 2.70 1.80400 46.6
5 75.307 27.85
6 27.167 2.66 1.48749 70.2
7 72.012 6.17
8-54.278 3.88 1.77250 49.6
9 -18.417 1.50 1.64000 60.1
10 21.646 6.79
11 ∞ 37.70 1.65844 50.9
12 ∞ 37.70 1.65844 50.9
13 ∞ 5.25
14 * -9.489 2.12 1.53160 55.8
15 27.611 1.07
16 49.112 7.97 1.84666 23.8
17 -22.630 14.68
18 -103.919 2.00 1.84666 23.8
19 20.323 13.16 1.65160 58.5
20 -33.475 1.00
21 40.835 5.24 1.77250 49.6
22 -211.685 0.29
23 32.252 5.30 1.60311 60.6
24 ∞ 20.00

14th surface of aspherical data
K = 0.00000e + 000 A 4 = 1.53388e-004 A 6 = 2.72143e-006 A 8 = -4.55814e-008 A10 = 5.42766e-010

Various data Objective optical system Start surface 1 End surface 10
Upright prism start surface 11 end surface 13
Eyepiece optical system Start surface 14 End surface 24
1st lens group L1 Start surface 1 End surface 7
Lens group L1f Start surface 6 End surface 7
2nd lens group L2 Start surface 8 End surface 10

(Numerical example 2)
Unit mm

Surface data Surface number rd nd ν d
1 44.506 10.21 1.49700 81.5
2 -342.333 13.71
3 56.382 7.51 1.43875 94.9
4-58.189 2.70 1.80400 46.6
5 109.473 16.57
6 36.841 3.47 1.48749 70.2
7 104.510 6.47
8-67.921 2.43 1.77250 49.6
9 -24.593 1.50 1.64000 60.1
10 28.917 10.13
11 ∞ 42.00 1.65844 50.9
12 ∞ 42.00 1.65844 50.9
13 ∞ 5.80
14 * -10.400 2.12 1.53160 55.8
15 30.857 2.43
16 453.338 10.26 1.84666 23.8
17 -18.743 13.45
18 -178.240 2.00 1.84666 23.8
19 25.953 13.27 1.69680 55.5
20 -37.800 1.00
21 39.700 5.41 1.60311 60.6
22 -378.542 0.29
23 33.731 5.30 1.48749 70.2
24 ∞ 20.00

14th surface of aspherical data
K = 0.00000e + 000 A 4 = 1.03277e-004 A 6 = 1.85689e-006 A 8 = -2.83912e-008 A10 = 2.50449e-010

Various data Objective optical system Start surface 1 End surface 10
Upright prism start surface 11 end surface 13
Eyepiece optical system Start surface 14 End surface 24
1st lens group L1 Start surface 1 End surface 7
Lens group L1f Start surface 6 End surface 7
2nd lens group L2 Start surface 8 End surface 10

(Numerical example 3)
Unit mm

Surface data Surface number rd nd ν d
1 42.953 10.32 1.49700 81.5
2 -509.782 13.23
3 41.042 9.13 1.43875 94.9
4-63.321 2.70 1.80400 46.6
5 91.372 8.25
6 38.122 2.27 1.48749 70.2
7 52.304 6.32
8-2466.075 1.50 1.64000 60.1
9 26.334 10.49
10 300.000 1.50 1.48749 70.2
11 ∞ 1.50
12 ∞ 43.60 1.65844 50.9
13 ∞ 43.60 1.65844 50.9
14 ∞ 5.12
15 * -11.511 2.12 1.53160 55.8
16 30.000 1.71
17 96.659 8.75 1.84666 23.8
18 -20.514 12.46
19 -58.504 2.00 1.84666 23.8
20 30.661 14.61 1.69680 55.5
21 -27.837 1.00
22 37.656 8.21 1.60311 60.6
23 -225.736 0.29
24 49.786 5.30 1.48749 70.2
25 ∞ 20.00

15th surface of aspherical data
K = 0.00000e + 000 A 4 = 1.56384e-004 A 6 = -1.46641e-007 A 8 = 4.27699e-009 A10 = 1.91538e-011

Various data Objective optical system Start surface 1 End surface 11
Upright prism start surface 12 end surface 14
Eyepiece optical system Start surface 15 End surface 25
1st lens group L1 Start surface 1 End surface 7
Lens group L1f Start surface 6 End surface 7
2nd lens group L2 Start surface 8 End surface 9

Table 1 summarizes the numerical values of the conditional expressions (1) to (5) in each embodiment (numerical example).

Figure 2021128310
Figure 2021128310

図13は、上記実施例1〜3の観察光学系を用いた観察装置としての双眼鏡を示す。図13において各符号は図1中の符号に対応している。 FIG. 13 shows binoculars as an observation device using the observation optical system of Examples 1 to 3. In FIG. 13, each reference numeral corresponds to the reference numeral in FIG.

図13において、1Rは右眼用の観察光学系、1Lは左眼用の観察光学系である。振れセンサ1は振動ジャイロ等であり、縦振れを検出するピッチ振れセンサと、横振れを検出するヨー振れセンサを含む。これら2つの振れセンサの感度軸は互いに直交している。振れセンサ1は、双眼鏡の振れ(角加速度)を検出し、その情報をマイクロコンピュータ2に出力する。マイクロコンピュータ2は、角加速度の情報に基づいて、振れ補正用の第2レンズ群L2の駆動量を演算し、それをレンズアクチュエータ3に出力する。レンズアクチュエータ3は、マイクロコンピュータ2からの駆動量に応じて第2レンズ群L2を光軸に直交する方向に平行移動または光軸上の点を中心に回動させる。位置センサ4は第2レンズ群L2の位置を検出してその結果をマイクロコンピュータ2に出力する。マイクロコンピュータ2は、検出された位置が演算で求められた駆動量に対応する位置に一致するとレンズアクチュエータ3による第2レンズ群L2の駆動を停止させる。これにより双眼鏡の振れに起因する像振れが低減される。 In FIG. 13, 1R is an observation optical system for the right eye, and 1L is an observation optical system for the left eye. The runout sensor 1 is a vibration gyro or the like, and includes a pitch runout sensor that detects vertical runout and a yaw runout sensor that detects horizontal runout. The sensitivity axes of these two runout sensors are orthogonal to each other. The runout sensor 1 detects the runout (angular acceleration) of the binoculars and outputs the information to the microcomputer 2. The microcomputer 2 calculates the driving amount of the second lens group L2 for vibration correction based on the information of the angular acceleration, and outputs it to the lens actuator 3. The lens actuator 3 translates the second lens group L2 in a direction orthogonal to the optical axis or rotates around a point on the optical axis according to the amount of drive from the microcomputer 2. The position sensor 4 detects the position of the second lens group L2 and outputs the result to the microcomputer 2. When the detected position matches the position corresponding to the driving amount obtained by the calculation, the microcomputer 2 stops the driving of the second lens group L2 by the lens actuator 3. As a result, image shake caused by the shake of the binoculars is reduced.

このように実施例1〜3の観察光学系を用いることで、小型で防振時でも光学性能が良好な双眼鏡を実現することができる。 By using the observation optical systems of Examples 1 to 3 in this way, it is possible to realize binoculars that are compact and have good optical performance even at the time of vibration isolation.

なお、実施例1〜3の観察光学系は、双眼鏡に限らず、望遠鏡やカメラ用光学ファインダ等の各種観察装置にも用いることができる。 The observation optical systems of Examples 1 to 3 can be used not only for binoculars but also for various observation devices such as a telescope and an optical finder for a camera.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。 Each of the above-described examples is only a representative example, and various modifications and changes can be made to each of the examples in carrying out the present invention.

L1 第1レンズ群
L1f 正レンズ群
L2 第2レンズ群
IP アイポイント
L1 1st lens group L1f Positive lens group L2 2nd lens group IP eye point

Claims (7)

物体側から像側に順に配置された、対物光学系と、該対物光学系により形成された物体像を正立像にする正立光学系と、接眼光学系とを有する観察光学系であって、
前記対物光学系は、前記物体側から前記像側に順に、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群とを有し、
前記第2レンズ群は、1枚の負レンズ、または1枚の負レンズと1枚の正レンズにより構成され、
前記第2レンズ群を前記対物光学系の光軸に対して移動させて防振を行い、
前記対物光学系の焦点距離をf0、前記第2レンズ群L2の焦点距離をf2とするとき、
0.03≦−f2/f0≦0.24
なる条件を満足することを特徴とする観察光学系。
An observation optical system having an objective optical system arranged in order from the object side to the image side, an erect optical system for making an object image formed by the objective optical system an erect image, and an eyepiece optical system.
The objective optical system is arranged in order from the object side to the image side.
The first lens group with positive refractive power and
It has a second lens group with a negative refractive power,
The second lens group is composed of one negative lens or one negative lens and one positive lens.
The second lens group is moved with respect to the optical axis of the objective optical system to perform vibration isolation.
When the focal length of the objective optical system is f0 and the focal length of the second lens group L2 is f2,
0.03 ≦ −f2 / f0 ≦ 0.24
An observation optical system characterized by satisfying the above conditions.
前記対物光学系における最も物体側の面から前記正立プリズムにおける最も物体側の面までの光軸上の距離をd0、前記第2レンズ群における最も像側の面から前記正立プリズムにおける最も物体側の面までの光軸上の距離をd02とするとき、
0.020≦d02/d0≦0.220
なる条件を満足することを特徴とする請求項1に記載の観察光学系。
The distance on the optical axis from the most object-side surface in the objective optical system to the most object-side surface in the erecting prism is d0, and the most object in the erecting prism from the most image-side surface in the second lens group. When the distance on the optical axis to the side surface is d02,
0.020 ≤ d02 / d0 ≤ 0.220
The observation optical system according to claim 1, wherein the observation optical system satisfies the above conditions.
前記第2レンズ群の光軸上の厚みをt2とするとき、
0.010≦t2/d0≦0.110
なる条件を満足することを特徴とする請求項1または2に記載の観察光学系。
When the thickness of the second lens group on the optical axis is t2,
0.010 ≤ t2 / d0 ≤ 0.110
The observation optical system according to claim 1 or 2, wherein the observation optical system satisfies the above conditions.
前記第2レンズ群の横倍率をβ2とするとき、
1.0≦β2≦5.5
なる条件を満足することを特徴とする請求項1から3のいずれか一項に記載の観察光学系。
When the lateral magnification of the second lens group is β2,
1.0 ≤ β2 ≤ 5.5
The observation optical system according to any one of claims 1 to 3, wherein the observation optical system satisfies the above-mentioned condition.
前記接眼光学系の焦点距離をfeとするとき、
9.0≦f0/fe≦31.0
なる条件を満足することを特徴とする請求項1から4のいずれか一項に記載の観察光学系。
When the focal length of the eyepiece optical system is fe,
9.0 ≤ f0 / fe ≤ 31.0
The observation optical system according to any one of claims 1 to 4, wherein the observation optical system satisfies the above-mentioned condition.
前記第1レンズ群は、正レンズ群を有し、該正レンズ群はフォーカシングのために光軸方向に移動することを特徴とする請求項1から5のいずれか一項に記載の観察光学系。 The observation optical system according to any one of claims 1 to 5, wherein the first lens group has a positive lens group, and the positive lens group moves in the optical axis direction for focusing. .. 請求項1から6のいずれか一項の観察光学系を有することを特徴とする観察装置。 An observation device comprising the observation optical system according to any one of claims 1 to 6.
JP2020024461A 2020-02-17 2020-02-17 Observation optical system and observation device Active JP7483399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020024461A JP7483399B2 (en) 2020-02-17 2020-02-17 Observation optical system and observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020024461A JP7483399B2 (en) 2020-02-17 2020-02-17 Observation optical system and observation device

Publications (2)

Publication Number Publication Date
JP2021128310A true JP2021128310A (en) 2021-09-02
JP7483399B2 JP7483399B2 (en) 2024-05-15

Family

ID=77488584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024461A Active JP7483399B2 (en) 2020-02-17 2020-02-17 Observation optical system and observation device

Country Status (1)

Country Link
JP (1) JP7483399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520552A (en) * 2023-06-30 2023-08-01 昆明朗特光学仪器有限公司 Optical system of target observation mirror

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093582A1 (en) * 2008-01-23 2009-07-30 Nikon Vision Co., Ltd. Telescope optical system
JP2016166907A (en) * 2013-07-11 2016-09-15 株式会社 ニコンビジョン Vibration-proof optical system
JP2018005138A (en) * 2016-07-08 2018-01-11 キヤノン株式会社 Objective lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093582A1 (en) * 2008-01-23 2009-07-30 Nikon Vision Co., Ltd. Telescope optical system
JP2016166907A (en) * 2013-07-11 2016-09-15 株式会社 ニコンビジョン Vibration-proof optical system
JP2018005138A (en) * 2016-07-08 2018-01-11 キヤノン株式会社 Objective lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520552A (en) * 2023-06-30 2023-08-01 昆明朗特光学仪器有限公司 Optical system of target observation mirror
CN116520552B (en) * 2023-06-30 2023-08-25 昆明朗特光学仪器有限公司 Optical system of target observation mirror

Also Published As

Publication number Publication date
JP7483399B2 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US7411745B2 (en) Large-aperture-ratio internal focusing telephoto lens
JP2007219315A (en) Zoom lens with vibration proof function and imaging apparatus equipped with the same
JP7014253B2 (en) Variable magnification optics and optical equipment
JP4951370B2 (en) Zoom lens with image stabilization by lens eccentricity
JP2012068303A (en) Photographic lens, optical equipment including photographic lens, and method for manufacturing photographic lens
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP2008203471A (en) Zoom lens, optical equipment and imaging method
CN102346294A (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP2009175202A (en) Imaging lens, optical device with the same, and image blur correction method
JP2021105746A (en) Optical system and optical apparatus
JP6753599B2 (en) Large aperture ratio lens
WO2013111221A1 (en) Zoom lens, optical apparatus, and zoom lens manufacturing method
JP3365087B2 (en) Optical system with camera shake correction function
JP3335302B2 (en) Anti-vibration optical system of observation optical equipment
JP2008040065A (en) Observation optical system
WO2009093582A1 (en) Telescope optical system
JP7483399B2 (en) Observation optical system and observation device
JP6576180B2 (en) Observation optical system and observation apparatus having the same
JP5714350B2 (en) Viewfinder optical system
JP2003057537A (en) Observation optical system provided with image blurring correcting system
JP2000089104A (en) Vibration-proof optical system for observation optical apparatus
JP5028009B2 (en) Observation optical system
WO2019239645A1 (en) Observation optical system
JPH09230236A (en) Optical system provided with camera shake correcting function and zoom lens
JP2010019945A (en) Zoom lens, optical device having the same and variable power method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240501

R150 Certificate of patent or registration of utility model

Ref document number: 7483399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150