JP7479455B2 - 風況計測のためのlidarシステム - Google Patents
風況計測のためのlidarシステム Download PDFInfo
- Publication number
- JP7479455B2 JP7479455B2 JP2022517462A JP2022517462A JP7479455B2 JP 7479455 B2 JP7479455 B2 JP 7479455B2 JP 2022517462 A JP2022517462 A JP 2022517462A JP 2022517462 A JP2022517462 A JP 2022517462A JP 7479455 B2 JP7479455 B2 JP 7479455B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- lidar system
- laser beam
- length
- emission source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims description 67
- 238000001514 detection method Methods 0.000 claims description 28
- 230000002123 temporal effect Effects 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 11
- 210000001747 pupil Anatomy 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 5
- 239000013307 optical fiber Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000008033 biological extinction Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 description 14
- 230000003595 spectral effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000035559 beat frequency Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4808—Evaluating distance, position or velocity data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/487—Extracting wanted echo signals, e.g. pulse detection
- G01S7/4876—Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/491—Details of non-pulse systems
- G01S7/4911—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/491—Details of non-pulse systems
- G01S7/493—Extracting wanted echo signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
本明細書は、風況計測を実行するように適合されたLIDARシステムに関する。本明細書はまた、かかるシステムを用いる測定プロセスに関する。
LIDAR(Light Detection and Ranging(光検出および測距))システムはよく知られており、多くの用途において用いられるが、特に、風況計測を実行するために用いられる。風速計測に関して、レーザービームは、空気中に浮遊し気流により運ばれるエアロゾルまたは固体粒子等の粒子により、後方散乱させられる。このとき、レーザービームに対して平行な風速の成分は、ドップラー効果による振動数の偏移から導出される。しかしながら、複数の理由によって、風速計測に用いられる既存のLIDARシステムの性能が制限される。これらの理由の中で、最大の制約のうちの1つは、CNRスペクトル比(CNR spectral ratio)が小さな値をとることである。CNRスペクトル比は、スペクトルの「キャリア対ノイズ比(carrier to noise ratio)」を意味し、CNR_sp比と書かれる。CNRスペクトル比は、後方散乱させられた信号のスペクトルの最大振幅の、スペクトルノイズに対する比である。ここで、このスペクトルノイズは、後方散乱させられた信号を除いたスペクトル振幅の標準偏差として評価される。ドップラー偏移の信頼度の高い測定を可能にし、これに伴う風速の信頼度の高い測定を可能にするためには、このCNR_sp比は、3よりも大きいことが好ましい。空気中の高所において実行される測定、特に航空機から実行される測定、より具体的には、2kmまたは3km(キロメートル)を超える高度で実行される測定において、かかる高度に存在する後方散乱させる粒子の濃度が低いため、CNR_sp比の値についての上記の制約は、特に厳しいものとなる。
このような状況を踏まえたとき、本発明の1つの目的は、良好な空間分解能を保持しつつ、従来のシステムのCNR_sp比の値よりも良好なCNR_sp比の値を示す風況計測の実行を可能にすることである。
これらの目的のうちの少なくとも1つの目的、またはその他の目的を達成するため、本発明の第1の態様は、風況計測を実行するように適合された新規のLIDARシステムであって、
-レーザービームがレーザー放出源の出射瞳において収束し、前記レーザービームの集束ゾーンの長さの中央において最小であるビーム横断面を有するように、前記LIDARシステムの外部の空気の部分に向かって前記レーザービームを生成することができるレーザー放出源であって、この集束ゾーンは、2・λ/(π・θ2)に等しい長さを有し、当該長さは、前記レーザービームの中心伝播方向に対して平行に測定されたものであり、λは、前記レーザービームの波長であり、θは、前記集束ゾーンを越えて前記レーザー放出源の反対側にある前記レーザービームの発散半角であり、ラジアンで表され、λ/(π・θ2)は、レイリー長と称される、レーザー放出源;
-前記集束ゾーン内に含まれる粒子により後方散乱させられた前記レーザービームの部分を受け取るように構成されている、ヘテロダイン検出アセンブリ;および、
-前記ヘテロダイン検出アセンブリにより生成されるうなり信号から前記粒子についての速さの値を導出するように適合されている、ドップラー計算モジュール、
を備える、LIDARシステムを提案する。
-前記レーザービームを連続する(successive)レーザーパルスの形態にするように適合され、かつ、複数の前記レーザーパルスが前記集束ゾーンを、各レーザーパルスの部分が前記粒子によって後方散乱させられつつ、通過するように、前記レーザー放出源と組み合わせられた前記レーザービームの時間的制御装置を備える。この時間的制御装置は、前記レイリー長を前記空気中の複数の前記レーザーパルスの伝播速さで割ったものの2倍以上であり、かつ20μs未満(好ましくは、10μs未満)である個々の長さを各レーザーパルスが有するように、さらに適合されている。
-前記レーザービームの前記時間的制御装置は、音響-光学変調器、電気-光学変調器、半導体光増幅器、前記レーザー放出源のための照明および消衰システム、およびレーザー増幅キャビティのための固有モード選択システムの中から選択された少なくとも1つのコンポーネントを含んでもよい。しかしながら、例えば光学的、電子的または電気-光学切換システム等の、前記レーザービームの他の任意の時間的制御装置が、代替的に使用されてもよい;
-前記レーザービームの前記時間的制御装置は、前記レーザー放出源に組み込まれてもよいか、または、前記レーザー放出源の制御入力に作用するように構成されてもよいか、または、前記レーザー放出源によって前記レーザービームが生成された後にこのレーザービームの少なくとも1つの時間分布特性を変更するために、放射の伝播方向に対して前記レーザー放出源から下流に配置されてもよい;
-前記レーザー放出源は、継続的放出タイプのものであってもよく、前記レーザービームの前記時間的制御装置は、このレーザービームを複数の連続するレーザーパルスに分割するように適合されてもよい。あるいは、前記レーザー放出源は、複数の連続するレーザーパルスの形態で放出するタイプのものであってもよく、前記レーザービームの前記時間的制御装置は、各レーザーパルスの長さを変更するように、特に各レーザーパルスの長さを増大するように、適合されてもよい。レーザー放出源のタイプと、想定される源によって放出される前記レーザービームの時間的制御装置のタイプとの他の組み合わせが、代替的に使用されてもよい;
-当該システムは、前記集束ゾーン内に含まれる前記粒子の前記LIDARシステムに対するゼロである速さが前記ヘテロダイン検出アセンブリにより生成される前記うなり信号のゼロでない振動数に対応するように、各レーザーパルスと、前記ヘテロダイン検出アセンブリによって使用される基準レーザー信号との間に振動数オフセットを適用するようさらに適合されてもよい。かかる改良は、低速である風速を測定するために特に有利である。例えば、かかる改良は、風力タービンの運転の最適化等の地上における応用、または、静止飛行の状態またはほぼ静止飛行の状態に留まることができる航空機から実行される測定のために、特に有利である;
-前記レーザー放出源は、光ファイバータイプのものであり、かつ、100W(ワット)~5・105Wの平均パワー、好ましくは200W~2000Wの平均パワーを各レーザーパルスが有するように適合されてもよい。かかる光ファイバーレーザー放出源は、低重量かつ低体積であり、その結果、前記LIDARシステムは、航空機に容易に搭載することができる;
-前記レーザー放出源の前記波長は、空気の透明スペクトル領域内である1.5μm~1.7μmであってもよく、場合によってはさらに、前記LIDARシステムにおいて使用される光ファイバーの透明スペクトル領域内であってもよい。かかる波長は、眼の危険を制限するという利点を有する;
-前記レーザービームの前記時間的制御装置は、2つの連続するレーザーパルスが3μs~500μsの持続時間、好ましくは100μs未満の持続時間だけ隔たるように適合されてもよい。その結果、より大きなレーザーパルスパワー値を得ることが可能である;
-前記LIDARシステムは、前記粒子の速度の3つの座標についてのそれぞれの値を得るように、中心方向の周りに分布する複数の測定方向であって、前記中心方向に対する各測定方向についての角度が30°未満である複数の測定方向に沿って、複数のレーザーパルスを同時に放出するように適合されてもよい。その結果、3つの直交空間座標に沿って、すなわち3次元において、風の速度成分を同時に特徴付ける(特性評価する)ことが可能となる;
-前記レーザー放出源は、このレーザー放出源の前記出射瞳と前記集束ゾーンの中心点との間に存在する測定距離を、例えば200m~1000mにおいて、変化させるように適合された可変集束装置を含んでもよい。
-風速の測定対象となる空気の部分内に前記集束ゾーンが含まれるように、本発明の第1の態様に従うLIDARシステムを構成する工程;
-前記レイリー長を前記空気中の複数の前記レーザーパルスの前記伝播速さで割ったものの2倍以上であり、かつ20μs未満(好ましくは、10μs未満)である個々のレーザーパルス長を採用する工程;および、
‐前記集束ゾーン内に含まれる粒子についての速さの値を得るために前記LIDARシステムを作動させる工程、
を含む、風況計測プロセスに関する。
本発明の特徴および利点は、添付の図面を参照しつつ非限定的な実施形態の例を以下に詳細に説明することで、より明らかとなるだろう。
明瞭さの理由から、これらの図面に示された要素の寸法は、実際の寸法および実際の寸法比のいずれにも対応するものではない。さらに、これらの要素のうちのいくつかは、単に象徴(記号)としてのみ示されている。異なる図面に示された同一の参照符号は、同一の要素か、または、同一の機能を有する要素を指す。
-航空機に搭載する応用。この場合、LIDARシステムの体積および重量の低減により、著しい利点が構成される。レーザー放出システム10、ヘテロダイン検出アセンブリ20および時間的制御装置40は、全体的にまたは部分的に、光ファイバーに基づいて実装され得る。図4は、本発明による風速を測定するためのかかるLIDARシステムを備える飛行機100を示す。当該システムは、出口光学素子14が航空機100の機首の近くに配置されて当該航空機の前方の半空間(half-space)に向けられるように、飛行機に搭載されることが好ましい。図4は、中心伝播方向A-A、およびそれから生じる集束ゾーンZFの構成を示している;
-地上付近または低高度での測定等の、測定対象の風速が低速であり得る応用。例えば、風力タービンの運転を最適化するための応用、または、静止飛行状態の航空機からの測定のための応用である。この場合、音響-光学変調器40は、レーザービームFに適用されてレーザービームの部分FREFには適用されない振動数オフセットをさらに生成し得る。当該レーザービームの部分FREFは、光結合器15によって初期源11からサンプリングされ、ヘテロダイン検出のための基準レーザー信号として使用される。これに関して、低い風速値は、固定されたゼロでない値に近いヘテロダインうなり振動数に対応する。このため、過度に長いサンプリング時間を実施する必要なく、測定精度が改善する;
-出口光学素子14と集束ゾーンZFとの間の測定距離が可変である必要がある応用。この目的のために、レーザービームFが出口光学素子14を通って出るとき、出口光学素子14は、要求に応じて当該レーザービームFの収束を変化させるように適合されてもよい。例えば、レーザービームFが光ファイバーの一端から生じるとき、出口光学素子14は、光ファイバーの一端に対して収束レンズの物体焦点が移動するように、軸A-Aに対して平行に並進移動する可動な支持体上に取り付けられた当該収束レンズであってもよい。これに関して、集束ゾーンZFの中心点Oは、制御可能な出口光学素子14からのある距離、例えば200m~1000mの距離に位置し得る。特に、この距離が200mに等しく、かつ出射瞳におけるレーザービームFの半径が0.08mに等しいときには、レイリー長は、6mのオーダーであり得る。また、出口光学素子14と集束ゾーンZFの中心点Oとの間の測定距離が1000mに等しく、出射瞳におけるレーザービームFの半径が同じく8cmであるときには、レイリー長は、150mのオーダーであり得る;
-風の速度の3成分の測定が必要な応用。この目的のために、レーザービームFは、異なる中心伝播方向を有する少なくとも3つのサブビームに分割され得る。したがって、ビームFからの本発明に従って放出される複数のレーザーパルスもまた、各々、離隔した集束ゾーンの方を向く少なくとも3つの放出経路に沿って、順次にまたは同時に分割される。異なる集束ゾーンから後方散乱させられた放射部分についての逆ドップラー効果計算による解析により、中心伝播方向に対して平行な風速の速度成分の測定が提供される。このとき、ベクトル量としての風速がすべての集束ゾーン内で同じであると仮定することにより、直交座標系の3つの軸に沿った風速の成分の評価を導出することが容易になる。当業者には、ベクトル速度の座標についてかかる軸の変換を実行する方法が知られている。例えば、図5を参照すると、軸A-Aを有するレーザービームFは、6つのレーザーサブビームに分割される。当該6つのレーザーサブビームは、頂点において拡がり半角(half-angle of opening)αを有する円錐の表面上に、角度的に分布する。拡がり半角αは、例えば15°(度)に等しい。6つのレーザーサブビームの中心伝播方向のそれぞれは、参照符号A1~A6であり、対応する集束ゾーンは、参照符号ZF1~ZF6である。このとき、方向A1~A6は、風速の成分のための測定方向であり、軸A-Aによって形成される中心方向の周りに分布する。
Claims (12)
- -レーザービーム(F)がレーザー放出源の出射瞳において収束し、前記レーザービーム(F)の集束ゾーン(ZF)の長さの中央において最小であるビーム横断面を有するように、LIDARシステムの外部の空気の部分に向かって前記レーザービーム(F)を生成することができるレーザー放出源(10)であって、前記集束ゾーンは、2・λ/(π・θ2)に等しい長さを有し、当該長さは、前記レーザービームの中心伝播方向(A-A)に対して平行に測定されたものであり、λは、前記レーザービームの波長であり、θは、前記集束ゾーンを越えて前記レーザー放出源の反対側にある前記レーザービームの発散半角であり、ラジアンで表され、λ/(π・θ2)は、レイリー長(lR)と称される、レーザー放出源(10);
-前記集束ゾーン(ZF)内に含まれる粒子により後方散乱させられた前記レーザービーム(F)の部分を受け取るように構成されている、ヘテロダイン検出アセンブリ(20);および、
-前記ヘテロダイン検出アセンブリ(20)により生成されるうなり信号から前記粒子についての速さの値を導出するように適合されている、ドップラー計算モジュール(30)、
を備える、風況計測を実行するように適合されたLIDARシステムであって、
-前記レーザービームを連続するレーザーパルスの形態にするように適合され、かつ、複数の前記レーザーパルスが前記集束ゾーン(ZF)を、各レーザーパルスの部分が前記粒子によって後方散乱させられつつ、通過するように、前記レーザー放出源(10)と組み合わせられた、前記レーザービームの時間的制御装置(40)であって、前記レイリー長(lR)を前記空気中の複数の前記レーザーパルスの伝播速さで割ったものの2倍以上であり、かつ20μs未満である個々の長さを各レーザーパルスが有するようにさらに適合されている、時間的制御装置(40)、
をさらに備えることを特徴とする、LIDARシステム。 - 前記時間的制御装置(40)は、前記レイリー長(lR)を前記空気中の複数の前記レーザーパルスの前記伝播速さで割ったものの3倍に等しい個々の長さを各レーザーパルスが有するように適合されている、請求項1に記載のLIDARシステム。
- 前記時間的制御装置(40)は、各レーザーパルスの前記個々の長さが0.2μs~5μs、好ましくは0.5μs~1.2μsであるように、適合されている、請求項1または2に記載のLIDARシステム。
- 前記レーザービームの前記時間的制御装置(40)は、音響-光学変調器、電気-光学変調器、半導体光増幅器、前記レーザー放出源のための照明および消衰システム、およびレーザー増幅キャビティのための固有モード選択システムの中から選択された少なくとも1つのコンポーネントを含む、請求項1~3のいずれか一項に記載のLIDARシステム。
- 前記集束ゾーン(ZF)内に含まれる前記粒子の前記LIDARシステムに対するゼロである速さが前記ヘテロダイン検出アセンブリにより生成される前記うなり信号のゼロでない振動数に対応するように、各レーザーパルスと、前記ヘテロダイン検出アセンブリ(20)によって使用される基準レーザー信号との間に振動数オフセットを適用するようさらに適合されている、請求項1~4のいずれか一項に記載のLIDARシステム。
- 前記レーザー放出源(10)は、光ファイバータイプのものであり、かつ、100W~5・105Wの平均パワー、好ましくは200W~2000Wの平均パワーを各レーザーパルスが有するように適合されている、請求項1~5のいずれか一項に記載のLIDARシステム。
- 前記レーザービームの前記時間的制御装置(40)は、2つの連続するレーザーパルスが3μs~500μsの持続時間、好ましくは100μs未満の持続時間だけ隔たるように適合されている、請求項1~6のいずれか一項に記載のLIDARシステム。
- 前記粒子の速度の3つの座標についてのそれぞれの値を得るように、中心方向の周りに分布する複数の測定方向(A1~A6)であって、前記中心方向に対する各測定方向についての角度(α)が30°未満である複数の測定方向(A1~A6)に沿って、複数のレーザーパルスを同時に放出するように構成されている、請求項1~7のいずれか一項に記載のLIDARシステム。
- 前記レーザー放出源(10)は、前記レーザー放出源の前記出射瞳と前記集束ゾーン(ZF)の中心点(O)との間に存在する測定距離を、例えば200m~1000mにおいて、変化させるように構成された可変集束装置を含む、請求項1~8のいずれか一項に記載のLIDARシステム。
- 請求項1~9のいずれか一項に記載のLIDARシステムを備える航空機(100)であって、
前記LIDARシステムは、前記航空機の飛行中に風況計測を実行するために前記航空機に搭載されている、航空機(100)。 - -風速の測定対象となる空気の部分内に前記集束ゾーン(ZF)が含まれるように、請求項1~10のいずれか一項に従うLIDARシステムを構成する工程;
-前記レイリー長(lR)を前記空気中の複数の前記レーザーパルスの前記伝播速さで割ったものの2倍以上であり、かつ20μs未満である個々のレーザーパルス長を採用する工程;および、
‐前記集束ゾーン(ZF)内に含まれる粒子についての速さの値を得るために前記LIDARシステムを作動させる工程、
を含む、風況計測プロセス。 - 前記レーザービームの時間的制御装置(40)は、各レーザーパルスの前記個々の長さが前記集束ゾーン(ZF)において有効な前記空気のコヒーレンス時間の0.2倍~5倍、好ましくは0.5倍~1.2倍であるように調整されている、請求項11に記載の風況計測プロセス。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1910390A FR3101160B1 (fr) | 2019-09-20 | 2019-09-20 | Systeme lidar pour mesures anemometriques |
FR1910390 | 2019-09-20 | ||
PCT/FR2020/051591 WO2021053290A1 (fr) | 2019-09-20 | 2020-09-15 | Systeme lidar pour mesures anemometriques |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022548922A JP2022548922A (ja) | 2022-11-22 |
JP7479455B2 true JP7479455B2 (ja) | 2024-05-08 |
Family
ID=69468683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022517462A Active JP7479455B2 (ja) | 2019-09-20 | 2020-09-15 | 風況計測のためのlidarシステム |
Country Status (9)
Country | Link |
---|---|
US (1) | US20220334256A1 (ja) |
EP (1) | EP4031909B1 (ja) |
JP (1) | JP7479455B2 (ja) |
CN (1) | CN114502986A (ja) |
CA (1) | CA3154855A1 (ja) |
ES (1) | ES2972314T3 (ja) |
FR (1) | FR3101160B1 (ja) |
IL (1) | IL291441A (ja) |
WO (1) | WO2021053290A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3139391A1 (fr) | 2022-09-02 | 2024-03-08 | Office National D'etudes Et De Recherches Aérospatiales | Systeme lidar pour mesures velocimetriques |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011503526A (ja) | 2007-10-09 | 2011-01-27 | ダンマークス テクニスク ユニバーシテット | 半導体レーザと増幅器とに基づくコヒーレントライダーシステム |
US20110181863A1 (en) | 2009-07-24 | 2011-07-28 | Thales | Single-Particle LIDAR Anemometry Method and System |
US20130142214A1 (en) | 2011-12-02 | 2013-06-06 | Thales | Laser anemometry probe system and method employing continuous coherent detection, with single-particle mode, capable of detecting ice-forming conditions and of determining the severity of icing |
US20150146199A1 (en) | 2013-11-22 | 2015-05-28 | Thales | Device and method for determining the presence of damage or dirt in a doppler laser anemometry probe porthole |
JP2015517094A (ja) | 2012-03-23 | 2015-06-18 | ウインダー フォトニクス エー/エスWindar Photonics A/S | 複数方向のlidarシステム |
JP2019522779A (ja) | 2016-05-19 | 2019-08-15 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 粒子検出用レーザーセンサ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4995720A (en) * | 1989-12-12 | 1991-02-26 | Litton Systems, Inc. | Pulsed coherent Doppler laser radar |
US5317376A (en) * | 1992-12-03 | 1994-05-31 | Litton Systems, Inc. | Solid state pulsed coherent laser radar for short range velocimetry applications |
DE102005034729B3 (de) * | 2005-07-21 | 2007-02-08 | Eads Deutschland Gmbh | Verfahren und Lidar-System zur Messung von Luftturbulenzen an Bord von Luftfahrzeugen sowie für Flughäfen und Windfarmen |
DE102008031682A1 (de) * | 2008-07-04 | 2010-03-11 | Eads Deutschland Gmbh | Direktempfang-Doppler-LIDAR-Verfahren und Direktempfang-Doppler-LIDAR-Vorrichtung |
FR2952722B1 (fr) * | 2009-11-18 | 2011-12-09 | Onera (Off Nat Aerospatiale) | Mesure de caracteristiques velocimetriques ou vibrometriques utilisant un dispositif de type lidar a detection heterodyne |
US10598769B2 (en) * | 2013-05-06 | 2020-03-24 | Danmarks Tekniske Universitet | Coaxial direct-detection LIDAR-system |
CN103513257B (zh) * | 2013-10-14 | 2015-05-27 | 中国科学技术大学 | 一种基于双工作波长的直接探测测风激光雷达系统及测风方法 |
US9576785B2 (en) * | 2015-05-14 | 2017-02-21 | Excelitas Technologies Corp. | Electrodeless single CW laser driven xenon lamp |
FR3067457A1 (fr) * | 2017-06-13 | 2018-12-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede et systeme de controle de la vitesse d'une impulsion laser |
-
2019
- 2019-09-20 FR FR1910390A patent/FR3101160B1/fr active Active
-
2020
- 2020-09-15 US US17/761,953 patent/US20220334256A1/en active Pending
- 2020-09-15 WO PCT/FR2020/051591 patent/WO2021053290A1/fr unknown
- 2020-09-15 JP JP2022517462A patent/JP7479455B2/ja active Active
- 2020-09-15 ES ES20785808T patent/ES2972314T3/es active Active
- 2020-09-15 CN CN202080070044.5A patent/CN114502986A/zh active Pending
- 2020-09-15 EP EP20785808.5A patent/EP4031909B1/fr active Active
- 2020-09-15 CA CA3154855A patent/CA3154855A1/fr active Pending
-
2022
- 2022-03-16 IL IL291441A patent/IL291441A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011503526A (ja) | 2007-10-09 | 2011-01-27 | ダンマークス テクニスク ユニバーシテット | 半導体レーザと増幅器とに基づくコヒーレントライダーシステム |
US20110181863A1 (en) | 2009-07-24 | 2011-07-28 | Thales | Single-Particle LIDAR Anemometry Method and System |
US20130142214A1 (en) | 2011-12-02 | 2013-06-06 | Thales | Laser anemometry probe system and method employing continuous coherent detection, with single-particle mode, capable of detecting ice-forming conditions and of determining the severity of icing |
JP2015517094A (ja) | 2012-03-23 | 2015-06-18 | ウインダー フォトニクス エー/エスWindar Photonics A/S | 複数方向のlidarシステム |
US20150146199A1 (en) | 2013-11-22 | 2015-05-28 | Thales | Device and method for determining the presence of damage or dirt in a doppler laser anemometry probe porthole |
JP2019522779A (ja) | 2016-05-19 | 2019-08-15 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 粒子検出用レーザーセンサ |
Also Published As
Publication number | Publication date |
---|---|
FR3101160A1 (fr) | 2021-03-26 |
CA3154855A1 (fr) | 2021-03-25 |
EP4031909B1 (fr) | 2023-12-20 |
CN114502986A (zh) | 2022-05-13 |
EP4031909A1 (fr) | 2022-07-27 |
JP2022548922A (ja) | 2022-11-22 |
FR3101160B1 (fr) | 2021-09-10 |
IL291441A (en) | 2022-05-01 |
ES2972314T3 (es) | 2024-06-12 |
WO2021053290A1 (fr) | 2021-03-25 |
US20220334256A1 (en) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2828687B1 (en) | Multiple directional lidar system | |
RU2484500C2 (ru) | Когерентная лидарная система на основе полупроводникового лазера и усилителя | |
KR20010031349A (ko) | 대기의 기상 조건 탐지 방법 | |
US6285288B1 (en) | Remote air detection | |
CN208569042U (zh) | 一种低盲区双波长三通道激光雷达探测系统 | |
Köpp et al. | Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars | |
JP7479455B2 (ja) | 風況計測のためのlidarシステム | |
EP4152046A1 (en) | Multi-fiber optical sensor for light aircraft | |
Banakh et al. | Determination of optical turbulence intensity by atmospheric backscattering of laser radiation | |
Chen et al. | Measurement range expansion of single-beam Laser Doppler velocimeter based on a focusing transmitter | |
Büttner et al. | A multimode-fibre laser-Doppler anemometer for highly spatially resolved velocity measurements using low-coherence light | |
RU2799037C1 (ru) | Лидарная система для анемометрических измерений | |
Mahnke et al. | Precise characterization of a fiber-coupled laser Doppler anemometer with well-defined single scatterers | |
Besson et al. | Doppler LIDAR developments for aeronautics | |
Bogue et al. | Optical air flow measurements in flight | |
US20110141470A1 (en) | Servo-Controlled Bistatic Anemometric Probe | |
CN110261874A (zh) | 基于相干激光的实时晴空颠簸探测方法及系统 | |
US8913124B2 (en) | Lock-in imaging system for detecting disturbances in fluid | |
Gao et al. | Error Analysis and Performance Simulation of Quantum Satellite Positioning System under Snowfall Background | |
CN111323790A (zh) | 一种频域反射式气溶胶激光雷达 | |
Wan et al. | Influence of Atmospheric Turbulence near the Sea Surface on the Performance of Shipborne Lidar | |
Cao et al. | Optimization of obscurant penetration with next generation lidar technology | |
Cariou | Performances and applications of coherent pulsed fiber lidars in atmospheric sensing | |
Zilberman et al. | Laser beam wander in the atmosphere: implications for optical turbulence vertical profile sensing with imaging LIDAR | |
WO1999006853A1 (en) | Lidar system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7479455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |