JP7477848B2 - Compositions Having Upper Critical Solution Temperatures - Google Patents

Compositions Having Upper Critical Solution Temperatures Download PDF

Info

Publication number
JP7477848B2
JP7477848B2 JP2022070697A JP2022070697A JP7477848B2 JP 7477848 B2 JP7477848 B2 JP 7477848B2 JP 2022070697 A JP2022070697 A JP 2022070697A JP 2022070697 A JP2022070697 A JP 2022070697A JP 7477848 B2 JP7477848 B2 JP 7477848B2
Authority
JP
Japan
Prior art keywords
temperature
upper critical
aam
copolymer
critical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022070697A
Other languages
Japanese (ja)
Other versions
JP2022090046A (en
Inventor
千恵 大塚
雅樹 奥山
聖一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kose Corp
University of Tokyo NUC
Original Assignee
Kose Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kose Corp, University of Tokyo NUC filed Critical Kose Corp
Publication of JP2022090046A publication Critical patent/JP2022090046A/en
Application granted granted Critical
Publication of JP7477848B2 publication Critical patent/JP7477848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度を有する組成物の用途に関し、より詳細には、化粧料又は皮膚外用剤として使用するための上記組成物に関する。 The present invention relates to uses of a composition having an upper critical solution temperature containing a copolymer of acrylamide and acrylonitrile, and more specifically, to the composition for use as a cosmetic or topical skin preparation.

化粧料は、なめらかなのに密着する、化粧もちが良いのに落としやすいなど、しばしば真逆の性能を併せもつことが要求される。例えば、フィルムマスカラに用いられる高分子重合体について、水では落ちないがお湯では落ちる等、ある特定の刺激に応答して機能を発現することが求められている。 Cosmetics are often required to have opposing properties, such as being smooth yet adherent, or lasting but easy to remove. For example, the polymers used in film mascara are required to respond to certain stimuli and exhibit their functions, such as not coming off in water but coming off in hot water.

上記刺激としては、温度の他、pH、光等が知られているが、温度によって構造変化を起こす温度応答性重合体として、ポリ(N-イソプロピルアクリルアミド)が周知であり、ポリ(N-アクリロイルグリシンアミド)等についての報告(例えば、非特許文献1参照)等もある。かかる温度応答性重合体について化粧料への配合検討が行われてきたが、化粧料への応用が進められているとは言い難い。その理由の一つとして、機能発現を望まない場面でも、当該温度刺激によって性質が変化してしまうことが挙げられる。例えば、温度応答性重合体が配合された製品では、高温の環境で性質が変わることにより品質の安定性が損なわれるおそれがあるとされている。 In addition to temperature, pH, light, etc. are known as the above-mentioned stimuli. Poly(N-isopropylacrylamide) is well known as a temperature-responsive polymer that undergoes a structural change in response to temperature, and there have also been reports on poly(N-acryloylglycinamide) (see, for example, Non-Patent Document 1). Although the incorporation of such temperature-responsive polymers into cosmetics has been investigated, it is difficult to say that their application in cosmetics has progressed. One of the reasons for this is that the properties of the polymers change in response to temperature stimuli even in situations where their function is not desired. For example, it is said that there is a risk that the stability of the quality of products containing temperature-responsive polymers may be compromised due to the change in properties in a high-temperature environment.

一方、ポリアクリルアミドが水に溶解し、ポリアクリロニトリルがN,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の極性溶媒にのみ溶解し、DMSO-HOは自由に混ざり合うこと等から、アクリルアミド(AAm)とアクリロニトリル(AN)との共重合体の溶解性について検討が行われており、AAm/AN組成比=0/100~100/0の間の範囲にわたり共重合体の合成が行われ、得られた共重合体の組成分析を赤外及び紫外吸収スペクトル法や比重法等により行うとともに各種溶媒への溶解性が測定されている(例えば、非特許文献2参照)。また、アクリルアミド(AAm)とアクリロニトリル(AN)との共重合体の水溶液は、上限臨界溶液温度を有し、AAm/AN組成比を変更することにより、上限臨界溶液温度を調整できることが報告されている(例えば、非特許文献3参照)。 On the other hand, since polyacrylamide dissolves in water, polyacrylonitrile dissolves only in polar solvents such as N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), and DMSO-H 2 O is freely miscible, the solubility of copolymers of acrylamide (AAm) and acrylonitrile (AN) has been studied, and copolymers have been synthesized over a range of AAm/AN composition ratios from 0/100 to 100/0, and the composition of the copolymers obtained has been analyzed by infrared and ultraviolet absorption spectroscopy and specific gravity methods, while the solubility in various solvents has been measured (see, for example, Non-Patent Document 2). It has also been reported that an aqueous solution of a copolymer of acrylamide (AAm) and acrylonitrile (AN) has an upper critical solution temperature, and that the upper critical solution temperature can be adjusted by changing the AAm/AN composition ratio (see, for example, Non-Patent Document 3).

他方、化粧料や皮膚外用剤を使用する際には、効果の持続時間や使用目的を考慮して、一定時間後に洗い流す必要がある場合が多いが、洗顔を行うために適した水の温度については、様々な意見がある。例えば、肌温度よりも少し高い40℃前後のお湯を用いる洗顔を行うと、毛穴が開いて化粧料等をよく落とすことができるため、汚れ落ちという点では優れているが、必要以上に皮脂や水分が肌から失われるおそれがあるとされている。それに対して冷水による洗顔は、毛穴をひきしめることができるが、毛穴に化粧料等が詰まった状態のままになるおそれもあるとされている。また、熱帯地域、寒冷地域、水中等特殊な環境においても化粧料や皮膚外用剤を維持又は容易に落とすことが必要な場合があり、化粧料や皮膚外用剤として使用される組成物は、幅広い温度範囲において対応できることも要求されている。 On the other hand, when using cosmetics or topical skin preparations, it is often necessary to wash them off after a certain time, taking into consideration the duration of effect and the purpose of use, but there are various opinions about the appropriate water temperature for washing the face. For example, washing the face with hot water at about 40°C, which is slightly higher than the skin temperature, opens the pores and allows the cosmetics and other substances to be removed well, so it is said to be excellent in terms of removing dirt, but there is a risk of losing more sebum and moisture than necessary from the skin. In contrast, washing the face with cold water can tighten the pores, but there is also a risk of the cosmetics and other substances remaining clogged in the pores. In addition, there are cases where it is necessary to maintain or easily remove cosmetics and topical skin preparations even in special environments such as tropical regions, cold regions, and underwater, and compositions used as cosmetics and topical skin preparations are required to be able to withstand a wide range of temperatures.

Howard C. H.,Norman W. S., Polymer letters vol.2 (1964)Howard C. H., Norman W. S., Polymer letters vol.2 (1964) 高橋他、工業化学雑誌70巻6号(1967)988-992頁Takahashi et al., Journal of Industrial Chemistry, Vol. 70, No. 6 (1967), pp. 988-992 Seuring et al., Macromolecules 2012, 45, 3910-3918Seuring et al., Macromolecules 2012, 45, 3910-3918

本発明の課題は、化粧料又は皮膚外用剤として使用するために適した上限臨界溶液温度を有する組成物を提供することにある。 The object of the present invention is to provide a composition having an upper critical solution temperature suitable for use as a cosmetic or topical skin preparation.

本発明者らは、アクリルアミド(AAm)とアクリロニトリル(AN)とをモノマーとして使用し、モノマー質量仕込み比([(AAm):(AN)])を様々に変更することにより、アクリルアミドとアクリロニトリルとのランダム共重合体([poly(AAm-co-AN)])をフリーラジカル重合により6種類合成した。かかる6種類の共重合体を水に溶解して、各共重合体含有水溶液について降温及び昇温を行い、光透過率の変化を測定することにより、各共重合体含有水溶液の上限臨界溶液温度を決定したところ、[(AAm):(AN)]におけるANの比率が増加するにつれて、共重合体含有水溶液の上限臨界溶液温度が上昇することを確認した。次に、上記6種類の[poly(AAm-co-AN)]含有水溶液に界面活性剤を添加したところ、各共重合体含有水溶液の上限臨界溶液温度が低下することを見いだした。そこで、各共重合体が界面活性剤含有水溶液に溶解している場合に、水溶液に溶解している場合と比較して上限臨界溶液温度がどれほど低下するかを確認した。 The present inventors used acrylamide (AAm) and acrylonitrile (AN) as monomers and synthesized six types of random copolymers of acrylamide and acrylonitrile ([poly(AAm-co-AN)]) by free radical polymerization by varying the monomer mass charge ratio ([(AAm):(AN)]). The six types of copolymers were dissolved in water, and the temperature of each copolymer-containing aqueous solution was lowered and raised. The upper critical solution temperature of each copolymer-containing aqueous solution was determined by measuring the change in light transmittance. It was confirmed that the upper critical solution temperature of the copolymer-containing aqueous solution increased as the ratio of AN in [(AAm):(AN)] increased. Next, it was found that the upper critical solution temperature of each copolymer-containing aqueous solution decreased when a surfactant was added to the six types of [poly(AAm-co-AN)]-containing aqueous solutions. Therefore, it was confirmed how much the upper critical solution temperature decreased when each copolymer was dissolved in a surfactant-containing aqueous solution compared to when it was dissolved in an aqueous solution.

次いで、可逆的付加開裂連鎖移動(Reversible Addition-Fragmentation Chain Transfer:RAFT)重合により[poly(AAm-co-AN)]を6種類合成し、各共重合体を水に溶解した各共重合体含有水溶液について降温及び昇温を行い、光透過率の変化を測定することにより、各共重合体含有水溶液の上限臨界溶液温度を決定した。RAFT重合により合成された[poly(AAm-co-AN)]含有水溶液は、フリーラジカル重合により合成された場合と比較して水溶液中における単位温度当たりの透過率変化が大きいことを見いだし、したがって水溶液の温度応答の感度が高くなることを確認し、本発明を完成するに至った。 Next, six types of [poly(AAm-co-AN)] were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and the temperature of each copolymer-containing aqueous solution was lowered and raised by dissolving each copolymer in water, and the change in light transmittance was measured to determine the upper critical solution temperature of each copolymer-containing aqueous solution. It was found that the aqueous solution containing [poly(AAm-co-AN)] synthesized by RAFT polymerization had a larger change in transmittance per unit temperature in the aqueous solution compared to that synthesized by free radical polymerization, and it was confirmed that the aqueous solution had a higher sensitivity in temperature response, which led to the completion of the present invention.

すなわち、本発明は以下の事項により特定されるとおりのものである。
[1]化粧料又は皮膚外用剤として使用するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物。
[2]共重合体が、モノマー質量仕込み比アクリルアミド:アクリロニトリル=77.5:22.5~85:15であることを特徴とする前記[1]記載の組成物。
[3]共重合体が、8000~200000の重量平均分子量を有することを特徴とする前記[1]又は[2]記載の組成物。
[4]共重合体が、ランダム共重合体であることを特徴とする前記[1]~[3]のいずれか記載の組成物。
[5]ランダム共重合体が、フリーラジカル重合によって合成されたランダム共重合体であることを特徴とする前記[4]記載の組成物。
[6]ランダム共重合体が、可逆的付加開裂連鎖移動重合によって合成されたランダム共重合体であることを特徴とする前記[4]記載の組成物。
[7]ドデシル硫酸ナトリウム1~20mMを添加した場合に温度感受性を有することを特徴とする前記[1]~[6]のいずれか記載の組成物。
[8]界面活性剤を含まない1w/v%水溶液における光透過率-温度カーブの微分曲線の最大値が50d%T/dT以上であることを特徴とする前記[6]又は[7]記載の組成物。
[9]アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物からなる化粧料又は皮膚外用剤に、界面活性剤を接触させることを特徴とする上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させる方法。
また、本発明の他の態様として、[10]アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する化粧料又は皮膚外用剤、[11]化粧料又は皮膚外用剤を製造するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物の使用、[12]化粧料成分又は皮膚外用剤成分に、アクリルアミドとアクリロニトリルとの共重合体を配合することを特徴とする上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する化粧料又は皮膚外用剤の製造方法、[13]化粧料又は皮膚外用剤として使用するための、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有するアクリルアミドとアクリロニトリルとの共重合体を含む組成物に関する。
That is, the present invention is specified by the following items.
[1] A composition containing a copolymer of acrylamide and acrylonitrile and having an upper critical solution temperature or a temperature at which the solubility increases rapidly, for use as a cosmetic or topical skin preparation.
[2] The composition according to [1] above, wherein the copolymer has a monomer mass ratio of acrylamide:acrylonitrile=77.5:22.5 to 85:15.
[3] The composition according to [1] or [2] above, wherein the copolymer has a weight average molecular weight of 8,000 to 200,000.
[4] The composition according to any one of [1] to [3] above, wherein the copolymer is a random copolymer.
[5] The composition according to the above [4], wherein the random copolymer is a random copolymer synthesized by free radical polymerization.
[6] The composition according to [4] above, wherein the random copolymer is a random copolymer synthesized by reversible addition-fragmentation chain transfer polymerization.
[7] The composition according to any one of [1] to [6] above, which has temperature sensitivity when 1 to 20 mM sodium dodecyl sulfate is added.
[8] The composition according to [6] or [7] above, wherein the maximum value of the differential curve of the light transmittance-temperature curve in a 1 w/v % aqueous solution containing no surfactant is 50 d%T/dT or more.
[9] A method for lowering an upper critical solution temperature or a temperature at which solubility increases rapidly, comprising contacting a surfactant with a cosmetic or topical skin preparation comprising a composition having an upper critical solution temperature or a temperature at which solubility increases rapidly, the composition containing a copolymer of acrylamide and acrylonitrile.
Other aspects of the present invention relate to: [10] a cosmetic or topical skin preparation containing a copolymer of acrylamide and acrylonitrile and having an upper critical solution temperature or a temperature at which solubility increases rapidly; [11] use of a composition containing a copolymer of acrylamide and acrylonitrile and having an upper critical solution temperature or a temperature at which solubility increases rapidly, for the production of a cosmetic or topical skin preparation; [12] a method for producing a cosmetic or topical skin preparation having an upper critical solution temperature or a temperature at which solubility increases rapidly, which comprises blending a copolymer of acrylamide and acrylonitrile into a cosmetic or topical skin preparation component; and [13] a composition containing a copolymer of acrylamide and acrylonitrile having an upper critical solution temperature or a temperature at which solubility increases rapidly, for use as a cosmetic or topical skin preparation.

本発明の化粧料又は皮膚外用剤として使用するための組成物は、上限臨界溶液温度を有するアクリルアミドとアクリロニトリルとのポリマーと、化粧料成分又は皮膚外用剤成分とを含む化粧料や皮膚外用剤であり、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有することから、水や汗によっては落ちない(溶解しない)が、温水で容易に落とす(溶解させる)ことが可能となる。また、本発明の組成物によると、アクリルアミドとアクリロニトリルとの共重合体が溶解している水溶液に界面活性剤を添加することにより上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させることができるので、用途や使用温度環境に合わせて洗浄効果の高い化粧料や皮膚外用剤を提供することができ、例えば、特定の温度の水で洗った場合は溶解性を示さないが、界面活性剤を含む洗浄料を用いて水で洗顔する場合には、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度がより低くなるため、上記特定の温度においても組成物中の重合体が容易に溶解して、従来よりも低い温度で洗顔することができるため肌への負担が少なくなる。 The composition for use as a cosmetic or topical skin preparation of the present invention is a cosmetic or topical skin preparation that contains a polymer of acrylamide and acrylonitrile having an upper critical solution temperature and a cosmetic component or topical skin preparation component, and since it has an upper critical solution temperature or a temperature at which solubility increases rapidly, it does not come off (does not dissolve) with water or sweat, but can be easily removed (dissolved) with warm water. In addition, according to the composition of the present invention, the upper critical solution temperature or the temperature at which solubility increases rapidly can be lowered by adding a surfactant to an aqueous solution in which a copolymer of acrylamide and acrylonitrile is dissolved, so that a cosmetic or topical skin preparation with a high cleaning effect can be provided according to the application and the temperature environment of use. For example, when washed with water of a specific temperature, it does not show solubility, but when washing the face with water using a detergent containing a surfactant, the upper critical solution temperature or the temperature at which solubility increases rapidly becomes lower, so that the polymer in the composition easily dissolves even at the above specific temperature, and the face can be washed at a lower temperature than before, which reduces the burden on the skin.

また、本発明の組成物によると、アクリルアミドとアクリロニトリルとの共重合体が溶解している水溶液に、汗に含まれる塩(例えば、NaCl)を添加することにより上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度は低下しないため、汗によっては化粧料が除去されることがなく、洗浄したいときにのみ効果的に化粧料や皮膚外用剤を除去することができる。 In addition, according to the composition of the present invention, by adding a salt (e.g., NaCl) contained in sweat to an aqueous solution in which a copolymer of acrylamide and acrylonitrile is dissolved, the upper critical solution temperature or the temperature at which the solubility increases rapidly does not decrease, so cosmetics are not removed by sweat, and cosmetics and topical skin preparations can be effectively removed only when washing is desired.

さらに、本発明の組成物におけるアクリルアミドとアクリロニトリルとの共重合体として、フリーラジカル重合に代えてRAFT重合によって合成されたランダム共重合体を用いる場合、組成物溶液の温度応答の感度が高くなる、すなわち単位温度当たりの組成物溶液の透過率変化が大きくなることから、洗浄に用いる水中の界面活性剤の濃度が非常に低い場合又は界面活性剤が含まれていない場合においても、化粧料等が特定の狭範囲の温度で容易に溶解することにより洗浄効果が顕著に高くなる。 Furthermore, when a random copolymer synthesized by RAFT polymerization instead of free radical polymerization is used as the copolymer of acrylamide and acrylonitrile in the composition of the present invention, the sensitivity of the temperature response of the composition solution becomes high, that is, the change in transmittance of the composition solution per unit temperature becomes large. Therefore, even when the concentration of the surfactant in the water used for washing is very low or no surfactant is contained, the cosmetic material, etc., is easily dissolved within a specific narrow range of temperatures, and the washing effect becomes significantly high.

アクリルアミドとアクリロニトリルのモノマー質量仕込み比([(AAm):(AN)])が異なる、ランダム共重合体(poly(AAm-co-AN))(以下、単に[poly(AAm-co-AN)]ともいう。)であって、フリーラジカル重合により合成された6種類の[poly(AAm-co-AN)](F1~F6)について、それぞれの1w/v%水溶液の光透過率(縦軸)と溶液の温度(横軸)とをプロットしたグラフを示す。The graph shows six types of random copolymers (poly(AAm-co-AN)) (hereinafter simply referred to as [poly(AAm-co-AN)]) (F1 to F6) synthesized by free radical polymerization, each of which has a different monomer mass charge ratio ([(AAm):(AN)]) of acrylamide and acrylonitrile, plotting the light transmittance (vertical axis) of a 1 w/v % aqueous solution of each of these [poly(AAm-co-AN)] and the solution temperature (horizontal axis). F1~F6について、それぞれの1w/v%水溶液に終濃度100mMのドデシル硫酸ナトリウム(sodium dodecyl sulfate:SDS)を添加した混合溶液について、光透過率と溶液の温度とをプロットしたグラフを示す。A graph is shown in which the light transmittance and the solution temperature are plotted for mixed solutions in which sodium dodecyl sulfate (SDS) was added to a final concentration of 100 mM in a 1 w/v % aqueous solution of each of F1 to F6. フリーラジカル重合により合成された[Poly(AAm-co-AN)][82.5:17.5](F3)の1w/v%水溶液に終濃度5mM、10mM、15mM、20mM、30mM及び100mMのSDSを添加した各混合溶液の光透過率と溶液の温度とをプロットしたグラフを示す。FIG. 1 shows a graph plotting the light transmittance and solution temperature of each mixed solution in which SDS was added to a final concentration of 5 mM, 10 mM, 15 mM, 20 mM, 30 mM, and 100 mM in a 1 w/v % aqueous solution of [Poly(AAm-co-AN)] [82.5:17.5] (F3) synthesized by free radical polymerization. F1~F6について、それぞれの1w/v%水溶液に終濃度100mMのセチルトリメチルアンモニウムクロライド(cetyltrimethylammonium chloride:CTAC)を添加した混合溶液の光透過率と溶液の温度をプロットしたグラフを示す。The graph shows the light transmittance and solution temperature of a mixed solution in which cetyltrimethylammonium chloride (CTAC) was added to a final concentration of 100 mM in a 1 w/v % aqueous solution of each of F1 to F6. F1~F6について、それぞれの1w/v%水溶液に終濃度100mMのNaClを添加した混合溶液の光透過率と溶液の温度とをプロットしたグラフを示す。The graph shows the light transmittance and solution temperature of mixed solutions prepared by adding NaCl to a final concentration of 100 mM to each of 1 w/v % aqueous solutions of F1 to F6. RAFT重合により合成された[Poly(AAm-co-AN)][82.5:17.5]であって、Mwが12400であるR1の共重合体の、1w/v%水溶液及び0.1w/v%水溶液について、透過率と溶液の温度とをプロットしたグラフ(A)及び(A1)と、それらの微分曲線(a)及び(a1)に示す。また、F1の共重合体の1w/v%水溶液及び0.1w/v%水溶液について、透過率と溶液の温度とをプロットしたグラフ(F)及び(F1)と、それらの微分曲線(f)及び(f1)に示す。The graphs (A) and (A1) show plots of transmittance versus solution temperature for a 1 w/v % aqueous solution and a 0.1 w/v % aqueous solution of the copolymer R1, which is [Poly(AAm-co-AN)] [82.5:17.5] synthesized by RAFT polymerization and has a Mw of 12400, and their differential curves (a) and (a1) show the same. The graphs (F) and (F1) show plots of transmittance versus solution temperature for a 1 w/v % aqueous solution and a 0.1 w/v % aqueous solution of the copolymer F1, and their differential curves (f) and (f1) show the same. RAFT重合により合成された重量平均分子量(Mw)が異なる4種類の[Poly(AAm-co-AN)][82.5:17.5](R1~R4)について、それぞれの1w/v%水溶液の光透過率と溶液の温度とをプロットしたグラフ(A)~(D)と、それらの微分曲線をそれぞれ(a)~(d)に示す。Four types of [Poly(AAm-co-AN)] [82.5:17.5] (R1 to R4) with different weight-average molecular weights (Mw) synthesized by RAFT polymerization are shown in graphs (A) to (D) in which the light transmittance of a 1 w/v % aqueous solution of each of them and the temperature of the solution are plotted, and their differential curves are shown in graphs (a) to (d), respectively. R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体の水溶液の透過率と溶液の温度とをプロットしたグラフ(E)、(B)、(G)、(H)とそれらの微分曲線をそれぞれ(e)、(b)、(g)、(h)に示す。The transmittance of aqueous solutions of the copolymers R5, R2, R6, and a 1:1 mixture of R5 and R6 versus solution temperature are plotted in graphs (E), (B), (G), and (H), and their differential curves are shown in graphs (e), (b), (g), and (h), respectively.

本発明の組成物としては、化粧料又は皮膚外用剤として使用するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物であれば特に制限されず、組成物には、前記共重合体の他、化粧料成分や皮膚外用剤成分が含まれる。また、本発明の化粧料又は皮膚外用剤の上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させる方法としては、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度を有する組成物に、陰イオン性界面活性剤等の界面活性剤を接触させる方法であれば特に制限されない。本発明において「化粧料又は皮膚外用剤として使用するための・・・組成物」とは、化粧料又は皮膚外用剤に用途が限定された組成物の用途発明であることを意味し、また「上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物」とは、組成物を含む溶液が、特定の条件下で上限臨界溶液温度を有する、もしくは、急激に溶解度が上昇する温度を有することになる組成物を意味する。 The composition of the present invention is not particularly limited as long as it is a composition containing a copolymer of acrylamide and acrylonitrile for use as a cosmetic or topical skin preparation and has an upper critical solution temperature or a temperature at which solubility increases rapidly, and the composition contains a cosmetic component and a topical skin preparation component in addition to the copolymer. In addition, the method for lowering the upper critical solution temperature or the temperature at which solubility increases rapidly of the cosmetic or topical skin preparation of the present invention is not particularly limited as long as it is a method of contacting a surfactant such as an anionic surfactant with a composition containing a copolymer of acrylamide and acrylonitrile and has an upper critical solution temperature. In the present invention, "a composition ... for use as a cosmetic or topical skin preparation" means an invention of a use of a composition whose use is limited to a cosmetic or topical skin preparation, and "a composition having an upper critical solution temperature or a temperature at which solubility increases rapidly" means a composition in which a solution containing the composition has an upper critical solution temperature or a temperature at which solubility increases rapidly under specific conditions.

上記アクリルアミドとアクリロニトリルとの共重合体としては、下記式(1)で示されるアクリルアミドと、下記式(2)で示されるアクリルニトリルとを、モノマーとして重合することにより合成される共重合体(poly(acrylamide-co-acrylonitrile) )(poly(AAm-co-AN))を挙げることができ、上記共重合体の形態としては、ランダム共重合体、ブロック共重合体のいずれでもよいが、官能基の均一分散性という点から下記式(3)で示されるランダム共重合体が好ましい。 The copolymer of acrylamide and acrylonitrile mentioned above can be a copolymer (poly(acrylamide-co-acrylonitrile)) (poly(AAm-co-AN)) synthesized by polymerizing the acrylamide represented by the following formula (1) and the acrylonitrile represented by the following formula (2) as monomers. The form of the copolymer can be either a random copolymer or a block copolymer, but from the viewpoint of uniform dispersion of functional groups, a random copolymer represented by the following formula (3) is preferred.

Figure 0007477848000001
Figure 0007477848000001

Figure 0007477848000002
Figure 0007477848000002

Figure 0007477848000003
Figure 0007477848000003

上記ランダム共重合体(poly(AAm-co-AN))の合成方法としては、ラジカルを反応中心としてポリマー鎖が伸張していくラジカル反応を挙げることができ、具体的には、幅広い分子量分布を有するポリマーが得られるフリーラジカル重合による合成方法や、ラジカル重合の簡便性と汎用性を保ちつつ、分子構造の制御を可能にするリビングラジカル重合による合成方法、なかでも、分子量分布(Mw/Mn)がより小さい共重合体を製造できるRAFT重合による合成方法を挙げることができる。 The above random copolymer (poly(AAm-co-AN)) can be synthesized by a radical reaction in which a polymer chain extends from a radical at the reaction center. Specifically, the synthesis method can be free radical polymerization, which can produce a polymer with a wide molecular weight distribution, or living radical polymerization, which allows control of the molecular structure while maintaining the simplicity and versatility of radical polymerization. Among these, the synthesis method can be RAFT polymerization, which can produce a copolymer with a smaller molecular weight distribution (Mw/Mn).

上記フリーラジカル重合による合成方法としては、アクリルアミドとアクリルニトリルとをモノマーとして用いて共重合させるために、重合温度にて十分にラジカルを発生させる重合開始剤と、重合反応に適した溶媒とを用いる、従来公知の方法を挙げることができ、合成された共重合体の反応溶液には未反応のモノマー等の夾雑物が共存しているので、精製処理をさらに行うことにより、[poly(AAm-co-AN)]を調製することが好ましい。 The above-mentioned synthesis method using free radical polymerization can be exemplified by a conventionally known method that uses a polymerization initiator that generates sufficient radicals at the polymerization temperature and a solvent suitable for the polymerization reaction to copolymerize acrylamide and acrylonitrile as monomers. Since the reaction solution of the synthesized copolymer contains impurities such as unreacted monomers, it is preferable to prepare [poly(AAm-co-AN)] by further carrying out a purification process.

上記RAFT重合による合成方法としては、アクリルアミドとアクリルニトリルとをモノマーとして用いて共重合させるために、重合温度にて十分にラジカルを発生させる重合開始剤と、重合反応に適した溶媒と、さらに末端活性ラジカルの反応性を制御して擬似リビング的に重合を進行させるための、可逆的付加開裂連鎖移動剤(Reversible Addition-Fragmentation Chain Transfer:RAFT剤)とを用いる、従来公知の方法を挙げることができる。 As a synthesis method using the above-mentioned RAFT polymerization, there can be mentioned a conventionally known method that uses a polymerization initiator that generates sufficient radicals at the polymerization temperature to copolymerize acrylamide and acrylonitrile as monomers, a solvent suitable for the polymerization reaction, and a reversible addition-fragmentation chain transfer (RAFT) agent for controlling the reactivity of the terminal active radicals to cause the polymerization to proceed in a pseudo-living manner.

上記共重合体のアクリルアミドとアクリロニトリルのモノマー質量仕込み比[(AAm):(AN)]としては、1:99~99:1が好ましく、50:50~95:5が好ましく、70:30~90:10がより好ましく、77.5:22.5~85:15が最も好ましい。なお、本発明の効果を奏する限りにおいて、他のモノマー成分を用いることもできる。 The monomer mass ratio of acrylamide to acrylonitrile in the copolymer [(AAm):(AN)] is preferably 1:99 to 99:1, more preferably 50:50 to 95:5, more preferably 70:30 to 90:10, and most preferably 77.5:22.5 to 85:15. Other monomer components may also be used as long as they achieve the effects of the present invention.

上記重合開始剤としては、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)等のアゾ系重合開始剤;過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素等の過酸化物系重合開始剤;などを挙げることができる。 Examples of the polymerization initiator include azo-based polymerization initiators such as 2,2'-azobis(isobutyronitrile) (AIBN), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-2-imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis(2-methylpropionamidine) disulfate, and 2,2'-azobis(N,N'-dimethyleneisobutylamidine); persulfates such as potassium persulfate and ammonium persulfate; and peroxide-based polymerization initiators such as benzoyl peroxide, t-butyl hydroperoxide, and hydrogen peroxide.

上記重合反応に適した溶媒としては、DMSO、水、DMF等を挙げることができる。 Suitable solvents for the above polymerization reaction include DMSO, water, DMF, etc.

上記RAFT剤としては、O-エチル-S-(1-フェニルエチル)ジチオカーボネート、O-エチル-S-(2-プロポキシエチル)ジチオカーボネート、O-エチル-S-(1-シアノ-1-メチルエチル)ジチオカーボネート等のジチオカーボネート類、ジチオプロピオン酸シアノエチル、ジチオプロピオン酸ベンジル、ジチオ安息香酸ベンジル、ジチオ安息香酸アセトキシエチル等のジチオエステル類、S-ベンジル-N,N-ジメチルジチオカルバメート、ベンジル-1-ピロールカルボジチオエート等のジチオカルバメート類、ジベンジルトリチオカーボネート、シアノメチルドデシルトリチオカーボネート(cyanomethyl dodecyl trithiocarbonate:CMDT)等のトリチオカーボネート類などを挙げることができる。 Examples of the RAFT agent include dithiocarbonates such as O-ethyl-S-(1-phenylethyl)dithiocarbonate, O-ethyl-S-(2-propoxyethyl)dithiocarbonate, and O-ethyl-S-(1-cyano-1-methylethyl)dithiocarbonate; dithioesters such as cyanoethyl dithiopropionate, benzyl dithiopropionate, benzyl dithiobenzoate, and acetoxyethyl dithiobenzoate; dithiocarbamates such as S-benzyl-N,N-dimethyldithiocarbamate and benzyl-1-pyrrolecarbodithioate; and trithiocarbonates such as dibenzyl trithiocarbonate and cyanomethyl dodecyl trithiocarbonate (CMDT).

RAFT重合における、モノマーの総モル数を1とした場合のRAFT剤の配合モル数としては、好ましくは0.0001~0.01、より好ましくは0.0002~0.005、さらに好ましくは0.0003~0.003を挙げることができる。 In RAFT polymerization, the number of moles of the RAFT agent blended, assuming that the total number of moles of monomers is 1, is preferably 0.0001 to 0.01, more preferably 0.0002 to 0.005, and even more preferably 0.0003 to 0.003.

本発明の[poly(AAm-co-AN)]の、フリーラジカル重合による具体的な調製方法としては、アクリロニトリルをDMSOに溶解し、アクリルアミドを添加した溶液を脱気して開始溶液とし、AIBN等の開始剤を加えて、50~70℃にて5~10時間反応させる方法(上記非特許文献1参照)や、各割合のアクリロニトリルとアクリルアミドとを脱酸素水に添加し、過硫酸カリウム、メタ重亜硫酸カリウムに硫酸第一鉄アンモニウム溶液等の開始剤を加えて、窒素気流中、40℃にて10分間重合させ、重合反応物は、反応停止後、すぐにメタノール又は水に落として沈殿させ、得られた沈殿物を、洗浄、乾燥後、アクリロニトリルとアクリルアミドの割合に応じてDMSO又は水に溶解し、メタノールに再沈殿させて精製する方法(SEN-I GAKAISHI、Vol.32, No.1(1976)参照)を挙げることができる。そしてまた、仕込モノマー組成を、0.25molのAN+AAm、0.3%/モノマーのK、0.78%/モノマーのNaHSO、酢酸0.05mL、203mLのHOとし、重合時間1~3時間、重合温度40℃とするAAm/AN=0/100~30/70モル組成の共重合体や、仕込組成を、0.146molのAN+AAm、0.0485%/モノマーのK、88mLのHO、1.54mLのイソプロパノールとし、重合時間2時間、重合温度50℃とするAAm/AN=70/30~100/0モル組成の共重合体や、仕込組成を、0.25molのAN+AAm、0.14%/モノマーのBPO、50mLのDMFとし、重合時間1~4時間、重合温度60℃とするAAm/AN=0/100~100/0モル組成の共重合体を合成し、DMF、水、メタノール、エタノール等適切な精製用溶媒を用いて精製する方法(上記非特許文献2参照)などを挙げることができる。 Specific examples of the method for preparing the poly(AAm-co-AN) of the present invention by free radical polymerization include a method in which acrylonitrile is dissolved in DMSO, acrylamide is added, the solution is degassed to prepare an initiation solution, an initiator such as AIBN is added, and the reaction is carried out at 50 to 70° C. for 5 to 10 hours (see Non-Patent Document 1 above); and a method in which acrylonitrile and acrylamide in various proportions are added to deoxygenated water, an initiator such as potassium persulfate, potassium metabisulfite, and ferrous ammonium sulfate solution is added, and polymerization is carried out in a nitrogen stream at 40° C. for 10 minutes, and the polymerization reaction product is precipitated by dropping into methanol or water immediately after the reaction is stopped, and the resulting precipitate is washed and dried, dissolved in DMSO or water depending on the ratio of acrylonitrile and acrylamide, and reprecipitated in methanol for purification (see SEN-I GAKAISHI, Vol. 32, No. 1 (1976)). Also, a copolymer having a molar composition of AAm/AN=0/100-30/70 was prepared by feeding 0.25 mol of AN+AAm, 0.3%/monomer of K 2 S 2 O 8 , 0.78%/monomer of NaHSO 3 , 0.05 mL of acetic acid, and 203 mL of H 2 O for a polymerization time of 1-3 hours at a polymerization temperature of 40° C., and a copolymer having a molar composition of AAm/AN=0/100-30/70 was prepared by feeding 0.146 mol of AN+AAm, 0.0485%/monomer of K 2 S 2 O 8 , 88 mL of H 2 O for a polymerization time of 1-3 hours at a polymerization temperature of 40° C. and a method of synthesizing a copolymer having a molar composition of AAm/AN=70/30 to 100/0 using a feed composition of 0.25 mol of AN+AAm, 0.14%/monomer BPO, 50 mL of DMF, a polymerization time of 1 to 4 hours, and a polymerization temperature of 60° C., and purifying the copolymer using an appropriate purification solvent such as DMF, water, methanol, or ethanol (see Non-Patent Document 2 above).

本発明における[poly(AAm-co-AN)]の、RAFT重合による具体的な調製方法としては,アクリルアミドやアクリロニトリル等のモノマーをDMSOに溶解し、CMDT等のRAFT剤を加えて脱気して開始溶液とし、AIBN等の開始剤を開始溶液に添加し、60~80oCにて2~7時間反応させた後、室温まで冷却し、冷却された反応溶液をメタノールに注ぎ、析出した共重合体を30~50℃で12~48h程度乾燥する方法(Polym.Chem. 2016,7,1979-1986等)を例示することができる。 A specific example of a method for preparing [poly(AAm-co-AN)] by RAFT polymerization in the present invention is to dissolve a monomer such as acrylamide or acrylonitrile in DMSO, add a RAFT agent such as CMDT, and degas to obtain an initiation solution. An initiator such as AIBN is added to the initiation solution, and the solution is reacted at 60 to 80°C for 2 to 7 hours, then cooled to room temperature. The cooled reaction solution is poured into methanol, and the precipitated copolymer is dried at 30 to 50°C for about 12 to 48 hours (Polym. Chem. 2016, 7, 1979-1986, etc.).

なお、アクリロニトリルは揮発性が高く、脱気中に揮発する恐れがある。このため、仕込み量に近い組成比の共重合体、すなわち、目的の上限臨界溶液温度を有する共重合体を得るためには、アクリロニトリルは反応溶液を加温し重合反応を開始させる直前に、ガスタイトシリンジ等を用いて加えることが望ましい。 Acrylonitrile is highly volatile and may evaporate during degassing. For this reason, in order to obtain a copolymer with a composition ratio close to the amount charged, i.e., a copolymer with the desired upper critical solution temperature, it is desirable to add acrylonitrile using a gas-tight syringe or the like just before heating the reaction solution to start the polymerization reaction.

本発明における[poly(AAm-co-AN)]の重量平均分子量(Mw)としては、フリーラジカル重合による共重合体[poly(AAm-co-AN)]の場合、8000~200000を挙げることができ、25000~175000が好ましく、50000~150000がより好ましく、85000~120000がさらに好ましく、RAFT重合による共重合体[poly(AAm-co-AN)]の場合、8000~200000を挙げることができ、8500~100000が好ましく、9000~90000がより好ましい。上記重量平均分子量の算出方法としては、ゲル浸透クロマトグラフィー(GPC)を用いて測定し、標準物質を用いて検量線を作成の上、算出する方法を挙げることができる。 In the present invention, the weight average molecular weight (Mw) of the [poly(AAm-co-AN)] can be 8,000 to 200,000, preferably 25,000 to 175,000, more preferably 50,000 to 150,000, and even more preferably 85,000 to 120,000, in the case of a copolymer [poly(AAm-co-AN)] produced by free radical polymerization, and can be 8,000 to 200,000, preferably 8,500 to 100,000, and more preferably 9,000 to 90,000, in the case of a copolymer [poly(AAm-co-AN)] produced by RAFT polymerization. The weight average molecular weight can be calculated by measuring the molecular weight using gel permeation chromatography (GPC), creating a calibration curve using a standard substance, and then calculating the molecular weight.

本発明におけるpoly(AAm-co-AN)の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)としては、1.0~5.0が好ましく、1.1~4.5がより好ましい。さらに、フリーラジカル重合による[poly(AAm-co-AN)]の場合、1.5~3.0を好適に挙げることができ、また、RAFT重合による[poly(AAm-co-AN)]の場合、1.1~2.0をそれぞれ好適に例示することができる。 In the present invention, the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of poly(AAm-co-AN) is preferably 1.0 to 5.0, and more preferably 1.1 to 4.5. Furthermore, in the case of [poly(AAm-co-AN)] obtained by free radical polymerization, a suitable ratio is 1.5 to 3.0, and in the case of [poly(AAm-co-AN)] obtained by RAFT polymerization, a suitable ratio is 1.1 to 2.0.

本発明の組成物を共重合体とともに構成する上記化粧料成分又は皮膚外用剤成分としては、化粧料又は皮膚外用剤に一般に用いられる成分、例えば、アルコール類、保湿剤、ゲル化剤、粉体、紫外線吸収剤、防腐剤、抗菌剤、酸化防止剤、pH調整剤、美肌用成分、香料、水等の1種又は2種以上を挙げることができる。 The cosmetic or skin topical preparation components constituting the composition of the present invention together with the copolymer may include one or more of the components commonly used in cosmetics or skin topical preparations, such as alcohols, moisturizers, gelling agents, powders, UV absorbers, preservatives, antibacterial agents, antioxidants, pH adjusters, skin beautifying ingredients, fragrances, and water.

上記アルコール類としては、例えばエタノール、イソプロパノール等の低級アルコールや、グリセリン、ジグリセリン、ポリグリセリン、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,3-ブチレングリコール、エリスリトール等の多価アルコールや、ソルビトール、マルトース、キシリトール、マルチトール等の糖アルコールや、コレステロール、シトステロール、フィトステロール、ラノステロール等のステロール類などを挙げることができる。上記保湿剤としては、例えば、尿素、ヒアルロン酸、コンドロイチン硫酸、ピロリドンカルボン酸塩等を挙げることができる。 Examples of the alcohols include lower alcohols such as ethanol and isopropanol, polyhydric alcohols such as glycerin, diglycerin, polyglycerin, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,3-butylene glycol, and erythritol, sugar alcohols such as sorbitol, maltose, xylitol, and maltitol, and sterols such as cholesterol, sitosterol, phytosterol, and lanosterol. Examples of the moisturizing agents include urea, hyaluronic acid, chondroitin sulfate, and pyrrolidone carboxylate.

上記ゲル化剤としては、皮膚外用剤又は化粧料に一般に用いられる水性ゲル化剤又は油性ゲル化剤であれば特に制限されず、例えば、水性ゲル化剤としては、アラビアガム、トラガカントガム、ガラクタン、キャロブガム、グァーガム、カラヤガム、カラギーナン、ペクチン、寒天、クインスシード(マルメロ等由来の)、デンプン(コメ、トウモロコシ、バレイショ、コムギ等由来の)、アルゲコロイド、トラントガム、ローカストビーンガム等の植物系高分子や、キサンタンガム、デキストラン、サクシノグルカン、プルラン等の微生物系高分子や、コラーゲン、カゼイン、アルブミン、ゼラチン等の動物系高分子や、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等のデンプン系高分子や、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、セルロース硫酸ナトリウム、カルボキシメチルセルロースナトリウム等のセルロース系高分子や、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等のアルギン酸系高分子や、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン等のビニル系高分子や、ポリエチレングリコール、エチレンオキサイドプロピレンオキサイド共重合体、ベントナイト、ケイ酸アルミニウムマグネシウム、ラポナイト、ヘクトライト、無水ケイ酸等の無機系ゲル化剤増粘剤などを挙げることができ、油性ゲル化剤としては、アルミニウムステアレート、マグネシウムステアレート、ジンクミリステート等の金属セッケンや、N-ラウロイル-L-グルタミン酸、α,γ-ジ-n-ブチルアミン等のアミノ酸誘導体や、デキストリンパルミチン酸エステル、デキストリンステアリン酸エステル、デキストリン2-エチルヘキサン酸パルミチン酸混合エステル等のデキストリン誘導体や、脂肪酸エステル、ショ糖パルミチン酸エステル、ショ糖ステアリン酸エステル等のショ糖脂肪酸エステルや、モノベンジリデンソルビトール、ジベンジリデンソルビトール等のソルビトールのベンジリデン誘導体や、ジメチルベンジルドデシルアンモニウムモンモリロナイトクレー、ジメチルジオクタデシルアンモニウムモンモリロナイトクレー等の有機変性粘土鉱物などを挙げることができる。 The gelling agent is not particularly limited as long as it is an aqueous gelling agent or an oil-based gelling agent that is generally used in skin external preparations or cosmetics. For example, aqueous gelling agents include plant-based polymers such as gum arabic, tragacanth gum, galactan, carob gum, guar gum, karaya gum, carrageenan, pectin, agar, quince seed (derived from quince, etc.), starch (derived from rice, corn, potato, wheat, etc.), algae colloid, trang gum, and locust bean gum; microbial polymers such as xanthan gum, dextran, succinoglucan, and pullulan; and collagen. Examples of the gelling agent include animal-based polymers such as casein, albumin, and gelatin; starch-based polymers such as carboxymethyl starch and methylhydroxypropyl starch; cellulose-based polymers such as methyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, sodium cellulose sulfate, and sodium carboxymethyl cellulose; alginic acid-based polymers such as sodium alginate and propylene glycol alginate; vinyl-based polymers such as sodium polyacrylate, carboxyvinyl polymers, alkyl-modified carboxyvinyl polymers, polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone; and inorganic gelling agent thickeners such as polyethylene glycol, ethylene oxide-propylene oxide copolymers, bentonite, aluminum magnesium silicate, laponite, hectorite, and silicic anhydride. Examples of the oil-based gelling agent include metal soaps such as aluminum stearate, magnesium stearate, and zinc myristate; amino acid derivatives such as N-lauroyl-L-glutamic acid and α,γ-di-n-butylamine; dextrin derivatives such as dextrin palmitate, dextrin stearate, and dextrin 2-ethylhexanoate palmitate mixed ester; fatty acid esters, sucrose fatty acid esters such as sucrose palmitate and sucrose stearate; benzylidene derivatives of sorbitol such as monobenzylidene sorbitol and dibenzylidene sorbitol; and organically modified clay minerals such as dimethyl benzyldodecyl ammonium montmorillonite clay and dimethyl dioctadecyl ammonium montmorillonite clay.

上記粉体としては、例えば、無機粉体、有機粉体、金属石鹸粉末、有色顔料、パール顔料、金属粉末、タール色素、天然色素等を挙げることができ、その粒子形状(球状、針状、板状等)や、粒子径(煙霧状、微粒子、顔料級等)や、粒子構造(多孔質、無孔質等)を問わない。これらの粉体はそのまま使用してもよいが、2種以上の粉体を複合化したものを用いてもよく、油剤、シリコーン化合物、フッ素化合物等で表面処理を施してもよい。 Examples of the powders include inorganic powders, organic powders, metal soap powders, colored pigments, pearl pigments, metal powders, tar dyes, and natural dyes, and are not limited to any particular particle shape (spherical, needle-like, plate-like, etc.), particle size (aerobic, fine particles, pigment-grade, etc.), or particle structure (porous, nonporous, etc.). These powders may be used as they are, or may be composites of two or more types of powders, or may be surface-treated with oils, silicone compounds, fluorine compounds, etc.

上記紫外線吸収剤としては、例えば、パラアミノ安息香酸等の安息香酸系紫外線吸収剤や、アントラニル酸メチル等のアントラニル酸系紫外線吸収剤や、サリチル酸メチル等のサリチル酸系紫外線吸収剤や、パラメトキシケイ皮酸オクチル等のケイ皮酸系紫外線吸収剤や、2,4-ジヒドロキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤や、ウロカニン酸エチル等のウロカニン酸系紫外線吸収剤などを挙げることができる。 Examples of the ultraviolet absorber include benzoic acid-based ultraviolet absorbers such as para-aminobenzoic acid, anthranilic acid-based ultraviolet absorbers such as methyl anthranilate, salicylic acid-based ultraviolet absorbers such as methyl salicylate, cinnamic acid-based ultraviolet absorbers such as octyl paramethoxycinnamate, benzophenone-based ultraviolet absorbers such as 2,4-dihydroxybenzophenone, and urocanic acid-based ultraviolet absorbers such as ethyl urocanate.

上記防腐剤や抗菌剤としては、例えば、パラオキシ安息香酸エステル、安息香酸、安息香酸ナトリウム、ソルビン酸、ソルビン酸カリウム、フェノキシエタノール、サリチル酸、石炭酸、パラクロルメタクレゾール、ヘキサクロロフェン、塩化ベンザルコニウム、塩化クロルヘキシジン、トリクロロカルバニリド、感光素、イソプロピルメチルフェノール等を挙げることができる。上記酸化防止剤としては、例えば、トコフェロール、ブチルヒドロキシアニソール、ジブチルヒドロキシトルエン等を挙げることができる。 Examples of the preservatives and antibacterial agents include paraoxybenzoic acid esters, benzoic acid, sodium benzoate, sorbic acid, potassium sorbate, phenoxyethanol, salicylic acid, carbolic acid, parachlormetacresol, hexachlorophene, benzalkonium chloride, chlorhexidine chloride, trichlorocarbanilide, photosensitizers, isopropylmethylphenol, etc. Examples of the antioxidants include tocopherol, butylhydroxyanisole, dibutylhydroxytoluene, etc.

上記pH調整剤としては、例えば、乳酸、乳酸塩、クエン酸、クエン酸塩、グリコール酸、コハク酸、酒石酸、リンゴ酸、炭酸カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等を挙げることができる。 Examples of the pH adjuster include lactic acid, lactate salts, citric acid, citrate salts, glycolic acid, succinic acid, tartaric acid, malic acid, potassium carbonate, sodium bicarbonate, and ammonium bicarbonate.

上記美肌用成分としては、例えば、アルブチン、グルタチオン、ユキノシタ抽出物等の美白剤や、ロイヤルゼリー、感光素、コレステロール誘導体等の細胞賦活剤・肌荒れ改善剤や、ノニル酸ワレニルアミド、ニコチン酸ベンジルエステル、ニコチン酸β-ブトキシエチルエステル、カプサイシン、ジンゲロン、カンタリスチンキ、イクタモール、カフェイン、タンニン酸、α-ボルネオール、ニコチン酸トコフェロール、イノシトールヘキサニコチネート、シクランデレート、シンナリジン、トラゾリン、アセチルコリン、ベラパミル、セファランチン、γ-オリザノール等の血行促進剤や、酸化亜鉛、タンニン酸等の皮膚収斂剤や、イオウ、チアントロール等の抗脂漏剤などを挙げることができる。 Examples of the skin-beautifying ingredients include whitening agents such as arbutin, glutathione, and saxifrage extract; cell activators and skin roughness improvers such as royal jelly, photosensitizers, and cholesterol derivatives; blood circulation promoters such as nonylic acid valenylamide, nicotinic acid benzyl ester, nicotinic acid β-butoxyethyl ester, capsaicin, zingerone, cantharides tincture, ichthammol, caffeine, tannic acid, α-borneol, tocopherol nicotinate, inositol hexanicotinate, cyclandelate, cinnarizine, tolazoline, acetylcholine, verapamil, cepharanthine, and γ-oryzanol; skin astringents such as zinc oxide and tannic acid; and antiseborrheic agents such as sulfur and thianthrol.

本発明の化粧料又は皮膚外用剤として使用するための組成物は、上限臨界溶液温度を有するアクリルアミドとアクリロニトリルとの共重合体を含むことから、本発明の組成物を含む溶液(組成物溶液)は、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する。かかる組成物を含む溶液における溶媒としては、例えば毛髪、まつ毛、まゆ毛等の体毛、皮膚、唇、爪などに塗布された化粧料や皮膚外用剤を洗浄するための溶媒を挙げることができ、具体的には水や洗浄水を挙げることができ、かかる洗浄水としては水に上限臨界溶液温度を低下させる界面活性剤が添加された混合溶媒である洗浄水を挙げることができる。また、本発明の効果を奏する限りにおいて、他の洗浄成分等をさらに含めることができる。上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する本発明の組成物を含む溶液は、透過率が100%である清澄な溶液から、光透過率が0%である懸濁液を含む。 The composition for use as a cosmetic or topical skin preparation of the present invention contains a copolymer of acrylamide and acrylonitrile having an upper critical solution temperature, and therefore a solution containing the composition of the present invention (composition solution) has an upper critical solution temperature or a temperature at which the solubility increases rapidly. Examples of the solvent in the solution containing such a composition include a solvent for washing cosmetics or topical skin preparations applied to body hair such as hair, eyelashes, and eyebrows, skin, lips, nails, etc., and specifically, water and washing water can be mentioned. Examples of such washing water include washing water, which is a mixed solvent in which a surfactant that lowers the upper critical solution temperature is added to water. In addition, other washing components and the like can be further contained as long as the effects of the present invention are achieved. Solutions containing the composition of the present invention having an upper critical solution temperature or a temperature at which the solubility increases rapidly include clear solutions with a transmittance of 100% and suspensions with a light transmittance of 0%.

上記水としては、化粧料や皮膚外用剤を洗浄するために使用可能な水であれば特に制限されず、水道水、天然水、精製水、蒸留水、イオン交換水、純水、ミリQ水等の超純水等を例示することができる。 The water is not particularly limited as long as it is water that can be used to wash cosmetics and topical skin preparations, and examples include tap water, natural water, purified water, distilled water, ion-exchanged water, pure water, and ultrapure water such as Milli-Q water.

上記界面活性剤としては、SDS、デオキシコール酸ナトリウム等の陰イオン性界面活性剤;CTAC、塩化ベンザルコニウム等の陽イオン性界面活性剤;を挙げることができるが、陰イオン性界面活性剤を好適に挙げることができる。 Examples of the above surfactants include anionic surfactants such as SDS and sodium deoxycholate; and cationic surfactants such as CTAC and benzalkonium chloride; however, anionic surfactants are preferred.

上記界面活性剤の濃度としては、洗浄剤やすすぎ液に含まれうる通常の濃度であれば特に制限されず、0mM超、5mM以上、10mM以上、15mM以上、20mM以上、30mM以上、100mM以上を例示することができ、例えば、1~20mMを好適に例示することができる。 The concentration of the surfactant is not particularly limited as long as it is a normal concentration that can be contained in a cleaning agent or rinsing solution, and examples include more than 0 mM, 5 mM or more, 10 mM or more, 15 mM or more, 20 mM or more, 30 mM or more, and 100 mM or more, and preferably, for example, 1 to 20 mM.

本発明における組成物の上限臨界溶液温度、もしくは急激に溶解度が上昇する温度の決定方法としては、例えば、上記組成物を1w/v%の割合で水に溶解した組成物溶液を冷却し、次いで冷却組成物溶液の温度を1分あたり0.3~2.0℃のいずれかの割合で上昇させ、該組成物溶液の光透過率を0.5℃毎に測定した場合に、1)得られた透過率-温度曲線において、透過率の変化している直線部分と、清澄状態の水溶液の透過率(100%)を表す水平線の交点の温度を、上限臨界溶液温度として決定する方法や、2)得られた透過率-温度曲線において、透過率が急激に上昇した温度を、急激に溶解度が上昇する温度として決定する方法が挙げられる。上記冷却組成物溶液の温度の上昇速度の割合は、各組成物を含む溶液の透過率の変化の大小に合わせて適宜決定することができる。 In the present invention, the upper critical solution temperature of the composition or the temperature at which the solubility increases rapidly can be determined by, for example, cooling a composition solution in which the composition is dissolved in water at a rate of 1 w/v %, then increasing the temperature of the cooled composition solution at a rate of 0.3 to 2.0°C per minute, and measuring the light transmittance of the composition solution every 0.5°C. In this case, 1) in the obtained transmittance-temperature curve, the temperature at the intersection of the straight line portion where the transmittance changes and the horizontal line representing the transmittance (100%) of the clear aqueous solution is determined as the upper critical solution temperature, or 2) in the obtained transmittance-temperature curve, the temperature at which the transmittance increases rapidly is determined as the temperature at which the solubility increases rapidly. The rate of increase in the temperature of the cooled composition solution can be appropriately determined according to the magnitude of the change in the transmittance of the solution containing each composition.

上記光透過率の測定方法としては、上記組成物溶液中の光透過率の変化を測定するために適した波長の光を用いて測定する方法であれば特に制限されず、上記波長としては、可視光域の波長が好ましく、具体的には、650~700nm、好ましくは660~680nmの波長を挙げることができる。光透過率を測定する際のセルホルダ内の温度の維持は、温度コントローラー等の温度制御装置を用いて行うことができる。 The method for measuring the light transmittance is not particularly limited as long as it is a method that uses light of a wavelength suitable for measuring the change in light transmittance in the composition solution. The wavelength is preferably in the visible light range, specifically, 650 to 700 nm, preferably 660 to 680 nm. The temperature inside the cell holder during the measurement of the light transmittance can be maintained using a temperature control device such as a temperature controller.

本発明の組成物における上限臨界溶液温度は、化粧料や皮膚外用剤の使用態様や洗浄条件に適している範囲において特に限定されず、組成物の上限臨界溶液温度としては、10~70℃を挙げることができ、20~60℃が好ましく、30~50℃がさらに好ましく、中でも35~45℃が特に好ましい。また、かかる化粧料や皮膚外用剤用を構成する本発明の組成物の上限臨界溶液温度が、水に界面活性剤を添加することにより、例えば、5~50℃、10~30℃、15~25℃、10~15℃、5~10℃低下することが好ましい。 The upper critical solution temperature of the composition of the present invention is not particularly limited as long as it is within a range suitable for the mode of use and cleaning conditions of the cosmetic or topical skin preparation, and the upper critical solution temperature of the composition can be 10 to 70°C, preferably 20 to 60°C, more preferably 30 to 50°C, and particularly preferably 35 to 45°C. In addition, it is preferable that the upper critical solution temperature of the composition of the present invention constituting such a cosmetic or topical skin preparation is lowered by, for example, 5 to 50°C, 10 to 30°C, 15 to 25°C, 10 to 15°C, or 5 to 10°C by adding a surfactant to water.

さらに、RAFT重合による[Poly(AAm-co-AN)]を用いる組成物において、界面活性剤を含まない水で洗い流す場合の1w/v%水溶液における光透過率-温度カーブの微分曲線として、50d%T/dT以上、好ましくは85d%T/dT以上である場合を、好ましい態様として挙げることができる。かかる組成物は、単位温度当たりの透過率変化が大きく、7℃以下、好ましくは5℃以下、さらに好ましくは3℃以下の狭い温度範囲で、溶液が溶解・凝集の変化を示す組成物である。RAFT重合によるPoly(AAm-co-AN)において、単位温度当たり透過率変化が大きい理由としては、各ポリマー鎖のユニット比がそろっているため、わずかな温度変化により性状の変化が大きくなると考えられる。そのため、2種類以上のRAFT重合による[Poly(AAm-co-AN)]を混合して用いた場合には、単位温度当たり透過率変化が小さくなるおそれがある。 In addition, in a composition using [Poly(AAm-co-AN)] by RAFT polymerization, the differential curve of the light transmittance-temperature curve in a 1 w/v% aqueous solution when washed off with water containing no surfactant is 50 d% T/dT or more, preferably 85 d% T/dT or more, as a preferred embodiment. Such a composition is a composition in which the change in transmittance per unit temperature is large, and the solution shows a change in dissolution/aggregation in a narrow temperature range of 7°C or less, preferably 5°C or less, and more preferably 3°C or less. The reason why the change in transmittance per unit temperature is large in Poly(AAm-co-AN) by RAFT polymerization is thought to be that the unit ratio of each polymer chain is uniform, so that a slight change in temperature causes a large change in properties. Therefore, when two or more types of [Poly(AAm-co-AN)] by RAFT polymerization are mixed and used, the change in transmittance per unit temperature may be small.

本発明の組成物は、様々な用途や使用温度環境に合わせて洗浄効果の高い化粧料や皮膚外用剤として用いることができる。例えば、本発明の組成物であるフリーラジカル重合によるPoly(AAm-co-AN)[85:15]を化粧料として使用した場合、22℃の水のみで洗浄したときには、上記組成物の水溶液での上限臨界溶液温度が28℃であることから、化粧料を洗い落とすことが困難であるが、界面活性剤(SDS)を含む洗浄剤を使用して22℃の水で洗浄したときには、上限臨界溶液温度が低下するため、Poly(AAm-co-AN)[85:15]が溶解し、化粧料が非常によく落ちることから、加温された水の供給が難しい場合に有利となる。 The composition of the present invention can be used as a cosmetic or skin topical agent with a high cleaning effect according to various applications and temperature environments. For example, when the composition of the present invention, Poly(AAm-co-AN) [85:15] produced by free radical polymerization, is used as a cosmetic, it is difficult to wash off the cosmetic when washed with only water at 22°C because the upper critical solution temperature of the aqueous solution of the composition is 28°C. However, when washed with water at 22°C using a detergent containing a surfactant (SDS), the upper critical solution temperature is lowered, so Poly(AAm-co-AN) [85:15] dissolves and the cosmetic is removed very easily, which is advantageous when it is difficult to supply heated water.

また、本発明の組成物であるRAFT重合によるPoly(AAm-co-AN)[85:15]であって、Mwが28300程度の共重合体を含む組成物を化粧料として使用した場合、かかる組成物は水溶液中において単位温度当たり透過率変化が高く、体表面温付近の35℃では水に溶けない組成物が、40℃のお湯で完全に溶解するため、汗をかいても化粧料等が落ちないが、お湯だけで洗顔することが可能となるため、肌への負担が少ない、非常に優れた化粧料等として使用されうる。 In addition, when the composition of the present invention, which is Poly(AAm-co-AN) [85:15] by RAFT polymerization and contains a copolymer with Mw of about 28,300, is used as a cosmetic, the composition has a high change in transmittance per unit temperature in an aqueous solution, and the composition, which is insoluble in water at 35°C, which is close to the body surface temperature, dissolves completely in hot water at 40°C. Therefore, the cosmetic will not come off even if you sweat, but you can wash your face with just hot water, so it can be used as an excellent cosmetic that puts less strain on the skin.

本発明の組成物は、1種又は2種以上のpoly(AAm-co-AN)を含み、化粧料や皮膚外用剤として使用されるが、本発明における化粧料としては、化粧水、クリーム、乳液、美容液等の基礎化粧料や、シャンプー、リンス、トリートメント等の頭髪化粧料や、ファンデーション、チーク、アイライナー、アイシャドー、マスカラ、アイブロウ、フェイスパウダー等のメイクアップ化粧料や、日焼け止め化粧料等の下地化粧料(医薬部外品を含む)や、マニキュアを例示することができ、皮膚外用剤としては、リニメント剤、ローション剤、軟膏剤等の外用医薬品等を例示することができる。 The composition of the present invention contains one or more types of poly(AAm-co-AN) and is used as a cosmetic or topical skin preparation. Examples of the cosmetic in the present invention include basic cosmetics such as lotion, cream, milky lotion, and serum; hair cosmetics such as shampoo, rinse, and treatment; makeup cosmetics such as foundation, blush, eyeliner, eye shadow, mascara, eyebrow, and face powder; base cosmetics (including quasi-drugs) such as sunscreen cosmetics; and nail polish. Examples of topical skin preparations include topical medicines such as liniments, lotions, and ointments.

上記poly(AAm-co-AN)の、本発明の化粧料又は皮膚外用剤への配合割合としては、本発明の効果が奏される限り特に制限されないが、通常、化粧料又は皮膚外用剤全体に対して、0.01~80質量%が好ましく、0.1~50質量%がより好ましく、1~20質量%がさらに好ましく、1種又は2種以上を適宜組み合わせて配合することもできる。 The blending ratio of the above poly(AAm-co-AN) in the cosmetic or topical skin preparation of the present invention is not particularly limited as long as the effects of the present invention are achieved, but is usually preferably 0.01 to 80% by mass, more preferably 0.1 to 50% by mass, and even more preferably 1 to 20% by mass, based on the total cosmetic or topical skin preparation. One or more types can also be blended in appropriate combination.

本発明の組成物からなる化粧料や皮膚外用剤の形態としては、液状、乳液状、クリーム状、ゲル状、固形状を例示することができる。 The cosmetic or topical skin preparation comprising the composition of the present invention may be in the form of a liquid, emulsion, cream, gel, or solid.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the technical scope of the present invention is not limited to these examples.

[実施例1]
(フリーラジカル重合による[Poly(AAm-co-AN)]の合成)
モノマー質量仕込み比[アクリルアミド(AAm):アクリロニトリル(AN)]が、それぞれ77.5:22.5、80:20、82.5:17.5、85:15、87.5:12.5、90:10である、6種類のランダム共重合体Poly(AAm-co-AN)を、上記非特許文献3を参考にして以下の手順によりフリーラジカル重合法により合成した。
[Example 1]
(Synthesis of [Poly(AAm-co-AN)] by free radical polymerization)
Six types of random copolymers Poly(AAm-co-AN) having monomer mass ratios [acrylamide (AAm):acrylonitrile (AN)] of 77.5:22.5, 80:20, 82.5:17.5, 85:15, 87.5:12.5, and 90:10, respectively, were synthesized by free radical polymerization according to the following procedure with reference to the above Non-Patent Document 3.

アクリルアミドと、AIBNとをDMSO(12mL)に溶解し、30分間アルゴンガスを吹き込むことにより溶存酸素を除いた。アクリルアミドに対応する割合のアクリロニトリルを、ガスタイトシリンジを用いて添加して反応溶液とし、アルゴン雰囲気下で60℃にて5.5時間反応させた後、室温まで冷却した。冷却された反応溶液を250mLのメタノールに注ぎ、析出した共重合体をろ取した。得られた共重合体をさらに150mLのメタノールで洗浄した後、デシケータにて終夜乾燥した。 Acrylamide and AIBN were dissolved in DMSO (12 mL), and dissolved oxygen was removed by blowing argon gas into the solution for 30 minutes. Acrylonitrile in a proportion corresponding to acrylamide was added using a gas-tight syringe to prepare a reaction solution, which was reacted at 60°C for 5.5 hours under an argon atmosphere and then cooled to room temperature. The cooled reaction solution was poured into 250 mL of methanol, and the precipitated copolymer was filtered off. The obtained copolymer was further washed with 150 mL of methanol and then dried overnight in a desiccator.

共重合体中のAAmとANのユニット比は、IR測定によりAAmのアミノ基由来のピーク(1659cm-1付近)とANのシアノ基由来のピーク(2242cm-1付近)の比率を、標準試料と比較することによって決定した。標準試料としては、AAmホモポリマーとANホモポリマーを80:20,85:15,90:10,95:5のモル分率で混合し作製したものを使用した。IR測定はNicolet iS10フーリエ変換赤外分光装置(Thermo Fisher Scientific社製)を用い、全反射測定(ATR)法を用いて行った。 The unit ratio of AAm and AN in the copolymer was determined by comparing the ratio of the peak derived from the amino group of AAm (near 1659 cm-1 ) and the peak derived from the cyano group of AN (near 2242 cm -1 ) with that of a standard sample by IR measurement. The standard samples used were prepared by mixing AAm homopolymer and AN homopolymer at molar fractions of 80:20, 85:15, 90:10, and 95:5. The IR measurement was performed using a Nicolet iS10 Fourier transform infrared spectrometer (manufactured by Thermo Fisher Scientific) by the total reflection (ATR) method.

共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)はゲル浸透クロマトグラフィー(GPC)を用いて決定した。測定にはJASCO PU-2080ポンプ、JASCO RI-2031示差屈折検出器、JASCO 2060カラムオーブン(以上すべて日本分光製)、Shodex GPC KD806-Mカラム(昭和電工製)を使用した。検量線はプルラン標準試料(昭和電工製)を用いて作成し、移動相にはDMSOを用いた。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer were determined using gel permeation chromatography (GPC). A JASCO PU-2080 pump, a JASCO RI-2031 differential refractometer, a JASCO 2060 column oven (all manufactured by JASCO), and a Shodex GPC KD806-M column (manufactured by Showa Denko) were used for the measurements. A calibration curve was prepared using a pullulan standard sample (manufactured by Showa Denko), and DMSO was used as the mobile phase.

フリーラジカル重合により合成された6種類のPoly(AAm-co-AN)(F1~F6)の特性について以下の表1に示す。 The properties of six types of Poly(AAm-co-AN) (F1 to F6) synthesized by free radical polymerization are shown in Table 1 below.

Figure 0007477848000004
Figure 0007477848000004

[実施例2]
[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]
上記F1~F6の共重合体について、水を溶媒として溶解し、1w/v%水溶液について0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を、670nmにおける透過率の変化を測定することにより確認した。昇温又は降温の速度は、それぞれ1℃/minとし、測定温度に到達後直ちに測定を開始した。これ以降、温度応答の再現性は、同一サンプルに対して温度変化を繰り返す(1stCooling-1stHeating-2ndCooling-2ndHeating)ことで確認した。また、測定温度が15℃以下となる場合は、セルの結露を防ぐため、セルホルダにアルゴンガスを流しながら測定した。光透過率はJASCO-V650紫外可視吸光光度計(日本分光製)を用いて測定し、セルホルダ内の温度調整はJASCO ETC-717温度コントローラ(日本分光製)を用いて行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして図1(a)~(f)にそれぞれ示す。なお、上限臨界溶液温度は、得られた透過率-温度曲線において、透過率の変化している直線部分と、透過率100%を表す水平線の交点とした。
[Example 2]
[Measurement of upper critical solution temperature of aqueous solutions containing copolymers synthesized by free radical polymerization]
The copolymers F1 to F6 were dissolved in water as a solvent, and the temperature of a 1 w/v% aqueous solution was increased or decreased in 0.5°C increments, and the solubility of each copolymer was confirmed by measuring the change in transmittance at 670 nm. The rate of temperature increase or decrease was 1°C/min, and the measurement was started immediately after the measurement temperature was reached. Thereafter, the reproducibility of the temperature response was confirmed by repeating the temperature change (1stCooling-1stHeating-2ndCooling-2ndHeating) for the same sample. In addition, when the measurement temperature was 15°C or lower, the measurement was performed while flowing argon gas into the cell holder to prevent condensation of the cell. The light transmittance was measured using a JASCO-V650 ultraviolet-visible spectrophotometer (manufactured by JASCO), and the temperature inside the cell holder was adjusted using a JASCO ETC-717 temperature controller (manufactured by JASCO). The results are shown in Figures 1(a) to 1(f) as graphs plotting the light transmittance (vertical axis) and the temperature of each solution (horizontal axis). The upper critical solution temperature was determined as the intersection of the linear portion of the transmittance changing in the obtained transmittance-temperature curve and the horizontal line representing 100% transmittance.

(結果)
図1(a)~(f)から明らかなとおり、上記F1~F6の共重合体を含有する水溶液について、いずれも光透過率-温度カーブを描いた。また、上限臨界溶液温度の相違はあるものの、全ての共重合体含有水溶液において可逆的な溶解・凝集の現象を繰り返した。
(result)
1(a) to (f), the aqueous solutions containing the copolymers F1 to F6 all showed a light transmittance-temperature curve. Although there were differences in the upper critical solution temperature, the aqueous solutions containing all of the copolymers repeatedly underwent reversible dissolution and aggregation.

図1において、上記F1~F6の共重合体の1w/v%水溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記F1のPoly(AAm-co-AN)[77.5:22.5]の昇温時の上限臨界溶液温度は68℃、降温時の上限臨界溶液温度は66℃(図1(a));
上記F2のPoly(AAm-co-AN)[80:20]の昇温時の上限臨界溶液温度は58℃、降温時の上限臨界溶液温度は56℃(図1(b));
上記F3のPoly(AAm-co-AN)[82.5:17.5]の昇温時の上限臨界溶液温度は45.5℃、降温時の上限臨界溶液温度は42.5℃(図1(c));
上記F4のPoly(AAm-co-AN)[85:15]の昇温時の上限臨界溶液温度は31℃、降温時の上限臨界溶液温度は28℃(図1(d));
上記F5のPoly(AAm-co-AN)[87.5:12.5]の昇温時の上限臨界溶液温度は19.5℃、降温時の上限臨界溶液温度は16.5℃(図1(e));
上記F6のPoly(AAm-co-AN)[90:10]の昇温時の上限臨界溶液温度は9℃、降温時の上限臨界溶液温度は6.5℃(図1(f));
In FIG. 1, the upper critical solution temperatures during heating and cooling of the 1 w/v % aqueous solutions of the copolymers F1 to F6 were as follows:
The upper critical solution temperature of the above-mentioned F1 Poly(AAm-co-AN) [77.5:22.5] during heating was 68° C., and the upper critical solution temperature during cooling was 66° C. ( FIG. 1( a) );
The upper critical solution temperature of the above-mentioned F2 Poly(AAm-co-AN) [80:20] during heating was 58° C., and the upper critical solution temperature during cooling was 56° C. ( FIG. 1( b) );
The upper critical solution temperature of the above-mentioned F3 Poly(AAm-co-AN) [82.5:17.5] during heating was 45.5°C, and the upper critical solution temperature during cooling was 42.5°C (Figure 1(c));
The upper critical solution temperature of the above-mentioned F4 Poly(AAm-co-AN) [85:15] during heating was 31° C., and the upper critical solution temperature during cooling was 28° C. ( FIG. 1( d) );
The upper critical solution temperature of the above-mentioned F5 Poly(AAm-co-AN) [87.5:12.5] during heating was 19.5°C, and the upper critical solution temperature during cooling was 16.5°C (Figure 1(e));
The upper critical solution temperature of the above-mentioned F6 Poly(AAm-co-AN) [90:10] during heating was 9° C., and the upper critical solution temperature during cooling was 6.5° C. ( FIG. 1( f) );

表1の各共重合体含有水溶液において、アクリルアミドのモノマー仕込み比が高くなるにつれて、昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度のいずれもが低くなることが確認された。 It was confirmed that in each copolymer-containing aqueous solution in Table 1, as the acrylamide monomer charge ratio increases, both the upper critical solution temperature during heating and the upper critical solution temperature during cooling decrease.

[実施例3]
[共重合体混合溶液の上限臨界溶液温度の測定]
化粧料や皮膚外用剤を洗浄するための洗浄液モデルとして、水溶液にSDSを添加した混合溶媒を用いた共重合体混合溶液について検討を行った。上記F1~F6のポリマーの1w/v%水溶液にSDSを終濃度100mMとなるように添加した共重合体混合溶液について、実施例2と同様に、溶解性を確認した。結果を図2に示す。
[Example 3]
[Measurement of upper critical solution temperature of copolymer mixed solution]
As a model cleaning solution for cleaning cosmetics and topical skin preparations, a copolymer mixed solution was investigated using a mixed solvent in which SDS was added to an aqueous solution. The solubility of the copolymer mixed solutions in which SDS was added to a final concentration of 100 mM to 1 w/v % aqueous solutions of the above polymers F1 to F6 was confirmed in the same manner as in Example 2. The results are shown in Figure 2.

(結果)
図2から明らかなとおり、上記F1~F6の共重合体含有混合溶液において、モノマー仕込み比が[77.5:22.5]及び[80:20]の場合に、上記混合溶液は、光透過率-温度カーブを描き、上限臨界溶液温度の相違はあるものの、可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from FIG. 2, in the copolymer-containing mixed solutions F1 to F6, when the monomer charging ratios were [77.5:22.5] and [80:20], the mixed solutions drew a light transmittance-temperature curve and repeatedly underwent reversible dissolution/aggregation phenomena, although there was a difference in the upper critical solution temperature.

より詳細には、上記F1のPoly(AAm-co-AN)[77.5:22.5]+SDS100mM混合溶液の昇温時の上限臨界溶液温度は70℃以上、降温時の上限臨界溶液温度は69℃であって、SDS添加前と比べ上限臨界溶液温度に大きな違いはなかった(図2(a))。上記F2のPoly(AAm-co-AN)[80:20]+SDS100mM混合溶液の昇温時の上限臨界溶液温度は53℃、降温時の上限臨界溶液温度は47℃であり、光透過率-温度カーブの傾きがなだらかになり、昇温時及び降温時の上限臨界溶液温度はいずれも低くなった(図2(b))。上記F3のPoly(AAm-co-AN)[82.5:17.5]+SDS100mM混合溶液(図2(c))、上記F4の[Poly(AAm-co-AN)][85:15]+SDS100mM混合溶液(図2(d))、上記F5のPoly(AAm-co-AN)[87.5:12.5]+SDS100mM混合溶液(図2(e))、上記F6のPoly(AAm-co-AN)[90:10]+SDS100mM混合溶液(図2(f))においては、光透過率-温度カーブが描かれず、混合溶液は凝集性を示すことなく溶解したままであった。 More specifically, the upper critical solution temperature of the Poly(AAm-co-AN) [77.5:22.5] + SDS 100 mM mixed solution of F1 was 70°C or higher when heating and 69°C when cooling, meaning there was no significant difference in the upper critical solution temperature compared to before the addition of SDS (Figure 2 (a)). The upper critical solution temperature of the Poly(AAm-co-AN) [80:20] + SDS 100 mM mixed solution of F2 was 53°C when heating and 47°C when cooling, meaning the slope of the light transmittance-temperature curve became gentler and the upper critical solution temperatures when heating and cooling were both lower (Figure 2 (b)). In the above F3 Poly(AAm-co-AN) [82.5:17.5] + SDS 100 mM mixed solution (Figure 2 (c)), F4 [Poly(AAm-co-AN)] [85:15] + SDS 100 mM mixed solution (Figure 2 (d)), F5 Poly(AAm-co-AN) [87.5:12.5] + SDS 100 mM mixed solution (Figure 2 (e)), and F6 Poly(AAm-co-AN) [90:10] + SDS 100 mM mixed solution (Figure 2 (f)), no light transmittance-temperature curve was drawn, and the mixed solution remained dissolved without showing any coagulation.

[実施例4]
上記F3のPoly(AAm-co-AN)[82.5:17.5]について、さらに検討を続けた。
[Example 4]
Further investigation was carried out on the above F3, Poly(AAm-co-AN) [82.5:17.5].

上記F3のPoly(AAm-co-AN)[82.5:17.5]の1w/v%水溶液に、終濃度がそれぞれ5mM、10mM、15mM、20mM、30mM、100mMとなるようにSDSを添加した混合溶液について、実施例2と同様に、各混合溶液の溶解性を確認した。結果を図3(a)~(f)に示す。 The solubility of each mixed solution was confirmed in the same manner as in Example 2, by adding SDS to a 1 w/v % aqueous solution of Poly(AAm-co-AN) [82.5:17.5] (F3) to a final concentration of 5 mM, 10 mM, 15 mM, 20 mM, 30 mM, and 100 mM. The results are shown in Figures 3(a) to 3(f).

(結果)
上記F3のPoly(AAm-co-AN)[82.5:17.5]の1w/v%水溶液に、終濃度が5mMとなるようにSDSを添加した混合溶液の昇温時の上限臨界溶液温度は44.5℃、降温時の上限臨界溶液温度は41℃であり(図3(a))、終濃度が10mMとなるようにSDSを添加した混合溶液の昇温時の上限臨界溶液温度は36℃、降温時の上限臨界溶液温度は29.5℃であって、昇温時及び降温時の上限臨界溶液温度は、SDSが水溶液に添加されない場合に比べて、15℃前後いずれも低くなった(図3(b))。
終濃度が15mMとなるようにSDSを添加した混合溶液の、昇温時の上限臨界溶液温度は27℃、降温時の上限臨界溶液温度は17℃であって、昇温時及び降温時の上限臨界溶液温度は、SDSが水溶液に添加されない場合に比べて、20℃前後いずれも低くなった(図3(c))。
終濃度が20mMとなるようにSDSを添加した混合溶液の、降温時の上限臨界溶液温度は9.5℃であった。昇温時の光透過率-温度カーブが描かれなかった(図3(d))。
終濃度が30mM及び100mMとなるようにSDSを添加した混合溶液においては、光透過率-温度カーブが描かれず、混合溶液は凝集性を示すことなく溶解したままであった(図3(e)及び(f))。
(result)
The upper critical solution temperature of the mixed solution in which SDS was added to a 1 w/v % aqueous solution of Poly(AAm-co-AN) [82.5:17.5] of F3 to a final concentration of 5 mM was 44.5° C. when heating and 41° C. when cooling (FIG. 3( a)). The upper critical solution temperature of the mixed solution in which SDS was added to a final concentration of 10 mM was 36° C. when heating and 29.5° C. when cooling. The upper critical solution temperatures during heating and cooling were both approximately 15° C. lower than those in the case where SDS was not added to the aqueous solution (FIG. 3( b)).
The upper critical solution temperature of the mixed solution to which SDS was added so as to give a final concentration of 15 mM was 27° C. when heating and 17° C. when cooling. The upper critical solution temperatures when heating and cooling were both approximately 20° C. lower than when SDS was not added to the aqueous solution ( FIG. 3( c)).
The upper critical solution temperature during cooling of the mixed solution to which SDS was added so that the final concentration was 20 mM was 9.5° C. No light transmittance-temperature curve was drawn during heating (FIG. 3(d)).
In the mixed solutions to which SDS was added so that the final concentrations were 30 mM and 100 mM, no light transmittance-temperature curve was drawn, and the mixed solutions remained dissolved without exhibiting aggregation (Figures 3(e) and (f)).

[実施例5]
界面活性剤としてSDS(終濃度100mM)の代わりに陽イオン性界面活性剤であるCTAC(終濃度100mM)を用い、実施例3と同様に検討を行った。結果を図4(a)~(f)に示す。
[Example 5]
Instead of SDS (final concentration 100 mM) as the surfactant, a cationic surfactant, CTAC (final concentration 100 mM), was used and the study was carried out in the same manner as in Example 3. The results are shown in Figures 4(a) to (f).

(結果)
図4から明らかなとおり、上記F1~F6の共重合体のCTAC混合溶液について、モノマー仕込み比がF6[90:10]を除く、F1[77.5:22.5]、F2[80:20]、F3[82.5:17.5]、F4[85:15]及びF5[87.5:12.5]の場合に、光透過率-温度カーブを描いた。またかかる5つの共重合体含有混合溶液において上限臨界溶液温度の相違はあるものの、可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from Fig. 4, the light transmittance-temperature curves were drawn for the CTAC mixed solutions of the copolymers F1 to F6, in which the monomer charge ratios were F1 [77.5:22.5], F2 [80:20], F3 [82.5:17.5], F4 [85:15] and F5 [87.5:12.5], except for F6 [90:10]. In addition, although there were differences in the upper critical solution temperature in these five copolymer-containing mixed solutions, the phenomenon of reversible dissolution and aggregation was repeated.

上記F1~F6の共重合体を含有するCTAC(終濃度100mM)混合溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記F1のCTAC混合溶液の昇温時の上限臨界溶液温度は66℃、降温時の上限臨界溶液温度は62.5℃(図4(a));
上記F2のCTAC混合溶液の昇温時の上限臨界溶液温度は54℃、降温時の上限臨界溶液温度は50℃(図4(b));
上記F3のCTAC混合溶液の昇温時の上限臨界溶液温度は42℃、降温時の上限臨界溶液温度は38℃(図4(c));
上記F4のCTAC混合溶液の昇温時の上限臨界溶液温度は27.5℃、降温時の上限臨界溶液温度は23.5℃(図4(d));
上記F5のCTAC混合溶液の昇温時の上限臨界溶液温度は17.5℃、降温時の上限臨界溶液温度は13℃(図4(e));
上記F6のCTAC混合溶液は、凝集性を示さなかった(図4(f))。このF6のCTAC混合溶液を除くF1~F5のいずれのCTAC混合溶液においても、上限臨界溶液温度は低温側にシフトした。しかし、その低下効果は、SDSに比べると弱かった。
The upper critical solution temperatures during heating and cooling of the mixed solutions of CTAC (final concentration 100 mM) containing the copolymers F1 to F6 were as follows:
The upper critical solution temperature of the CTAC mixed solution of F1 during heating was 66° C., and the upper critical solution temperature during cooling was 62.5° C. ( FIG. 4( a) );
The upper critical solution temperature of the CTAC mixed solution of F2 during heating is 54° C., and the upper critical solution temperature during cooling is 50° C. ( FIG. 4B );
The upper critical solution temperature of the CTAC mixed solution of F3 during heating was 42° C., and the upper critical solution temperature during cooling was 38° C. ( FIG. 4( c ));
The upper critical solution temperature of the CTAC mixed solution of F4 during heating was 27.5° C., and the upper critical solution temperature during cooling was 23.5° C. ( FIG. 4( d) );
The upper critical solution temperature of the CTAC mixed solution of F5 during heating was 17.5° C., and the upper critical solution temperature during cooling was 13° C. ( FIG. 4( e) );
The CTAC mixed solution of F6 did not show any coagulation property (FIG. 4(f)). In all of the CTAC mixed solutions of F1 to F5 except for the CTAC mixed solution of F6, the upper critical solution temperature shifted to the lower temperature side. However, the lowering effect was weaker than that of SDS.

[比較例]
SDS(終濃度100mM)の代わりに塩化ナトリウム(終濃度100mM)を用い、実施例3と同様に検討を行った。結果を図5(a)~(f)に示す。
[Comparative Example]
Sodium chloride (final concentration 100 mM) was used instead of SDS (final concentration 100 mM), and the study was carried out in the same manner as in Example 3. The results are shown in Figures 5(a) to (f).

(結果)
図5(a)~(f)から明らかなとおり、これら6つのF1~F6共重合体の水溶液について塩化ナトリウムを添加した場合、上限臨界溶液温度の変化はいずれの共重合体溶液においてもほとんど見られなかった。
(result)
As is clear from Figures 5(a) to (f), when sodium chloride was added to the aqueous solutions of these six copolymers F1 to F6, almost no change in the upper critical solution temperature was observed in any of the copolymer solutions.

[実施例6]
(RAFT重合による[Poly(AAm-co-AN)]の合成)
モノマー質量仕込み比[アクリルアミド(AAm):アクリロニトリル(AN)]が、80:20~85:15の範囲にあり、CMDTの含量が相違する6種類のランダム共重合体、Poly(AAm-co-AN)(表2のR1~R6)を、Polym. Chem. 2016, 7, 1979-1986を参考にして以下の手順によりRAFT重合法により合成した。
[Example 6]
(Synthesis of [Poly(AAm-co-AN)] by RAFT polymerization)
Six random copolymers, Poly(AAm-co-AN) (R1 to R6 in Table 2), having monomer mass ratios [acrylamide (AAm):acrylonitrile (AN)] in the range of 80:20 to 85:15 and different CMDT contents were synthesized by the RAFT polymerization method according to the following procedure with reference to Polym. Chem. 2016, 7, 1979-1986.

アクリルアミドとAIBNとをDMSO(6mL)に溶解し、CMDTを加えてさらに溶解した後、30分間アルゴンガスを吹き込むことにより溶存酸素を除いた。アクリルアミドに対応する割合のアクリロニトリルを、ガスタイトシリンジを用いて添加して反応溶液とし、アルゴン雰囲気下で70oCにて3.5時間反応させた後、室温まで冷却した。
冷却された反応溶液を150mLのメタノールに注ぎ、析出した共重合体をろ取した。得られた共重合体をさらに150mLのメタノールで洗浄した後、デシケータにて終夜乾燥した。
Acrylamide and AIBN were dissolved in DMSO (6 mL), CMDT was added and further dissolved, and then argon gas was blown in for 30 minutes to remove dissolved oxygen. Acrylonitrile in a proportion corresponding to the acrylamide was added using a gas-tight syringe to form a reaction solution, which was reacted at 70°C for 3.5 hours under an argon atmosphere and then cooled to room temperature.
The cooled reaction solution was poured into 150 mL of methanol, and the precipitated copolymer was filtered out. The copolymer obtained was washed with 150 mL of methanol and then dried overnight in a desiccator.

共重合体中のAAmとANのユニット比、共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、前記[フリーラジカル重合によるPoly(AAm-co-AN)共重合体の合成]に記載されている方法を用いて測定を行った。 The unit ratio of AAm to AN in the copolymer, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the copolymer were measured using the method described in [Synthesis of Poly(AAm-co-AN) Copolymer by Free Radical Polymerization] above.

RAFT重合により合成された6種類の[Poly(AAm-co-AN)](R1~R6)の特性について以下の表2に示す。 The properties of six types of [Poly(AAm-co-AN)] (R1 to R6) synthesized by RAFT polymerization are shown in Table 2 below.

Figure 0007477848000005
Figure 0007477848000005

[実施例7]
[RAFT重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定1]
上記R1の共重合体について、水を溶媒として溶解し、1w/v%水溶液又は0.1w/v%水溶液について0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を確認した。RAFT重合で合成した共重合体は、単位温度当たりの透過率変化が大きいため、昇温又は降温の速度を、それぞれ0.5℃/minとした他は、実施例2の[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]に記載されている方法で測定を行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして図6(A)及び(A1)にそれぞれ示す。また、上記R1の共重合体含有水溶液のグラフの微分曲線を、それぞれ図6(a)及び(a1)に示す。比較として、フリーラジカル重合により合成された前記F3の共重合体の1w/v%水溶液及び0.1w/v%水溶液についての同様の検討結果を図6(F)及び(F1)に、それらの微分曲線を図6(f)及び(f1)に示す。
[Example 7]
[Measurement of upper critical solution temperature of aqueous solution containing copolymer synthesized by RAFT polymerization 1]
The copolymer R1 was dissolved in water as a solvent, and the temperature was raised and lowered at 0.5°C intervals for a 1 w/v% aqueous solution or a 0.1 w/v% aqueous solution to confirm the solubility of each copolymer. The copolymer synthesized by RAFT polymerization has a large change in transmittance per unit temperature, so the rate of temperature rise or fall was set to 0.5°C/min, respectively, and the measurement was performed by the method described in Example 2 [Measurement of upper critical solution temperature of an aqueous solution containing a copolymer synthesized by free radical polymerization]. The results are shown in Figures 6(A) and (A1) as graphs plotting the light transmittance (vertical axis) and the temperature of each solution (horizontal axis). In addition, the differential curves of the graph of the aqueous solution containing the copolymer R1 are shown in Figures 6(a) and (a1), respectively. For comparison, the results of a similar study on the 1 w/v% aqueous solution and 0.1 w/v% aqueous solution of the copolymer F3 synthesized by free radical polymerization are shown in Figures 6(F) and (F1), and the differential curves are shown in Figures 6(f) and (f1).

(結果)
図6から明らかなとおりR1の[Poly(AAm-co-AN)][82.5:17.5]の1w/v%水溶液の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は27.5℃(図6(A))であり、0.1w/v%水溶液の昇温時の上限臨界溶液温度は28℃、降温時の上限臨界溶液温度は25.5℃(図6(A1))であった。一方、上記F3の[Poly(AAm-co-AN)][82.5:17.5]の1w/v%水溶液の昇温時の上限臨界溶液温度は45.5℃、降温時の上限臨界溶液温度は42.5℃(図6(F))であり、0.1w/v%水溶液の昇温時の上限臨界溶液温度は39.5℃、降温時の上限臨界溶液温度は37℃(図6(F1))であった。
(result)
As is clear from Fig. 6, the upper critical solution temperature of a 1 w/v % aqueous solution of [Poly(AAm-co-AN)] [82.5:17.5] of R1 was 30°C when heating and 27.5°C when cooling (Fig. 6(A)), while the upper critical solution temperature of a 0.1 w/v % aqueous solution was 28°C when heating and 25.5°C when cooling (Fig. 6(A1)). On the other hand, the upper critical solution temperature of a 1 w/v % aqueous solution of [Poly(AAm-co-AN)] [82.5:17.5] of F3 was 45.5°C when heating and 42.5°C when cooling (Fig. 6(F)), while the upper critical solution temperature of a 0.1 w/v % aqueous solution was 39.5°C when heating and 37°C when cooling (Fig. 6(F1)).

また、RAFT重合で合成した[Poly(AAm-co-AN)]の水溶液は、1w/v%水溶液(図6(a))及び0.1w/v%水溶液(図6(a1))の降温時の上限臨界溶液温度単位温度当たりの透過率変化の最大値は、それぞれ190d%T/dT、90d%T/dTであり、フリーラジカル重合で合成した[Poly(AAm-co-AN)]の1w/v%水溶液(図6(f))及び0.1w/v%水溶液(図6(f1))におけるそれぞれの値27d%T/dT、6d%T/dTとを比較して、単位温度当たりの透過率変化が顕著に大きかった。 In addition, the maximum values of the transmittance change per unit temperature of the upper critical solution temperature during cooling for the 1 w/v% aqueous solution (Figure 6(a)) and 0.1 w/v% aqueous solution (Figure 6(a1)) of [Poly(AAm-co-AN)] synthesized by RAFT polymerization were 190 d% T/dT and 90 d% T/dT, respectively. These were significantly larger changes in transmittance per unit temperature than the values of 27 d% T/dT and 6 d% T/dT for the 1 w/v% aqueous solution (Figure 6(f)) and 0.1 w/v% aqueous solution (Figure 6(f1)) of [Poly(AAm-co-AN)] synthesized by free radical polymerization.

[実施例8]
[RAFT重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定2]
上記合成された6種類の共重合体Poly(AAm-co-AN)のうち、いずれもユニット比が[82.5:17.5]であってMwが異なる、上記R1~R4の共重合体の1w/v%水溶液について、0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を、670nmにおける透過率の変化を測定することにより確認した。昇温又は降温の速度を、0.5℃/minとした他は、実施例2の[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]に記載されている方法で測定を行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして図7(A)~(D)にそれぞれ示す。また、それらの微分曲線を、それぞれ図7(a)~(d)に示す。
[Example 8]
[Measurement of upper critical solution temperature of aqueous solution containing copolymer synthesized by RAFT polymerization 2]
Of the six types of copolymers Poly(AAm-co-AN) synthesized above, the copolymers R1 to R4, all of which have a unit ratio of [82.5:17.5] and different Mws, were cooled and heated at 0.5°C intervals for 1 w/v% aqueous solutions, and the solubility of each copolymer was confirmed by measuring the change in transmittance at 670 nm. The measurement was performed by the method described in Example 2 [Measurement of upper critical solution temperature of copolymer-containing aqueous solution synthesized by free radical polymerization], except that the rate of temperature increase or decrease was 0.5°C/min. The results are shown in Figures 7(A) to 7(D) as graphs plotting light transmittance (vertical axis) and the temperature of each solution (horizontal axis). The differential curves are also shown in Figures 7(a) to 7(d), respectively.

(結果)
図7(A)~(D)から明らかなとおり、上記R1~R4の共重合体の水溶液について、いずれも光透過率-温度カーブを描いた。また、上限臨界溶液温度の相違はあるものの、全ての共重合体含有溶液において可逆的な溶解・凝集の現象を繰り返した。
(result)
7(A) to (D), the aqueous solutions of the copolymers R1 to R4 all showed a light transmittance-temperature curve. Although there were differences in the upper critical solution temperature, the phenomenon of reversible dissolution and aggregation was repeated in all of the copolymer-containing solutions.

図7において、上記R1~R4の共重合体の1w/v%水溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記R1のPoly(AAm-co-AN)[82.5:17.5](Mw:9970)の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は27.5℃(図7(A));
上記R2のPoly(AAm-co-AN)[82.5:17.5](Mw:26400)の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は28.5℃(図7(B));
上記R3のPoly(AAm-co-AN)[82.5:17.5](Mw:38700)の昇温時の上限臨界溶液温度は32.5℃、降温時の上限臨界溶液温度は29.5℃(図7(C));
上記R4のPoly(AAm-co-AN)[82.5:17.5](Mw:74800)の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は29℃(図7(D));
In FIG. 7, the upper critical solution temperatures during heating and cooling of 1 w/v % aqueous solutions of the copolymers R1 to R4 were as follows:
The upper critical solution temperature of the above-mentioned R1 Poly(AAm-co-AN) [82.5:17.5] (Mw: 9970) during heating is 30° C., and the upper critical solution temperature during cooling is 27.5° C. ( FIG. 7(A) );
The upper critical solution temperature of the above R2 Poly(AAm-co-AN) [82.5:17.5] (Mw: 26,400) during heating is 30° C., and the upper critical solution temperature during cooling is 28.5° C. ( FIG. 7B );
The upper critical solution temperature of the above R3 Poly(AAm-co-AN) [82.5:17.5] (Mw: 38700) during heating was 32.5° C., and the upper critical solution temperature during cooling was 29.5° C. ( FIG. 7C );
The upper critical solution temperature of the above R4 Poly(AAm-co-AN) [82.5:17.5] (Mw: 74,800) during heating was 30° C., and the upper critical solution temperature during cooling was 29° C. ( FIG. 7(D) );

図7(A)~(D)の結果から明らかなとおり、ユニット比が同じであるがMwが相違する、4種類のRAFT重合による[Poly(AAm-co-AN)]を含む、各水溶液において、昇温時及び降温時の上限臨界溶液温度はそれほど相違がなかった。しかし、図7(a)~(d)から明らかなとおり、単位温度当たりの透過率変化について検討すると、図6のF3の水溶液と比較して、透過率変化はいずれもより大きく、共重合体の水溶液における温度応答の感度が高いことが確認された。具体的には、R1では、降温時のd%T/dTの最大値は190であり、R2では105であり、R3では100であり、R4では115であった。また、分子量が小さいほど透過率変化の度合いは大きい傾向があり、なかでも分子量の一番小さいR1において、透過率変化は顕著に大きかった。 As is clear from the results in Figures 7(A) to (D), the upper critical solution temperature during heating and cooling was not significantly different in each aqueous solution, including four types of [Poly(AAm-co-AN)] by RAFT polymerization, which have the same unit ratio but different Mw. However, as is clear from Figures 7(a) to (d), when examining the change in transmittance per unit temperature, the change in transmittance was larger in all cases than in the aqueous solution of F3 in Figure 6, confirming that the sensitivity of the temperature response in the aqueous solution of the copolymer is high. Specifically, the maximum value of d%T/dT during cooling was 190 for R1, 105 for R2, 100 for R3, and 115 for R4. In addition, the smaller the molecular weight, the greater the degree of change in transmittance tends to be, and the change in transmittance was particularly large in R1, which has the smallest molecular weight.

[実施例9]
[RAFT重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定3]
上記R5、R2、R6及びR5とR6とが1:1の混合物について、水を溶媒として溶解した、1w/v%水溶液について0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を確認した。昇温又は降温の速度を、0.5℃/minとした他は、実施例2の[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]に記載されている方法で測定を行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして上記R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体含有水溶液のプロット図8(E)、(B)、(G)、(H)に示す。またそれらの微分曲線を、それぞれプロット図8(e)、(b)、(g)、(h)に示す。
[Example 9]
[Measurement of upper critical solution temperature of aqueous solution containing copolymer synthesized by RAFT polymerization 3]
The above R5, R2, R6, and a mixture of R5 and R6 at 1:1 were dissolved in water as a solvent, and the temperature was raised and lowered at 0.5°C intervals for a 1 w/v% aqueous solution to confirm the solubility of each copolymer. The rate of temperature rise or fall was set to 0.5°C/min, but the measurement was performed according to the method described in Example 2 [Measurement of upper critical solution temperature of aqueous solution containing copolymer synthesized by free radical polymerization]. The results are shown in Figures 8(E), (B), (G), and (H) plotting the above R5, R2, R6, and the aqueous solution containing a copolymer of a mixture of R5 and R6 at 1:1 as a graph plotting the light transmittance (vertical axis) and the temperature (horizontal axis) of each solution. The differential curves are also shown in Figures 8(e), (b), (g), and (h), respectively.

(結果)
図8(E)、(B)、(G)、(H)から明らかなとおり、上記R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体の水溶液について、いずれも光透過率-温度カーブを描いた。また、上限臨界溶液温度の相違はあるものの、全ての共重合体含有溶液において可逆的な溶解・凝集の現象を繰り返した。
(result)
8(E), (B), (G), and (H), the aqueous solutions of the copolymers R5, R2, R6, and a 1:1 mixture of R5 and R6 all showed light transmittance-temperature curves. In addition, although there were differences in the upper critical solution temperatures, the phenomenon of reversible dissolution and aggregation was repeated in all of the copolymer-containing solutions.

図8において、上記R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体の1w/v%水溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記R5のPoly(AAm-co-AN)[85:15]の昇温時の上限臨界溶液温度は12.5℃、降温時の上限臨界溶液温度は10.5℃(図8(E));
上記R2のPoly(AAm-co-AN)[82.5:17.5]の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は28.5℃(図8(B));
上記R6のPoly(AAm-co-AN)[85:15]の昇温時の上限臨界溶液温度は37℃、降温時の上限臨界溶液温度は36℃(図8(G));
上記R5と上記R6とが1:1の混合物の昇温時の上限臨界溶液温度は37.5℃、降温時の上限臨界溶液温度は34℃(図8(H));であった。
In FIG. 8 , the upper critical solution temperatures during heating and cooling of 1 w/v % aqueous solutions of the copolymers of R5, R2, R6, and a 1:1 mixture of R5 and R6 were as follows:
The upper critical solution temperature of the above-mentioned R5 Poly(AAm-co-AN) [85:15] during heating was 12.5°C, and the upper critical solution temperature during cooling was 10.5°C (Figure 8 (E));
The upper critical solution temperature of the above-mentioned R2 Poly(AAm-co-AN) [82.5:17.5] during heating is 30° C., and the upper critical solution temperature during cooling is 28.5° C. ( FIG. 8B );
The upper critical solution temperature of the above R6 Poly(AAm-co-AN) [85:15] during heating was 37°C, and the upper critical solution temperature during cooling was 36°C (Figure 8(G));
The upper critical solution temperature of the mixture of R5 and R6 at a ratio of 1:1 was 37.5° C. when the temperature was increased, and was 34° C. when the temperature was decreased (FIG. 8(H)).

図8の結果より、(E)、(B)、(G)等RAFT重合により合成された[Poly(AAm-co-AN)]を1種類含む各水溶液において、昇温時及び降温時の上限臨界溶液温度は、図6のF3の水溶液と比較して、透過率変化はいずれもより大きく、共重合体の水溶液における温度応答の感度が高いことが確認された。一方、(H)のRAFT重合により合成された[Poly(AAm-co-AN)]を2種類含む水溶液の単位温度当たりの透過率変化は非常に小さくなり、温度応答の感度は低下した。このことから、RAFT重合により合成された[Poly(AAm-co-AN)]の透過率変化の増加は、RAFT重合により合成された共重合体において、各ポリマー鎖のユニット比がそろっていることによるものと考えられる。 From the results in Figure 8, in each of the aqueous solutions containing one type of [Poly(AAm-co-AN)] synthesized by RAFT polymerization such as (E), (B), and (G), the upper critical solution temperature during heating and cooling showed a larger change in transmittance than the aqueous solution F3 in Figure 6, confirming that the temperature response sensitivity of the copolymer aqueous solution is high. On the other hand, the transmittance change per unit temperature of the aqueous solution containing two types of [Poly(AAm-co-AN)] synthesized by RAFT polymerization (H) was very small, and the temperature response sensitivity was reduced. From this, it is believed that the increase in the transmittance change of [Poly(AAm-co-AN)] synthesized by RAFT polymerization is due to the fact that the unit ratio of each polymer chain is uniform in the copolymer synthesized by RAFT polymerization.

[実施例10]
下記処方及び製造方法によりマスカラを調製した。
(成分) (質量%)
(1)水素添加ポリイソブテン 残量
(2)パルミチン酸デキストリン 2.0
(3)ミツロウ 9.0
(4)カルナウバロウ 5.0
(5)ポリメチルシルセスキオキサン 5.0
(6)ジステアルジモニウムヘクトライト 1.0
(7)タルク 5.0
(8)黒酸化鉄 5.0
(9)無水ケイ酸 1.0
(10)精製水 10.0
(11)実施例1のF3;poly(AAm-co-AN)[85:15] 1.0
[Example 10]
A mascara was prepared according to the following formulation and manufacturing method.
(Components) (% by mass)
(1) Hydrogenated polyisobutene balance (2) Dextrin palmitate 2.0
(3) Beeswax 9.0
(4) Carnauba wax 5.0
(5) Polymethylsilsesquioxane 5.0
(6) Disteardimonium hectorite 1.0
(7) Talc 5.0
(8) Black iron oxide 5.0
(9) Silica anhydride 1.0
(10) Purified water 10.0
(11) F3 of Example 1; poly(AAm-co-AN) [85:15] 1.0

(製造方法)
A.成分(1)~(5)を100℃で加熱溶解し、70℃になるまで冷却する。
B.Aに成分(6)~(9)を加え均一に混合する。
C.成分(10)~(11)を70℃で均一に混合溶解したのち、Bに加えて70℃で乳化し、室温に冷却してマスカラを得た。
(Production method)
A. Heat and dissolve ingredients (1) to (5) at 100°C, then cool to 70°C.
B. Add ingredients (6) to (9) in A and mix evenly.
C. Components (10) and (11) were mixed and dissolved uniformly at 70°C, then added to B and emulsified at 70°C, followed by cooling to room temperature to obtain a mascara.

以上のようにして得られたマスカラは、水や汗によっては落ちないが、42℃のお湯と石鹸を用いることで容易に落とすことができた。上記石鹸は界面活性剤成分として脂肪酸ナトリウムを含む。 The mascara obtained in this manner cannot be removed by water or sweat, but can be easily removed by using 42°C hot water and soap. The soap contains sodium fatty acid as a surfactant component.

[実施例11]
下記処方及び製造方法により軟膏を調製した。
(成分) (質量%)
(1)ステアリルアルコール 18.0
(2)モクロウ 15.0
(3)ポリオキシエチレン(20モル)モノオレイン酸エステル 0.3
(4)トコフェロール 0.1
(5)ワセリン 30.0
(6)グリセリン 10.0
(7)精製水 残量
(8)実施例6のR6;poly(AAm-co-AN)[80:20] 3.0
[Example 11]
An ointment was prepared according to the following recipe and manufacturing method.
(Components) (% by mass)
(1) Stearyl alcohol 18.0
(2) Rowlet 15.0
(3) Polyoxyethylene (20 mol) monooleate 0.3
(4) Tocopherol 0.1
(5) Vaseline 30.0
(6) Glycerin 10.0
(7) Purified water Remaining amount (8) R6 in Example 6; poly(AAm-co-AN) [80:20] 3.0

(製造方法)
A:成分(1)~(5)を70℃で均一に混合する。
B:成分(7)、(8)を70℃で均一に混合溶解したのち、成分(6)を加え均一に混合する。
C:AにBを加え70℃で乳化し、室温に冷却して軟膏を得た。
(Production method)
A: Components (1) to (5) are mixed uniformly at 70°C.
B: Components (7) and (8) are mixed and dissolved uniformly at 70°C, and then component (6) is added and mixed uniformly.
C: B was added to A and emulsified at 70°C, then cooled to room temperature to obtain an ointment.

以上のようにして得られた軟膏は、水や汗によっては落ちないが、42℃のお湯を用いることで容易に落とすことができた。 The ointment obtained in this manner could not be removed by water or sweat, but could be easily removed by using hot water at 42°C.

本発明は、化粧料や皮膚外用剤の分野において非常に有用である。 This invention is extremely useful in the fields of cosmetics and topical skin preparations.

Claims (1)

アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度を有する化粧料組成物又は皮膚外用剤組成物に、界面活性剤を接触させることを特徴とする上限臨界溶液温度を低下させる方法。 A method for lowering an upper critical solution temperature, characterized by contacting a surfactant with a cosmetic composition or topical skin composition having an upper critical solution temperature and containing a copolymer of acrylamide and acrylonitrile.
JP2022070697A 2016-05-09 2022-04-22 Compositions Having Upper Critical Solution Temperatures Active JP7477848B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016094038 2016-05-09
JP2016094038 2016-05-09
JP2017092520A JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017092520A Division JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature

Publications (2)

Publication Number Publication Date
JP2022090046A JP2022090046A (en) 2022-06-16
JP7477848B2 true JP7477848B2 (en) 2024-05-02

Family

ID=60321997

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017092520A Pending JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature
JP2022070697A Active JP7477848B2 (en) 2016-05-09 2022-04-22 Compositions Having Upper Critical Solution Temperatures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017092520A Pending JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature

Country Status (1)

Country Link
JP (2) JP2017203028A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217348A (en) 2006-02-17 2007-08-30 Shiseido Co Ltd Thickener and cosmetic and cleaner containing the same
JP2008248105A (en) 2007-03-30 2008-10-16 Kose Corp Detergent composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759286B1 (en) * 1997-02-10 2004-04-02 Oreal USE OF POLYMERS WITH CRITICAL TEMPERATURE OF THE LCST OR UCST TYPE IN AND FOR THE MANUFACTURE OF COSMETIC OR DERMATOLOGICAL FORMULATIONS COMPOSITIONS CONTAINING THEM
CA2448252A1 (en) * 2001-06-08 2002-12-19 Cosmetica, Inc. Colored sunscreen compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217348A (en) 2006-02-17 2007-08-30 Shiseido Co Ltd Thickener and cosmetic and cleaner containing the same
JP2008248105A (en) 2007-03-30 2008-10-16 Kose Corp Detergent composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Langmuir,2015, Vol.31, p.8940-8946
Macromolecules, 2012, vol.45, p.3910-3918
Polym. Chem., 2016 Feb., vol.7, p.1979-1986

Also Published As

Publication number Publication date
JP2017203028A (en) 2017-11-16
JP2022090046A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
ES2307128T3 (en) HYPERRAMIFIED COPOLYMERS CONTAINING SELECTED MONOMERS, COMPOSITION AND COSMETIC PROCEDURE.
JP5528118B2 (en) (Meth) acrylic acid / (meth) acrylic acid alkyl ester copolymer and cosmetics containing the same
US9359461B2 (en) Ethylene copolymers, compositions comprising same and preparation and treatment methods
KR101293347B1 (en) Water-soluble copolymer having alkyl-modified carboxyl group
US20120172457A1 (en) Novel powdered polymer, preparation method thereof and use of same as a thickener
JP5043304B2 (en) Gel composition and cosmetic containing the same
US20050101740A1 (en) Block ethylenic copolymers comprising a vinyllactam block, cosmetic compositions containing them and cosmetic use of these copolymers
JP6885396B2 (en) A copolymer, a thickener containing the copolymer, and a cosmetic containing the copolymer.
KR102649137B1 (en) Absorbent resin having a siloxane skeleton and cosmetics containing the same
JP2000319326A (en) Composition containing polymer of star-structure, the polymer and use thereof
US20040202634A1 (en) Composition useful for cosmetic or dermatological use containing a block copolymer
EP1867664B1 (en) Cosmetic for eyelash
US20050238594A1 (en) Block ethylenic copolymers comprising a vinyllactam block, cosmetic or pharmaceutical compositions comprising them and cosmetic use of these copolymers
JP4382398B2 (en) Cosmetic resin
JP7477848B2 (en) Compositions Having Upper Critical Solution Temperatures
JP2014227384A (en) Inorganic/organic hybrid hydrogel particle and production method thereof
JP2005113124A (en) Block ethylene copolymer containing vinyl lactam block, cosmetic composition containing them and cosmetic use of these copolymer
JP6948176B2 (en) Cosmetics
US20060088487A1 (en) Block ethylenic copolymers comprising a vinyllactam block, cosmetic or pharmaceutical compositions containing them and cosmetic use of these copolymers
JPH11236310A (en) Cosmetic material
JP2010215750A (en) Hydrophilic polymer compound and external preparation for skin or cosmetics blended with the same
JP2000016913A (en) Cosmetic
JP2010254974A (en) Water-soluble copolymer and cosmetic or external preparation for skin obtained by blending the same
JP2010196048A (en) Novel water-soluble polymer, and cosmetic material or skin preparation for external use containing the same
JP7182759B2 (en) Upper critical solution temperature type temperature-responsive polymer with nucleobase structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411