JP7478039B2 - Tool presetter and machining tool correction calculation method - Google Patents

Tool presetter and machining tool correction calculation method Download PDF

Info

Publication number
JP7478039B2
JP7478039B2 JP2020109354A JP2020109354A JP7478039B2 JP 7478039 B2 JP7478039 B2 JP 7478039B2 JP 2020109354 A JP2020109354 A JP 2020109354A JP 2020109354 A JP2020109354 A JP 2020109354A JP 7478039 B2 JP7478039 B2 JP 7478039B2
Authority
JP
Japan
Prior art keywords
tool
contact
machining tool
permanent magnet
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020109354A
Other languages
Japanese (ja)
Other versions
JP2022006843A (en
Inventor
一也 沢山
武尊 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takamatsu Machinery Co Ltd
Original Assignee
Takamatsu Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takamatsu Machinery Co Ltd filed Critical Takamatsu Machinery Co Ltd
Priority to JP2020109354A priority Critical patent/JP7478039B2/en
Publication of JP2022006843A publication Critical patent/JP2022006843A/en
Priority to JP2024021621A priority patent/JP2024050924A/en
Application granted granted Critical
Publication of JP7478039B2 publication Critical patent/JP7478039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)

Description

本発明は、工作装置に取り付けた加工工具の工具刃先の位置を補正するために用いるツールプリセッタ及びこの加工工具の補正算出方法に関する。 The present invention relates to a tool presetter used to correct the position of the cutting edge of a machining tool attached to a machining device, and a method for calculating the correction of this machining tool.

加工工具の工具刃先の位置を補正するためのツールプリセッタとして種々のものが提案され、その代表的なものとして株式会社メトロールから販売されているCNC旋盤用ツールセッタが知られている(非特許文献1参照)。このCNC旋盤用ツールセッタ(例えば、Hシリーズ)は、立方体形状のセッタ本体を備え、このセッタ本体の4側面に測定部が設けられ、各測定部に測定接触部が設けられている。このツールセッタを使用する場合、工作機械(例えば、CNC旋盤)の旋盤本体に支持アームが取り付けられ、この支持アームの先端部にツールセッタが取り付けられる。 Various types of tool presetters have been proposed for correcting the position of the cutting edge of a machining tool, and a representative one is the tool setter for CNC lathes sold by Metrol Co., Ltd. (see Non-Patent Document 1). This tool setter for CNC lathes (e.g., the H series) has a cubic setter body with measuring units provided on the four sides of the setter body, and each measuring unit is provided with a measuring contact unit. When using this tool setter, a support arm is attached to the lathe body of a machine tool (e.g., a CNC lathe), and the tool setter is attached to the tip of this support arm.

工作機械に取り付けられた加工工具の工具刃先のZ軸方向(主軸の軸線方向)の位置を補正するときには、この加工工具をZ軸方向に移動させてその工具刃先をツールセッタの第1所定測定部(Z軸方向の測定部)の測定接触部に接触させ、工作機械のZ軸方向の送り量とツールセッタの測定値との差を演算し、この演算値が工作機械に取り付けた加工工具のZ軸方向の補正値となる。また、この加工工具の工具刃先のX軸方向(又はY軸方向)、即ち主軸の軸線に対して垂直な前後方向(又は主軸の軸線に対して垂直な上下方向)の位置を補正するときには、この加工工具をX軸方向(又はY軸方向)に移動させてその工具刃先をツールセッタの第2所定測定部、即ちX軸方向(又はY軸方向)の測定部の測定接触部に接触させ、工作機械のX軸方向(又はY軸方向)の送り量とツールセッタの測定値との差を演算し、この演算値が工作機械に取り付けた加工工具のX軸方向(又はY軸方向)の補正値となる。 When correcting the position of the cutting edge of a machining tool attached to a machine tool in the Z-axis direction (axis direction of the spindle), the machining tool is moved in the Z-axis direction and the cutting edge is brought into contact with the measurement contact part of the first predetermined measurement part (Z-axis measurement part) of the tool setter, the difference between the feed amount of the machine tool in the Z-axis direction and the measurement value of the tool setter is calculated, and this calculated value becomes the correction value in the Z-axis direction of the machining tool attached to the machine tool. When correcting the position of the cutting edge of the machining tool in the X-axis direction (or Y-axis direction), i.e., the front-back direction perpendicular to the axis of the spindle (or the up-down direction perpendicular to the axis of the spindle), the machining tool is moved in the X-axis direction (or Y-axis direction) and the cutting edge is brought into contact with the measurement contact part of the second predetermined measurement part of the tool setter, i.e., the measurement part of the X-axis (or Y-axis) measurement part, the difference between the feed amount of the machine tool in the X-axis (or Y-axis) direction and the measurement value of the tool setter is calculated, and this calculated value becomes the correction value in the X-axis (or Y-axis) direction of the machining tool attached to the machine tool.

株式会社メトロールのウェブページの製品ラインナップのCNC旋盤用ツールセッタ(https://www.metrol.co.jp/products/tool-setter_h/)Tool setters for CNC lathes in the product lineup on Metrol Co., Ltd.'s website (https://www.metrol.co.jp/products/tool-setter_h/)

しかしながら、上述したツールセッタでは、工作機械に取り付けた支持アームにセッタ本体を取り付ける構成であるために、工作機械の種類、機種などによっては、加工工具の移動経路内に支持アーム及び/又はツールセッタの一部が位置して干渉し、このような加工工具と加工物との位置関係では測定することができないという問題がある。また、このように支持アームに取り付ける構成では、機械的経時変化が発生するとともに、ツールセッタを取り付ける支持アームが経時的に変位するという問題がある。また、着脱式のツールセッタでは、その取付けにバラツキが発生し、正確に加工工具をセットすることができないという問題がある。 However, in the above-mentioned tool setter, because the setter body is attached to a support arm attached to the machine tool, depending on the type and model of the machine tool, a part of the support arm and/or the tool setter may be positioned in the path of movement of the machining tool, causing interference, and it is not possible to measure the positional relationship between the machining tool and the workpiece. In addition, such a configuration in which the tool is attached to the support arm causes mechanical changes over time, and there is a problem that the support arm to which the tool setter is attached may become displaced over time. In addition, a detachable tool setter has a problem that variations in attachment occur, making it impossible to set the machining tool accurately.

本発明の目的は、加工工具との干渉をなくし、種々の工作機械に適用することができるツールプリセッタを提供することである。 The object of the present invention is to provide a tool presetter that eliminates interference with machining tools and can be applied to a variety of machine tools.

また、本発明の他の目的は、工作機械の機械的経時変化の影響を少なく抑えて工具刃先の位置を補正することができる加工工具の補正算出方法を提供することである。 Another object of the present invention is to provide a method for calculating corrections for a machining tool that can correct the position of the tool tip while minimizing the effects of mechanical changes over time in the machine tool.

本発明のツールプリセッタは、工作機械のチャック手段にチャック保持される装置本体部及び前記装置本体部から延びるプローブ部を備えたプローブ測定装置と、前記プローブ測定装置の前記装置本体部に設けられた支持部材と、前記支持部材に支持された接触部材とを備え、前記接触部材の軸方向中間部に球状部が設けられ、その基部側に前記プローブ部の先端接触部を収容するための収容凹部が設けられ、その先端側に前記工作機械の加工工具が接触される測定接触部が設けられ、前記支持部材には、前記接触部材の前記球状部を支持するための支持受部が設けられており、
更に、前記支持部材の径方向内側において前記接触部材の前記基部側を同心状に保持するために、前記支持部材の内周面にリング状の外側永久磁石が配設されるとともに、前記接触部材の前記基部側の外周面にリング状の内側永久磁石が配設され、前記外側永久磁石及び前記内側永久磁石は径方向に着磁され、前記外側永久磁石の内側内周部の着磁磁極は同一極に着磁され、前記内側永久磁石の外側外周部の着磁磁極は同一磁に着磁され、前記外側永久磁石の前記内側内周部の前記着磁磁極と前記内側永久磁石の前記外側外周部の前記着磁磁極とは、同一磁で且つ対向して配設されており、
前記プローブ測定装置を前記チャック手段に保持した状態において、前記加工工具が前記接触部材の前記測定接触部に作用すると、前記接触部材が前記球状部を支点として揺動し、その前記基部側の前記収容凹部が前記プローブ部の前記先端接触部に接触し、かくして、前記接触部材の前記測定接触部への前記加工工具の接触が前記プローブ測定装置の前記プローブ部の前記先端接触部に伝達されることを特徴とする。
The tool presetter of the present invention comprises a probe measurement device having a device main body that is chucked by a chuck means of a machine tool and a probe portion extending from the device main body, a support member provided on the device main body of the probe measurement device, and a contact member supported by the support member, wherein a spherical portion is provided at an axial intermediate portion of the contact member, a accommodating recess is provided on the base side thereof for accommodating a tip contact portion of the probe portion, and a measurement contact portion is provided on the tip side thereof with which a machining tool of the machine tool comes into contact, and the support member is provided with a support receiving portion for supporting the spherical portion of the contact member,
Furthermore, in order to concentrically hold the base side of the contact member radially inside of the support member, a ring-shaped outer permanent magnet is arranged on the inner circumferential surface of the support member, and a ring-shaped inner permanent magnet is arranged on the outer circumferential surface of the base side of the contact member, the outer permanent magnet and the inner permanent magnet are magnetized in the radial direction, the magnetized magnetic poles of the inner inner circumferential portion of the outer permanent magnet are magnetized to the same pole, the magnetized magnetic poles of the outer outer circumferential portion of the inner permanent magnet are magnetized to the same magnetism, and the magnetized magnetic poles of the inner inner circumferential portion of the outer permanent magnet and the magnetized magnetic poles of the outer outer circumferential portion of the inner permanent magnet are arranged to be the same magnetized and to face each other,
When the probe measuring device is held by the chuck means and the machining tool acts on the measurement contact portion of the contact member, the contact member swings about the spherical portion as a fulcrum, and the accommodating recess on the base side comes into contact with the tip contact portion of the probe portion, and thus the contact of the machining tool with the measurement contact portion of the contact member is transmitted to the tip contact portion of the probe portion of the probe measuring device.

このツールプリセッタでは、接触部材の測定接触部をリング状に形成し、工作機械の加工工具を測定接触部の外周面、内周面及び先端面に接触可能に構成するのが好ましい。例えば、加工工具をこの測定接触部の外周面に接触させることにより、加工物の外径加工する際のX軸方向(又はY軸方向)の補正を行うことができ、その内周面に接触させることにより、加工物の内径加工する際のX軸方向(又はY軸方向)の補正を行うことができ、またその先端面に接触させることにより、加工物を加工する際のZ軸方向の補正を行うことができる。 In this tool presetter, it is preferable that the measurement contact portion of the contact member is formed in a ring shape, and that the machining tool of the machine tool is configured to be able to come into contact with the outer peripheral surface, inner peripheral surface, and tip surface of the measurement contact portion. For example, by bringing the machining tool into contact with the outer peripheral surface of this measurement contact portion, it is possible to make corrections in the X-axis (or Y-axis) direction when machining the outer diameter of the workpiece, by bringing the machining tool into contact with the inner peripheral surface, it is possible to make corrections in the X-axis (or Y-axis) direction when machining the inner diameter of the workpiece, and by bringing the machining tool into contact with the tip surface, it is possible to make corrections in the Z-axis direction when machining the workpiece.

このツールプリセッタでは、接触部材の球状部を中心としてその基部側の重量とその先端接触部側の重量をほぼ均等にバランスさせるのが好ましく、このように構成することにより、接触部材がスムースに安定して揺動し、加工工具が接触部材に接触したことを正確に検知することができる。 In this tool presetter, it is preferable to balance the weight of the base side and the weight of the tip contact side of the contact member approximately evenly around the spherical portion of the contact member. By configuring it in this manner, the contact member can oscillate smoothly and stably, and it is possible to accurately detect when the machining tool has come into contact with the contact member.

また、本発明の加工工具の補正算出方法は、請求項1~3のいずれかに記載のツールプリセッタを工作機械のチャック手段にチャック保持し、前記チャック手段を周方向に回動させた複数の角度位置にて前記工作機械の加工工具を前記ツールプリセッタの接触部材の測定接触部に接触させて計測を行い、前記複数の角度位置における前記ツールプリセッタの測定値を用いて前記加工工具の補正値を演算することを特徴とする。 Furthermore, a method for calculating compensation for a machining tool of the present invention includes chucking a tool presetter according to any one of claims 1 to 3 into a chuck means of a machine tool, rotating the chuck means in a circumferential direction to bring a machining tool of the machine tool into contact with a measurement contact portion of a contact member of the tool presetter at a plurality of angular positions, and calculating a compensation value for the machining tool using the measurement values of the tool presetter at the plurality of angular positions.

本発明のツールプリセッタによれば、プローブ測定装置は装置本体部から延びるプローブ部を備え、接触部材の球状部が支持部材に支持され、この接触部材の基部側に設けられた収容凹部にプローブ部の先端接触部が収容され、その先端側に加工工具が接触する測定接触部が設けられ、このプローブ測定装置の装置本体部が工作機械のチャック手段にチャック保持されるので、プローブ測定装置の周囲には加工工具と干渉するような支持アームなどが存在せず、加工工具との干渉なく用いることができ、種々の工作機械に適用して加工工具の位置を補正することができる。 According to the tool presetter of the present invention, the probe measuring device has a probe portion extending from the device main body, the spherical portion of the contact member is supported by a support member, the tip contact portion of the probe portion is accommodated in an accommodation recess provided on the base side of the contact member, and a measurement contact portion with which a machining tool comes into contact is provided on the tip side of the probe portion, and the device main body of the probe measuring device is chucked and held by the chuck means of the machine tool, so there are no support arms or the like around the probe measuring device that would interfere with the machining tool, and the probe measuring device can be used without interfering with the machining tool, and can be applied to various machine tools to correct the position of the machining tool.

また、支持部材の内周面にリング状の外側永久磁石が配設されるとともに、接触部材の基部側の外周面にリング状の内側永久磁石が配設され、外側永久磁石及び内側永久磁石は径方向に着磁され、外側永久磁石の内側内周部の着磁磁極は同一極に着磁され、外側永久磁石の外側外周部の着磁磁極は同一極に着磁され、外側永久磁石の着磁磁極と内側永久磁石の着磁磁極とは、同一極で且つ対向して配設されているので、外側永久磁石及び内側永久磁石の磁気的反発作用によって、支持部材の径方向内側において接触部材の基部側を同心状に保持することができる。
更に、加工工具が接触部材の測定接触部に作用すると、接触部材が球状部を支点として揺動し、その基部側の収容凹部がプローブ部の前記先端接触部に接触するので、接触部材の測定接触部への加工工具の接触がプローブ測定装置のプローブ部の先端接触部に伝達され、加工工具の接触を確実に検知することができる。
In addition, a ring-shaped outer permanent magnet is arranged on the inner surface of the support member, and a ring-shaped inner permanent magnet is arranged on the outer peripheral surface of the base side of the contact member, the outer permanent magnet and the inner permanent magnet are magnetized in the radial direction, the magnetized magnetic poles on the inner inner peripheral portion of the outer permanent magnet are magnetized to the same pole, and the magnetized magnetic poles on the outer outer peripheral portion of the outer permanent magnet are magnetized to the same pole, and the magnetized magnetic poles of the outer permanent magnet and the inner permanent magnet are arranged to be the same pole and facing each other, so that the magnetic repulsive action of the outer permanent magnet and the inner permanent magnet can hold the base side of the contact member concentrically on the radially inner side of the support member.
Furthermore, when the machining tool acts on the measurement contact portion of the contact member, the contact member swings around the spherical portion as a fulcrum, and the accommodating recess on the base side comes into contact with the tip contact portion of the probe portion. Therefore, the contact of the machining tool with the measurement contact portion of the contact member is transmitted to the tip contact portion of the probe portion of the probe measuring device, and the contact of the machining tool can be reliably detected.

また、本発明の加工工具の補正算出方法によれば、請求項1~3のいずれかに記載のツールプリセッタを工作機械のチャック手段にチャック保持して用いるので、上述したと同様の作用効果を達成することができる。加えて、チャック手段を周方向に回動させた複数の角度位置にて工作機械の加工工具をツールプリセッタの接触部材の測定接触部に接触させて計測を行い、複数の角度位置におけるツールプリセッタの測定値を用いて加工工具の補正値を演算しているので、その補正値は主軸及びチャック手段を含む工作機械の機械的経時変位量を含むものとなり、しかもツールプリセッタの取付けの際のバラツキもなくなり、これにより、高精度に加工工具の工具刃先の位置を補正することができる。 According to the method for calculating the correction for a machining tool of the present invention, the tool presetter according to any one of claims 1 to 3 is used by being chucked by the chuck means of the machine tool, so that the same effects as those described above can be achieved. In addition, the machining tool of the machine tool is brought into contact with the measurement contact portion of the contact member of the tool presetter at a plurality of angular positions obtained by rotating the chuck means in the circumferential direction to perform measurement, and the correction value for the machining tool is calculated using the measurement values of the tool presetter at the plurality of angular positions, so that the correction value includes the amount of mechanical displacement over time of the machine tool including the spindle and the chuck means, and there is no variation when the tool presetter is attached, so that the position of the cutting edge of the machining tool can be corrected with high accuracy.

本発明に従うツールプリセッタの一実施形態を示す斜視図。FIG. 1 is a perspective view showing one embodiment of a tool presetter according to the present invention. 図1のツールプリセッタを工作機械のチャック手段に保持した状態を断面で示す断面図。FIG. 2 is a cross-sectional view showing a state in which the tool presetter of FIG. 1 is held by a chuck means of a machine tool. 図2におけるIII-III線による端面図。FIG. 3 is an end view taken along line III-III in FIG. 図1のツールプリセッタを用いて加工工具のX軸方向(外径加工)の補正を行うときの状態を示す簡略断面図。10 is a simplified cross-sectional view showing a state in which correction is performed in the X-axis direction (outer diameter machining) of a machining tool using the tool presetter of FIG. 1 . 加工工具がX軸方向(外径加工)に移動してツールプリセッタの接触部材に接触して揺動した状態を示す断面図。13 is a cross-sectional view showing a state in which the machining tool moves in the X-axis direction (outer diameter machining) and comes into contact with a contact member of the tool presetter and oscillates. FIG. 図1のツールプリセッタを用いて加工工具のZ軸方向の補正を行うときの状態を示す簡略断面図。2 is a simplified cross-sectional view showing a state in which a correction in the Z-axis direction of a machining tool is performed using the tool presetter of FIG. 1 . 加工工具がZ軸方向に移動してツールプリセッタの接触部材に接触して揺動した状態を示す断面図。13 is a cross-sectional view showing a state in which the machining tool moves in the Z-axis direction and comes into contact with a contact member of the tool presetter and oscillates. FIG. 図1のツールプリセッタを用いて加工工具のX軸方向(内径加工)の補正を行うときの状態を示す簡略断面図。10 is a simplified cross-sectional view showing a state in which correction is performed in the X-axis direction (inner diameter machining) of a machining tool using the tool presetter of FIG. 1 . 加工工具がX軸方向(内径加工)に移動してツールプリセッタの接触部材に接触して揺動した状態を示す断面図。13 is a cross-sectional view showing a state in which the machining tool moves in the X-axis direction (internal diameter machining) and comes into contact with a contact member of the tool presetter and oscillates. FIG.

以下、添付図面を参照して、本発明に従うツールプリセッタの一実施形態について説明する。図1及び図2において、図示のツールプリセッタ2は、プローブ測定装置4と、このプローブ測定装置4に取り付けられた支持部材6と、この支持部材6に揺動自在に支持された接触部材8とを備えている。プローブ測定装置4は、外形が円筒形状の装置本体部10と、この装置本体部10から延びるプローブ部12とを備え、このプローブ部12は、後の記載から理解される如く、任意の方向に揺動自在に装着されている。 One embodiment of a tool presetter according to the present invention will be described below with reference to the accompanying drawings. In Figs. 1 and 2, the illustrated tool presetter 2 comprises a probe measuring device 4, a support member 6 attached to the probe measuring device 4, and a contact member 8 supported by the support member 6 so as to be able to swing freely. The probe measuring device 4 comprises a device main body 10 having a cylindrical outer shape and a probe portion 12 extending from the device main body 10, and the probe portion 12 is attached so as to be able to swing freely in any direction, as will be understood from the following description.

この装置本体部10内には、図示していないが、接触信号を生成する接触信号生成回路、生成された接触信号を送信する送信回路などが内蔵されている。このプローブ部12の一端部(先端部)には先端接触部14が設けられ、この先端接触部14に接触してプローブ部12が揺動すると、接触信号が生成され、生成された接触信号が送信される。 Although not shown, the device main body 10 contains a contact signal generating circuit that generates a contact signal, a transmission circuit that transmits the generated contact signal, and the like. A tip contact part 14 is provided at one end (tip) of the probe part 12, and when the probe part 12 comes into contact with the tip contact part 14 and swings, a contact signal is generated and the generated contact signal is transmitted.

支持部材6は、中空空間16を有する支持本体18を備え、この支持本体18の軸方向一端側(先端側)に先端壁20が設けられ、この先端壁20に支持受部22が設けられ、この支持受部22の内周面は球状に形成されている。また、この支持本体18の他端側8(基端側)に基端壁24が設けられ、この基端壁24がプローブ測定装置4の装置本体部10に取り付けられている。この支持部材6の基端壁24の中央部には貫通開口26が設けられ、プローブ測定装置4のプローブ部12の先端側は、この基端壁24の貫通開口26を通して支持部材6の中空空間16に延びている。 The support member 6 includes a support body 18 having a hollow space 16, a tip wall 20 provided at one axial end (tip side) of the support body 18, a support receiving portion 22 provided on the tip wall 20, and the inner peripheral surface of the support receiving portion 22 formed in a spherical shape. A base end wall 24 is provided at the other end 8 (base end side) of the support body 18, and the base end wall 24 is attached to the device body 10 of the probe measurement device 4. A through opening 26 is provided in the center of the base end wall 24 of the support member 6, and the tip side of the probe portion 12 of the probe measurement device 4 extends into the hollow space 16 of the support member 6 through the through opening 26 of the base end wall 24.

また、接触部材8は円筒棒状であり、その軸方向中間部に球状部32が設けられ、この球状部32が支持部材6の支持受部22に任意の方向に揺動自在に支持されている。この接触部材8の一端側(先端側)は支持部材6の先端から外方に突出しており、この突出端部に測定接触部34が設けられている。この測定接触部34はリング状に形成され、その先端面に円形状凹部36が設けられている。 The contact member 8 is cylindrical and has a spherical portion 32 in the axial middle, which is supported by the support receiving portion 22 of the support member 6 so that it can swing freely in any direction. One end (tip side) of the contact member 8 protrudes outward from the tip of the support member 6, and a measurement contact portion 34 is provided at this protruding end. The measurement contact portion 34 is formed in a ring shape, and a circular recess 36 is provided on its tip surface.

更に、この接触部材8の他端側(基部側)はプローブ測定装置4に向けて延び、その基端部37に基端から軸方向に延びる収容凹部38が設けられ、この収容凹部38にプローブ測定装置4のプローブ部12の先端部(先端接触部14を含む部位)が挿入されている。尚、この実施形態では、プローブ部12の先端接触部14以外の部位が接触部材8の収容凹部38(具体的には、その内周面)に接触するのを防止するために、収容凹部38の開口部が拡径されている。 The other end (base side) of the contact member 8 extends toward the probe measurement device 4, and a housing recess 38 is provided at the base end 37, extending axially from the base end, into which the tip end (the portion including the tip contact portion 14) of the probe portion 12 of the probe measurement device 4 is inserted. In this embodiment, the opening of the housing recess 38 is enlarged in diameter to prevent portions of the probe portion 12 other than the tip contact portion 14 from contacting the housing recess 38 of the contact member 8 (specifically, its inner peripheral surface).

この実施形態では、接触部材8は、その中間部の球状部32の中心を支点としてその一端側(先端側)の重量とその他端側(基端側)の重量とがほぼ均等にバランスするように構成されている。従って、図2から理解される如く、この球状部32を支点として接触部材8がスムースに且つ安定して揺動し、加工工具44が(44a~44c)(例えば、切削加工工具)が接触部材8に接触したことを正確に検知することができる。 In this embodiment, the contact member 8 is configured so that the weight of one end (tip side) and the weight of the other end (base side) are almost evenly balanced with the center of the spherical portion 32 in the middle as the fulcrum. Therefore, as can be seen from FIG. 2, the contact member 8 swings smoothly and stably with the spherical portion 32 as the fulcrum, and it is possible to accurately detect when a processing tool 44 (44a to 44c) (e.g., a cutting processing tool) comes into contact with the contact member 8.

この実施形態では、支持部材6の内側の中空空間16に接触部材8の他端側(基部側)が同心状に位置するように、次のように構成されている。図3をも参照して、支持部材の支持本体18の内周面にリング状の外側永久磁石40が装着され、この外側永久磁石40に対して径方向に対向して、接触部材8の基端部37(他端部)の外周面にリング状の内側永久磁石42が装着されている。そして、これら永久磁石40,42については、図3に示すように、外側永久磁石40の内周部と内側永久磁石42の外周部とは、同じ磁極(例えばN極)で径方向に対向するように構成されている。 In this embodiment, the other end side (base side) of the contact member 8 is configured so as to be concentrically positioned in the hollow space 16 inside the support member 6 as follows. Referring also to FIG. 3, a ring-shaped outer permanent magnet 40 is attached to the inner peripheral surface of the support body 18 of the support member, and a ring-shaped inner permanent magnet 42 is attached to the outer peripheral surface of the base end portion 37 (other end) of the contact member 8, facing radially from the outer permanent magnet 40. As shown in FIG. 3, the inner peripheral portion of the outer permanent magnet 40 and the outer peripheral portion of the inner permanent magnet 42 are configured to face radially with the same magnetic pole (e.g., N pole).

具体的に説明すると、外側永久磁石40は径方向に着磁され、その径方向内周部における周方向に実質上等間隔を置いた4つの部位(即ち、90度間隔の4つの部位)が、例えば図3に示すようにN極に着磁され、また内側永久磁石42も径方向に着磁され、その径方向外周部における周方向に実質上等間隔を置いた4つの部位(即ち、90度間隔の4つの部位)が、例えば図3に示すようにN極に着磁され、このように構成することによって、外側永久磁石40の内周部のN極と内側永久磁石42の外周部のN極とが径方向に対向する。従って、外側永久磁石40の内周部及び内側永久磁石42の外周部の実質上全周にわたって磁気的反発作用が生じ、この磁気的反発作用によって、接触部材8に加工工具44が作用しないときには、図2及び図3に示すように、支持部材6の支持本体18の径方向内側に接触部材8の他端側(基部側)が同心状に保持される。 To be more specific, the outer permanent magnet 40 is magnetized in the radial direction, and four parts (i.e., four parts spaced at 90 degrees) at its inner circumferential part in the radial direction are magnetized to the N pole as shown in FIG. 3, for example. The inner permanent magnet 42 is also magnetized in the radial direction, and four parts (i.e., four parts spaced at 90 degrees) at its outer circumferential part in the radial direction are magnetized to the N pole as shown in FIG. 3, for example. By configuring in this way, the N pole of the inner circumferential part of the outer permanent magnet 40 and the N pole of the outer circumferential part of the inner permanent magnet 42 face each other in the radial direction. Therefore, a magnetic repulsion action occurs over substantially the entire circumference of the inner circumferential part of the outer permanent magnet 40 and the outer circumferential part of the inner permanent magnet 42, and due to this magnetic repulsion action, when the machining tool 44 does not act on the contact member 8, the other end side (base side) of the contact member 8 is held concentrically on the radial inside of the support body 18 of the support member 6 as shown in FIG. 2 and FIG. 3.

尚、この実施形態では、周方向の4つの部位を着磁しているが、着磁する部位の数は適宜の数でよく、例えば周方向に実質上等間隔の6つ、又は8つの部位を着磁するようにしてもよい。 In this embodiment, four circumferential areas are magnetized, but the number of magnetized areas may be any number; for example, six or eight circumferential areas may be magnetized at substantially equal intervals.

このツールプリセッタ2は、例えば、工作機械の一例としてのCNC旋盤のチャック手段46に取り付けられる。チャック手段46として例えば4爪チャックを用いた場合、チャック手段46は周方向に間隔をおいて配設された4つのチャック爪部材48(図2において、それらの2つのみを示す)を備え、これら4つのチャック爪部材48間にツールプリセッタ2の装置本体部10がチャック保持される。また、図示していないが、チャック手段として例えば3爪チャックを用いたものにも用いることができ、この場合、チャック手段は周方向に間隔をおいて配設された3つのチャック爪部材を備え、これら3つのチャック爪部材間にツールプリセッタ2の装置本体部10がチャック保持される。 This tool presetter 2 is attached to the chuck means 46 of a CNC lathe, which is an example of a machine tool. When a four-jaw chuck is used as the chuck means 46, the chuck means 46 has four chuck jaw members 48 (only two of which are shown in FIG. 2) spaced apart in the circumferential direction, and the device body 10 of the tool presetter 2 is chucked and held between these four chuck jaw members 48. Although not shown, a three-jaw chuck can also be used as the chuck means, in which case the chuck means has three chuck jaw members spaced apart in the circumferential direction, and the device body 10 of the tool presetter 2 is chucked and held between these three chuck jaw members.

このツールプリセッタ2による加工工具44(44a~44c)の位置補正は、例えば次のようにして行われる。例えば、加工物の外径加工を行う場合などにおいて、工作機械62のX軸方向における加工工具の位置補正を行うときには、図2に示すように、ツールプリセッタ2(具体的には、プローブ測定装置4の装置本体部10)を工作機械62(例えば、CNC旋盤)のチャック手段46に取り付ける。そして、加工工具44aによる外径加工の際のX軸方向の位置補正については、図2、図4及び図5に示すようにして行われる。 The position correction of the machining tools 44 (44a to 44c) by the tool presetter 2 is performed, for example, as follows. For example, when performing external diameter machining of a workpiece, when correcting the position of the machining tools in the X-axis direction of the machine tool 62, as shown in FIG. 2, the tool presetter 2 (specifically, the device body 10 of the probe measuring device 4) is attached to the chuck means 46 of the machine tool 62 (e.g., a CNC lathe). Then, the position correction in the X-axis direction during external diameter machining with the machining tool 44a is performed as shown in FIG. 2, FIG. 4, and FIG. 5.

加工工具44aを図2に一点鎖線44aで示すように接触部材8の測定接触部34の径方向(X軸方向)外側に位置付け、この位置から工具取付テーブル64をX軸方向(図4参照)に移動させて加工工具44aの工具刃先50aを測定接触部34の外周面に接触させる。工具刃先50aが矢印66で示す方向に移動して測定接触部34に接触すると、図5に示すように、この接触部材8は、その測定接触部34が球状部32を支点として下方に移動して図5において時計方向に幾分回動し、これによって、その基端部37が図5において上方に移動する。 The machining tool 44a is positioned radially (in the X-axis direction) outside the measurement contact portion 34 of the contact member 8 as shown by the dashed line 44a in Figure 2, and the tool mounting table 64 is moved from this position in the X-axis direction (see Figure 4) to bring the tool cutting edge 50a of the machining tool 44a into contact with the outer circumferential surface of the measurement contact portion 34. When the tool cutting edge 50a moves in the direction shown by the arrow 66 and contacts the measurement contact portion 34, as shown in Figure 5, the measurement contact portion 34 of the contact member 8 moves downward with the spherical portion 32 as a fulcrum and rotates slightly clockwise in Figure 5, whereby the base end portion 37 moves upward in Figure 5.

かくすると、接触部材8の基端部37の収容凹部38(この収容凹部38を規定する内周面)がプローブ測定装置4のプローブ部12の先端接触部14に接触し、加工工具44aの移動接触が接触部材8を介してプローブ測定装置4のプローブ部12に伝達され、このプローブ測定装置4のプローブ部12への接触位置を正確に測定することができ、この接触位置がプローブ測定装置4のX軸方向の測定値となる。 In this way, the receiving recess 38 (the inner peripheral surface that defines this receiving recess 38) of the base end 37 of the contact member 8 comes into contact with the tip contact portion 14 of the probe portion 12 of the probe measuring device 4, and the moving contact of the machining tool 44a is transmitted to the probe portion 12 of the probe measuring device 4 via the contact member 8, allowing the contact position of the probe measuring device 4 with the probe portion 12 to be accurately measured, and this contact position becomes the measurement value in the X-axis direction of the probe measuring device 4.

加工工具44aのX軸方向の位置補正については、この実施形態では、チャック手段46を周方向に90度間隔で回動した4つの角度位置において、上述したと同様にして加工工具44aによる接触部材8の測定接触部34への接触位置をプローブ測定装置4でもって計測する。そして、これら4つの角度位置におけるプローブ測定装置4の測定値を演算して平均値を算出し、算出した平均測定値がプローブ測定装置4による測定値となり、この平均測定値を用いて従来と同様にして加工工具44aの補正値(X軸方向)を演算し、加工物を実際に加工する際には、加工工具44aのX軸方向の位置をこの補正値でもって補正するようになる。 In this embodiment, the position of the machining tool 44a in the X-axis direction is corrected by using the probe measuring device 4 to measure the contact position of the machining tool 44a with the measurement contact portion 34 of the contact member 8 in the same manner as described above at four angular positions obtained by rotating the chuck means 46 at 90-degree intervals in the circumferential direction. The measurements of the probe measuring device 4 at these four angular positions are then calculated to calculate an average value, and the calculated average measurement value becomes the measurement value by the probe measuring device 4. This average measurement value is used to calculate a correction value (X-axis direction) for the machining tool 44a in the same manner as in the conventional method, and when the workpiece is actually machined, the position of the machining tool 44a in the X-axis direction is corrected with this correction value.

加工工具44aのこの補正値(X軸方向)は、ツールプリセッタ2を工作機械62のチャック手段46に保持した状態においてチャック手段46の周方向の4つの角度位置の測定値の平均値を用いて算出しているので、主軸(図示せず)及びチャック手段46を含む工作機械62の機械的経時変位量も考慮したものとなっており、それ故に、このような補正値を用いることにより、外径加工する際に加工工具44aの工具刃先50aの位置を高精度に補正することができる。 This correction value (X-axis direction) for the machining tool 44a is calculated using the average value of the measured values at four angular positions in the circumferential direction of the chuck means 46 of the machine tool 62 when the tool presetter 2 is held by the chuck means 46, so it also takes into account the amount of mechanical displacement over time of the machine tool 62, including the spindle (not shown) and the chuck means 46. Therefore, by using such a correction value, the position of the tool cutting edge 50a of the machining tool 44a can be corrected with high precision when machining the outer diameter.

また、加工物の端面加工を行う場合などにおいて、工作機械62のZ軸方向における加工工具44の位置補正を行うときには、図2に示すように、ツールプリセッタ2を工作機械62(例えば、CNC旋盤)のチャック手段46に取り付ける。そして、加工工具44による例えば端面加工の際のZ軸方向の位置補正については、図2、図6及び図7に示すようにして行われる。 When performing position correction of the machining tool 44 in the Z-axis direction of the machine tool 62, such as when machining the end face of a workpiece, the tool presetter 2 is attached to the chuck means 46 of the machine tool 62 (e.g., a CNC lathe) as shown in FIG. 2. Then, position correction in the Z-axis direction when using the machining tool 44 to machine, for example, the end face, is performed as shown in FIGS. 2, 6, and 7.

加工工具44を図2に一点鎖線44bで示すように接触部材8の測定接触部34のZ軸方向外側に位置付け、この位置から工具取付テーブル64をZ軸方向(図6参照)に移動させて加工工具44bの工具刃先50bを測定接触部34の先端面に接触させる。工具刃先50bが矢印72で示す方向に移動して測定接触部34に接触すると、図7に示すように、この接触部材8は、その測定接触部34が球状部32を支点として上方に移動して図7において反時計方向に幾分回動し、これによって、その基端部37が図7において下方に移動する。 The machining tool 44 is positioned outside the measurement contact portion 34 of the contact member 8 in the Z-axis direction as shown by the dashed line 44b in Figure 2, and the tool mounting table 64 is moved from this position in the Z-axis direction (see Figure 6) to bring the tool tip 50b of the machining tool 44b into contact with the tip surface of the measurement contact portion 34. When the tool tip 50b moves in the direction shown by the arrow 72 and contacts the measurement contact portion 34, as shown in Figure 7, the measurement contact portion 34 of the contact member 8 moves upward with the spherical portion 32 as a fulcrum and rotates slightly counterclockwise in Figure 7, which causes the base end portion 37 to move downward in Figure 7.

かくすると、接触部材8の基端部37の収容凹部38がプローブ測定装置4のプローブ部12の先端接触部14に接触し、加工工具44bの移動接触が接触部材8を介してプローブ測定装置4のプローブ部12に伝達され、この接触位置がプローブ測定装置4のZ軸方向の測定値となる。 In this way, the receiving recess 38 of the base end 37 of the contact member 8 comes into contact with the tip contact portion 14 of the probe portion 12 of the probe measuring device 4, and the moving contact of the machining tool 44b is transmitted to the probe portion 12 of the probe measuring device 4 via the contact member 8, and this contact position becomes the measurement value in the Z-axis direction of the probe measuring device 4.

加工工具44bのZ軸方向の位置補正については、X軸方向のときと同様に、チャック手段46を周方向に90度間隔で回動した4つの角度位置において、上述した同様にして加工工具44bによる接触部材8の測定接触部34への接触位置をプローブ測定装置4でもって計測する。そして、これら4つの角度位置におけるプローブ測定装置4の測定値を演算して平均値を算出し、算出した平均測定値がプローブ測定装置4によるZ軸方向の測定値となり、この平均測定値を用いて従来と同様にして加工工具44bの補正値(Z軸方向)を演算し、加工物を実際に例えば端面加工する際には、加工工具44aのZ軸方向の位置をこの補正値でもって補正するようになる。 As for the position correction in the Z-axis direction of the machining tool 44b, as in the case of the X-axis direction, the chuck means 46 is rotated in the circumferential direction at 90 degree intervals to four angular positions, and the contact position of the machining tool 44b with the measurement contact portion 34 of the contact member 8 is measured by the probe measuring device 4 in the same manner as described above. The measurements of the probe measuring device 4 at these four angular positions are then calculated to calculate an average value, and the calculated average measurement value becomes the measurement value in the Z-axis direction by the probe measuring device 4. This average measurement value is used to calculate a correction value (Z-axis direction) for the machining tool 44b in the same manner as in the conventional method, and when actually machining, for example, the end face of the workpiece, the position of the machining tool 44a in the Z-axis direction is corrected with this correction value.

加工工具44bのこの補正値(Z軸方向)は、ツールプリセッタ2を工作機械62のチャック手段46に保持した状態においてチャック手段46の周方向の4つの角度位置の測定値の平均値を用いて算出しているので、主軸(図示せず)及びチャック手段46を含む工作機械62の機械的経時変位量も考慮したものとなり、例えば端面加工する際に、加工工具44bの工具刃先50bの位置を高精度に補正することができる。 This correction value (Z-axis direction) for the machining tool 44b is calculated using the average value of the measured values at four circumferential angular positions of the chuck means 46 when the tool presetter 2 is held by the chuck means 46 of the machine tool 62. This also takes into account the amount of mechanical displacement over time of the machine tool 62, including the spindle (not shown) and the chuck means 46. For example, when machining an end face, the position of the tool cutting edge 50b of the machining tool 44b can be corrected with high precision.

また、加工物の内径加工を行う場合などにおいて、工作機械62のX軸方向における加工工具44の位置補正を行うときには、図2に示すように、ツールプリセッタ2を工作機械62(例えば、CNC旋盤)のチャック手段46に取り付ける。そして、加工工具44による例えば内径加工の際のX軸方向の位置補正については、図2、図8及び図9に示すようにして行われる。 When performing position correction of the machining tool 44 in the X-axis direction of the machine tool 62, such as when machining the internal diameter of a workpiece, the tool presetter 2 is attached to the chuck means 46 of the machine tool 62 (e.g., a CNC lathe) as shown in FIG. 2. Then, position correction in the X-axis direction when machining the internal diameter with the machining tool 44 is performed as shown in FIGS. 2, 8, and 9.

加工工具44(この場合、外径用加工工具ではなく、内径用加工工具を用いるが、理解を容易にするために、同じ参照番号「44」又は「44c」を使用している)を図2に一点鎖線44cで示すように接触部材8の測定接触部34のZ軸方向内側(リング状の測定接触部34の内側)に位置付け、この位置から工具取付テーブル64をX軸方向(図8参照)に移動させて加工工具44cの工具刃先50cを測定接触部34の内周面に接触させる。工具刃先50cが矢印82で示す方向に移動して測定接触部34の円形状凹部36の内周面に接触すると、図9に示すように、この接触部材8は、その測定接触部34が球状部32を支点として上方に移動して図9において反時計方向に幾分回動し、これによって、その基端部37が図9において下方に移動する。 The machining tool 44 (in this case, an internal diameter machining tool is used instead of an external diameter machining tool, but for ease of understanding, the same reference numbers "44" or "44c" are used) is positioned inside the Z-axis direction of the measurement contact portion 34 of the contact member 8 (inside the ring-shaped measurement contact portion 34) as shown by the dashed line 44c in FIG. 2, and the tool mounting table 64 is moved from this position in the X-axis direction (see FIG. 8) to bring the tool cutting edge 50c of the machining tool 44c into contact with the inner peripheral surface of the measurement contact portion 34. When the tool cutting edge 50c moves in the direction shown by the arrow 82 and contacts the inner peripheral surface of the circular recess 36 of the measurement contact portion 34, as shown in FIG. 9, the measurement contact portion 34 of the contact member 8 moves upward with the spherical portion 32 as a fulcrum and rotates somewhat counterclockwise in FIG. 9, whereby the base end portion 37 moves downward in FIG. 9.

かくすると、上述のZ軸方向の移動のときと同様に、接触部材8の基端部37の収容凹部38がプローブ測定装置4のプローブ部12の先端接触部14に接触し、加工工具44bの移動接触が接触部材8を介してプローブ測定装置4のプローブ部12に伝達され、この接触位置がプローブ測定装置4のX軸方向の測定値となる。 As a result, similar to the movement in the Z-axis direction described above, the accommodating recess 38 of the base end 37 of the contact member 8 comes into contact with the tip contact portion 14 of the probe portion 12 of the probe measuring device 4, and the moving contact of the machining tool 44b is transmitted to the probe portion 12 of the probe measuring device 4 via the contact member 8, and this contact position becomes the measurement value in the X-axis direction of the probe measuring device 4.

加工工具44bのX軸方向(内径加工)の位置補正については、X軸方向(外径加工)のときと同様に、チャック手段46を周方向に90度間隔で回動した4つの角度位置においてプローブ測定装置4でもって計測し、4つの角度位置におけるプローブ測定装置4の測定値の平均値を算出し、算出した平均測定値がプローブ測定装置4によるX軸方向(内径加工)の測定値となる。そして、この平均測定値を用いて従来と同様にして加工工具44cの補正値(X軸方向)を演算し、加工物を実際に内径加工する際には、加工工具44cのX軸方向の位置をこの補正値でもって補正するようになる。この補正値は、軸(図示せず)及びチャック手段46を含む工作機械62の機械的経時変位量も考慮したものとなり、例えば内径加工する際に加工工具44bの工具刃先50bの位置を高精度に補正することができる。 As for the position correction of the machining tool 44b in the X-axis direction (internal diameter machining), the chuck means 46 is rotated 90 degrees in the circumferential direction at four angular positions using the probe measuring device 4, and the average value of the measurements of the probe measuring device 4 at the four angular positions is calculated. The calculated average measurement value becomes the measurement value in the X-axis direction (internal diameter machining) by the probe measuring device 4. Then, using this average measurement value, a correction value (X-axis direction) of the machining tool 44c is calculated in the same manner as in the past, and when the workpiece is actually machined in the internal diameter, the position of the machining tool 44c in the X-axis direction is corrected with this correction value. This correction value also takes into account the amount of mechanical displacement over time of the machine tool 62 including the shaft (not shown) and the chuck means 46, and for example, the position of the tool tip 50b of the machining tool 44b can be corrected with high precision when machining the internal diameter.

以上、本発明に従うツールプリセッタ及びこれを用いた加工工具の補正算出方法について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の修正乃至変更が可能である。 The above describes the tool presetter according to the present invention and the method for calculating corrections for a machining tool using the same, but the present invention is not limited to such an embodiment, and various modifications and changes are possible without departing from the scope of the present invention.

例えば、上述した実施形態では、接触部材8の測定接触部34をリング状に形成しているが、このような形状に限定されず、例えば中実円筒状に形成するようにしてもよく、中実円筒状の接触部材を用いた場合、外径加工の位置補正及び端面加工の位置補正に適用することができる。 For example, in the above-described embodiment, the measurement contact portion 34 of the contact member 8 is formed in a ring shape, but is not limited to such a shape and may be formed, for example, in a solid cylindrical shape. When a solid cylindrical contact member is used, it can be applied to position correction in outer diameter machining and position correction in end face machining.

また、例えば、上述した実施形態では、支持部材6側の永久磁石40と接触部材8の永久磁石42との磁気的反発作用を利用して同心状に保持しているが、このような構成に代えて、機械的保持構造(例えば、複数のスプリングを利用した保持構造)により同心状に保持するようにしてもよい。 In addition, for example, in the above-described embodiment, the permanent magnets 40 on the support member 6 side and the permanent magnets 42 on the contact member 8 are held concentrically by utilizing the magnetic repulsion between them, but instead of this configuration, they may be held concentrically by a mechanical holding structure (for example, a holding structure using multiple springs).

また、例えば、上述した実施形態では、チャック手段46の周方向の4個所(周方向に間隔をおいた4つの角度位置においてプローブ測定装置4で測定しているが、このような数に限定されず、4個所よりも少ない例えば3個所でもよく、或いは4個所よりも多い例えば6個所又は8個所などでもよい。 In addition, for example, in the above-described embodiment, the probe measuring device 4 measures at four locations around the circumference of the chuck means 46 (four angular positions spaced apart around the circumference), but this number is not limited to this, and it may be less than four locations, for example, three locations, or more than four locations, for example, six or eight locations.

また、上述した実施形態では、図1~図9に示すツールプリセッタ2を用いて加工工具の補正算出方法について説明したが、この補正算出方法は、このツールプリセッタ2とは異なる形態のものを用いたときも適用することができる。 In the above-described embodiment, a method for calculating corrections for a machining tool was described using the tool presetter 2 shown in Figures 1 to 9, but this correction calculation method can also be applied when a tool presetter with a different form is used.

更に、この加工工具の補正算出方法については、ツールプリセッタ2に代えて、このツールプリセッタ2に用いたプローブ測定装置4を用いても適用することができる。この場合、プローブ測定装置4の装置本体部10を工作機械のチャック手段46にチャック保持し、このチャック手段46を周方向に回動させた複数の角度位置にて工作機械の加工工具44をプローブ測定装置4のプローブ部12に接触させるようにしても、上述したと同様に、このプローブ測定装置4の複数の測定値を用いて加工工具44の補正値を演算するこができる。 Furthermore, this machining tool correction calculation method can also be applied when using a probe measuring device 4 used in the tool presetter 2 instead of the tool presetter 2. In this case, even if the device body 10 of the probe measuring device 4 is chucked and held in the chuck means 46 of the machine tool, and the machining tool 44 of the machine tool is brought into contact with the probe portion 12 of the probe measuring device 4 at multiple angular positions by rotating the chuck means 46 in the circumferential direction, the correction value of the machining tool 44 can be calculated using multiple measurement values of the probe measuring device 4 in the same manner as described above.

2 ツールプリセッタ
4 プローブ測定装置
6 支持部材
8 接触部材
10 装置本体部
12 プローブ部
14 先端接触部
32 球状部
34 測定接触部
40 外側永久磁石
42 内側永久磁石
44,44a,44b,44c 加工工具
46 チャック手段
50a,50b,50c 工具刃先
62 工作機械







2 Tool presetter 4 Probe measuring device 6 Support member 8 Contact member 10 Device main body 12 Probe portion 14 Tip contact portion 32 Spherical portion 34 Measurement contact portion 40 Outer permanent magnet 42 Inner permanent magnet 44, 44a, 44b, 44c Machining tool 46 Chuck means 50a, 50b, 50c Tool cutting edge 62 Machine tool







Claims (4)

工作機械のチャック手段にチャック保持される装置本体部及び前記装置本体部から延びるプローブ部を備えたプローブ測定装置と、前記プローブ測定装置の前記装置本体部に設けられた支持部材と、前記支持部材に支持された接触部材とを備え、前記接触部材の軸方向中間部に球状部が設けられ、その基部側に前記プローブ部の先端接触部を収容するための収容凹部が設けられ、その先端側に前記工作機械の加工工具が接触される測定接触部が設けられ、前記支持部材には、前記接触部材の前記球状部を支持するための支持受部が設けられており、
更に、前記支持部材の径方向内側において前記接触部材の前記基部側を同心状に保持するために、前記支持部材の内周面にリング状の外側永久磁石が配設されるとともに、前記接触部材の前記基部側の外周面にリング状の内側永久磁石が配設され、前記外側永久磁石及び前記内側永久磁石は径方向に着磁され、前記外側永久磁石の内側内周部の着磁磁極は同一極に着磁され、前記内側永久磁石の外側外周部の着磁磁極は同一極に着磁され、前記外側永久磁石の前記内側内周部の前記着磁磁極と前記内側永久磁石の前記外側外周部の前記着磁磁極とは、同一極で且つ対向して配設されており、
前記プローブ測定装置を前記チャック手段に保持した状態において、前記加工工具が前記接触部材の前記測定接触部に作用すると、前記接触部材が前記球状部を支点として揺動し、その前記基部側の前記収容凹部が前記プローブ部の前記先端接触部に接触し、かくして、前記接触部材の前記測定接触部への前記加工工具の接触が前記プローブ測定装置の前記プローブ部の前記先端接触部に伝達されることを特徴とするツールプリセッタ。
a probe measurement device including a device main body that is chucked and held by a chuck means of a machine tool and a probe portion extending from the device main body; a support member provided on the device main body of the probe measurement device; and a contact member supported by the support member, wherein a spherical portion is provided at an axial intermediate portion of the contact member, a receiving recess is provided on the base side thereof for receiving a tip contact portion of the probe portion, and a measurement contact portion is provided on the tip side thereof with which a machining tool of the machine tool comes into contact, and the support member is provided with a support receiving portion for supporting the spherical portion of the contact member,
Furthermore, in order to concentrically hold the base side of the contact member radially inside of the support member, a ring-shaped outer permanent magnet is arranged on the inner peripheral surface of the support member, and a ring-shaped inner permanent magnet is arranged on the outer peripheral surface of the base side of the contact member, the outer permanent magnet and the inner permanent magnet are magnetized in the radial direction, the magnetized magnetic poles of the inner inner peripheral portion of the outer permanent magnet are magnetized to the same pole, the magnetized magnetic poles of the outer outer peripheral portion of the inner permanent magnet are magnetized to the same pole, and the magnetized magnetic poles of the inner inner peripheral portion of the outer permanent magnet and the magnetized magnetic poles of the outer outer peripheral portion of the inner permanent magnet are arranged to be of the same pole and to face each other,
a machining tool presetter for measuring a position of a workpiece by using a machining tool having a diameter of 10 mm or more and a diameter of 15 mm or more, the machining tool being adapted to machine a workpiece having a diameter of 10 mm or more and a diameter of 15 ...
前記接触部材の前記測定接触部はリング状に形成され、前記工作機械の前記加工工具は、前記測定接触部の外周面、内周面及び先端面に接触可能に構成されていることを特徴とする請求項1に記載のツールプリセッタ。 The tool presetter according to claim 1, characterized in that the measurement contact portion of the contact member is formed in a ring shape, and the machining tool of the machine tool is configured to be able to contact the outer peripheral surface, inner peripheral surface, and tip surface of the measurement contact portion. 前記接触部材は、前記球状部を中心として前記基部側の重量と前記先端接触部側の重量とがほぼ均等にバランスしていることを特徴とする請求項1又は2に記載のツールプリセッタ。 The tool presetter according to claim 1 or 2, characterized in that the weight of the contact member on the base side and the weight of the tip contact part side are almost evenly balanced around the spherical part. 請求項1~3のいずれかに記載のツールプリセッタを工作機械のチャック手段にチャック保持し、前記チャック手段を周方向に回動させた複数の角度位置にて前記工作機械の加工工具を前記ツールプリセッタの接触部材の測定接触部に接触させて計測を行い、前記複数の角度位置における前記ツールプリセッタの測定値を用いて前記加工工具の補正値を演算することを特徴とする加工工具の補正算出方法。 4. A method for calculating compensation for a machining tool, comprising: chucking the tool presetter according to any one of claims 1 to 3 in a chuck means of a machine tool; rotating the chuck means in a circumferential direction to bring a machining tool of the machine tool into contact with a measurement contact portion of a contact member of the tool presetter at a plurality of angular positions, and calculating a compensation value for the machining tool using measurement values of the tool presetter at the plurality of angular positions.
JP2020109354A 2020-06-25 2020-06-25 Tool presetter and machining tool correction calculation method Active JP7478039B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020109354A JP7478039B2 (en) 2020-06-25 2020-06-25 Tool presetter and machining tool correction calculation method
JP2024021621A JP2024050924A (en) 2020-06-25 2024-02-16 Machining tool correction calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109354A JP7478039B2 (en) 2020-06-25 2020-06-25 Tool presetter and machining tool correction calculation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024021621A Division JP2024050924A (en) 2020-06-25 2024-02-16 Machining tool correction calculation method

Publications (2)

Publication Number Publication Date
JP2022006843A JP2022006843A (en) 2022-01-13
JP7478039B2 true JP7478039B2 (en) 2024-05-02

Family

ID=80110873

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020109354A Active JP7478039B2 (en) 2020-06-25 2020-06-25 Tool presetter and machining tool correction calculation method
JP2024021621A Pending JP2024050924A (en) 2020-06-25 2024-02-16 Machining tool correction calculation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024021621A Pending JP2024050924A (en) 2020-06-25 2024-02-16 Machining tool correction calculation method

Country Status (1)

Country Link
JP (2) JP7478039B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134332A (en) 2003-10-31 2005-05-26 Ricoh Co Ltd Shape measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134332A (en) 2003-10-31 2005-05-26 Ricoh Co Ltd Shape measuring apparatus

Also Published As

Publication number Publication date
JP2022006843A (en) 2022-01-13
JP2024050924A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP4833696B2 (en) Work centering method and centering apparatus
JP5515639B2 (en) Machine Tools
JP5836314B2 (en) Machine tool calibration method
JP6948928B2 (en) Spindles and machine tools
JP7478039B2 (en) Tool presetter and machining tool correction calculation method
JP2020008581A (en) Measuring device for spindle or rotary table
WO2011052441A1 (en) Machine tool and displacement measuring instrument
JP2019195869A (en) Correction device and correction method
JP2012206188A (en) High-precision processing apparatus
JP2018169180A (en) Inner diameter measuring apparatus and inner diameter measuring method using the same
KR101666609B1 (en) Medical and dental prosthetics processing apparatus having workpiece equipped with sensor
KR100742537B1 (en) Clamping of Drive device for measurement of ball bearing inner race
JP2015039732A (en) Machine tool and work machining portion measuring method using machine tool
JP2011093065A (en) Machine tool
JP6428149B2 (en) measuring device
JP2004322255A (en) Machine tool with straight line position measuring instrument
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
KR101666606B1 (en) Workpiece comprising clamp with sensor
JPS6274507A (en) Correcting method for tool rest datum of 4-axis nc lathe with two tool rests
JP2010240760A (en) Centering device for workpiece
JP3204906U (en) Angle measurement tool
JP2005324287A (en) Workpiece machining device and workpiece machining method
JP5531640B2 (en) Feed control device for machine tools
JP5151545B2 (en) Simultaneous multi-axis control evaluation method
KR102185141B1 (en) Tool Pre-setter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240419

R150 Certificate of patent or registration of utility model

Ref document number: 7478039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150