JP2790581B2 - Production method of oxide-based dielectric thin film by CVD method - Google Patents
Production method of oxide-based dielectric thin film by CVD methodInfo
- Publication number
- JP2790581B2 JP2790581B2 JP4289780A JP28978092A JP2790581B2 JP 2790581 B2 JP2790581 B2 JP 2790581B2 JP 4289780 A JP4289780 A JP 4289780A JP 28978092 A JP28978092 A JP 28978092A JP 2790581 B2 JP2790581 B2 JP 2790581B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- oxide
- dielectric thin
- raw material
- based dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000005229 chemical vapour deposition Methods 0.000 title claims description 18
- 239000002994 raw material Substances 0.000 claims description 43
- 150000001875 compounds Chemical class 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000003960 organic solvent Substances 0.000 claims description 21
- 125000004429 atom Chemical group 0.000 claims description 18
- 125000000962 organic group Chemical group 0.000 claims description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- 238000009835 boiling Methods 0.000 claims description 14
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 14
- 230000008016 vaporization Effects 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 150000004703 alkoxides Chemical class 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- -1 pentafluoropropanoylpivaloyl Chemical group 0.000 claims description 5
- 239000007858 starting material Substances 0.000 claims description 5
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims 1
- 239000010408 film Substances 0.000 description 27
- 238000010438 heat treatment Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 238000007796 conventional method Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000009834 vaporization Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052712 strontium Inorganic materials 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- KBOAVUSWPXRQBC-UHFFFAOYSA-N 1,1,1,2,2-pentafluoropentane Chemical compound CCCC(F)(F)C(F)(F)F KBOAVUSWPXRQBC-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000011364 vaporized material Substances 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Chemical Vapour Deposition (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、誘電体メモリーなどに
用いる酸化物系誘電体薄膜の化学気相成長(CVD)法
による製法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide-based dielectric thin film used for a dielectric memory or the like by a chemical vapor deposition (CVD) method.
【0002】[0002]
【従来の技術】近年、半導体におけるメモリーデバイス
の集積化が急速に進んでいる。たとえば、ダイナミック
ランダムアクセスメモリー(DRAM)では、3年間に
ビット数が4倍という急激なペースで集積化が進んでき
た。これはデバイスの高速化、低消費電力化、低コスト
化などの目的のためである。しかし、いかに集積度が向
上しても、DRAMの構成要素であるキャパシタは、一
定の容量をもたねばならない。このため、キャパシタ材
料の膜厚を薄くする必要があり、それまで用いられてい
たSiO2では薄膜化の限界が生じた。そこで材料を変
更して誘電率を上げることができれば、薄膜化と同様に
容量を確保することができるため、高誘電率の誘電体材
料をメモリーデバイス用として利用する研究が最近注目
を集めている。2. Description of the Related Art In recent years, integration of memory devices in semiconductors has been rapidly progressing. For example, the integration of dynamic random access memories (DRAMs) has progressed at a rapid rate of four times the number of bits in three years. This is for the purpose of speeding up the device, reducing power consumption, reducing cost, and the like. However, no matter how the degree of integration is improved, the capacitor that is a component of the DRAM must have a certain capacitance. For this reason, it is necessary to reduce the film thickness of the capacitor material, and there has been a limit to the thinning of the SiO 2 used up to that time. Therefore, if the dielectric constant can be increased by changing the material, the capacity can be secured as in the case of thinning, so research using a high dielectric constant dielectric material for memory devices has recently attracted attention. .
【0003】このようなキャパシタ用材料に要求される
性能としては、上記のように高誘電率を有する薄膜であ
ることおよびリーク電流が小さいことが最も重要であ
る。すなわち、高誘電率材料を用いる限りにおいては、
できる限り薄い膜で、かつリーク電流を最小にする必要
がある。大まかな開発目標としては、一般的にSiO2
換算膜厚で1nm以下および1.65V印加時のリーク
電流密度として10-8A/cm2オーダー以下が望まし
いとされている。また、段差のあるDRAMのキャパシ
タ用電極上に薄膜として形成するためには、複雑な形状
の物体への付き周り性が良好なCVD法による成膜の可
能なことがプロセス上非常に有利である。このような観
点から、酸化タンタル、チタン酸ジルコン酸鉛(PZ
T)、チタン酸ジルコン酸ランタン鉛(PLZT)、チ
タン酸ストロンチウム、チタン酸バリウムなどの酸化物
系誘電体薄膜が各種成膜法を用いて検討されている。し
かし、CVD法によって成膜することが最も有利である
にもかかわらず、現在CVD用原料化合物(以下、原料
という)として安定で良好な気化特性を有するものが存
在しないことが大きな問題となっている。これは、主と
してCVD用原料として多用されているβ−ジケトン系
のジピバロイルメタン(DPM)化合物の加熱による気
化特性が良好でないことによるものである。この点はた
とえば第52回応用物理学会学術講演会予稿集講演番号
9a−P−11などで指適されており、金属のDPM化
合物の本質的な不安定性に起因する欠点であると考えら
れる。それにもかかわらず、たとえば第52回応用物理
学会学術講演会予稿集講演番号9a−P−6にあるよう
に、CVD法が盛んに検討されており、上記のような原
料の不安定性のため、極端なばあいには原料を使い捨て
にして成膜せざるをえないという事態も生じている。し
たがって、上記の原料に起因する欠点のために、性能の
良好かつ製造再現性のよい誘電体薄膜を製造する技術は
確立されていない現状にある。As the performance required of such a capacitor material, it is most important that the thin film has a high dielectric constant and a small leak current as described above. That is, as long as a high dielectric constant material is used,
It is necessary to make the film as thin as possible and to minimize the leak current. The general development goals are generally SiO 2
It is considered that the equivalent film thickness is desirably 1 nm or less and the leak current density when applying 1.65 V is desirably 10 -8 A / cm 2 or less. In addition, in order to form a thin film on a capacitor electrode of a DRAM having a step, it is very advantageous from the viewpoint of processability that a film can be formed by a CVD method with good adherence to an object having a complicated shape. . From such a viewpoint, tantalum oxide, lead zirconate titanate (PZ)
T), lead lanthanum zirconate titanate (PLZT), strontium titanate, barium titanate, and other oxide-based dielectric thin films have been studied using various film forming methods. However, despite the fact that it is most advantageous to form a film by the CVD method, a major problem is that there is no compound having stable and good vaporization properties as a raw material compound for CVD (hereinafter referred to as a raw material) at present. I have. This is mainly because the β-diketone dipivaloylmethane (DPM) compound, which is frequently used as a raw material for CVD, does not have good vaporization characteristics due to heating. This point is suitable, for example, in the 52nd Annual Meeting of the Japan Society of Applied Physics, Proceedings No. 9a-P-11, and is considered to be a disadvantage due to the intrinsic instability of metal DPM compounds. Nevertheless, as described in, for example, the 52nd Annual Meeting of the Japan Society of Applied Physics, Proceedings No. 9a-P-6, the CVD method has been actively studied. In extreme cases, a situation has arisen in which raw materials must be disposable and a film must be formed. Therefore, due to the drawbacks caused by the above-mentioned raw materials, a technique for producing a dielectric thin film having good performance and good production reproducibility has not been established.
【0004】[0004]
【発明が解決しようとする課題】前記のように、従来の
CVD法による酸化物系誘電体薄膜の製造においては、
酸化物系誘電体を生成する原料の気化性および高温にお
ける安定性がよくないので、原料を低温で加熱してCV
D反応部へ安定に輸送することは不可能である。そのた
め、組成制御を行いにくく、良好な特性を有する誘電体
薄膜の安定製造ができないという大きな問題がある。一
方原料の気化効率をあげるために高い温度で加熱する
と、原料の輸送中に熱分解などが起きるので、膜の結晶
性不良や組成ズレが不可避である。そればかりか、前記
のように原料を使い捨てにしなければならないという不
都合も起こっている。また、気化速度を抑えて反応時間
を長くすると、原料の気化状態が経時的に変化するため
に形成した膜の厚さ方向の組成が不均質になって、リー
ク電流が増大することが避けられない。そのため、低温
で安定かつ良好に気化させうる原料の開発が強く望まれ
ているが、これに関してはいまだ進展はない現状にあ
る。As described above, in the production of an oxide-based dielectric thin film by the conventional CVD method,
Since the raw material for forming the oxide-based dielectric has poor vaporization and high-temperature stability, the raw material is heated at a low temperature to obtain a CV.
It is impossible to transport it stably to the D reaction section. Therefore, there is a major problem that it is difficult to control the composition and stable production of a dielectric thin film having good characteristics cannot be performed. On the other hand, if the raw material is heated at a high temperature in order to increase the vaporization efficiency, thermal decomposition or the like occurs during the transportation of the raw material, so that poor crystallinity of the film and deviation in composition are inevitable. In addition, there is a disadvantage that the raw materials must be disposable as described above. Also, if the reaction time is lengthened by suppressing the vaporization rate, the vaporized state of the raw material changes over time, so that the composition in the thickness direction of the formed film becomes inhomogeneous, and it is possible to avoid an increase in leak current. Absent. For this reason, there is a strong demand for the development of a raw material that can be vaporized stably and favorably at a low temperature, but no progress has been made in this regard.
【0005】本発明の製法は、前記従来のCVD法によ
る酸化物系誘電体薄膜の製法における欠点を解消するた
めになされたものであり、原料を従来よりも低い加熱温
度で気化せしめ安定に反応部へ輸送するとともに、良好
な性能を有するキャパシタ用酸化物系誘電体薄膜を製造
することを目的とするものである。[0005] The production method of the present invention is intended to solve the above-mentioned drawbacks in the conventional method of producing an oxide dielectric thin film by the CVD method. It is an object of the present invention to manufacture an oxide-based dielectric thin film for a capacitor having good performance while transporting the film to a part.
【0006】[0006]
【課題を解決するための手段】本発明者らは、前記のD
PM化合物のような金属原子が酸素原子を介して有機基
と結合した化合物の気化性について詳細に検討を加えた
結果、これらの化合物のうちとくにBaやSrなどのア
ルカリ土類金属およびPbやTiなどの化合物が気化性
も高温における安定性も良好でないことが判明した。し
たがって、これらの金属の酸化物を主成分とする酸化物
系誘電体膜をCVD法によって製造するばあい、とくに
目的とする組成への制御性がむつかしくなることが避け
られないことが分かった。そこで本発明者らは、これら
の化合物を従来よりも低温で加熱し、熱分解することな
く安定に気化させることによって、組成の制御性が向上
し、所望の特性を有する酸化物系誘電体薄膜を再現性よ
く製造する方法を見いだし、本発明を完成するに至っ
た。Means for Solving the Problems The present inventors have proposed the aforementioned D
As a result of detailed studies on the vaporization properties of compounds in which a metal atom such as a PM compound is bonded to an organic group via an oxygen atom, among these compounds, alkaline earth metals such as Ba and Sr, and Pb and Ti It has been found that such compounds have poor vaporization and high temperature stability. Therefore, it has been found that when an oxide-based dielectric film containing these metal oxides as a main component is manufactured by the CVD method, it is inevitable that the controllability to the intended composition becomes difficult. Thus, the present inventors heated these compounds at a lower temperature than in the past and vaporized them stably without thermal decomposition, whereby the controllability of the composition was improved and the oxide-based dielectric thin film having the desired characteristics was obtained. Of the present invention with good reproducibility, and completed the present invention.
【0007】本発明のCVD法による酸化物系誘電体薄
膜の製法は、金属原子が酸素原子を介して有機基と結合
した原料化合物の気化工程および輸送工程の少なくとも
一方の工程において、前記原料化合物に沸点100℃以
下の有機溶剤の蒸気を接触させることを特徴とするもの
である。In the method for producing an oxide-based dielectric thin film by the CVD method according to the present invention, the raw material compound in which at least one of the vaporizing step and the transporting step of the raw material compound in which a metal atom is bonded to an organic group via an oxygen atom is used. With a vapor of an organic solvent having a boiling point of 100 ° C. or less.
【0008】本発明の方法に使用する、金属原子が酸素
原子を介して有機基と結合した原料化合物の金属原子
が、Pb、Ti、Zr、Taおよびアルカリ土類金属か
ら選ばれた少なくとも一種であること好ましい。In the method of the present invention, the metal atom of the starting compound in which the metal atom is bonded to the organic group via an oxygen atom is at least one selected from Pb, Ti, Zr, Ta and alkaline earth metals. Preferably it is.
【0009】本発明の方法に使用する、金属原子が酸素
原子を介して有機基と結合した原料化合物の金属原子
が、Srおよび/またはBaであることが好ましい。Preferably, the metal atom of the starting compound used in the method of the present invention, in which the metal atom is bonded to an organic group via an oxygen atom, is Sr and / or Ba.
【0010】本発明の方法に使用する、金属原子が酸素
原子を介して有機基と結合した化合物が、金属のアセチ
ルアセトネート、ジピバロイルメタネート、アルコキシ
ド、ヘキサフルオロアセチルアセトネート、ペンタフル
オロプロパノイルピバロイルメタネートおよびそれらの
誘導体から選ばれた少なくとも一種であることが好まし
い。The compound used in the method of the present invention wherein a metal atom is bonded to an organic group via an oxygen atom is a metal acetylacetonate, dipivaloylmethanate, alkoxide, hexafluoroacetylacetonate, pentafluoropentane. It is preferably at least one selected from propanoyl pivaloyl methanates and their derivatives.
【0011】本発明の方法に使用する、金属原子が酸素
原子を介して有機基と結合した化合物が、Pb、および
アルカリ土類金属の、ジピバロイルメタネート、ヘキサ
フルオロアセチルアセトネート、ペンタフルオロプロパ
ノイルピバロイルメタネートとTiおよびZrのアルコ
キシドとから選ばれた少なくとも一種であることが好ま
しい。The compound used in the method of the present invention in which a metal atom is bonded to an organic group via an oxygen atom is Pb or an alkaline earth metal such as dipivaloyl methanate, hexafluoroacetylacetonate, or pentane. It is preferably at least one selected from fluoropropanoylpivaloylmethanate and alkoxides of Ti and Zr.
【0012】本発明の方法に使用する、金属原子が酸素
原子を介して有機基と結合した化合物が、Srおよび/
またはBaのジピバロイルメタネートであることが好ま
しい。The compound used in the method of the present invention in which a metal atom is bonded to an organic group via an oxygen atom is Sr and / or
Alternatively, it is preferably Ba dipivaloyl methanate.
【0013】本発明の方法に使用する沸点100℃以下
の有機溶剤が炭化水素類、アルコール類、エーテル類、
ケトン類およびアミン類から選ばれた少なくとも一種で
あることが好ましい。The organic solvent having a boiling point of 100 ° C. or lower used in the method of the present invention is a hydrocarbon, an alcohol, an ether,
It is preferably at least one selected from ketones and amines.
【0014】本発明の方法に使用する沸点100℃以下
の有機溶剤がジエチルエーテル、ジメチルケトン、テト
ラヒドロフランから選ばれたすくなくとも一種であるこ
とが好ましい。It is preferable that the organic solvent having a boiling point of 100 ° C. or lower used in the method of the present invention is at least one selected from diethyl ether, dimethyl ketone and tetrahydrofuran.
【0015】[0015]
【作用】本発明において、金属原子が酸素を介して有機
基と結合した化合物に接触させる沸点100℃以下の有
機溶剤の蒸気の作用の詳細については不明であるが、前
記有機溶剤の蒸気は、前記化合物に作用してある種の低
沸点の付加体を形成することによって低温加熱において
もその気化性が良好になり、かつ気化物の安定性を高め
て反応部へ送り込むことを可能ならしめるという働きを
なすものと考えられる。In the present invention, the details of the action of the vapor of the organic solvent having a boiling point of 100 ° C. or less to be brought into contact with a compound in which a metal atom is bonded to an organic group via oxygen is unknown, but the vapor of the organic solvent is By acting on the compound to form a certain kind of low-boiling adduct, its vaporizability is improved even at low-temperature heating, and the stability of the vaporized substance is increased, and it is possible to feed the vaporized substance to the reaction section. It is considered to work.
【0016】[0016]
【実施例】[実施例1]三元の原料加熱系統を有する通
常のホットウォールタイプのCVD装置を用い、本発明
の方法によるチタン酸ストロンチウム系酸化物(SrT
iO3)誘電体薄膜を酸化マグネシウム基板上に製造す
る実験を行った。原料としては、SrとTiのアセチル
アセトナート誘導体を用い、これに加熱時において、有
機溶剤であるジメチルケトン(沸点57℃)の蒸気をそ
れぞれ流入接触させた。反応条件としては、原料の加熱
温度をSr化合物は185℃、Ti化合物は190℃に
設定し、キャリアガスはアルゴン、反応ガスは酸素で反
応部(炉)内圧力は8Torr、基板温度700℃、反
応時間10分とした。反応後、酸素気流中で室温まで自
然放冷を行ったところ、膜厚約60nmの酸化物誘電体
薄膜がえられた。X線回析により結晶性を調べ、誘電率
および直流電圧1.65V印加時のリーク電流密度を測
定した。結果を表1に示す。[Example 1] A strontium titanate-based oxide (SrT) prepared by a method of the present invention using a normal hot wall type CVD apparatus having a ternary raw material heating system.
An experiment was conducted to manufacture an iO 3 ) dielectric thin film on a magnesium oxide substrate. As a raw material, an acetylacetonate derivative of Sr and Ti was used, and during heating, steam of dimethyl ketone (boiling point: 57 ° C.) as an organic solvent was flowed into and brought into contact with each other. As the reaction conditions, the heating temperature of the raw material was set at 185 ° C. for the Sr compound and 190 ° C. for the Ti compound, the carrier gas was argon, the reaction gas was oxygen, the pressure inside the reaction section (furnace) was 8 Torr, the substrate temperature was 700 ° C. The reaction time was 10 minutes. After the reaction, the resultant was naturally cooled to room temperature in an oxygen stream, and an oxide dielectric thin film having a thickness of about 60 nm was obtained. The crystallinity was examined by X-ray diffraction, and the dielectric constant and the leak current density when a DC voltage of 1.65 V was applied were measured. Table 1 shows the results.
【0017】[比較例1]実施例1と同様の原料および
反応条件を用いて有機溶剤の混入を行わない従来のCV
D法により、酸化物系誘電体薄膜の製造を実施した。T
iについては基板上への堆積が認められたが、Srにつ
いては堆積が認められず、185℃の加熱では気化がほ
とんど生じないことが判明した。そこで、比較例1では
原料の加熱温度をSr化合物は230℃、Ti化合物は
250℃に設定して30分間反応を行い、本発明の方法
のばあいと同様に反応後酸素気流中で室温まで自然放冷
を行って200nmの厚さの膜をえた。この膜について
も同様に、その性能を調べた。結果を表1に示す。[Comparative Example 1] A conventional CV using the same raw materials and reaction conditions as in Example 1 without mixing an organic solvent.
According to Method D, an oxide-based dielectric thin film was manufactured. T
For i, deposition on the substrate was observed, but for Sr, no deposition was observed, and it was found that heating at 185 ° C. caused almost no vaporization. Therefore, in Comparative Example 1, the reaction was carried out for 30 minutes at a heating temperature of the raw material of 230 ° C. for the Sr compound and 250 ° C. for the Ti compound, and the reaction was carried out to room temperature in an oxygen stream after the reaction as in the case of the method of the present invention. The film was naturally cooled to obtain a film having a thickness of 200 nm. The performance of this film was similarly examined. Table 1 shows the results.
【0018】[0018]
【表1】 表1から明らかなように、本発明の方法によれば加熱温
度を従来の製法より低くしても性能の良好な誘電体薄膜
をうることが可能である。とくに従来法による膜と比べ
ると、1/3以下の膜厚で、しかもリーク電流を1/5
0以下に抑えることができた。また、実施例、比較例そ
れぞれを前記と同一の条件で10回のくり返しを実施
し、再現性について調べたところ、本発明の方法による
薄膜は比誘電率ならびにリーク電流密度とも大きなばら
つきは見られず、再現性が良好であることが判明した。
これに対して、従来法による膜は比誘電率、リーク電流
密度とも表1の値に対して±20%以上の大きなばらつ
きが見られた。[Table 1] As is clear from Table 1, according to the method of the present invention, it is possible to obtain a dielectric thin film having good performance even when the heating temperature is lower than that of the conventional production method. In particular, as compared with the film formed by the conventional method, the film thickness is less than 1/3 and the leak current is reduced to 1/5.
It was able to be suppressed to 0 or less. In addition, when the repetition was examined by repeating the Examples and Comparative Examples 10 times under the same conditions as described above and the reproducibility was found, the thin film according to the method of the present invention showed a large variation in both the relative dielectric constant and the leak current density. It was found that the reproducibility was good.
On the other hand, the film obtained by the conventional method showed a large variation of ± 20% or more with respect to the values shown in Table 1 in both the relative dielectric constant and the leak current density.
【0019】[実施例2]実施例1と同一のCVD装置
を用い、Pb、ZrおよびTiのジピバロイルメタネー
ト誘導体を原料として用い、チタン酸鉛ジルコニウム系
酸化物誘電体薄膜の製造を行った。原料をそれぞれ20
0℃、190℃および180℃に加熱しながら、この中
にキャリアガスのアルゴンとともに有機溶剤としてジエ
チルエーテル(沸点35℃)の蒸気を流入させて接触さ
せた。基板として、酸化マグネシウムを用い、基板温度
を630℃に設定した。その他の条件は実施例1と同様
にして、PZT系酸化物誘電体薄膜の製造を行った。え
られた膜の厚さは127nmであった。性能を表2に示
す。Example 2 A lead zirconium titanate-based oxide dielectric thin film was manufactured using the same CVD apparatus as in Example 1 and using dipivaloylmethanate derivatives of Pb, Zr and Ti as raw materials. went. 20 raw materials each
While heating to 0 ° C., 190 ° C., and 180 ° C., a vapor of diethyl ether (boiling point: 35 ° C.) as an organic solvent was flowed into the container together with argon as a carrier gas, and brought into contact therewith. The substrate temperature was set to 630 ° C. using magnesium oxide as the substrate. Other conditions were the same as in Example 1 to produce a PZT-based oxide dielectric thin film. The thickness of the obtained film was 127 nm. The performance is shown in Table 2.
【0020】[比較例2] 実施例2と同様にして、ただし有機溶剤を添加せず、ま
た比較例1のばあいと同様の理由により、各原料の加熱
温度はそれぞれ実施例2のばあいよりも高い、それぞれ
250℃、220℃、230℃に保持した。このばあい
の膜厚は381nmであった。えられた薄膜の性能を表
2に示す。Comparative Example 2 In the same manner as in Example 2, except that no organic solvent was added, and for the same reason as in Comparative Example 1, the heating temperature of each raw material was as in Example 2. Higher, respectively, at 250 ° C, 220 ° C and 230 ° C. In this case, the film thickness was 381 nm. Table 2 shows the performance of the obtained thin films.
【0021】[0021]
【表2】 表2から実施例1のばあいと同様に、本発明の方法によ
ると、従来の製法によるものよりも低温加熱であるにも
かかわらず、従来法によるものより薄い膜で比誘電率、
リーク電流密度ともはるかに良好な酸化物系誘電体薄膜
がえられることが分かる。また、実施例1と同様に実施
例2および比較例2についてもそれぞれ同一の条件で1
0回のくり返しを実施し、再現性について調べたとこ
ろ、本発明の方法による膜は比誘電率ならびにリーク電
流密度とも大きなばらつきは見られず、従来法による薄
膜と比較して再現性が良好であることが分かった。[Table 2] As in the case of Example 1 from Table 2, according to the method of the present invention, even though the heating is performed at a lower temperature than that of the conventional production method, the relative dielectric constant,
It can be seen that an oxide-based dielectric thin film with much better leakage current density can be obtained. Further, as in Example 1, the same applies to Example 2 and Comparative Example 2 under the same conditions.
When the repetition was carried out 0 times and the reproducibility was examined, the film obtained by the method of the present invention did not show a large variation in both the relative dielectric constant and the leak current density. I found it.
【0022】[実施例3] 実施例1と同一のCVD装置を用い、Sr、Baのジピ
バロイルメタネート誘導体およびTiイソプロポキシド
を原料として用い、チタン酸バリウムストロンチウム系
酸化物誘電体薄膜の製造を行った。この際、Srおよび
Ba原料は、それぞれ200℃、210℃に加熱しなが
ら、この中にキャリアガスのアルゴンとともに有機溶剤
であるテトラヒドロフラン(沸点62℃)の蒸気を流入
させて接触させた。Tiイソプロポキシドは液体なの
で、そのまま180℃に加熱して気化させた。基板とし
て、酸化マグネシウムを用い、基板温度を635℃に設
定した。その他の条件は実施例1と同様にして、80n
mの膜厚を有する酸化物誘電体薄膜の製造を行った。え
られた酸化物誘電体薄膜の性能を表3に示す。Example 3 A barium strontium titanate-based oxide dielectric thin film was prepared using the same CVD apparatus as in Example 1 and using dipivaloylmethanate derivatives of Sr and Ba and Ti isopropoxide as raw materials. Was manufactured. At this time, while heating the Sr and Ba raw materials to 200 ° C. and 210 ° C., respectively, vapor of tetrahydrofuran (boiling point: 62 ° C.), which is an organic solvent, was flown into the gas together with argon as a carrier gas, and brought into contact therewith. Since Ti isopropoxide is a liquid, it was directly heated to 180 ° C. and vaporized. The substrate temperature was set to 635 ° C. using magnesium oxide as the substrate. Other conditions were the same as in Example 1, and 80 n
An oxide dielectric thin film having a thickness of m was manufactured. Table 3 shows the performance of the obtained oxide dielectric thin film.
【0023】[比較例3] 実施例3と同様にして、ただし、有機溶剤を添加せず、
また比較例1と同様の理由により、SrおよびBa原料
の加熱温度はそれぞれのばあいよりも高い240℃、2
60℃に保持した。このばあいえられた薄膜の膜厚は1
50nmであった。えられた薄膜の性能を表3に示す。Comparative Example 3 In the same manner as in Example 3, except that no organic solvent was added.
For the same reason as in Comparative Example 1, the heating temperature of the Sr and Ba raw materials was 240 ° C., which was higher than the respective cases.
It was kept at 60 ° C. In this case, the thickness of the thin film obtained is 1
It was 50 nm. Table 3 shows the performance of the obtained thin films.
【0024】[0024]
【表3】 表3から、実施例1および2のばあいと同様に本発明の
方法によると、従来の製造方法によるものよりも低温加
熱であるにもかかわらず、従来法によるものより薄い膜
で比誘電率、リーク電流密度ともはるかに良好な酸化物
系誘電体薄膜がえられることが分かる。また、実施例1
と同様に実施例3、比較例3についてもそれぞれを同一
の条件で10回のくり返しを実施し、再現性について調
べたところ、本発明の方法による膜は比誘電率ならびに
リーク電流密度とも大きなばらつきは見られず、従来法
による膜と比較して再現性が良好であることが分かっ
た。[Table 3] From Table 3, it can be seen that, as in the case of Examples 1 and 2, according to the method of the present invention, the relative dielectric constant of the thin film is smaller than that of the conventional method, although the heating is at a lower temperature than that of the conventional manufacturing method. It can be seen that an oxide-based dielectric thin film with much better leakage current density was obtained. Example 1
Similarly to Example 3 and Comparative Example 3, 10 repetitions were performed under the same conditions, and the reproducibility was examined. As a result, the film according to the method of the present invention showed a large variation in both the relative dielectric constant and the leak current density. No reproducibility was found, indicating that the reproducibility was better than that of the conventional film.
【0025】[実施例4]シリコン集積回路用のキャパ
シタ絶縁膜への応用を検証するため破壊電圧を調べた。
Si基板上に厚さ100nmの酸化シリコン膜を形成
し、さらにその上に下部電極として厚さ100nmの白
金膜を設けたものの上に実施例3と同様にして80nm
の膜厚を有するチタン酸バリウムストロンチウム系酸化
物誘電体薄膜を製造した。比較のため、比較例3と同様
にして有機溶剤を添加しない従来の方法による製造も行
った。このとき、比較を容易にするため膜厚を前記本発
明の方法によるものと同じ80nmとした。えられたそ
れぞれの酸化物系誘電体薄膜の上に直径1.0mmの白
金電極を形成し、破壊電圧を測定した。Example 4 A breakdown voltage was examined to verify application to a capacitor insulating film for a silicon integrated circuit.
A silicon oxide film having a thickness of 100 nm was formed on a Si substrate, and a platinum film having a thickness of 100 nm was further provided thereon as a lower electrode.
A barium strontium titanate-based oxide dielectric thin film having a film thickness of was manufactured. For comparison, the same method as in Comparative Example 3 was carried out in accordance with a conventional method without adding an organic solvent. At this time, in order to facilitate comparison, the film thickness was set to 80 nm, which is the same as that according to the method of the present invention. A platinum electrode having a diameter of 1.0 mm was formed on each of the obtained oxide-based dielectric thin films, and the breakdown voltage was measured.
【0026】図1(a)は実施例4において、本発明の
方法によってSi基板上にえられたチタン酸バリウムス
トロンチウム系誘電体薄膜の耐圧特性を示す図であり、
図1(b)は同じく従来法によってえられた、同様の薄
膜の耐圧特性を示す図である。FIG. 1A is a view showing the withstand voltage characteristics of a barium strontium titanate-based dielectric thin film obtained on a Si substrate by the method of the present invention in Example 4.
FIG. 1B is a diagram showing the breakdown voltage characteristics of a similar thin film similarly obtained by the conventional method.
【0027】図1(a)、(b)から分かるように本発
明の方法によってえられた薄膜は、従来法によってえら
れた薄膜にくらべて、低電圧での破壊が少なくなり、破
壊電圧が向上した。As can be seen from FIGS. 1 (a) and 1 (b), the thin film obtained by the method of the present invention has less breakdown at a low voltage than the thin film obtained by the conventional method, and the breakdown voltage is lower. Improved.
【0028】前記実施例1〜3では原料の気化工程で、
原料を加熱しながら100℃以下の沸点を有する有機溶
剤の蒸気を直接またはキャリガスとともに原料に接触さ
せたが、原料を加熱気化せしめたのち、該気化物を反応
部へ輸送する際に前記有機溶剤の蒸気を接触せしめる態
様や、原料を加熱気化せしめる工程でのみ前記有機溶剤
の蒸気を接触せしめる態様でも有効である。これらのば
あい、前記気化物は高温での輸送中にも分解などの変化
が起りにくく安定な状態で反応部へ送られるので、実施
例1〜3でえられたと同様のすぐれた性能を有する酸化
物系誘電体薄膜がえられる。In the first to third embodiments, in the step of vaporizing the raw material,
While heating the raw material, the vapor of the organic solvent having a boiling point of 100 ° C. or less was brought into contact with the raw material directly or together with the carry gas. After the raw material was heated and vaporized, the organic solvent was transferred to the reaction section when the vaporized substance was transported to the reaction section. It is also effective in a mode in which the vapor of the organic solvent is brought into contact only in the step of heating and vaporizing the raw material. In these cases, the vaporized material is sent to the reaction section in a stable state where changes such as decomposition do not easily occur even during transportation at a high temperature, and thus has the same excellent performance as obtained in Examples 1 to 3. An oxide-based dielectric thin film is obtained.
【0029】比較例1、2、3や実施例4中の従来法で
えられた酸化物系誘電体薄膜が、X線回析によれば結晶
が配向しているにもかかわらず、良好な性質を示さない
理由は確かではないが、前記原料化合物の熱による気化
が困難で、かつ高い温度に加熱し輸送するために、気化
あるいは気化物を反応部まで輸送する間に原料化合物の
分解など種々の反応が生じるので、反応によって基板上
にえられる薄膜中での組成に不均質性が生じたためであ
ろうと推定される。The oxide-based dielectric thin films obtained by the conventional method in Comparative Examples 1, 2, and 3 and Example 4 were excellent in spite of the fact that the crystals were oriented according to X-ray diffraction. Although it is not certain why it does not show properties, it is difficult to vaporize the raw material compound by heat, and in order to heat and transport the raw material compound to a high temperature, the raw material compound is decomposed while being vaporized or the vaporized substance is transported to the reaction section. It is presumed that various reactions take place, and this is probably due to the inhomogeneity of the composition in the thin film obtained on the substrate.
【0030】本発明の方法によって、PLZT、チタン
酸バリウム、酸化タンタル、チタン酸鉛などの誘電材料
の薄膜製造も行った結果、いずれのばあいにも従来法よ
りも良好な性能を有する誘電体薄膜を再現性よく製造す
ることができた。According to the method of the present invention, thin films of dielectric materials such as PLZT, barium titanate, tantalum oxide, and lead titanate were produced. As a result, in any case, a dielectric material having better performance than the conventional method was obtained. Thin films could be produced with good reproducibility.
【0031】本発明の方法で用いられる有機溶剤につい
て、各種のものを検討したが、たとえばn−ブタノー
ル、シクロヘキサノン、ジブチルアミン、n−オクタン
などのように沸点が100℃を超えるものは原料化合物
と接触させても、本発明のような低温での気化性の向上
や気化した原料化合物の高温における安定化という効果
は現われず、えられた薄膜の性能は溶剤を全く使用しな
い従来の方法によってえられたものと同様の性能であっ
た。Various kinds of organic solvents used in the method of the present invention were examined. For example, those having a boiling point of more than 100 ° C., such as n-butanol, cyclohexanone, dibutylamine and n-octane, were considered as starting compounds. Even when contact is made, the effect of improving the vaporization at low temperatures and stabilizing the vaporized raw material compounds at high temperatures as in the present invention does not appear, and the performance of the obtained thin film is obtained by the conventional method using no solvent at all. The performance was similar to that provided.
【0032】本発明においては、原料化合物に接触させ
る有機溶剤として、沸点が100℃以下のものであれ
ば、特別の限定はないが、好ましいものとしてメタノー
ル、エタノール、イソプロパノールなどのアルコール
類、ジメチルエーテル、ジエチルエーテル、メチルエチ
ルエーテル、ジオキサン、テトラヒドロフランなどの鎖
状および環状エーテル類、ジメチルケトン、メチルエチ
ルケトンなどのケトン類、ジメチルアミン、ジエチルア
ミンなどのアミン類、n−ヘキサン、ジメチルブタン、
シクロヘキサンなどの炭化水素類など脂肪族系溶剤をあ
げることができる。In the present invention, the organic solvent to be brought into contact with the starting compound is not particularly limited as long as it has a boiling point of 100 ° C. or lower, but preferred are alcohols such as methanol, ethanol and isopropanol, dimethyl ether, and the like. Chain and cyclic ethers such as diethyl ether, methyl ethyl ether, dioxane and tetrahydrofuran, dimethyl ketone, ketones such as methyl ethyl ketone, dimethylamine, amines such as diethylamine, n-hexane, dimethylbutane,
Aliphatic solvents such as hydrocarbons such as cyclohexane can be mentioned.
【0033】また、本発明で用いる原料としては、金属
原子が酸素原子を介して有機基と結合した化合物であれ
ば、前記の有機溶剤の効果が発揮される。その中でも金
属としては、Pb、Ti、Zr、Taおよびアルカリ土
類金属が好ましく、前記金属類のアセチルアセトネー
ト、ジピバロイルメタネート、アルコキシド、ヘキサフ
ルオロアセチルアセトネート、ペンタフルオロプロパノ
イルピバロイルメタネートおよびそれらの誘導体などが
好ましく用いられる。Further, as the raw material used in the present invention, if the compound is such that a metal atom is bonded to an organic group via an oxygen atom, the above-mentioned effect of the organic solvent is exhibited. Among them, Pb, Ti, Zr, Ta and alkaline earth metals are preferable as the metal, and acetylacetonate, dipivaloylmethanate, alkoxide, hexafluoroacetylacetonate, and pentafluoropropanoylpivalo of the above metals are preferable. Ilmethanate and derivatives thereof are preferably used.
【0034】[0034]
【発明の効果】以上のように、本発明のCVD法による
酸化物系誘電体薄膜の製法によれば、原料化合物を低温
の加熱で気化させることができ、かつ安定に反応部へ輸
送することができ、その結果えられた酸化物系誘電体薄
膜が良好な性能を有するという効果がある。As described above, according to the method for producing an oxide-based dielectric thin film by the CVD method of the present invention, a raw material compound can be vaporized by heating at a low temperature and can be stably transported to a reaction section. This has the effect that the resulting oxide-based dielectric thin film has good performance.
【図1】本発明の方法および従来技術の方法によってえ
られたチタン酸バリウムストロンチウム系誘電体薄膜の
耐圧特性を示す図である。FIG. 1 is a diagram showing the withstand voltage characteristics of barium strontium titanate-based dielectric thin films obtained by the method of the present invention and the method of the prior art.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 27/108 (72)発明者 本多 俊久 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (72)発明者 黒岩 丈晴 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (72)発明者 渡井 久男 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (72)発明者 檜垣 孝志 伊丹市瑞原4丁目1番地 三菱電機株式 会社 エル・エス・アイ研究所内 (58)調査した分野(Int.Cl.6,DB名) H01L 21/205 C23C 16/00 - 16/56──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01L 27/108 (72) Inventor Toshihisa 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi 72) Inventor Takeharu Kuroiwa 8-1-1, Tsukaguchi-Honcho, Amagasaki-shi Mitsubishi Electric Corporation Co., Ltd. Materials and Devices Research Laboratory (72) Inventor Hisao Watai 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi Materials and Devices Research Mitsubishi Electric Corporation In-house (72) Inventor Takashi Higaki 4-1-1 Mizuhara, Itami-shi LSI Research Institute, Mitsubishi Electric Corporation (58) Field surveyed (Int. Cl. 6 , DB name) H01L 21/205 C23C 16/00 -16/56
Claims (8)
合した原料化合物を用いてCVD法により酸化物系誘電
体薄膜を製造する際に、前記原料化合物の気化工程およ
び輸送工程の少なくとも一方の工程において、前記原料
化合物に、沸点100℃以下の有機溶剤の蒸気を接触さ
せることを特徴とするCVD法による酸化物系誘電体薄
膜の製法。1. When producing an oxide-based dielectric thin film by a CVD method using a raw material compound in which a metal atom is bonded to an organic group via an oxygen atom, at least one of a vaporizing step and a transporting step of the raw material compound In the step (a), a vapor of an organic solvent having a boiling point of 100 ° C. or less is brought into contact with the raw material compound, wherein the oxide-based dielectric thin film is produced by a CVD method.
合した原料化合物の金属原子が、Pb、Ti、Zr、T
aおよびアルカリ土類金属から選ばれた少なくとも一種
であることを特徴とする請求項1記載の酸化物系誘電体
薄膜の製法。2. The raw material compound in which a metal atom is bonded to an organic group via an oxygen atom is composed of Pb, Ti, Zr, T
2. The method for producing an oxide-based dielectric thin film according to claim 1, wherein the oxide-based dielectric thin film is at least one selected from a and an alkaline earth metal.
合した原料化合物の金属原子が、Srおよび/またはB
aであることを特徴とする請求項1または2記載の酸化
物系誘電体薄膜の製法。3. The method according to claim 1, wherein the metal atom of the starting compound in which the metal atom is bonded to the organic group via an oxygen atom is Sr and / or B
3. The method for producing an oxide-based dielectric thin film according to claim 1, wherein
合した原料化合物が、金属のアセチルアセトネート、ジ
ピバロイルメタネート、アルコキシド、ヘキサフルオロ
アセチルアセトネート、ペンタフルオロプロパノイルピ
バロイルメタネートおよびそれらの誘導体から選ばれた
少なくとも一種であることを特徴とする請求項1、2ま
たは3記載の酸化物系誘電体薄膜の製法。4. A raw material compound in which a metal atom is bonded to an organic group via an oxygen atom is a metal acetylacetonate, dipivaloylmethanate, alkoxide, hexafluoroacetylacetonate, pentafluoropropanoylpivaloyl. 4. The method for producing an oxide-based dielectric thin film according to claim 1, which is at least one selected from methanates and derivatives thereof.
合した原料化合物が、Pb、およびアルカリ土類金属
の、ジピバロイルメタネート、ヘキサフルオロアセチル
アセトネート、ペンタフルオロプロパノイルピバロイル
メタネートとTiおよびZrのアルコキシドとから選ば
れた少なくとも一種であることを特徴とする請求項1、
2、3または4記載の酸化物系誘電体薄膜の製法。5. A raw material compound in which a metal atom is bonded to an organic group via an oxygen atom is Pb or an alkaline earth metal such as dipivaloylmethanate, hexafluoroacetylacetonate, or pentafluoropropanoylpivalo. Claim 1 characterized in that it is at least one selected from ilmethanates and alkoxides of Ti and Zr.
5. The method for producing an oxide-based dielectric thin film according to 2, 3, or 4.
合した原料化合物が、Srおよび/またはBaのジピバ
ロイルメタネートであることを特徴とする請求項1、
2、3、4または5記載の酸化物系誘電体薄膜の製法。6. The raw material compound in which a metal atom is bonded to an organic group via an oxygen atom is dipivaloyl methanate of Sr and / or Ba.
6. The method for producing an oxide-based dielectric thin film according to 2, 3, 4, or 5.
類、アルコール類、エーテル類、ケトン類およびアミン
類から選ばれた少なくとも一種であることを特徴とする
請求項1記載の酸化物系誘電体薄膜の製法。7. The oxide-based dielectric according to claim 1, wherein the organic solvent having a boiling point of 100 ° C. or lower is at least one selected from hydrocarbons, alcohols, ethers, ketones and amines. Manufacturing method of body thin film.
エーテル、ジメチルケトン、テトラヒドロフランから選
ばれたすくなくとも一種であることを特徴とする請求項
1または7記載の酸化物誘電体薄膜の製法。8. The method for producing an oxide dielectric thin film according to claim 1, wherein the organic solvent having a boiling point of 100 ° C. or lower is at least one selected from diethyl ether, dimethyl ketone, and tetrahydrofuran.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4304679A DE4304679C2 (en) | 1992-02-17 | 1993-02-16 | Process for producing a thin dielectric layer of an oxide system using the CVD process |
GB9303160A GB2264119B (en) | 1992-02-17 | 1993-02-17 | A method for manufacturing an oxide-system dielectric thin film using CVD method |
US08/018,900 US5372850A (en) | 1992-02-17 | 1993-02-17 | Method of manufacturing an oxide-system dielectric thin film using CVD method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-29574 | 1992-02-17 | ||
JP2957492 | 1992-02-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05299365A JPH05299365A (en) | 1993-11-12 |
JP2790581B2 true JP2790581B2 (en) | 1998-08-27 |
Family
ID=12279883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4289780A Expired - Lifetime JP2790581B2 (en) | 1992-02-17 | 1992-10-28 | Production method of oxide-based dielectric thin film by CVD method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2790581B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3612839B2 (en) * | 1996-02-13 | 2005-01-19 | 三菱電機株式会社 | High dielectric constant thin film structure, high dielectric constant thin film forming method, and high dielectric constant thin film forming apparatus |
US6764916B1 (en) | 1999-03-23 | 2004-07-20 | Hitachi Kokusai Electric Inc. | Manufacturing method for semiconductor device |
JP2000353700A (en) | 1999-06-14 | 2000-12-19 | Mitsubishi Electric Corp | Method of forming high dielectric coefficient thin film and method of manufacturing semiconductor device |
US8962350B2 (en) * | 2013-02-11 | 2015-02-24 | Texas Instruments Incorporated | Multi-step deposition of ferroelectric dielectric material |
-
1992
- 1992-10-28 JP JP4289780A patent/JP2790581B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05299365A (en) | 1993-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2799134B2 (en) | Barium strontium titanate-based dielectric thin film CVD material and memory capacitor | |
US5434102A (en) | Process for fabricating layered superlattice materials and making electronic devices including same | |
US5372850A (en) | Method of manufacturing an oxide-system dielectric thin film using CVD method | |
EP0665814B1 (en) | Precursors and processes for making metal oxides | |
JP3611392B2 (en) | Capacitor and high-capacitance capacitor manufacturing method | |
KR960004462B1 (en) | Process for producing memory capacitor in semiconductor device | |
EP1212476B1 (en) | Dielectric films and methods of forming same | |
EP0665981B1 (en) | Process for fabricating layered superlattice materials and electronic devices including same | |
JPH08204156A (en) | Improvement of thin film of barium titanate and strontium (bst) by doping holmium donor | |
US5625587A (en) | Rare earth manganate films made by metalorganic decomposition or metalorganic chemical vapor deposition for nonvolatile memory devices | |
WO1996030938A2 (en) | Process for fabricating layered superlattice materials and making electronic devices including same | |
JP2002211924A (en) | Multiphase lead germanate film and method for depositing the same | |
JPH0555514A (en) | Semiconductor device and fabrication thereof | |
JPH11317377A (en) | Cvd material for forming electrodes and capacitor electrodes and wiring film formed with the same | |
JP2006225381A (en) | Ti PRECURSOR, METHOD FOR PRODUCING THE SAME, METHOD FOR PRODUCING Ti-CONTAINING THIN FILM UTILIZING THE Ti PRECURSOR AND THE Ti-CONTAINING THIN FILM | |
JP2790581B2 (en) | Production method of oxide-based dielectric thin film by CVD method | |
JP2001107238A (en) | Single phase perovskite ferroelectric film on platinum electrode, and method of its formation | |
JP3095727B2 (en) | CVD raw material for titanium oxide based dielectric thin film and capacitor for memory | |
US5888585A (en) | Process for making an integrated circuit with high dielectric constant barium-strontium-niobium oxide | |
JP3054118B2 (en) | Raw material for lead titanate-based dielectric thin film and capacitor for memory | |
Schumacher et al. | MOCVD for complex multicomponent thin films—a leading edge technology for next generation devices | |
JP2000188377A (en) | Ferroelectric thin-film element and its manufacture | |
JPH06224179A (en) | Dielectric thin film synthesizing cvd reaction oven | |
JPH05275646A (en) | High-dielectric constant material and manufacture thereof | |
KR20010036043A (en) | Method for forming high dielectric layer of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080612 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080612 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090612 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100612 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100612 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110612 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 15 |