JP7480951B2 - Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus - Google Patents

Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus Download PDF

Info

Publication number
JP7480951B2
JP7480951B2 JP2019185711A JP2019185711A JP7480951B2 JP 7480951 B2 JP7480951 B2 JP 7480951B2 JP 2019185711 A JP2019185711 A JP 2019185711A JP 2019185711 A JP2019185711 A JP 2019185711A JP 7480951 B2 JP7480951 B2 JP 7480951B2
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
substrate
ferroelectric
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019185711A
Other languages
Japanese (ja)
Other versions
JP2021061360A (en
Inventor
浩之 西中
昌広 吉本
実 野田
大祐 田原
敏幸 川原村
翔太 佐藤
麗 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Kochi Prefectural University Corp
Original Assignee
Kyoto Institute of Technology NUC
Kochi Prefectural University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Kochi Prefectural University Corp filed Critical Kyoto Institute of Technology NUC
Priority to JP2019185711A priority Critical patent/JP7480951B2/en
Publication of JP2021061360A publication Critical patent/JP2021061360A/en
Application granted granted Critical
Publication of JP7480951B2 publication Critical patent/JP7480951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

特許法第30条第2項適用 発行者名:公益財団法人応用物理学会、刊行物名:2019年第66回応用物理学会春季講演会 講演予稿集,第04-237頁、発行年月日:平成31(2019)年2月25日 集会名:公益財団法人応用物理学会 2019年第66回応用物理学会春季学術講演会、開催日:平成31(2019)年3月11日、開催場所:東京工業大学 大岡山キャンパス 発行者名:ISAF,EMF,ICE,IWPM and PFM、刊行物名:2019 Joint Conference of the IEEE ISAF, EMF,ICE, IWPM and PFM 予稿集,第266頁、発行年月日:令和1(2019)年7月14日 集会名:2019 Joint Conference of the IEEE ISAF, EMF, ICE, IWPM and PFM、開催日:令和1(2019)年7月16日、開催場所:Swiss Tech Convention CenterApplicable under Article 30, Paragraph 2 of the Patent Act Publisher: The Japan Society of Applied Physics, Publication name: 2019 66th Spring Meeting of the Japan Society of Applied Physics, Proceedings, pp. 04-237, Publication date: February 25, 2019 Meeting name: The Japan Society of Applied Physics, 2019 66th Spring Meeting of the Japan Society of Applied Physics, Date: March 11, 2019, Venue: Ookayama Campus, Tokyo Institute of Technology Publisher: ISAF, EMF, ICE, IWPM and PFM, Publication name: 2019 Joint Conference of the IEEE ISAF, EMF, ICE, IWPM and PFM Proceedings, p. 266, Publication date: July 14, 2019 Meeting name: 2019 Joint Conference of the IEEE ISAF, EMF, ICE, IWPM and PFM, Date: July 16, 2019, Venue: Swiss Tech Convention Center

本発明は、強誘電体薄膜の製造方法および強誘電体薄膜製造装置に関する。 The present invention relates to a method and an apparatus for producing a ferroelectric thin film.

半導体基板上にALD(Atomic layer Deposition)法を利用して酸素(O)とハフニウム(Hf)およびジルコニウム(Zr)のうちの少なくとも一方を含むアモルファス層を形成した後、アモルファス層が結晶化する温度以上の温度で熱処理を行う強誘電体メモリセルを有する集積回路の製造方法が提案されている(例えば特許文献1参照)。ここで、アモルファス層を結晶化することにより生成される酸化ハフニウム(HfOx)膜は、その厚さを薄くしても強誘電性を示す逆サイズ効果を有するため、特許文献1に記載されているように、酸化ハフニウム膜を強誘電体メモリ等の強誘電体膜として使用することで強誘電体メモリ等の微細化を実現できる。ところで、酸化ハフニウム膜に強誘電性を発現させるためには、酸化ハフニウム膜を斜方晶(直方晶)構造の酸化ハフニウム結晶を含むものとする必要がある。しかしながら、酸化ハフニウムの直方晶構造は、準安定的であるため、例えばアモルファス層を、RTA(Rapid Termal Annealing)法のような熱処理方法で熱処理を行うと、単斜晶構造の酸化ハフニウム膜が形成されてしまう。 A method for manufacturing an integrated circuit having a ferroelectric memory cell has been proposed, in which an amorphous layer containing at least one of oxygen (O) and hafnium (Hf) and zirconium (Zr) is formed on a semiconductor substrate using the ALD (Atomic Layer Deposition) method, and then heat treatment is performed at a temperature equal to or higher than the temperature at which the amorphous layer crystallizes (see, for example, Patent Document 1). Here, a hafnium oxide (HfOx) film produced by crystallizing the amorphous layer has an inverse size effect that exhibits ferroelectricity even when its thickness is reduced, so that, as described in Patent Document 1, the hafnium oxide film can be used as a ferroelectric film for a ferroelectric memory or the like to achieve miniaturization of the ferroelectric memory or the like. However, in order to make the hafnium oxide film exhibit ferroelectricity, it is necessary for the hafnium oxide film to contain hafnium oxide crystals with an orthorhombic (rectangular) structure. However, the orthogonal crystal structure of hafnium oxide is metastable, so if an amorphous layer is heat-treated using a heat treatment method such as RTA (Rapid Thermal Annealing), a hafnium oxide film with a monoclinic crystal structure is formed.

これに対して、半導体基板上に、HfおよびZrの少なくとも一方とOとを主成分とする金属酸化膜を堆積する工程と、金属酸化膜上に導体膜を堆積する工程と、金属酸化膜にマイクロ波加熱処理を施す工程と、を含む半導体装置の製造方法が提案されている(例えば特許文献2参照)。このように、マイクロ波を用いて金属酸化膜を加熱することにより、直方晶構造の酸化ハフニウムを含む金属酸化膜を形成することができる。 In response to this, a method for manufacturing a semiconductor device has been proposed that includes the steps of depositing a metal oxide film containing at least one of Hf and Zr and O as main components on a semiconductor substrate, depositing a conductor film on the metal oxide film, and subjecting the metal oxide film to a microwave heating treatment (see, for example, Patent Document 2). In this way, by heating the metal oxide film using microwaves, a metal oxide film containing hafnium oxide with a rectangular crystal structure can be formed.

米国特許出願公開第2009/0261395号明細書US Patent Application Publication No. 2009/0261395 特開2018-195767号公報JP 2018-195767 A

しかしながら、特許文献2に記載された半導体装置の製造方法では、金属酸化膜をマイクロ波で加熱する工程が必要となるため、その分、製造効率が制限されてしまう。 However, the method for manufacturing a semiconductor device described in Patent Document 2 requires a step of heating the metal oxide film with microwaves, which limits manufacturing efficiency.

本発明は、上記事由に鑑みてなされたものであり、製造効率が高い強誘電体薄膜の製造方法を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned reasons, and aims to provide a method for manufacturing ferroelectric thin films with high manufacturing efficiency.

本発明に係る強誘電体薄膜の製造方法は、
基板を準備する工程と、
強誘電体薄膜を形成する酸化物の前駆体原料を含む液滴状の材料を利用して、前記基板上に、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する工程と、を含み、
前記前駆体原料は、ハフニウム(Hf)のハロゲン化物、ハフニウム(Hf)を含む硫酸塩、ハフニウム(Hf)を含む硝酸塩の中から選択される
The method for producing a ferroelectric thin film according to the present invention comprises the steps of:
providing a substrate;
forming a ferroelectric thin film containing hafnium oxide crystals having a rectangular crystal structure on the substrate by using a droplet-like material containing a precursor material of an oxide for forming the ferroelectric thin film ;
The precursor material is selected from the group consisting of hafnium (Hf) halides, sulfates containing hafnium (Hf), and nitrates containing hafnium (Hf) .

他の観点から見た本発明に係る強誘電体薄膜製造装置は、
強誘電体薄膜の前駆体原料を含む液滴状の材料を利用して、基板上に、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する強誘電体薄膜製造装置であって、
前記前駆体原料は、ハフニウム(Hf)のハロゲン化物、ハフニウム(Hf)を含む硫酸塩、ハフニウム(Hf)を含む硝酸塩の中から選択される
From another viewpoint, the ferroelectric thin film manufacturing apparatus according to the present invention is as follows:
A ferroelectric thin film manufacturing apparatus for forming a ferroelectric thin film containing hafnium oxide crystals having a rectangular crystal structure on a substrate by using a droplet-shaped material containing a precursor material of the ferroelectric thin film, comprising:
The precursor material is selected from the group consisting of hafnium (Hf) halides, sulfates containing hafnium (Hf), and nitrates containing hafnium (Hf) .

本発明によれば、基板上に酸化ハフニウムを含む薄膜を形成した後に薄膜を熱処理することなく、基板上に、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する。従って、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する際、熱処理工程を省略することができるので、その分、強誘電体薄膜の製造効率を向上させることができる。 According to the present invention, a ferroelectric thin film containing hafnium oxide crystals with an orthogonal crystal structure is formed on a substrate without heat-treating the thin film after forming the thin film containing hafnium oxide on the substrate. Therefore, when forming a ferroelectric thin film containing hafnium oxide crystals with an orthogonal crystal structure, the heat-treatment step can be omitted, and the manufacturing efficiency of the ferroelectric thin film can be improved accordingly.

実施形態に係るミストCVD装置の概略構成図である。1 is a schematic diagram of a mist CVD apparatus according to an embodiment of the present invention; 実施例1、2および比較例に係る試料の構造を示す図である。1A and 1B are diagrams showing structures of samples according to Examples 1 and 2 and a comparative example. 実施例1、2および比較例に係る試料についてのXRDの結果を示す図である。FIG. 2 is a diagram showing the results of XRD for samples according to Examples 1 and 2 and a comparative example. (A)は実施例1に係る薄膜表面のAFM画像を示す図であり、(B)は実施例2に係る薄膜表面のAFM画像を示す図である。FIG. 2A is a diagram showing an AFM image of the surface of the thin film according to Example 1, and FIG. 2B is a diagram showing an AFM image of the surface of the thin film according to Example 2. 比較例に係る薄膜表面のAFM画像を示す図である。FIG. 13 is a diagram showing an AFM image of a thin film surface according to a comparative example. (A)は実施例1に係るX線反射率のプロファイルを示す図であり、(B)は比較例に係るX線反射率のプロファイルを示す図である。FIG. 2A is a diagram showing a profile of X-ray reflectivity according to Example 1, and FIG. 2B is a diagram showing a profile of X-ray reflectivity according to a comparative example. (A)は実施例1に係る薄膜の誘電分極の印加電圧依存性を示す図であり、(B)は実施例2に係る薄膜の誘電分極の印加電圧依存性を示す図である。1A is a graph showing the applied voltage dependence of the dielectric polarization of the thin film according to Example 1, and FIG. 1B is a graph showing the applied voltage dependence of the dielectric polarization of the thin film according to Example 2. FIG. 比較例に係る薄膜の誘電分極の印加電圧依存性を示す図である。FIG. 13 is a diagram showing the applied voltage dependence of dielectric polarization of a thin film according to a comparative example. (A)は実施例1に係る薄膜100に±3MV/cmの矩形パルス状の電界を交互に複数回繰り返し印加した後における誘電分極の印加電圧依存性を示す図であり、(B)は誘電分極の前述の繰り返し回数依存性を示す図である。1A is a graph showing the applied voltage dependence of dielectric polarization after a rectangular pulse electric field of ±3 MV/cm is repeatedly applied alternately multiple times to the thin film 100 of Example 1, and FIG. 1B is a graph showing the aforementioned repetition number dependence of dielectric polarization.

以下、本発明の実施形態に係る強誘電体薄膜の製造方法について図面を参照しながら説明する。本実施形態に係る強誘電体薄膜の製造方法では、基板上に強誘電体薄膜を形成する。ここで、基板としては、例えばシリコン(Si)基板を採用することができる。基板がSi基板の場合、少なくとも強誘電体薄膜が形成される側の表面が平坦であれば表面の面方位は特に限定されない。また、基板としては、Si基板上に窒化チタン(TiN)膜、白金(Pt)膜が形成された基板であってもよい。或いは、安定化ジルコニア(YSZ)基板上にITO膜が形成された基板であってもよい。 The method for producing a ferroelectric thin film according to an embodiment of the present invention will be described below with reference to the drawings. In the method for producing a ferroelectric thin film according to this embodiment, a ferroelectric thin film is formed on a substrate. Here, for example, a silicon (Si) substrate can be used as the substrate. When the substrate is a Si substrate, the surface orientation is not particularly limited as long as at least the surface on which the ferroelectric thin film is to be formed is flat. The substrate may also be a substrate on which a titanium nitride (TiN) film or a platinum (Pt) film is formed on a Si substrate. Alternatively, the substrate may be a substrate on which an ITO film is formed on a stabilized zirconia (YSZ) substrate.

強誘電体薄膜は、直方晶構造の酸化ハフニウム(HfO)結晶を含む。なお、強誘電体膜としては、Zr、Si、Al、Ga、N、Y、Gd、Sc、Geの中から選択される少なくとも1種類を添加したHfO結晶であってもよい。また、この強誘電体薄膜は、厚さが100nm以下である。 The ferroelectric thin film includes hafnium oxide (HfO 2 ) crystals having a rectangular crystal structure. The ferroelectric film may be HfO 2 crystals doped with at least one element selected from Zr, Si, Al, Ga, N, Y, Gd, Sc, and Ge. The ferroelectric thin film has a thickness of 100 nm or less.

本実施形態に係る薄膜の製造方法では、ミストCVD(Chemical Vapor Deposition)法を用いて、強誘電体薄膜の前駆体原料を含む液滴状(霧状)の材料を利用して、Si基板上に直方晶構造のHfO結晶を含む薄膜を成膜する。ここでは、例えば図1に示すようなミストCVD装置が使用される。このミストCVD装置は、強誘電体薄膜の前駆体原料を含む霧状の材料を蒸気(気相)にしてSi基板の表面へ供給することにより、Si基板上に、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する強誘電体薄膜製造装置に相当する。また、このミストCVD装置は、ガス供給源21、24と流量調整機構22、25と流量計23、26と原料供給容器31と貯水容器33と超音波振動子35と反応容器41とを備える。反応容器41は、粒径が3μm程度のミスト状の原料を一時的に貯留する貯留室S12が設けられた貯留部412と、貯留室S12に連通し内側に基板Wが配置される成膜室S11が設けられた成膜部411と、を有する。また、成膜部411は、成膜室S11内に配置された基板Wを加熱するためのヒータ42を有する。ここで、成膜室S11は、基板Wが載置される載置部411aに基板Wが載置された状態で基板Wの表面と載置部411aに対向する内壁411bとの間の距離が1mm程度となるように設定されている。これにより、強誘電体薄膜の成膜中、基板Wの成膜面側に原料の層流を形成させることができる。 In the thin film manufacturing method according to the present embodiment, a mist CVD (Chemical Vapor Deposition) method is used to form a thin film containing HfO2 crystals having an orthorhombic crystal structure on a Si substrate using droplet (mist) material containing precursor material of the ferroelectric thin film. Here, for example, a mist CVD apparatus as shown in FIG. 1 is used. This mist CVD apparatus corresponds to a ferroelectric thin film manufacturing apparatus that forms a ferroelectric thin film containing hafnium oxide crystals having an orthorhombic crystal structure on a Si substrate by vaporizing (vapor-phase) mist material containing precursor material of the ferroelectric thin film and supplying it to the surface of the Si substrate. In addition, this mist CVD apparatus includes gas supply sources 21 and 24, flow rate adjustment mechanisms 22 and 25, flow meters 23 and 26, a raw material supply container 31, a water storage container 33, an ultrasonic vibrator 35, and a reaction container 41. The reaction vessel 41 has a storage section 412 provided with a storage chamber S12 for temporarily storing a mist-like raw material having a particle size of about 3 μm, and a film formation section 411 provided with a film formation chamber S11 communicating with the storage chamber S12 and in which a substrate W is placed. The film formation section 411 also has a heater 42 for heating the substrate W placed in the film formation chamber S11. Here, the film formation chamber S11 is set so that the distance between the surface of the substrate W and an inner wall 411b facing the placement part 411a is about 1 mm when the substrate W is placed on the placement part 411a on which the substrate W is placed. This allows a laminar flow of the raw material to be formed on the film formation surface side of the substrate W during the formation of the ferroelectric thin film.

キャリアガスを供給するガス供給源21と原料供給容器31とは第1ガス供給管P1を介して接続されている。原料供給容器31と反応容器41とは第2ガス供給管P2を介して接続されている。また、原料希釈用ガスを供給するガス供給源24に接続された第3ガス供給管P3が、第2ガス供給管P2に接続されている。更に、反応容器41には、反応容器41内の余分なガスを排出するための排気管P4が接続されている。 The gas supply source 21 that supplies the carrier gas and the raw material supply container 31 are connected via a first gas supply pipe P1. The raw material supply container 31 and the reaction container 41 are connected via a second gas supply pipe P2. A third gas supply pipe P3 that is connected to the gas supply source 24 that supplies the raw material dilution gas is connected to the second gas supply pipe P2. Furthermore, an exhaust pipe P4 is connected to the reaction container 41 to exhaust excess gas from the reaction container 41.

原料供給容器31には、強誘電体薄膜を形成する酸化物の前駆体原料を溶媒に溶解させてなる原料溶液32が貯留されている。強誘電体薄膜を形成する酸化物の前駆体原料は、ハフニウム(Hf)と酸素(O)を含む少なくとも1種類の有機化合物とを含む化合物、ハフニウム(Hf)のハロゲン化物、ハフニウム(Hf)を含む硫酸塩、ハフニウム(Hf)を含む硝酸塩の中から選択される。また、少なくとも1種類の有機化合物は、アルコール、アルデヒド、ケトン、ジケトン、カルボニル化合物、カルボン酸、エステルの中から選択される。溶媒は、メタノール、エタノール、イソプロパノール、アセトンから選択される有機溶媒、水またはこれらの混合物である。特に、有機溶媒としてメタノールを採用することが好ましい。この場合、強誘電体薄膜を比較的強い酸化環境で基板上に成膜することができるので、通常、準安定相である強誘電体薄膜中の直方晶構造を有するHfO結晶が安定相になり易くなるという利点がある。 The raw material supply container 31 stores a raw material solution 32 obtained by dissolving a precursor raw material of an oxide for forming a ferroelectric thin film in a solvent. The precursor raw material of the oxide for forming the ferroelectric thin film is selected from a compound containing hafnium (Hf) and at least one organic compound containing oxygen (O), a hafnium (Hf) halide, a sulfate containing hafnium (Hf), and a nitrate containing hafnium (Hf). The at least one organic compound is selected from an alcohol, an aldehyde, a ketone, a diketone, a carbonyl compound, a carboxylic acid, and an ester. The solvent is an organic solvent selected from methanol, ethanol, isopropanol, and acetone, water, or a mixture thereof. In particular, it is preferable to adopt methanol as the organic solvent. In this case, since the ferroelectric thin film can be formed on the substrate in a relatively strong oxidizing environment, there is an advantage that the HfO 2 crystals having a rectangular crystal structure in the ferroelectric thin film, which is usually in a metastable phase, tend to become stable.

ガス供給源21は、霧状の原料溶液を、反応容器41内に送り込むための空気、窒素または酸素等のキャリアガスを原料供給容器31へ供給する。ガス供給源24は、霧状の原料溶液を含むガスを希釈するための空気、窒素または酸素等の希釈用ガスを第2ガス供給管P2へ供給する。貯水容器33には、超音波整合用の水34が貯められており、原料供給容器31は、その一部が貯水容器33に貯められた水34に浸かった状態で貯水容器33の内側に配置されている。貯水容器33には、超音波振動子35が固定されている。超音波振動子35で発生した超音波は、貯水容器33に貯められた整合用の水34を介して原料供給容器31に貯められた原料溶液32に伝達する。 The gas supply source 21 supplies a carrier gas such as air, nitrogen or oxygen to the raw material supply container 31 to send the atomized raw material solution into the reaction container 41. The gas supply source 24 supplies a dilution gas such as air, nitrogen or oxygen to the second gas supply pipe P2 to dilute the gas containing the atomized raw material solution. The water storage container 33 stores water 34 for ultrasonic matching, and the raw material supply container 31 is placed inside the water storage container 33 with a part of it immersed in the water 34 stored in the water storage container 33. An ultrasonic vibrator 35 is fixed to the water storage container 33. The ultrasonic waves generated by the ultrasonic vibrator 35 are transmitted to the raw material solution 32 stored in the raw material supply container 31 via the matching water 34 stored in the water storage container 33.

次に、ミストCVD装置の動作について説明する。まず、超音波振動子35が振動することにより、整合用の水34を介して原料溶液32に振動エネルギが伝達し、その振動エネルギにより原料溶液32が霧状(ミスト)になる。そして、霧状になった原料溶液が、ガス供給源21から原料供給容器31内に供給されるキャリアガスにより、第2ガス供給管P2を通じて反応容器41内に送り込まれる(図1中の矢印AR1参照)。このとき、流量計23を確認しながら第1ガス供給管P1を流れるキャリアガスの流量を調節することにより、反応容器41に送り込む原料溶液の量を調節する。また、流量計26を確認しながら第3ガス供給管P3を流れる希釈用ガスの流量を調節することにより、反応容器41に送り込む原料溶液を含むガスの濃度を調節する。霧状の原料溶液は、反応容器41内に送り込まれた段階において蒸気(気相)となっている。そして、反応容器41内に送り込まれた原料は、反応容器41の成膜室S11内に配置された基板Wの表面に供給される(図1中の矢印AR2参照)。基板Wの表面に供給された原料が、ヒータ42により加熱され、その原料中の金属化合物と水とが化学反応し、基板Wの表面に金属酸化物が成長する。 Next, the operation of the mist CVD apparatus will be described. First, the ultrasonic vibrator 35 vibrates, and vibration energy is transmitted to the raw material solution 32 through the matching water 34, and the raw material solution 32 becomes mist (mist) due to the vibration energy. Then, the mist raw material solution is sent into the reaction vessel 41 through the second gas supply pipe P2 by the carrier gas supplied from the gas supply source 21 into the raw material supply vessel 31 (see arrow AR1 in FIG. 1). At this time, the amount of raw material solution sent into the reaction vessel 41 is adjusted by adjusting the flow rate of the carrier gas flowing through the first gas supply pipe P1 while checking the flow meter 23. Also, the concentration of the gas containing the raw material solution sent into the reaction vessel 41 is adjusted by adjusting the flow rate of the dilution gas flowing through the third gas supply pipe P3 while checking the flow meter 26. The mist raw material solution becomes vapor (gas phase) at the stage when it is sent into the reaction vessel 41. Then, the raw material sent into the reaction vessel 41 is supplied to the surface of the substrate W placed in the film formation chamber S11 of the reaction vessel 41 (see arrow AR2 in FIG. 1). The raw material supplied to the surface of the substrate W is heated by the heater 42, and the metal compounds in the raw material react chemically with water, causing metal oxides to grow on the surface of the substrate W.

基板上に強誘電体薄膜を成膜する工程では、原料溶液として、ハフニウムアセチルアセトナート(Hf(C)を含む前駆体原料を溶媒に溶解させたものを使用する。また、溶媒としては、メタノール(CHOH)を使用する。基板としては、成膜面に(100)面が露出したSi基板を使用する。基板は、300℃以上400℃以下の温度範囲内の温度に加熱される。この工程では、直方晶構造のHfO結晶を含む強誘電体薄膜が形成される。 In the process of forming a ferroelectric thin film on a substrate, a precursor material containing hafnium acetylacetonate ( Hf ( C5H7O2 ) 4 ) dissolved in a solvent is used as a raw material solution. Methanol (CH3OH ) is also used as the solvent. A Si substrate with the (100) plane exposed on the film formation surface is used as the substrate. The substrate is heated to a temperature in the range of 300°C to 400°C. In this process, a ferroelectric thin film containing HfO2 crystals with a rectangular structure is formed.

以上説明したように、本実施形態に係る強誘電体薄膜の製造方法では、基板上にHfO結晶を含む薄膜を形成した後に薄膜を熱処理することなく、基板上に直方晶構造のHfO結晶を含む強誘電体薄膜を形成する。従って、強誘電体薄膜を形成する際、熱処理工程を省略することができるので、その分、強誘電体薄膜の製造効率を向上させることができる。 As described above, in the method for producing a ferroelectric thin film according to the present embodiment, a ferroelectric thin film containing HfO2 crystals with an orthorhombic crystal structure is formed on a substrate without heat-treating the thin film after forming the thin film containing HfO2 crystals on the substrate. Therefore, when forming the ferroelectric thin film, the heat treatment process can be omitted, and the production efficiency of the ferroelectric thin film can be improved accordingly.

また、本実施の形態に係る強誘電体薄膜の製造方法によれば、厚さが100nm以下であり且つ直方晶構造の酸化ハフニウム(HfO)結晶を含む強誘電体薄膜を成膜することができる。従って、強誘電体薄膜を薄くできる分、強誘電体薄膜を用いた半導体装置の薄型化または小型化を図ることができる。 Moreover, according to the method for manufacturing a ferroelectric thin film according to the present embodiment, it is possible to form a ferroelectric thin film having a thickness of 100 nm or less and containing hafnium oxide (HfO 2 ) crystals having a rectangular crystal structure. Therefore, since the ferroelectric thin film can be made thinner, it is possible to reduce the thickness or size of a semiconductor device using the ferroelectric thin film.

また、本実施形態に係る強誘電体薄膜の製造方法で採用するミストCVD法は、非真空プロセスからなる手法であるので、真空雰囲気を実現するための構成が不要であるため装置の簡素化を図ることができる。 In addition, the mist CVD method used in the manufacturing method of the ferroelectric thin film according to this embodiment is a non-vacuum process, so there is no need for a configuration to achieve a vacuum atmosphere, which allows for simplification of the device.

以上、本発明の実施の形態について説明したが、本発明は前述の実施の形態の構成に限定されるものではない。例えば、ミストCVD法の代わりに、スプレーノズルを使用して、基板の表面に液滴状の前駆体原料を含む材料を堆積させる方法を採用してもよい。この場合、前駆体原料を含む材料の粒子サイズは、ミストCVD法を採用した場合の粒子サイズに比べて大きくなる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the configuration of the above-mentioned embodiment. For example, instead of the mist CVD method, a method of depositing droplets of a material containing a precursor raw material on the surface of a substrate using a spray nozzle may be adopted. In this case, the particle size of the material containing the precursor raw material will be larger than the particle size when the mist CVD method is adopted.

本発明について、実施例および比較例に基づいて説明する。実施例1、2および比較例に係る試料は、いずれも図2に示すような構造を有する。実施例1、2に係る試料は、基板Wと、基板W上に形成された薄膜100と、薄膜100上に形成された一対の電極200と、を備えるものである。実施例1、2および比較例に係る試料に用いる基板としては、N型不純物がドーピングされ比抵抗率が1.7×10-3Ω・cmであり、表面に(100)面が露出したSi基板を採用した。 The present invention will be described based on examples and comparative examples. The samples according to Examples 1 and 2 and the comparative example all have a structure as shown in FIG. 2. The samples according to Examples 1 and 2 include a substrate W, a thin film 100 formed on the substrate W, and a pair of electrodes 200 formed on the thin film 100. The substrate used for the samples according to Examples 1 and 2 and the comparative example is a Si substrate doped with N-type impurities, having a resistivity of 1.7×10 −3 Ω·cm, and having a (100) plane exposed on the surface.

実施例1、2に係る薄膜100は、実施の形態で説明した製造方法により形成した。ここで、前述のミストCVD装置の超音波振動子として2.4MHzの周波数で振動する超音波振動子(本多電子社製、HM-2412)を採用した。原料溶液は、Hf(CのCHOH溶液を使用した。ここで、原料溶液中のHf(Cの濃度は、0.02Mとした。キャリアガスおよび希釈用ガスとして窒素を採用した。また、成膜中のキャリアガスの流量は、2.5L/minとし、希釈用ガスの流量は、4.5L/minとした。成膜中において、基板Wは、成膜室S11に配置してからヒータ42により400℃に加熱された状態にした。実施例1および比較例に係る強誘電体薄膜の成膜時間は、2minに設定し、実施例2に係る強誘電体薄膜の成膜時間は、10minに設定した。これにより、実施例1に係る試料の薄膜100の厚さTHを20nmとし、実施例2に係る薄膜100の厚さTHを100nmとした。また、比較例に係る試料の作製では、実施例1、2の強誘電体薄膜と同様に、実施の形態で説明した製造方法により基板W上に強誘電体薄膜を成膜した後、基板および強誘電体薄膜を800℃に加熱した状態で30min間維持した。比較例に係る薄膜100の厚さTHは、14nmとした。実施例1、2および比較例に係る一対の電極200は、全て白金(Pt)により形成し、電極200間の距離INは、200μmとした。また、電極200は、スパッタリング法により形成した。 The thin film 100 according to Examples 1 and 2 was formed by the manufacturing method described in the embodiment. Here, an ultrasonic vibrator (HM-2412, manufactured by Honda Electronics Co., Ltd.) vibrating at a frequency of 2.4 MHz was adopted as the ultrasonic vibrator of the mist CVD device described above. A CH 3 OH solution of Hf(C 5 H 7 O 2 ) 4 was used as the raw material solution. Here, the concentration of Hf(C 5 H 7 O 2 ) 4 in the raw material solution was set to 0.02 M. Nitrogen was adopted as the carrier gas and dilution gas. In addition, the flow rate of the carrier gas during film formation was set to 2.5 L/min, and the flow rate of the dilution gas was set to 4.5 L/min. During film formation, the substrate W was placed in the film formation chamber S11 and then heated to 400° C. by the heater 42. The film formation time of the ferroelectric thin film according to Example 1 and Comparative Example was set to 2 min, and the film formation time of the ferroelectric thin film according to Example 2 was set to 10 min. As a result, the thickness TH of the thin film 100 of the sample according to Example 1 was set to 20 nm, and the thickness TH of the thin film 100 of Example 2 was set to 100 nm. In addition, in the preparation of the sample according to the comparative example, a ferroelectric thin film was formed on the substrate W by the manufacturing method described in the embodiment, as in the case of the ferroelectric thin films of Examples 1 and 2, and then the substrate and the ferroelectric thin film were heated to 800° C. and maintained for 30 min. The thickness TH of the thin film 100 according to the comparative example was set to 14 nm. The pair of electrodes 200 according to Examples 1 and 2 and the comparative example were all formed of platinum (Pt), and the distance IN between the electrodes 200 was set to 200 μm. In addition, the electrodes 200 were formed by a sputtering method.

また、実施例1、2および比較例に係る試料それぞれについて、薄膜100の結晶構造、薄膜100の表面のモフォロジおよびラフネス、膜密度、誘電分極の印加電圧依存性を評価した。実施例1、2および比較例に係る薄膜100の結晶構造は、X線回折(XRD)測定装置(BRUKER社製、D8 DISCOVER)を用いて測定される回折ピークの位置により確認した。実施例1、2および比較例に係る薄膜100の表面のモフォロジおよびラフネスは、AFM(atomic force microscopy)(SII Nano Technology社製、Nanonavi/E-sweep)を用いて観察した。 The crystal structure of the thin film 100, the surface morphology and roughness of the thin film 100, the film density, and the applied voltage dependence of the dielectric polarization were evaluated for each of the samples according to Examples 1 and 2 and the Comparative Example. The crystal structure of the thin film 100 according to Examples 1 and 2 and the Comparative Example was confirmed by the position of the diffraction peak measured using an X-ray diffraction (XRD) measurement device (D8 DISCOVER, manufactured by BRUKER). The surface morphology and roughness of the thin film 100 according to Examples 1 and 2 and the Comparative Example were observed using AFM (atomic force microscopy) (Nanonavi/E-sweep, manufactured by SII Nano Technology).

実施例1、2および比較例に係る薄膜100の誘電分極の印加電圧依存性は、強誘電体特性評価テスタ(東洋テクニカ社製、FCE-3)を用いて室温(25℃)下で、一対の電極200間に周波数1kHzの交流電圧を印加したときの挙動を観察することにより行った。実施例1、2および比較例に係る薄膜100の膜密度は、X線回折(XRD)測定装置(BRUKER社製、D8 DISCOVER)を用いて得られる回折強度プロファイルに基づいて、各回折角度におけるX線反射率を算出することにより評価した。 The applied voltage dependence of the dielectric polarization of the thin film 100 according to Examples 1 and 2 and the Comparative Example was performed by observing the behavior when an AC voltage of 1 kHz frequency was applied between a pair of electrodes 200 at room temperature (25°C) using a ferroelectric property evaluation tester (FCE-3, manufactured by Toyo Technica Co., Ltd.). The film density of the thin film 100 according to Examples 1 and 2 and the Comparative Example was evaluated by calculating the X-ray reflectivity at each diffraction angle based on the diffraction intensity profile obtained using an X-ray diffraction (XRD) measurement device (D8 DISCOVER, manufactured by BRUKER).

以下、実施例1、2および比較例に係る薄膜100に対して行った評価の結果について個別に詳述する。XRDによると、図3に示すように、実施例1、2に係る薄膜100では、20度から40度の間の直方晶構造に特徴的なピーク群が存在する付近にブロードなピークが観察された。一方、比較例に係る薄膜100では、単斜晶構造に特徴的なピークが観察された。 The results of the evaluation of the thin film 100 according to Examples 1 and 2 and the comparative example will be described in detail below. According to the XRD, as shown in FIG. 3, in the thin film 100 according to Examples 1 and 2, a broad peak was observed near the peak group characteristic of an orthorhombic crystal structure between 20 degrees and 40 degrees. On the other hand, in the thin film 100 according to the comparative example, a peak characteristic of a monoclinic crystal structure was observed.

また、図4(A)および(B)並びに図5に示すAFM画像を比較すると、実施例1、2に係る薄膜100に比べて比較例に係る薄膜100では、結晶粒径が拡大しており且つ粒界が減少していることが観測できた。このことから、薄膜100に熱処理を施すことにより、薄膜100の結晶化が促進されることが判る。また、実施例1に係る薄膜100のRMSは、0.2nmであり、実施例2に係る薄膜100のRMSは、0.3nmであった。なお、比較例に係る薄膜100表面のRMSは、0.5nmであり、実施例1、2および比較例に係る薄膜100表面のラフネスは同等であった。 In addition, by comparing the AFM images shown in Figures 4 (A) and (B) and Figure 5, it was observed that the crystal grain size was enlarged and the grain boundaries were reduced in the thin film 100 of the comparative example compared to the thin film 100 of Examples 1 and 2. This shows that the crystallization of the thin film 100 is promoted by subjecting the thin film 100 to heat treatment. The RMS of the thin film 100 of Example 1 was 0.2 nm, and the RMS of the thin film 100 of Example 2 was 0.3 nm. The RMS of the surface of the thin film 100 of the comparative example was 0.5 nm, and the roughness of the surface of the thin film 100 of Examples 1, 2, and the comparative example were equivalent.

また、図6(A)および(B)に示すように、X線強度の実測値から算出されたX線反射率のプロファイルに、膜密度をパラメータとするX線反射率プロファイルの計算式から得られた理論値をフィッティングすることにより、実施例1および比較例に係る薄膜100の膜密度を算出した。比較例に係る薄膜100の膜密度が9.7g/cmであるのに対して、実施例1に係る薄膜100の膜密度は、6.8乃至7.0g/cmであった。このことから、実施の形態で説明した製造方法により作製した薄膜100に熱処理を施すことにより薄膜100が緻密になることが判った。 6(A) and (B), the film densities of the thin films 100 according to Example 1 and Comparative Example were calculated by fitting the theoretical values obtained from the calculation formula of the X-ray reflectivity profile with the film density as a parameter to the profile of the X-ray reflectivity calculated from the actual measured value of the X-ray intensity. The film density of the thin film 100 according to the Comparative Example was 9.7 g/ cm3 , whereas the film density of the thin film 100 according to Example 1 was 6.8 to 7.0 g/ cm3 . From this, it was found that the thin film 100 made by the manufacturing method described in the embodiment becomes dense by performing a heat treatment on the thin film 100.

図7(A)および(B)に示すように、実施例1、2に係る薄膜100について、強誘電体に特有のヒステリシスを示す誘電分極の印加電圧依存性が得られた。一方、図8に示すように、比較例に係る薄膜100では、線形な印加電圧依存性が得られた。このことから、比較例に係る薄膜100では、強誘電体特性が発現しないのに対して、実施例1、2に係る薄膜100では、強誘電体特性が発現することが判った。即ち、薄膜100の膜密度が9.7g/cm以上になると、強誘電体特性が損なわれることが判った。 As shown in Figures 7(A) and (B), the thin film 100 according to Examples 1 and 2 exhibited the applied voltage dependence of the dielectric polarization exhibiting hysteresis specific to ferroelectrics. On the other hand, as shown in Figure 8, the thin film 100 according to the comparative example exhibited a linear applied voltage dependence. From this, it was found that the thin film 100 according to the comparative example did not exhibit ferroelectric characteristics, whereas the thin films 100 according to Examples 1 and 2 exhibited ferroelectric characteristics. In other words, it was found that the ferroelectric characteristics were impaired when the film density of the thin film 100 was 9.7 g/ cm3 or more.

また、図9(A)および(B)に示すように、実施例1に係る薄膜100に±3MV/cmの矩形パルス状の電界を繰り返し印加したときの誘電分極の印加電圧依存性は、10回繰り返し印加後と、1×10回繰り返し印加後と、1×10回繰り返し印加後と、1×10回繰り返し印加後とで大きな差異は観測されなかった。 9(A) and (B), when a rectangular pulse electric field of ±3 MV/cm was repeatedly applied to the thin film 100 of Example 1, no significant difference was observed in the applied voltage dependence of the dielectric polarization among the cases where the electric field was repeatedly applied 10 times, 1×10 4 times, 1×10 7 times, and 1×10 9 times.

本発明に係る薄膜は、FeRAM(Ferroelectric Random-Access Memory)、FeFETs(Ferroelectric Field Effect Transistors)等に好適である。 The thin film of the present invention is suitable for FeRAM (Ferroelectric Random-Access Memory), FeFETs (Ferroelectric Field Effect Transistors), etc.

21、24:ガス供給源、22、25:流量調整機構、23、26:流量計、31:原料供給容器、33:貯水容器、35:超音波振動子、41:反応容器、42:ヒータ、100:薄膜、200:電極、411:成膜部、412:貯留部、P1:第1ガス供給管、P2:第2ガス供給管、P3:第3ガス供給管、P4:排気管 21, 24: Gas supply source, 22, 25: Flow rate adjustment mechanism, 23, 26: Flow meter, 31: Raw material supply container, 33: Water storage container, 35: Ultrasonic transducer, 41: Reaction container, 42: Heater, 100: Thin film, 200: Electrode, 411: Film formation section, 412: Storage section, P1: First gas supply pipe, P2: Second gas supply pipe, P3: Third gas supply pipe, P4: Exhaust pipe

Claims (4)

基板を準備する工程と、
強誘電体薄膜を形成する酸化物の前駆体原料を含む液滴状の材料を利用して、前記基板上に、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する工程と、を含み、
前記前駆体原料は、ハフニウム(Hf)のハロゲン化物、ハフニウム(Hf)を含む硫酸塩、ハフニウム(Hf)を含む硝酸塩の中から選択される、
強誘電体薄膜の製造方法。
providing a substrate;
forming a ferroelectric thin film containing hafnium oxide crystals having a rectangular crystal structure on the substrate by using a droplet-like material containing a precursor material of an oxide for forming the ferroelectric thin film ;
The precursor material is selected from the group consisting of hafnium (Hf) halides, sulfates containing hafnium (Hf), and nitrates containing hafnium (Hf);
A method for producing a ferroelectric thin film.
前記強誘電体薄膜を形成する工程では、ミストCVD法により、前記前駆体原料を前記基板の表面へ供給する、
請求項1に記載の強誘電体薄膜の製造方法。
In the step of forming the ferroelectric thin film, the precursor material is supplied to the surface of the substrate by a mist CVD method.
The method for producing a ferroelectric thin film according to claim 1 .
前記強誘電体薄膜を形成する工程では、前記前駆体原料をエタノール、イソプロパノール、アセトンから選択される有機溶媒、水または前記有機溶媒と水との混合物に溶解させてなる原料溶液を霧状にして前記基板の表面へ供給する、
請求項1または2に記載の強誘電体薄膜の製造方法。
In the step of forming the ferroelectric thin film, a raw material solution obtained by dissolving the precursor raw material in an organic solvent selected from ethanol , isopropanol, and acetone, water, or a mixture of the organic solvent and water is atomized and supplied to the surface of the substrate.
The method for producing a ferroelectric thin film according to claim 1 or 2 .
強誘電体薄膜の前駆体原料を含む液滴状の材料を利用して、基板上に、直方晶構造の酸化ハフニウム結晶を含む強誘電体薄膜を形成する強誘電体薄膜製造装置であって
前記前駆体原料は、ハフニウム(Hf)のハロゲン化物、ハフニウム(Hf)を含む硫酸塩、ハフニウム(Hf)を含む硝酸塩の中から選択される、
強誘電体薄膜製造装置。
A ferroelectric thin film manufacturing apparatus for forming a ferroelectric thin film containing hafnium oxide crystals having a rectangular crystal structure on a substrate by using a droplet-shaped material containing a precursor material of the ferroelectric thin film, comprising :
The precursor material is selected from the group consisting of hafnium (Hf) halides, sulfates containing hafnium (Hf), and nitrates containing hafnium (Hf);
Ferroelectric thin film manufacturing equipment.
JP2019185711A 2019-10-09 2019-10-09 Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus Active JP7480951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019185711A JP7480951B2 (en) 2019-10-09 2019-10-09 Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019185711A JP7480951B2 (en) 2019-10-09 2019-10-09 Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2021061360A JP2021061360A (en) 2021-04-15
JP7480951B2 true JP7480951B2 (en) 2024-05-10

Family

ID=75381479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019185711A Active JP7480951B2 (en) 2019-10-09 2019-10-09 Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP7480951B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232574A (en) 2004-02-23 2005-09-02 Central Glass Co Ltd Method for manufacturing thin oxide film
JP2008182183A (en) 2006-12-26 2008-08-07 Doshisha Film forming method using atomic layer deposition method and its film forming device
WO2011151889A1 (en) 2010-06-01 2011-12-08 東芝三菱電機産業システム株式会社 Apparatus for forming metal oxide film, method for forming metal oxide film, and metal oxide film
WO2013161735A1 (en) 2012-04-25 2013-10-31 東ソー・ファインケム株式会社 Composition for producing compound oxide thin film, method for producing thin film using composition, and compound oxide thin film
JP2015531996A (en) 2012-07-12 2015-11-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for depositing a metal film having oxygen vacancies
JP2018195767A (en) 2017-05-19 2018-12-06 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method
JP2019057727A (en) 2014-05-20 2019-04-11 マイクロン テクノロジー,インク. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793397B1 (en) * 2016-09-23 2017-10-17 International Business Machines Corporation Ferroelectric gate dielectric with scaled interfacial layer for steep sub-threshold slope field-effect transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232574A (en) 2004-02-23 2005-09-02 Central Glass Co Ltd Method for manufacturing thin oxide film
JP2008182183A (en) 2006-12-26 2008-08-07 Doshisha Film forming method using atomic layer deposition method and its film forming device
WO2011151889A1 (en) 2010-06-01 2011-12-08 東芝三菱電機産業システム株式会社 Apparatus for forming metal oxide film, method for forming metal oxide film, and metal oxide film
WO2013161735A1 (en) 2012-04-25 2013-10-31 東ソー・ファインケム株式会社 Composition for producing compound oxide thin film, method for producing thin film using composition, and compound oxide thin film
JP2015531996A (en) 2012-07-12 2015-11-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for depositing a metal film having oxygen vacancies
JP2019057727A (en) 2014-05-20 2019-04-11 マイクロン テクノロジー,インク. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
JP2018195767A (en) 2017-05-19 2018-12-06 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Daisuke TAHARA et al.,"Mist chemical vapor deposition study of 20 and 100 nm thick undoped ferroelectric hafnium oxide films on n+-Si(100) substrates",Japanese Journal of Applied Physics,p.SLLB10,2019年08月27日,Vol. 58,No. SL,DOI: 10.7567/1347-4065/ab38d8

Also Published As

Publication number Publication date
JP2021061360A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
EP2876666B1 (en) Method for producing ferroelectric thin film
EP2525393B1 (en) Method for producing ferroelectric thin film
TW449924B (en) Ferroelectric field effect transistors for nonvolatile memory applications having functional gradient material and method for making same
EP1396877A2 (en) Substrate for electronic devices, manufacturing method therefor, and electronic device
JP6539900B2 (en) Ferroelectric device and method of manufacturing the same
Chopra et al. Structural, dielectric and pyroelectric studies of Pb1− XCaXTiO3 thin films
TW494576B (en) Lead germanate ferroelectric structure with multi-layered electrode and deposition method for same
JPH0873222A (en) Production of ferroelectric thin film
JP2001068469A (en) Manufacture of semiconductor structure with reduced leak current density
JP2011181776A (en) Piezoelectric thin film, piezoelectric element, method of manufacturing the piezoelectric element, liquid discharge head, and ultrasonic motor
EP0815589A2 (en) Process for fabricating layered superlattice materials and making electronic devices including same
WO2016031986A1 (en) Ferroelectric thin film, electronic device, and production method
KR100513724B1 (en) Ferroelectric thin film and preparing method thereof
Pontes et al. Preparation of Pb (Zr, Ti) O3 thin films by soft chemical route
JP7480951B2 (en) Ferroelectric thin film manufacturing method and ferroelectric thin film manufacturing apparatus
JP2003086586A (en) Orientational ferroelectric thin film element and method for manufacturing the same
JP2006229231A (en) Amorphous dielectric film and method for manufacturing the same
JP2007217250A (en) Method for producing thin oxide film
Ahn et al. Highly a-oriented growth and enhanced ferroelectric properties of Bi3TaTiO9 thin films
Chopra et al. Controlled growth of PbZr0. 52Ti0. 48O3 using nanosheet coated Si (001)
TW200400550A (en) Vapor phase growth method of oxide dielectric film
JPH0891841A (en) Production of ferroelectric film
Jiang et al. Electrical Properties of Epitaxial 0.65 Pb (Mg1/3Nb2/3) O3‐0.35 PbTiO3 Thin Films Grown on Buffered Si Substrates by Pulsed Laser Deposition
JP2790581B2 (en) Production method of oxide-based dielectric thin film by CVD method
Chen et al. Orientation controlling of Pb (Zr 0.53 Ti 0.47) O 3 thin films prepared on silicon substrates with the thickness of La 0.5 Sr 0.5 CoO 3 electrodes

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191108

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240417

R150 Certificate of patent or registration of utility model

Ref document number: 7480951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150