JP2022090046A - Composition having upper critical solution temperature - Google Patents

Composition having upper critical solution temperature Download PDF

Info

Publication number
JP2022090046A
JP2022090046A JP2022070697A JP2022070697A JP2022090046A JP 2022090046 A JP2022090046 A JP 2022090046A JP 2022070697 A JP2022070697 A JP 2022070697A JP 2022070697 A JP2022070697 A JP 2022070697A JP 2022090046 A JP2022090046 A JP 2022090046A
Authority
JP
Japan
Prior art keywords
temperature
copolymer
upper limit
critical solution
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022070697A
Other languages
Japanese (ja)
Other versions
JP7477848B2 (en
Inventor
千恵 大塚
Chie Otsuka
雅樹 奥山
Masaki Okuyama
聖一 内山
Seiichi Uchiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kose Corp
University of Tokyo NUC
Original Assignee
Kose Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kose Corp, University of Tokyo NUC filed Critical Kose Corp
Publication of JP2022090046A publication Critical patent/JP2022090046A/en
Application granted granted Critical
Publication of JP7477848B2 publication Critical patent/JP7477848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition having an upper critical solution temperature suitable for use as a cosmetic or skin external preparation, or having a temperature at which the solubility thereof rapidly increases.
SOLUTION: According to the present invention, after determination of the upper critical solution temperatures of aqueous solutions of six different copolymers of acrylamide and acrylonitrile with different monomer mass-feeding ratios, a surfactant, such as an anionic surfactant, was added to the aqueous solutions containing the respective copolymers. As a result, the mixed solutions of copolymers showed lowered upper limit critical solution temperatures, respectively.
SELECTED DRAWING: None
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度を有する組成物の用途に関し、より詳細には、化粧料又は皮膚外用剤として使用するための上記組成物に関する。 The present invention relates to the use of a composition having an upper critical solution temperature containing a copolymer of acrylamide and acrylonitrile, and more particularly to the above composition for use as a cosmetic or an external preparation for the skin.

化粧料は、なめらかなのに密着する、化粧もちが良いのに落としやすいなど、しばしば真逆の性能を併せもつことが要求される。例えば、フィルムマスカラに用いられる高分子重合体について、水では落ちないがお湯では落ちる等、ある特定の刺激に応答して機能を発現することが求められている。 Cosmetics are often required to have the opposite performance, such as smoothness and close contact, and long-lasting makeup that is easy to remove. For example, polymer polymers used in film mascara are required to exhibit their functions in response to a specific stimulus, such as not falling off with water but falling off with hot water.

上記刺激としては、温度の他、pH、光等が知られているが、温度によって構造変化を起こす温度応答性重合体として、ポリ(N-イソプロピルアクリルアミド)が周知であり、ポリ(N-アクリロイルグリシンアミド)等についての報告(例えば、非特許文献1参照)等もある。かかる温度応答性重合体について化粧料への配合検討が行われてきたが、化粧料への応用が進められているとは言い難い。その理由の一つとして、機能発現を望まない場面でも、当該温度刺激によって性質が変化してしまうことが挙げられる。例えば、温度応答性重合体が配合された製品では、高温の環境で性質が変わることにより品質の安定性が損なわれるおそれがあるとされている。 As the above stimulus, pH, light and the like are known in addition to temperature, but poly (N-isopropylacrylamide) is well known as a temperature-responsive polymer that causes a structural change depending on temperature, and poly (N-acryloyl) is known. There are also reports on glycinamide) and the like (see, for example, Non-Patent Document 1). Although studies have been conducted on the formulation of such temperature-responsive polymers in cosmetics, it cannot be said that their application to cosmetics is being promoted. One of the reasons is that the properties change due to the temperature stimulus even in situations where the expression of function is not desired. For example, in a product containing a temperature-responsive polymer, it is said that the stability of quality may be impaired due to the change in properties in a high temperature environment.

一方、ポリアクリルアミドが水に溶解し、ポリアクリロニトリルがN,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の極性溶媒にのみ溶解し、DMSO-HOは自由に混ざり合うこと等から、アクリルアミド(AAm)とアクリロニトリル(AN)との共重合体の溶解性について検討が行われており、AAm/AN組成比=0/100~100/0の間の範囲にわたり共重合体の合成が行われ、得られた共重合体の組成分析を赤外及び紫外吸収スペクトル法や比重法等により行うとともに各種溶媒への溶解性が測定されている(例えば、非特許文献2参照)。また、アクリルアミド(AAm)とアクリロニトリル(AN)との共重合体の水溶液は、上限臨界溶液温度を有し、AAm/AN組成比を変更することにより、上限臨界溶液温度を調整できることが報告されている(例えば、非特許文献3参照)。 On the other hand, polyacrylamide is dissolved in water, polyacrylonitrile is dissolved only in polar solvents such as N, N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO), and DMSO- H2O is freely mixed. , The solubility of the copolymer of acrylamide (AAm) and acrylonitrile (AN) has been investigated, and the synthesis of the copolymer has been carried out in the range of AAm / AN composition ratio = 0/100 to 100/0. The composition of the obtained copolymer is analyzed by an infrared and ultraviolet absorption spectrum method, a specific gravity method, etc., and its solubility in various solvents is measured (see, for example, Non-Patent Document 2). It has also been reported that the aqueous solution of the copolymer of acrylamide (AAm) and acrylonitrile (AN) has an upper limit critical solution temperature, and the upper limit critical solution temperature can be adjusted by changing the AAm / AN composition ratio. (See, for example, Non-Patent Document 3).

他方、化粧料や皮膚外用剤を使用する際には、効果の持続時間や使用目的を考慮して、一定時間後に洗い流す必要がある場合が多いが、洗顔を行うために適した水の温度については、様々な意見がある。例えば、肌温度よりも少し高い40℃前後のお湯を用いる洗顔を行うと、毛穴が開いて化粧料等をよく落とすことができるため、汚れ落ちという点では優れているが、必要以上に皮脂や水分が肌から失われるおそれがあるとされている。それに対して冷水による洗顔は、毛穴をひきしめることができるが、毛穴に化粧料等が詰まった状態のままになるおそれもあるとされている。また、熱帯地域、寒冷地域、水中等特殊な環境においても化粧料や皮膚外用剤を維持又は容易に落とすことが必要な場合があり、化粧料や皮膚外用剤として使用される組成物は、幅広い温度範囲において対応できることも要求されている。 On the other hand, when using cosmetics and external skin preparations, it is often necessary to wash off after a certain period of time in consideration of the duration of effect and purpose of use, but regarding the temperature of water suitable for washing the face. Has various opinions. For example, if you wash your face with hot water at around 40 ° C, which is slightly higher than the skin temperature, pores will open and you will be able to remove cosmetics etc. It is said that water may be lost from the skin. On the other hand, washing the face with cold water can tighten the pores, but it is said that the pores may remain clogged with cosmetics or the like. In addition, it may be necessary to maintain or easily remove cosmetics and external skin preparations even in special environments such as tropical areas, cold regions, and underwater, and the compositions used as cosmetics and external skin preparations are wide-ranging. It is also required to be able to cope in the temperature range.

Howard C. H.,Norman W. S., Polymer letters vol.2 (1964)Howard C. H., Norman W. S., Polymer letters vol.2 (1964) 高橋他、工業化学雑誌70巻6号(1967)988-992頁Takahashi et al., Industrial Chemistry Magazine Vol. 70, No. 6 (1967), pp. 988-992 Seuring et al., Macromolecules 2012, 45, 3910-3918Seuring et al., Macromolecules 2012, 45, 3910-3918

本発明の課題は、化粧料又は皮膚外用剤として使用するために適した上限臨界溶液温度を有する組成物を提供することにある。 An object of the present invention is to provide a composition having an upper critical solution temperature suitable for use as a cosmetic or an external preparation for skin.

本発明者らは、アクリルアミド(AAm)とアクリロニトリル(AN)とをモノマーとして使用し、モノマー質量仕込み比([(AAm):(AN)])を様々に変更することにより、アクリルアミドとアクリロニトリルとのランダム共重合体([poly(AAm-co-AN)])をフリーラジカル重合により6種類合成した。かかる6種類の共重合体を水に溶解して、各共重合体含有水溶液について降温及び昇温を行い、光透過率の変化を測定することにより、各共重合体含有水溶液の上限臨界溶液温度を決定したところ、[(AAm):(AN)]におけるANの比率が増加するにつれて、共重合体含有水溶液の上限臨界溶液温度が上昇することを確認した。次に、上記6種類の[poly(AAm-co-AN)]含有水溶液に界面活性剤を添加したところ、各共重合体含有水溶液の上限臨界溶液温度が低下することを見いだした。そこで、各共重合体が界面活性剤含有水溶液に溶解している場合に、水溶液に溶解している場合と比較して上限臨界溶液温度がどれほど低下するかを確認した。 The present inventors use acrylamide (AAm) and acrylonitrile (AN) as monomers, and by variously changing the monomer mass charging ratio ([(AAm) :( AN)]), acrylamide and acrylonitrile can be combined. Six kinds of random copolymers ([poly (AAm-co-AN)]) were synthesized by free radical polymerization. The upper limit critical solution temperature of each copolymer-containing aqueous solution is measured by dissolving these six types of copolymers in water, lowering and raising the temperature of each copolymer-containing aqueous solution, and measuring the change in light transmittance. It was confirmed that the upper limit critical solution temperature of the copolymer-containing aqueous solution increased as the ratio of AN in [(AAm): (AN)] increased. Next, it was found that when a surfactant was added to the above-mentioned 6 kinds of [poly (AAm-co-AN)] -containing aqueous solutions, the upper limit critical solution temperature of each copolymer-containing aqueous solution was lowered. Therefore, it was confirmed how much the upper limit critical solution temperature was lowered when each copolymer was dissolved in the surfactant-containing aqueous solution as compared with the case where each copolymer was dissolved in the aqueous solution.

次いで、可逆的付加開裂連鎖移動(Reversible Addition-Fragmentation Chain Transfer:RAFT)重合により[poly(AAm-co-AN)]を6種類合成し、各共重合体を水に溶解した各共重合体含有水溶液について降温及び昇温を行い、光透過率の変化を測定することにより、各共重合体含有水溶液の上限臨界溶液温度を決定した。RAFT重合により合成された[poly(AAm-co-AN)]含有水溶液は、フリーラジカル重合により合成された場合と比較して水溶液中における単位温度当たりの透過率変化が大きいことを見いだし、したがって水溶液の温度応答の感度が高くなることを確認し、本発明を完成するに至った。 Next, 6 types of [poly (AAm-co-AN)] were synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization, and each copolymer was dissolved in water to contain each copolymer. The upper limit critical solution temperature of each copolymer-containing aqueous solution was determined by lowering and raising the temperature of the aqueous solution and measuring the change in the light transmittance. It was found that the [poly (AAm-co-AN)] -containing aqueous solution synthesized by RAFT polymerization had a large change in transmittance per unit temperature in the aqueous solution as compared with the case where it was synthesized by free radical polymerization, and therefore the aqueous solution. It was confirmed that the sensitivity of the temperature response of the above was increased, and the present invention was completed.

すなわち、本発明は以下の事項により特定されるとおりのものである。
[1]化粧料又は皮膚外用剤として使用するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物。
[2]共重合体が、モノマー質量仕込み比アクリルアミド:アクリロニトリル=77.5:22.5~85:15であることを特徴とする前記[1]記載の組成物。
[3]共重合体が、8000~200000の重量平均分子量を有することを特徴とする前記[1]又は[2]記載の組成物。
[4]共重合体が、ランダム共重合体であることを特徴とする前記[1]~[3]のいずれか記載の組成物。
[5]ランダム共重合体が、フリーラジカル重合によって合成されたランダム共重合体であることを特徴とする前記[4]記載の組成物。
[6]ランダム共重合体が、可逆的付加開裂連鎖移動重合によって合成されたランダム共重合体であることを特徴とする前記[4]記載の組成物。
[7]ドデシル硫酸ナトリウム1~20mMを添加した場合に温度感受性を有することを特徴とする前記[1]~[6]のいずれか記載の組成物。
[8]界面活性剤を含まない1w/v%水溶液における光透過率-温度カーブの微分曲線の最大値が50d%T/dT以上であることを特徴とする前記[6]又は[7]記載の組成物。
[9]アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物からなる化粧料又は皮膚外用剤に、界面活性剤を接触させることを特徴とする上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させる方法。
また、本発明の他の態様として、[10]アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する化粧料又は皮膚外用剤、[11]化粧料又は皮膚外用剤を製造するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物の使用、[12]化粧料成分又は皮膚外用剤成分に、アクリルアミドとアクリロニトリルとの共重合体を配合することを特徴とする上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する化粧料又は皮膚外用剤の製造方法、[13]化粧料又は皮膚外用剤として使用するための、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有するアクリルアミドとアクリロニトリルとの共重合体を含む組成物に関する。
That is, the present invention is as specified by the following matters.
[1] A composition having an upper critical solution temperature containing a copolymer of acrylamide and acrylonitrile or a temperature at which the solubility rapidly increases for use as a cosmetic or a skin external preparation.
[2] The composition according to the above [1], wherein the copolymer has a monomer mass charging ratio of acrylamide: acrylonitrile = 77.5: 22.5 to 85:15.
[3] The composition according to the above [1] or [2], wherein the copolymer has a weight average molecular weight of 8,000 to 200,000.
[4] The composition according to any one of the above [1] to [3], wherein the copolymer is a random copolymer.
[5] The composition according to the above [4], wherein the random copolymer is a random copolymer synthesized by free radical polymerization.
[6] The composition according to the above [4], wherein the random copolymer is a random copolymer synthesized by reversible addition-fragmentation chain transfer polymerization.
[7] The composition according to any one of the above [1] to [6], which has temperature sensitivity when 1 to 20 mM of sodium dodecyl sulfate is added.
[8] The above-mentioned [6] or [7], wherein the maximum value of the differential curve of the light transmittance-temperature curve in a 1 w / v% aqueous solution containing no surfactant is 50 d% T / dT or more. Composition.
[9] The feature is that the surfactant is brought into contact with a cosmetic or skin external preparation comprising a composition having an upper limit critical solution temperature containing a copolymer of acrylamide and acrylonitrile or a temperature at which the solubility rapidly increases. A method of lowering the upper limit critical solution temperature or the temperature at which the solubility rises sharply.
Further, as another aspect of the present invention, [10] a cosmetic or a skin external preparation having an upper limit critical solution temperature containing a copolymer of acrylamide and acrylonitrile, or a temperature at which the solubility rapidly increases, [11] cosmetic. Use of a composition having an upper critical solution temperature containing a copolymer of acrylamide and acrylonitrile, or a temperature at which the solubility increases rapidly, for producing a drug or an external preparation for skin, [12] cosmetic ingredient or skin. A method for producing a cosmetic or skin external preparation having an upper limit critical solution temperature characterized by blending a copolymer of acrylamide and acrylonitrile as an external preparation component or a temperature at which the solubility rapidly increases, [13]. The present invention relates to a composition containing a copolymer of acrylamide and acrylonitrile having an upper limit critical solution temperature or a temperature at which the solubility increases rapidly for use as a cosmetic or an external preparation for skin.

本発明の化粧料又は皮膚外用剤として使用するための組成物は、上限臨界溶液温度を有するアクリルアミドとアクリロニトリルとのポリマーと、化粧料成分又は皮膚外用剤成分とを含む化粧料や皮膚外用剤であり、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有することから、水や汗によっては落ちない(溶解しない)が、温水で容易に落とす(溶解させる)ことが可能となる。また、本発明の組成物によると、アクリルアミドとアクリロニトリルとの共重合体が溶解している水溶液に界面活性剤を添加することにより上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させることができるので、用途や使用温度環境に合わせて洗浄効果の高い化粧料や皮膚外用剤を提供することができ、例えば、特定の温度の水で洗った場合は溶解性を示さないが、界面活性剤を含む洗浄料を用いて水で洗顔する場合には、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度がより低くなるため、上記特定の温度においても組成物中の重合体が容易に溶解して、従来よりも低い温度で洗顔することができるため肌への負担が少なくなる。 The composition for use as the cosmetic or skin external preparation of the present invention is a cosmetic or skin external preparation containing a polymer of acrylamide and acrylonitrile having an upper critical solution temperature and a cosmetic component or a skin external preparation component. Since it has an upper limit critical solution temperature or a temperature at which the solubility rises sharply, it cannot be removed (dissolved) by water or sweat, but can be easily removed (dissolved) by warm water. Further, according to the composition of the present invention, the upper limit critical solution temperature or the temperature at which the solubility rapidly increases is lowered by adding a surfactant to the aqueous solution in which the copolymer of acrylamide and acrylonitrile is dissolved. Therefore, it is possible to provide cosmetics and skin external preparations having a high cleaning effect according to the application and the operating temperature environment. For example, when washed with water at a specific temperature, it does not show solubility, but the interface. When the face is washed with water using a cleaning agent containing an activator, the upper limit critical solution temperature or the temperature at which the solubility rises sharply becomes lower, so that the polymer in the composition is contained even at the above specific temperature. Since it dissolves easily and the face can be washed at a lower temperature than before, the burden on the skin is reduced.

また、本発明の組成物によると、アクリルアミドとアクリロニトリルとの共重合体が溶解している水溶液に、汗に含まれる塩(例えば、NaCl)を添加することにより上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度は低下しないため、汗によっては化粧料が除去されることがなく、洗浄したいときにのみ効果的に化粧料や皮膚外用剤を除去することができる。 Further, according to the composition of the present invention, by adding a salt (for example, NaCl) contained in sweat to an aqueous solution in which a copolymer of acrylamide and acrylonitrile is dissolved, the upper critical solution temperature or abruptly Since the temperature at which the solubility increases does not decrease, the cosmetics are not removed by sweat, and the cosmetics and external preparations for skin can be effectively removed only when the user wants to wash.

さらに、本発明の組成物におけるアクリルアミドとアクリロニトリルとの共重合体として、フリーラジカル重合に代えてRAFT重合によって合成されたランダム共重合体を用いる場合、組成物溶液の温度応答の感度が高くなる、すなわち単位温度当たりの組成物溶液の透過率変化が大きくなることから、洗浄に用いる水中の界面活性剤の濃度が非常に低い場合又は界面活性剤が含まれていない場合においても、化粧料等が特定の狭範囲の温度で容易に溶解することにより洗浄効果が顕著に高くなる。 Further, when a random copolymer synthesized by RAFT polymerization is used instead of free radical polymerization as the copolymer of acrylamide and acrylonitrile in the composition of the present invention, the sensitivity of the temperature response of the composition solution becomes high. That is, since the change in the transmittance of the composition solution per unit temperature becomes large, even when the concentration of the surfactant in the water used for washing is very low or the surfactant is not contained, cosmetics and the like can be used. The cleaning effect is remarkably enhanced by being easily melted at a specific narrow range of temperatures.

アクリルアミドとアクリロニトリルのモノマー質量仕込み比([(AAm):(AN)])が異なる、ランダム共重合体(poly(AAm-co-AN))(以下、単に[poly(AAm-co-AN)]ともいう。)であって、フリーラジカル重合により合成された6種類の[poly(AAm-co-AN)](F1~F6)について、それぞれの1w/v%水溶液の光透過率(縦軸)と溶液の温度(横軸)とをプロットしたグラフを示す。Random copolymers (poly (AAm-co-AN)) with different monomer mass charging ratios of acrylamide and acrylonitrile ([(AAm): (AN)]) (hereinafter, simply [poly (AAm-co-AN)] (Also also referred to as), and for each of the six types of [poly (AAm-co-AN)] (F1 to F6) synthesized by free radical polymerization, the light transmittance (vertical axis) of each 1 w / v% aqueous solution. And the temperature of the solution (horizontal axis) are plotted in a graph. F1~F6について、それぞれの1w/v%水溶液に終濃度100mMのドデシル硫酸ナトリウム(sodium dodecyl sulfate:SDS)を添加した混合溶液について、光透過率と溶液の温度とをプロットしたグラフを示す。For F1 to F6, a graph is shown in which the light transmittance and the temperature of the solution are plotted for a mixed solution in which a final concentration of 100 mM sodium dodecyl sulfate (SDS) is added to each 1 w / v% aqueous solution. フリーラジカル重合により合成された[Poly(AAm-co-AN)][82.5:17.5](F3)の1w/v%水溶液に終濃度5mM、10mM、15mM、20mM、30mM及び100mMのSDSを添加した各混合溶液の光透過率と溶液の温度とをプロットしたグラフを示す。A 1 w / v% aqueous solution of [Poly (AAm-co-AN)] [82.5: 17.5] (F3) synthesized by free radical polymerization at a final concentration of 5 mM, 10 mM, 15 mM, 20 mM, 30 mM and 100 mM. The graph which plotted the light transmittance of each mixed solution to which SDS was added and the temperature of a solution is shown. F1~F6について、それぞれの1w/v%水溶液に終濃度100mMのセチルトリメチルアンモニウムクロライド(cetyltrimethylammonium chloride:CTAC)を添加した混合溶液の光透過率と溶液の温度をプロットしたグラフを示す。For F1 to F6, the graph which plotted the light transmittance and the temperature of the mixed solution which added the cetyltrimethylammonium chloride (CTAC) of the final concentration of 100 mM to each 1w / v% aqueous solution is shown. F1~F6について、それぞれの1w/v%水溶液に終濃度100mMのNaClを添加した混合溶液の光透過率と溶液の温度とをプロットしたグラフを示す。For F1 to F6, a graph showing the light transmittance and the temperature of the mixed solution in which NaCl with a final concentration of 100 mM is added to each 1 w / v% aqueous solution is plotted. RAFT重合により合成された[Poly(AAm-co-AN)][82.5:17.5]であって、Mwが12400であるR1の共重合体の、1w/v%水溶液及び0.1w/v%水溶液について、透過率と溶液の温度とをプロットしたグラフ(A)及び(A1)と、それらの微分曲線(a)及び(a1)に示す。また、F1の共重合体の1w/v%水溶液及び0.1w/v%水溶液について、透過率と溶液の温度とをプロットしたグラフ(F)及び(F1)と、それらの微分曲線(f)及び(f1)に示す。[Poly (AAm-co-AN)] [82.5: 17.5] synthesized by RAFT polymerization, 1w / v% aqueous solution and 0.1w of the copolymer of R1 having Mw of 12400. The graphs (A) and (A1) plotting the transmittance and the temperature of the solution for the / v% aqueous solution and their differential curves (a) and (a1) are shown. Further, graphs (F) and (F1) plotting the transmittance and the temperature of the solution for a 1 w / v% aqueous solution and a 0.1 w / v% aqueous solution of the F1 copolymer, and their differential curves (f). And (f1). RAFT重合により合成された重量平均分子量(Mw)が異なる4種類の[Poly(AAm-co-AN)][82.5:17.5](R1~R4)について、それぞれの1w/v%水溶液の光透過率と溶液の温度とをプロットしたグラフ(A)~(D)と、それらの微分曲線をそれぞれ(a)~(d)に示す。A 1w / v% aqueous solution of each of four types of [Poly (AAm-co-AN)] [82.5: 17.5] (R1 to R4) synthesized by RAFT polymerization and having different weight average molecular weights (Mw). Graphs (A) to (D) plotting the light transmittance and the temperature of the solution of the above and their differential curves are shown in (a) to (d), respectively. R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体の水溶液の透過率と溶液の温度とをプロットしたグラフ(E)、(B)、(G)、(H)とそれらの微分曲線をそれぞれ(e)、(b)、(g)、(h)に示す。Graphs (E), (B), (G), (H) plotting the transmittance of the aqueous solution of the copolymer of R5, R2, R6, and a mixture of R5 and R6 1: 1 and the temperature of the solution. And their differential curves are shown in (e), (b), (g), and (h), respectively.

本発明の組成物としては、化粧料又は皮膚外用剤として使用するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物であれば特に制限されず、組成物には、前記共重合体の他、化粧料成分や皮膚外用剤成分が含まれる。また、本発明の化粧料又は皮膚外用剤の上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させる方法としては、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度を有する組成物に、陰イオン性界面活性剤等の界面活性剤を接触させる方法であれば特に制限されない。本発明において「化粧料又は皮膚外用剤として使用するための・・・組成物」とは、化粧料又は皮膚外用剤に用途が限定された組成物の用途発明であることを意味し、また「上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物」とは、組成物を含む溶液が、特定の条件下で上限臨界溶液温度を有する、もしくは、急激に溶解度が上昇する温度を有することになる組成物を意味する。 The composition of the present invention may be a composition having an upper critical solution temperature containing a copolymer of acrylamide and acrylonitrile for use as a cosmetic or an external preparation for skin, or a composition having a temperature at which the solubility rapidly increases. However, the composition is not particularly limited, and includes, in addition to the above-mentioned copolymer, a cosmetic component and a skin external preparation component. Further, as a method for lowering the upper limit critical solution temperature of the cosmetic or skin external preparation of the present invention, or the temperature at which the solubility rapidly increases, a composition having an upper limit critical solution temperature containing a copolymer of acrylamide and acrylonitrile is used. The method is not particularly limited as long as it is a method of contacting an object with a surfactant such as an anionic surfactant. In the present invention, the "composition for use as a cosmetic or an external preparation for skin" means that the composition is used for a limited purpose as a cosmetic or an external preparation for skin, and is also "a composition for use". The "composition having an upper critical solution temperature or a temperature at which the solubility increases sharply" is a temperature at which the solution containing the composition has an upper critical solution temperature under specific conditions or the solubility increases sharply. Means a composition that will have.

上記アクリルアミドとアクリロニトリルとの共重合体としては、下記式(1)で示されるアクリルアミドと、下記式(2)で示されるアクリルニトリルとを、モノマーとして重合することにより合成される共重合体(poly(acrylamide-co-acrylonitrile) )(poly(AAm-co-AN))を挙げることができ、上記共重合体の形態としては、ランダム共重合体、ブロック共重合体のいずれでもよいが、官能基の均一分散性という点から下記式(3)で示されるランダム共重合体が好ましい。 As the copolymer of the above acrylamide and acrylonitrile, a copolymer (poly) synthesized by polymerizing the acrylamide represented by the following formula (1) and the acrylic nitrile represented by the following formula (2) as a monomer. (acrylamide-co-acrylonitrile)) (poly (AAm-co-AN)) can be mentioned, and the form of the above-mentioned copolymer may be either a random copolymer or a block copolymer, but is a functional group. From the viewpoint of uniform dispersibility, a random copolymer represented by the following formula (3) is preferable.

Figure 2022090046000001
Figure 2022090046000001

Figure 2022090046000002
Figure 2022090046000002

Figure 2022090046000003
Figure 2022090046000003

上記ランダム共重合体(poly(AAm-co-AN))の合成方法としては、ラジカルを反応中心としてポリマー鎖が伸張していくラジカル反応を挙げることができ、具体的には、幅広い分子量分布を有するポリマーが得られるフリーラジカル重合による合成方法や、ラジカル重合の簡便性と汎用性を保ちつつ、分子構造の制御を可能にするリビングラジカル重合による合成方法、なかでも、分子量分布(Mw/Mn)がより小さい共重合体を製造できるRAFT重合による合成方法を挙げることができる。 As a method for synthesizing the above random copolymer (poly (AAm-co-AN)), a radical reaction in which a polymer chain is extended with a radical as a reaction center can be mentioned, and specifically, a wide molecular weight distribution can be obtained. A synthesis method by free radical polymerization that can obtain the polymer to be possessed, and a synthesis method by living radical polymerization that enables control of the molecular structure while maintaining the convenience and versatility of radical polymerization, especially the molecular weight distribution (Mw / Mn). Examples thereof include a synthesis method by RAFT polymerization capable of producing a copolymer having a smaller radical.

上記フリーラジカル重合による合成方法としては、アクリルアミドとアクリルニトリルとをモノマーとして用いて共重合させるために、重合温度にて十分にラジカルを発生させる重合開始剤と、重合反応に適した溶媒とを用いる、従来公知の方法を挙げることができ、合成された共重合体の反応溶液には未反応のモノマー等の夾雑物が共存しているので、精製処理をさらに行うことにより、[poly(AAm-co-AN)]を調製することが好ましい。 As the above-mentioned synthesis method by free radical polymerization, in order to copolymerize acrylamide and acrylic nitrile as a monomer, a polymerization initiator that sufficiently generates a radical at the polymerization temperature and a solvent suitable for the polymerization reaction are used. , Conventionally known methods can be mentioned. Since impurities such as unreacted monomers coexist in the reaction solution of the synthesized copolymer, by further purifying the reaction solution, [poly (AAm-) co-AN)] is preferably prepared.

上記RAFT重合による合成方法としては、アクリルアミドとアクリルニトリルとをモノマーとして用いて共重合させるために、重合温度にて十分にラジカルを発生させる重合開始剤と、重合反応に適した溶媒と、さらに末端活性ラジカルの反応性を制御して擬似リビング的に重合を進行させるための、可逆的付加開裂連鎖移動剤(Reversible Addition-Fragmentation Chain Transfer:RAFT剤)とを用いる、従来公知の方法を挙げることができる。 The synthesis method by RAFT polymerization includes a polymerization initiator that sufficiently generates radicals at the polymerization temperature in order to copolymerize acrylamide and acrylic nitrile as monomers, a solvent suitable for the polymerization reaction, and a terminal. A conventionally known method using a reversible additive-fragmentation chain transfer (RAFT agent) for controlling the reactivity of active radicals and advancing the polymerization in a pseudo-living manner can be mentioned. can.

上記共重合体のアクリルアミドとアクリロニトリルのモノマー質量仕込み比[(AAm):(AN)]としては、1:99~99:1が好ましく、50:50~95:5が好ましく、70:30~90:10がより好ましく、77.5:22.5~85:15が最も好ましい。なお、本発明の効果を奏する限りにおいて、他のモノマー成分を用いることもできる。 The monomer mass charging ratio [(AAm) :( AN)] of the copolymer acrylamide and acrylonitrile is preferably 1:99 to 99: 1, preferably 50:50 to 95: 5, and 70:30 to 90. : 10 is more preferable, and 77.5: 22.5 to 85:15 is most preferable. In addition, other monomer components can be used as long as the effect of the present invention is exhibited.

上記重合開始剤としては、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)等のアゾ系重合開始剤;過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素等の過酸化物系重合開始剤;などを挙げることができる。 Examples of the polymerization initiator include 2,2'-azobis (isobutyronitrile) (AIBN), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis (2,2'-azobis). 2-Amidinopropane) dihydrochloride, 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis (2-methylpropionamidine) disulfate Salts, azo-based polymerization initiators such as 2,2'-azobis (N, N'-dimethyleneisobutyramidin); persulfates such as potassium persulfate and ammonium persulfate; benzoyl peroxides, t-butyl hydroperoxides, A peroxide-based polymerization initiator such as hydrogen peroxide; and the like can be mentioned.

上記重合反応に適した溶媒としては、DMSO、水、DMF等を挙げることができる。 Examples of the solvent suitable for the polymerization reaction include DMSO, water, DMF and the like.

上記RAFT剤としては、O-エチル-S-(1-フェニルエチル)ジチオカーボネート、O-エチル-S-(2-プロポキシエチル)ジチオカーボネート、O-エチル-S-(1-シアノ-1-メチルエチル)ジチオカーボネート等のジチオカーボネート類、ジチオプロピオン酸シアノエチル、ジチオプロピオン酸ベンジル、ジチオ安息香酸ベンジル、ジチオ安息香酸アセトキシエチル等のジチオエステル類、S-ベンジル-N,N-ジメチルジチオカルバメート、ベンジル-1-ピロールカルボジチオエート等のジチオカルバメート類、ジベンジルトリチオカーボネート、シアノメチルドデシルトリチオカーボネート(cyanomethyl dodecyl trithiocarbonate:CMDT)等のトリチオカーボネート類などを挙げることができる。 Examples of the RAFT agent include O-ethyl-S- (1-phenylethyl) dithiocarbonate, O-ethyl-S- (2-propoxyethyl) dithiocarbonate, and O-ethyl-S- (1-cyano-1-methyl). Ethyl) Dithiocarbonates such as dithiocarbonate, cyanoethyl dithiopropionate, benzyl dithiopropionate, benzyl dithiobenzoate, dithioesters such as acetoxyethyl dithiobenzoate, S-benzyl-N, N-dimethyldithiocarbamate, benzyl- Examples thereof include dithiocarbamates such as 1-pyrrolecarbodithioate, trithiocarbonates such as dibenzyltrithiocarbonate and cyanomethyl dodecyl trithiocarbonate (CMDT).

RAFT重合における、モノマーの総モル数を1とした場合のRAFT剤の配合モル数としては、好ましくは0.0001~0.01、より好ましくは0.0002~0.005、さらに好ましくは0.0003~0.003を挙げることができる。 In RAFT polymerization, the number of moles of the RAFT agent to be blended is preferably 0.0001 to 0.01, more preferably 0.0002 to 0.005, and even more preferably 0. 0003 to 0.003 can be mentioned.

本発明の[poly(AAm-co-AN)]の、フリーラジカル重合による具体的な調製方法としては、アクリロニトリルをDMSOに溶解し、アクリルアミドを添加した溶液を脱気して開始溶液とし、AIBN等の開始剤を加えて、50~70℃にて5~10時間反応させる方法(上記非特許文献1参照)や、各割合のアクリロニトリルとアクリルアミドとを脱酸素水に添加し、過硫酸カリウム、メタ重亜硫酸カリウムに硫酸第一鉄アンモニウム溶液等の開始剤を加えて、窒素気流中、40℃にて10分間重合させ、重合反応物は、反応停止後、すぐにメタノール又は水に落として沈殿させ、得られた沈殿物を、洗浄、乾燥後、アクリロニトリルとアクリルアミドの割合に応じてDMSO又は水に溶解し、メタノールに再沈殿させて精製する方法(SEN-I GAKAISHI、Vol.32, No.1(1976)参照)を挙げることができる。そしてまた、仕込モノマー組成を、0.25molのAN+AAm、0.3%/モノマーのK、0.78%/モノマーのNaHSO、酢酸0.05mL、203mLのHOとし、重合時間1~3時間、重合温度40℃とするAAm/AN=0/100~30/70モル組成の共重合体や、仕込組成を、0.146molのAN+AAm、0.0485%/モノマーのK、88mLのHO、1.54mLのイソプロパノールとし、重合時間2時間、重合温度50℃とするAAm/AN=70/30~100/0モル組成の共重合体や、仕込組成を、0.25molのAN+AAm、0.14%/モノマーのBPO、50mLのDMFとし、重合時間1~4時間、重合温度60℃とするAAm/AN=0/100~100/0モル組成の共重合体を合成し、DMF、水、メタノール、エタノール等適切な精製用溶媒を用いて精製する方法(上記非特許文献2参照)などを挙げることができる。 As a specific preparation method of [poly (AAm-co-AN)] of the present invention by free radical polymerization, acrylonitrile is dissolved in DMSO, and a solution to which acrylamide is added is degassed to prepare a starting solution, such as AIBN. (See Non-Patent Document 1 above), in which the initiator is added and reacted at 50 to 70 ° C. for 5 to 10 hours, or each ratio of acrylonitrile and acrylamide is added to deoxidized water, and potassium persulfate and polymerization are added. An initiator such as a ferrous sulfate ammonium solution is added to potassium bisulfite and polymerized at 40 ° C. for 10 minutes in a nitrogen stream, and the polymerization reaction product is immediately dropped into methanol or water to precipitate after the reaction is stopped. After washing and drying, the obtained precipitate is dissolved in DMSO or water according to the ratio of acrylonitrile and acrylamide, and reprecipitated in methanol for purification (SEN-I GAKAISHI, Vol.32, No.1). (1976)). Further, the charged monomer composition was set to 0.25 mol AN + AAm, 0.3% / monomer K 2 S 2 O 8 , 0.78% / monomer NaHSO 3 , acetate 0.05 mL, 203 mL H 2 O. A copolymer having an AAm / AN = 0/100 to 30/70 mol composition having a polymerization time of 1 to 3 hours and a polymerization temperature of 40 ° C., and a charged composition of 0.146 mol AN + AAm, 0.0485% / monomer K. 2 S 2 O 8 , 88 mL of H 2 O, 1.54 mL of isopropanol, a copolymer having an AAm / AN = 70/30 to 100/0 mol composition with a polymerization time of 2 hours and a polymerization temperature of 50 ° C. The composition is 0.25 mol AN + AAm, 0.14% / monomer BPO, 50 mL DMF, and the polymerization time is 1 to 4 hours and the polymerization temperature is 60 ° C. AAm / AN = 0/100 to 100/0 mol composition. Examples thereof include a method of synthesizing a copolymer and purifying it using an appropriate purification solvent such as DMF, water, methanol and ethanol (see Non-Patent Document 2 above).

本発明における[poly(AAm-co-AN)]の、RAFT重合による具体的な調製方法としては,アクリルアミドやアクリロニトリル等のモノマーをDMSOに溶解し、CMDT等のRAFT剤を加えて脱気して開始溶液とし、AIBN等の開始剤を開始溶液に添加し、60~80oCにて2~7時間反応させた後、室温まで冷却し、冷却された反応溶液をメタノールに注ぎ、析出した共重合体を30~50℃で12~48h程度乾燥する方法(Polym.Chem. 2016,7,1979-1986等)を例示することができる。 As a specific preparation method of [poly (AAm-co-AN)] in the present invention by RAFT polymerization, a monomer such as acrylamide or acrylonitrile is dissolved in DMSO, and a RAFT agent such as CMDT is added to degas. As the starting solution, add an initiator such as AIBN to the starting solution, react at 60 to 80 oC for 2 to 7 hours, cool to room temperature, pour the cooled reaction solution into methanol, and precipitate the copolymer. Can be exemplified by a method of drying the mixture at 30 to 50 ° C. for about 12 to 48 hours (Polym. Chem. 2016, 7, 1979-1986, etc.).

なお、アクリロニトリルは揮発性が高く、脱気中に揮発する恐れがある。このため、仕込み量に近い組成比の共重合体、すなわち、目的の上限臨界溶液温度を有する共重合体を得るためには、アクリロニトリルは反応溶液を加温し重合反応を開始させる直前に、ガスタイトシリンジ等を用いて加えることが望ましい。 Acrylonitrile is highly volatile and may volatilize during deaeration. Therefore, in order to obtain a copolymer having a composition ratio close to the charged amount, that is, a copolymer having a target upper limit critical solution temperature, acrylonitrile is a gas immediately before the reaction solution is heated to start the polymerization reaction. It is desirable to add using a tight syringe or the like.

本発明における[poly(AAm-co-AN)]の重量平均分子量(Mw)としては、フリーラジカル重合による共重合体[poly(AAm-co-AN)]の場合、8000~200000を挙げることができ、25000~175000が好ましく、50000~150000がより好ましく、85000~120000がさらに好ましく、RAFT重合による共重合体[poly(AAm-co-AN)]の場合、8000~200000を挙げることができ、8500~100000が好ましく、9000~90000がより好ましい。上記重量平均分子量の算出方法としては、ゲル浸透クロマトグラフィー(GPC)を用いて測定し、標準物質を用いて検量線を作成の上、算出する方法を挙げることができる。 The weight average molecular weight (Mw) of [poly (AAm-co-AN)] in the present invention may be 8000 to 200,000 in the case of a copolymer by free radical polymerization [poly (AAm-co-AN)]. It is possible, preferably 25,000 to 175,000, more preferably 50,000 to 150,000, even more preferably 85,000 to 120,000, and in the case of a copolymer by RAFT polymerization [poly (AAm-co-AN)], 8,000 to 200,000 can be mentioned. It is preferably 8500 to 100,000, more preferably 9000 to 90000. As a method for calculating the weight average molecular weight, a method of measuring using gel permeation chromatography (GPC), preparing a calibration curve using a standard substance, and then calculating the weight average molecular weight can be mentioned.

本発明におけるpoly(AAm-co-AN)の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)としては、1.0~5.0が好ましく、1.1~4.5がより好ましい。さらに、フリーラジカル重合による[poly(AAm-co-AN)]の場合、1.5~3.0を好適に挙げることができ、また、RAFT重合による[poly(AAm-co-AN)]の場合、1.1~2.0をそれぞれ好適に例示することができる。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of poly (AAm-co-AN) in the present invention is preferably 1.0 to 5.0, preferably 1.1 to 4 .5 is more preferable. Further, in the case of [poly (AAm-co-AN)] by free radical polymerization, 1.5 to 3.0 can be preferably mentioned, and in the case of [poly (AAm-co-AN)] by RAFT polymerization. In this case, 1.1 to 2.0 can be preferably exemplified.

本発明の組成物を共重合体とともに構成する上記化粧料成分又は皮膚外用剤成分としては、化粧料又は皮膚外用剤に一般に用いられる成分、例えば、アルコール類、保湿剤、ゲル化剤、粉体、紫外線吸収剤、防腐剤、抗菌剤、酸化防止剤、pH調整剤、美肌用成分、香料、水等の1種又は2種以上を挙げることができる。 The cosmetic component or skin external preparation component constituting the composition of the present invention together with the copolymer includes components generally used for cosmetics or skin external preparations, such as alcohols, moisturizers, gelling agents, and powders. , UV absorbers, preservatives, antibacterial agents, antioxidants, pH regulators, skin-beautifying ingredients, fragrances, water and the like.

上記アルコール類としては、例えばエタノール、イソプロパノール等の低級アルコールや、グリセリン、ジグリセリン、ポリグリセリン、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,3-ブチレングリコール、エリスリトール等の多価アルコールや、ソルビトール、マルトース、キシリトール、マルチトール等の糖アルコールや、コレステロール、シトステロール、フィトステロール、ラノステロール等のステロール類などを挙げることができる。上記保湿剤としては、例えば、尿素、ヒアルロン酸、コンドロイチン硫酸、ピロリドンカルボン酸塩等を挙げることができる。 Examples of the alcohols include lower alcohols such as ethanol and isopropanol, and many alcohols such as glycerin, diglycerin, polyglycerin, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,3-butylene glycol, and erythritol. Examples thereof include valence alcohols, sugar alcohols such as sorbitol, maltose, xylitol, and martitol, and sterols such as cholesterol, citosterol, phytosterol, and lanosterol. Examples of the moisturizer include urea, hyaluronic acid, chondroitin sulfate, pyrrolidone carboxylate and the like.

上記ゲル化剤としては、皮膚外用剤又は化粧料に一般に用いられる水性ゲル化剤又は油性ゲル化剤であれば特に制限されず、例えば、水性ゲル化剤としては、アラビアガム、トラガカントガム、ガラクタン、キャロブガム、グァーガム、カラヤガム、カラギーナン、ペクチン、寒天、クインスシード(マルメロ等由来の)、デンプン(コメ、トウモロコシ、バレイショ、コムギ等由来の)、アルゲコロイド、トラントガム、ローカストビーンガム等の植物系高分子や、キサンタンガム、デキストラン、サクシノグルカン、プルラン等の微生物系高分子や、コラーゲン、カゼイン、アルブミン、ゼラチン等の動物系高分子や、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等のデンプン系高分子や、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、セルロース硫酸ナトリウム、カルボキシメチルセルロースナトリウム等のセルロース系高分子や、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等のアルギン酸系高分子や、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン等のビニル系高分子や、ポリエチレングリコール、エチレンオキサイドプロピレンオキサイド共重合体、ベントナイト、ケイ酸アルミニウムマグネシウム、ラポナイト、ヘクトライト、無水ケイ酸等の無機系ゲル化剤増粘剤などを挙げることができ、油性ゲル化剤としては、アルミニウムステアレート、マグネシウムステアレート、ジンクミリステート等の金属セッケンや、N-ラウロイル-L-グルタミン酸、α,γ-ジ-n-ブチルアミン等のアミノ酸誘導体や、デキストリンパルミチン酸エステル、デキストリンステアリン酸エステル、デキストリン2-エチルヘキサン酸パルミチン酸混合エステル等のデキストリン誘導体や、脂肪酸エステル、ショ糖パルミチン酸エステル、ショ糖ステアリン酸エステル等のショ糖脂肪酸エステルや、モノベンジリデンソルビトール、ジベンジリデンソルビトール等のソルビトールのベンジリデン誘導体や、ジメチルベンジルドデシルアンモニウムモンモリロナイトクレー、ジメチルジオクタデシルアンモニウムモンモリロナイトクレー等の有機変性粘土鉱物などを挙げることができる。 The gelling agent is not particularly limited as long as it is an aqueous gelling agent or an oily gelling agent generally used for external skin preparations or cosmetics. For example, the aqueous gelling agent includes Arabic gum, tragacant gum, galactan, and the like. Plant-based polymers such as carob gum, guar gum, karaya gum, carrageenan, pectin, agar, quince seed (derived from malmero, etc.), starch (derived from rice, corn, potato, wheat, etc.), algae colloid, tranth gum, locust bean gum, etc. , Xanthan gum, dextran, succinoglucan, purulan and other microbial polymers, collagen, casein, albumin, gelatin and other animal polymers, carboxymethyl starch, methyl hydroxypropyl starch and other starch polymers, and methyl cellulose. , Hydroxypropylmethyl cellulose, Carboxymethyl cellulose, Hydroxymethyl cellulose, Hydroxypropyl cellulose, Sodium cellulose sulfate, Sodium carboxymethyl cellulose and other cellulose-based polymers, Sodium alginate, Alginic acid propylene glycol ester and other alginic acid-based polymers, Sodium polyacrylate, Vinyl-based polymers such as carboxyvinyl polymer, alkyl-modified carboxyvinyl polymer, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, ethylene oxide propylene oxide copolymer, bentonite, aluminum magnesium silicate, raponite, hectrite, anhydrous Examples thereof include inorganic gelling agents such as silicic acid and thickeners, and examples of the oil-based gelling agent include metal slakes such as aluminum esterate, magnesium esterate, and zinc millistate, and N-lauroyl-L-glutamic acid. , Α, γ-di-n-butylamine and other amino acid derivatives, dextrin derivatives such as dextrinpurumic acid ester, dextrin stearate ester, dextrin 2-ethylhexanoic acid palmitic acid mixed ester, fatty acid ester, sucrose palmitate ester. , Sucrose fatty acid esters such as sucrose stearic acid ester, benzylidene derivatives of sorbitol such as monobenzylidene sorbitol and dibenzylidene sorbitol, and organic modifications such as dimethylbenzyldodecylammonium montmorillonite clay and dimethyldioctadecylammonium montmorillonite clay. Clay minerals and the like can be mentioned.

上記粉体としては、例えば、無機粉体、有機粉体、金属石鹸粉末、有色顔料、パール顔料、金属粉末、タール色素、天然色素等を挙げることができ、その粒子形状(球状、針状、板状等)や、粒子径(煙霧状、微粒子、顔料級等)や、粒子構造(多孔質、無孔質等)を問わない。これらの粉体はそのまま使用してもよいが、2種以上の粉体を複合化したものを用いてもよく、油剤、シリコーン化合物、フッ素化合物等で表面処理を施してもよい。 Examples of the powder include inorganic powder, organic powder, metal soap powder, colored pigment, pearl pigment, metal powder, tar pigment, natural pigment and the like, and the particle shape (spherical, needle-shaped, It does not matter the particle size (smoke-like, fine particles, pigment grade, etc.) and particle structure (porous, non-porous, etc.). These powders may be used as they are, or a composite of two or more kinds of powders may be used, or surface treatment may be performed with an oil agent, a silicone compound, a fluorine compound or the like.

上記紫外線吸収剤としては、例えば、パラアミノ安息香酸等の安息香酸系紫外線吸収剤や、アントラニル酸メチル等のアントラニル酸系紫外線吸収剤や、サリチル酸メチル等のサリチル酸系紫外線吸収剤や、パラメトキシケイ皮酸オクチル等のケイ皮酸系紫外線吸収剤や、2,4-ジヒドロキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤や、ウロカニン酸エチル等のウロカニン酸系紫外線吸収剤などを挙げることができる。 Examples of the ultraviolet absorber include benzoic acid-based ultraviolet absorbers such as paraaminobenzoic acid, anthranilic acid-based ultraviolet absorbers such as methyl anthranilate, salicylic acid-based ultraviolet absorbers such as methyl salicylate, and paramethoxykei skin. Examples thereof include a silicate-based ultraviolet absorber such as octyl acid, a benzophenone-based ultraviolet absorber such as 2,4-dihydroxybenzophenone, and a urocanic acid-based ultraviolet absorber such as ethyl urocanate.

上記防腐剤や抗菌剤としては、例えば、パラオキシ安息香酸エステル、安息香酸、安息香酸ナトリウム、ソルビン酸、ソルビン酸カリウム、フェノキシエタノール、サリチル酸、石炭酸、パラクロルメタクレゾール、ヘキサクロロフェン、塩化ベンザルコニウム、塩化クロルヘキシジン、トリクロロカルバニリド、感光素、イソプロピルメチルフェノール等を挙げることができる。上記酸化防止剤としては、例えば、トコフェロール、ブチルヒドロキシアニソール、ジブチルヒドロキシトルエン等を挙げることができる。 Examples of the preservatives and antibacterial agents include paraoxybenzoic acid ester, benzoic acid, sodium benzoate, sorbic acid, potassium sorbate, phenoxyethanol, salicylic acid, phenolic acid, parachlormethacresol, hexachlorophene, benzalconium chloride, and chloride. Examples thereof include chlorhexidine, trichlorocarbanilide, photosensitizer, isopropylmethylphenol and the like. Examples of the antioxidant include tocopherol, butylhydroxyanisole, dibutylhydroxytoluene and the like.

上記pH調整剤としては、例えば、乳酸、乳酸塩、クエン酸、クエン酸塩、グリコール酸、コハク酸、酒石酸、リンゴ酸、炭酸カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等を挙げることができる。 Examples of the pH adjuster include lactic acid, lactate, citric acid, citrate, glycolic acid, succinic acid, tartrate acid, malic acid, potassium carbonate, sodium hydrogencarbonate, ammonium hydrogencarbonate and the like.

上記美肌用成分としては、例えば、アルブチン、グルタチオン、ユキノシタ抽出物等の美白剤や、ロイヤルゼリー、感光素、コレステロール誘導体等の細胞賦活剤・肌荒れ改善剤や、ノニル酸ワレニルアミド、ニコチン酸ベンジルエステル、ニコチン酸β-ブトキシエチルエステル、カプサイシン、ジンゲロン、カンタリスチンキ、イクタモール、カフェイン、タンニン酸、α-ボルネオール、ニコチン酸トコフェロール、イノシトールヘキサニコチネート、シクランデレート、シンナリジン、トラゾリン、アセチルコリン、ベラパミル、セファランチン、γ-オリザノール等の血行促進剤や、酸化亜鉛、タンニン酸等の皮膚収斂剤や、イオウ、チアントロール等の抗脂漏剤などを挙げることができる。 Examples of the skin-beautifying component include whitening agents such as albutin, glutathione, and yukinoshita extract, cell activators and rough skin improving agents such as royal jelly, photosensitizers, and cholesterol derivatives, nonyl acid valenylamide, and nicotinic acid benzyl ester. Nicotinic acid β-butoxyethyl ester, capsaicin, zincerone, cantalist tincture, ictamol, caffeine, tannin acid, α-borneol, tocopherol nicotinate, inositol hexanicotinate, cyclanderlate, cinnaridine, trazoline, acetylcholine, verapamil, cepharanthin , Γ-Oryzanol and other blood circulation promoters, zinc oxide, tannic acid and other skin astringent agents, and sulfur, thiantolol and other antilipolytic agents.

本発明の化粧料又は皮膚外用剤として使用するための組成物は、上限臨界溶液温度を有するアクリルアミドとアクリロニトリルとの共重合体を含むことから、本発明の組成物を含む溶液(組成物溶液)は、上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する。かかる組成物を含む溶液における溶媒としては、例えば毛髪、まつ毛、まゆ毛等の体毛、皮膚、唇、爪などに塗布された化粧料や皮膚外用剤を洗浄するための溶媒を挙げることができ、具体的には水や洗浄水を挙げることができ、かかる洗浄水としては水に上限臨界溶液温度を低下させる界面活性剤が添加された混合溶媒である洗浄水を挙げることができる。また、本発明の効果を奏する限りにおいて、他の洗浄成分等をさらに含めることができる。上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する本発明の組成物を含む溶液は、透過率が100%である清澄な溶液から、光透過率が0%である懸濁液を含む。 Since the composition for use as a cosmetic or skin external preparation of the present invention contains a copolymer of acrylamide having an upper critical solution temperature and acrylonitrile, a solution containing the composition of the present invention (composition solution). Has an upper critical solution temperature or a temperature at which the solubility rises sharply. Examples of the solvent in the solution containing such a composition include a solvent for cleaning cosmetics and skin external preparations applied to body hair such as hair, eyebrows, and eyebrows, skin, lips, and nails. Examples of the washing water include water and washing water, and examples of the washing water include washing water which is a mixed solvent in which a surfactant for lowering the upper limit critical solution temperature is added to the water. Further, other cleaning components and the like can be further included as long as the effects of the present invention are exhibited. The solution containing the composition of the present invention having the upper limit critical solution temperature or the temperature at which the solubility increases rapidly is a suspension having a light transmittance of 0% from a clear solution having a transmittance of 100%. include.

上記水としては、化粧料や皮膚外用剤を洗浄するために使用可能な水であれば特に制限されず、水道水、天然水、精製水、蒸留水、イオン交換水、純水、ミリQ水等の超純水等を例示することができる。 The above water is not particularly limited as long as it can be used for cleaning cosmetics and external skin preparations, and is tap water, natural water, purified water, distilled water, ion-exchanged water, pure water, and milli-Q water. Such as ultra-pure water can be exemplified.

上記界面活性剤としては、SDS、デオキシコール酸ナトリウム等の陰イオン性界面活性剤;CTAC、塩化ベンザルコニウム等の陽イオン性界面活性剤;を挙げることができるが、陰イオン性界面活性剤を好適に挙げることができる。 Examples of the surfactant include anionic surfactants such as SDS and sodium deoxycholate; cationic surfactants such as CTAC and benzalkonium chloride; but anionic surfactants. Can be preferably mentioned.

上記界面活性剤の濃度としては、洗浄剤やすすぎ液に含まれうる通常の濃度であれば特に制限されず、0mM超、5mM以上、10mM以上、15mM以上、20mM以上、30mM以上、100mM以上を例示することができ、例えば、1~20mMを好適に例示することができる。 The concentration of the above-mentioned surfactant is not particularly limited as long as it is a normal concentration that can be contained in a detergent or a rinsing solution, and may be more than 0 mM, 5 mM or more, 10 mM or more, 15 mM or more, 20 mM or more, 30 mM or more, 100 mM or more. It can be exemplified, for example, 1 to 20 mM can be preferably exemplified.

本発明における組成物の上限臨界溶液温度、もしくは急激に溶解度が上昇する温度の決定方法としては、例えば、上記組成物を1w/v%の割合で水に溶解した組成物溶液を冷却し、次いで冷却組成物溶液の温度を1分あたり0.3~2.0℃のいずれかの割合で上昇させ、該組成物溶液の光透過率を0.5℃毎に測定した場合に、1)得られた透過率-温度曲線において、透過率の変化している直線部分と、清澄状態の水溶液の透過率(100%)を表す水平線の交点の温度を、上限臨界溶液温度として決定する方法や、2)得られた透過率-温度曲線において、透過率が急激に上昇した温度を、急激に溶解度が上昇する温度として決定する方法が挙げられる。上記冷却組成物溶液の温度の上昇速度の割合は、各組成物を含む溶液の透過率の変化の大小に合わせて適宜決定することができる。 As a method for determining the upper limit critical solution temperature of the composition in the present invention or the temperature at which the solubility rapidly increases, for example, the composition solution in which the above composition is dissolved in water at a ratio of 1 w / v% is cooled, and then the composition solution is cooled. When the temperature of the cooling composition solution is raised at any rate of 0.3 to 2.0 ° C. per minute and the light transmittance of the composition solution is measured every 0.5 ° C., 1) obtained. A method of determining the temperature at the intersection of the linear portion where the transmittance is changing and the horizontal line representing the transmittance (100%) of the clear aqueous solution as the upper limit critical solution temperature in the obtained transmittance-temperature curve. 2) In the obtained transmittance-temperature curve, there is a method of determining the temperature at which the transmittance rapidly increases as the temperature at which the solubility increases rapidly. The rate of increase in temperature of the cooling composition solution can be appropriately determined according to the magnitude of the change in the transmittance of the solution containing each composition.

上記光透過率の測定方法としては、上記組成物溶液中の光透過率の変化を測定するために適した波長の光を用いて測定する方法であれば特に制限されず、上記波長としては、可視光域の波長が好ましく、具体的には、650~700nm、好ましくは660~680nmの波長を挙げることができる。光透過率を測定する際のセルホルダ内の温度の維持は、温度コントローラー等の温度制御装置を用いて行うことができる。 The method for measuring the light transmittance is not particularly limited as long as it is a method for measuring using light having a wavelength suitable for measuring the change in the light transmittance in the composition solution, and the wavelength may be used. The wavelength in the visible light region is preferable, and specific examples thereof include wavelengths of 650 to 700 nm, preferably 660 to 680 nm. The temperature inside the cell holder when measuring the light transmittance can be maintained by using a temperature control device such as a temperature controller.

本発明の組成物における上限臨界溶液温度は、化粧料や皮膚外用剤の使用態様や洗浄条件に適している範囲において特に限定されず、組成物の上限臨界溶液温度としては、10~70℃を挙げることができ、20~60℃が好ましく、30~50℃がさらに好ましく、中でも35~45℃が特に好ましい。また、かかる化粧料や皮膚外用剤用を構成する本発明の組成物の上限臨界溶液温度が、水に界面活性剤を添加することにより、例えば、5~50℃、10~30℃、15~25℃、10~15℃、5~10℃低下することが好ましい。 The upper limit critical solution temperature in the composition of the present invention is not particularly limited as long as it is suitable for the usage mode and cleaning conditions of cosmetics and external skin preparations, and the upper limit critical solution temperature of the composition is 10 to 70 ° C. 20 to 60 ° C. is preferable, 30 to 50 ° C. is more preferable, and 35 to 45 ° C. is particularly preferable. Further, the upper limit critical solution temperature of the composition of the present invention constituting such cosmetics and external preparations for skin is, for example, 5 to 50 ° C., 10 to 30 ° C., 15 to higher by adding a surfactant to water. The temperature is preferably lowered by 25 ° C., 10 to 15 ° C., and 5 to 10 ° C.

さらに、RAFT重合による[Poly(AAm-co-AN)]を用いる組成物において、界面活性剤を含まない水で洗い流す場合の1w/v%水溶液における光透過率-温度カーブの微分曲線として、50d%T/dT以上、好ましくは85d%T/dT以上である場合を、好ましい態様として挙げることができる。かかる組成物は、単位温度当たりの透過率変化が大きく、7℃以下、好ましくは5℃以下、さらに好ましくは3℃以下の狭い温度範囲で、溶液が溶解・凝集の変化を示す組成物である。RAFT重合によるPoly(AAm-co-AN)において、単位温度当たり透過率変化が大きい理由としては、各ポリマー鎖のユニット比がそろっているため、わずかな温度変化により性状の変化が大きくなると考えられる。そのため、2種類以上のRAFT重合による[Poly(AAm-co-AN)]を混合して用いた場合には、単位温度当たり透過率変化が小さくなるおそれがある。 Further, in the composition using [Poly (AAm-co-AN)] by RAFT polymerization, 50d is used as a differential curve of the light transmittance-temperature curve in a 1 w / v% aqueous solution when washed away with water containing no surfactant. The case where it is% T / dT or more, preferably 85d% T / dT or more can be mentioned as a preferable embodiment. Such a composition is a composition in which the change in transmittance per unit temperature is large, and the solution exhibits a change in dissolution / aggregation in a narrow temperature range of 7 ° C. or lower, preferably 5 ° C. or lower, and more preferably 3 ° C. or lower. .. In Poly (AAm-co-AN) by RAFT polymerization, the reason why the change in transmittance per unit temperature is large is considered to be that the unit ratio of each polymer chain is the same, so that the change in properties becomes large even with a slight temperature change. .. Therefore, when two or more types of RAFT polymerization [Poly (AAm-co-AN)] are mixed and used, the change in transmittance per unit temperature may be small.

本発明の組成物は、様々な用途や使用温度環境に合わせて洗浄効果の高い化粧料や皮膚外用剤として用いることができる。例えば、本発明の組成物であるフリーラジカル重合によるPoly(AAm-co-AN)[85:15]を化粧料として使用した場合、22℃の水のみで洗浄したときには、上記組成物の水溶液での上限臨界溶液温度が28℃であることから、化粧料を洗い落とすことが困難であるが、界面活性剤(SDS)を含む洗浄剤を使用して22℃の水で洗浄したときには、上限臨界溶液温度が低下するため、Poly(AAm-co-AN)[85:15]が溶解し、化粧料が非常によく落ちることから、加温された水の供給が難しい場合に有利となる。 The composition of the present invention can be used as a cosmetic or a skin external preparation having a high cleaning effect according to various uses and operating temperature environments. For example, when Poly (AAm-co-AN) [85:15] by free radical polymerization, which is the composition of the present invention, is used as a cosmetic, when washed with water only at 22 ° C., the aqueous solution of the above composition is used. Since the temperature of the upper limit critical solution is 28 ° C, it is difficult to wash off the cosmetics, but when washed with water at 22 ° C using a cleaning agent containing a surfactant (SDS), the upper limit critical solution As the temperature drops, Poly (AAm-co-AN) [85:15] dissolves and the cosmetics fall off very well, which is advantageous when it is difficult to supply warmed water.

また、本発明の組成物であるRAFT重合によるPoly(AAm-co-AN)[85:15]であって、Mwが28300程度の共重合体を含む組成物を化粧料として使用した場合、かかる組成物は水溶液中において単位温度当たり透過率変化が高く、体表面温付近の35℃では水に溶けない組成物が、40℃のお湯で完全に溶解するため、汗をかいても化粧料等が落ちないが、お湯だけで洗顔することが可能となるため、肌への負担が少ない、非常に優れた化粧料等として使用されうる。 Further, when a composition containing a polymer having a Mw of about 28,300, which is Poly (AAm-co-AN) [85:15] by RAFT polymerization, which is the composition of the present invention, is used as a cosmetic, it is said to be such. The composition has a high change in permeability per unit temperature in an aqueous solution, and the composition that is insoluble in water at 35 ° C near the body surface temperature is completely dissolved in hot water at 40 ° C. However, since it is possible to wash the face with only hot water, it can be used as a very excellent cosmetic product with less burden on the skin.

本発明の組成物は、1種又は2種以上のpoly(AAm-co-AN)を含み、化粧料や皮膚外用剤として使用されるが、本発明における化粧料としては、化粧水、クリーム、乳液、美容液等の基礎化粧料や、シャンプー、リンス、トリートメント等の頭髪化粧料や、ファンデーション、チーク、アイライナー、アイシャドー、マスカラ、アイブロウ、フェイスパウダー等のメイクアップ化粧料や、日焼け止め化粧料等の下地化粧料(医薬部外品を含む)や、マニキュアを例示することができ、皮膚外用剤としては、リニメント剤、ローション剤、軟膏剤等の外用医薬品等を例示することができる。 The composition of the present invention contains one or more types of poly (AAm-co-AN) and is used as a cosmetic or an external preparation for skin. The cosmetic in the present invention includes a cosmetic water, a cream, and the like. Basic cosmetics such as milky lotion and beauty liquid, hair cosmetics such as shampoo, rinse and treatment, makeup cosmetics such as foundation, teak, eyeliner, eye shadow, mascara, eyebrow, face powder, and sunscreen makeup. Examples of base cosmetics (including non-medicinal products) and manicure can be exemplified, and examples of external skin preparations include external medicines such as liniments, lotions, and ointments.

上記poly(AAm-co-AN)の、本発明の化粧料又は皮膚外用剤への配合割合としては、本発明の効果が奏される限り特に制限されないが、通常、化粧料又は皮膚外用剤全体に対して、0.01~80質量%が好ましく、0.1~50質量%がより好ましく、1~20質量%がさらに好ましく、1種又は2種以上を適宜組み合わせて配合することもできる。 The blending ratio of the above poly (AAm-co-AN) to the cosmetic or skin external preparation of the present invention is not particularly limited as long as the effect of the present invention is exhibited, but is usually the whole cosmetic or skin external preparation. On the other hand, 0.01 to 80% by mass is preferable, 0.1 to 50% by mass is more preferable, 1 to 20% by mass is further preferable, and one kind or two or more kinds may be appropriately combined and blended.

本発明の組成物からなる化粧料や皮膚外用剤の形態としては、液状、乳液状、クリーム状、ゲル状、固形状を例示することができる。 Examples of the form of the cosmetic or skin external preparation comprising the composition of the present invention include a liquid, a milky liquid, a cream, a gel, and a solid.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these examples.

[実施例1]
(フリーラジカル重合による[Poly(AAm-co-AN)]の合成)
モノマー質量仕込み比[アクリルアミド(AAm):アクリロニトリル(AN)]が、それぞれ77.5:22.5、80:20、82.5:17.5、85:15、87.5:12.5、90:10である、6種類のランダム共重合体Poly(AAm-co-AN)を、上記非特許文献3を参考にして以下の手順によりフリーラジカル重合法により合成した。
[Example 1]
(Synthesis of [Poly (AAm-co-AN)] by free radical polymerization)
The monomer mass charging ratio [acrylamide (AAm): acrylonitrile (AN)] was 77.5: 22.5, 80:20, 82.5: 17.5, 85:15, 87.5: 12.5, respectively. Six kinds of random copolymers Poly (AAm-co-AN) having a ratio of 90:10 were synthesized by a free radical polymerization method according to the following procedure with reference to the above-mentioned Non-Patent Document 3.

アクリルアミドと、AIBNとをDMSO(12mL)に溶解し、30分間アルゴンガスを吹き込むことにより溶存酸素を除いた。アクリルアミドに対応する割合のアクリロニトリルを、ガスタイトシリンジを用いて添加して反応溶液とし、アルゴン雰囲気下で60℃にて5.5時間反応させた後、室温まで冷却した。冷却された反応溶液を250mLのメタノールに注ぎ、析出した共重合体をろ取した。得られた共重合体をさらに150mLのメタノールで洗浄した後、デシケータにて終夜乾燥した。 Acrylamide and AIBN were dissolved in DMSO (12 mL), and dissolved oxygen was removed by blowing argon gas for 30 minutes. Acrylonitrile in a proportion corresponding to acrylamide was added using a gas tight syringe to prepare a reaction solution, and the reaction was carried out at 60 ° C. for 5.5 hours in an argon atmosphere, and then cooled to room temperature. The cooled reaction solution was poured into 250 mL of methanol, and the precipitated copolymer was collected by filtration. The obtained copolymer was further washed with 150 mL of methanol and then dried in a desiccator overnight.

共重合体中のAAmとANのユニット比は、IR測定によりAAmのアミノ基由来のピーク(1659cm-1付近)とANのシアノ基由来のピーク(2242cm-1付近)の比率を、標準試料と比較することによって決定した。標準試料としては、AAmホモポリマーとANホモポリマーを80:20,85:15,90:10,95:5のモル分率で混合し作製したものを使用した。IR測定はNicolet iS10フーリエ変換赤外分光装置(Thermo Fisher Scientific社製)を用い、全反射測定(ATR)法を用いて行った。 For the unit ratio of AAm and AN in the copolymer, the ratio of the peak derived from the amino group of AAm (near 1659 cm -1 ) and the peak derived from the cyano group of AN (near 2242 cm -1 ) by IR measurement was used as the standard sample. Determined by comparison. As a standard sample, a sample prepared by mixing AAm homopolymer and AN homopolymer at a molar fraction of 80:20, 85: 15, 90: 10, 95: 5 was used. The IR measurement was performed using a Nicolet iS10 Fourier transform infrared spectroscope (manufactured by Thermo Fisher Scientific) and a total reflection measurement (ATR) method.

共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)はゲル浸透クロマトグラフィー(GPC)を用いて決定した。測定にはJASCO PU-2080ポンプ、JASCO RI-2031示差屈折検出器、JASCO 2060カラムオーブン(以上すべて日本分光製)、Shodex GPC KD806-Mカラム(昭和電工製)を使用した。検量線はプルラン標準試料(昭和電工製)を用いて作成し、移動相にはDMSOを用いた。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the copolymer were determined by gel permeation chromatography (GPC). A JASCO PU-2080 pump, a JASCO RI-2031 differential refractometer, a JASCO 2060 column oven (all manufactured by JASCO Corporation), and a Shodex GPC KD806-M column (manufactured by Showa Denko Corporation) were used for the measurement. The calibration curve was prepared using a Pullulan standard sample (manufactured by Showa Denko), and DMSO was used as the mobile phase.

フリーラジカル重合により合成された6種類のPoly(AAm-co-AN)(F1~F6)の特性について以下の表1に示す。 The characteristics of the six types of Poly (AAm-co-AN) (F1 to F6) synthesized by free radical polymerization are shown in Table 1 below.

Figure 2022090046000004
Figure 2022090046000004

[実施例2]
[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]
上記F1~F6の共重合体について、水を溶媒として溶解し、1w/v%水溶液について0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を、670nmにおける透過率の変化を測定することにより確認した。昇温又は降温の速度は、それぞれ1℃/minとし、測定温度に到達後直ちに測定を開始した。これ以降、温度応答の再現性は、同一サンプルに対して温度変化を繰り返す(1stCooling-1stHeating-2ndCooling-2ndHeating)ことで確認した。また、測定温度が15℃以下となる場合は、セルの結露を防ぐため、セルホルダにアルゴンガスを流しながら測定した。光透過率はJASCO-V650紫外可視吸光光度計(日本分光製)を用いて測定し、セルホルダ内の温度調整はJASCO ETC-717温度コントローラ(日本分光製)を用いて行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして図1(a)~(f)にそれぞれ示す。なお、上限臨界溶液温度は、得られた透過率-温度曲線において、透過率の変化している直線部分と、透過率100%を表す水平線の交点とした。
[Example 2]
[Measurement of upper critical solution temperature of copolymer-containing aqueous solution synthesized by free radical polymerization]
The above F1 to F6 copolymers were dissolved in water as a solvent, and the temperature of the 1 w / v% aqueous solution was lowered and raised in 0.5 ° C. increments to determine the solubility of each copolymer at the transmittance at 670 nm. Confirmed by measuring the change. The rate of temperature increase or decrease was set to 1 ° C./min, respectively, and the measurement was started immediately after the measurement temperature was reached. After that, the reproducibility of the temperature response was confirmed by repeating the temperature change for the same sample (1stCooling-1stHeating-2ndCooling-2ndHeating). When the measurement temperature was 15 ° C. or lower, the measurement was performed while flowing argon gas through the cell holder in order to prevent dew condensation on the cell. The light transmittance was measured using a JASCO-V650 ultraviolet-visible absorptiometer (manufactured by JASCO Corporation), and the temperature inside the cell holder was adjusted using a JASCO ETC-717 temperature controller (manufactured by JASCO Corporation). The results are shown in FIGS. 1 (a) to 1 (f) as graphs plotting the light transmittance (vertical axis) and the temperature (horizontal axis) of each solution. The upper limit critical solution temperature was set as the intersection of the straight line portion where the transmittance changes and the horizontal line representing 100% transmittance in the obtained transmittance-temperature curve.

(結果)
図1(a)~(f)から明らかなとおり、上記F1~F6の共重合体を含有する水溶液について、いずれも光透過率-温度カーブを描いた。また、上限臨界溶液温度の相違はあるものの、全ての共重合体含有水溶液において可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from FIGS. 1 (a) to 1 (f), a light transmittance-temperature curve was drawn for each of the aqueous solutions containing the above F1 to F6 copolymers. In addition, although there was a difference in the upper limit critical solution temperature, the reversible dissolution / aggregation phenomenon was repeated in all the copolymer-containing aqueous solutions.

図1において、上記F1~F6の共重合体の1w/v%水溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記F1のPoly(AAm-co-AN)[77.5:22.5]の昇温時の上限臨界溶液温度は68℃、降温時の上限臨界溶液温度は66℃(図1(a));
上記F2のPoly(AAm-co-AN)[80:20]の昇温時の上限臨界溶液温度は58℃、降温時の上限臨界溶液温度は56℃(図1(b));
上記F3のPoly(AAm-co-AN)[82.5:17.5]の昇温時の上限臨界溶液温度は45.5℃、降温時の上限臨界溶液温度は42.5℃(図1(c));
上記F4のPoly(AAm-co-AN)[85:15]の昇温時の上限臨界溶液温度は31℃、降温時の上限臨界溶液温度は28℃(図1(d));
上記F5のPoly(AAm-co-AN)[87.5:12.5]の昇温時の上限臨界溶液温度は19.5℃、降温時の上限臨界溶液温度は16.5℃(図1(e));
上記F6のPoly(AAm-co-AN)[90:10]の昇温時の上限臨界溶液温度は9℃、降温時の上限臨界溶液温度は6.5℃(図1(f));
In FIG. 1, the upper limit critical solution temperature at the time of raising the temperature and the upper limit critical solution temperature at the time of lowering the temperature of the 1 w / v% aqueous solution of the above F1 to F6 copolymers were as follows.
The upper limit critical solution temperature of Poly (AAm-co-AN) [77.5: 22.5] of F1 at the time of temperature rise is 68 ° C., and the upper limit critical solution temperature at the time of temperature decrease is 66 ° C. (FIG. 1 (a)). ;
The upper limit critical solution temperature of Poly (AAm-co-AN) [80:20] of F2 at the time of temperature rise is 58 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 56 ° C. (FIG. 1 (b)).
The upper limit critical solution temperature of Poly (AAm-co-AN) [82.5: 17.5] of F3 at the time of temperature increase is 45.5 ° C., and the upper limit critical solution temperature at the time of temperature decrease is 42.5 ° C. (FIG. 1). (C));
The upper limit critical solution temperature of Poly (AAm-co-AN) [85: 15] of F4 at the time of temperature rise is 31 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 28 ° C. (FIG. 1 (d)).
The upper limit critical solution temperature of Poly (AAm-co-AN) [87.5: 12.5] of F5 at the time of raising the temperature is 19.5 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 16.5 ° C. (FIG. 1). (E));
The upper limit critical solution temperature at the time of raising the temperature of Poly (AAm-co-AN) [90:10] of F6 is 9 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 6.5 ° C. (FIG. 1 (f)).

表1の各共重合体含有水溶液において、アクリルアミドのモノマー仕込み比が高くなるにつれて、昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度のいずれもが低くなることが確認された。 In each of the copolymer-containing aqueous solutions in Table 1, it was confirmed that as the acrylamide monomer charging ratio increased, both the upper limit critical solution temperature at the time of temperature rise and the upper limit critical solution temperature at the time of lowering the temperature decreased.

[実施例3]
[共重合体混合溶液の上限臨界溶液温度の測定]
化粧料や皮膚外用剤を洗浄するための洗浄液モデルとして、水溶液にSDSを添加した混合溶媒を用いた共重合体混合溶液について検討を行った。上記F1~F6のポリマーの1w/v%水溶液にSDSを終濃度100mMとなるように添加した共重合体混合溶液について、実施例2と同様に、溶解性を確認した。結果を図2に示す。
[Example 3]
[Measurement of upper critical solution temperature of copolymer mixed solution]
As a cleaning solution model for cleaning cosmetics and external skin preparations, a copolymer mixed solution using a mixed solvent in which SDS was added to an aqueous solution was investigated. The solubility of the copolymer mixed solution in which SDS was added to a 1 w / v% aqueous solution of the F1 to F6 polymers so as to have a final concentration of 100 mM was confirmed in the same manner as in Example 2. The results are shown in FIG.

(結果)
図2から明らかなとおり、上記F1~F6の共重合体含有混合溶液において、モノマー仕込み比が[77.5:22.5]及び[80:20]の場合に、上記混合溶液は、光透過率-温度カーブを描き、上限臨界溶液温度の相違はあるものの、可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from FIG. 2, in the copolymer-containing mixed solution of F1 to F6, when the monomer charging ratios are [77.5: 22.5] and [80:20], the mixed solution transmits light. A rate-temperature curve was drawn, and although there was a difference in the upper limit critical solution temperature, the reversible dissolution / aggregation phenomenon was repeated.

より詳細には、上記F1のPoly(AAm-co-AN)[77.5:22.5]+SDS100mM混合溶液の昇温時の上限臨界溶液温度は70℃以上、降温時の上限臨界溶液温度は69℃であって、SDS添加前と比べ上限臨界溶液温度に大きな違いはなかった(図2(a))。上記F2のPoly(AAm-co-AN)[80:20]+SDS100mM混合溶液の昇温時の上限臨界溶液温度は53℃、降温時の上限臨界溶液温度は47℃であり、光透過率-温度カーブの傾きがなだらかになり、昇温時及び降温時の上限臨界溶液温度はいずれも低くなった(図2(b))。上記F3のPoly(AAm-co-AN)[82.5:17.5]+SDS100mM混合溶液(図2(c))、上記F4の[Poly(AAm-co-AN)][85:15]+SDS100mM混合溶液(図2(d))、上記F5のPoly(AAm-co-AN)[87.5:12.5]+SDS100mM混合溶液(図2(e))、上記F6のPoly(AAm-co-AN)[90:10]+SDS100mM混合溶液(図2(f))においては、光透過率-温度カーブが描かれず、混合溶液は凝集性を示すことなく溶解したままであった。 More specifically, the upper limit critical solution temperature of the F1 Poly (AAm-co-AN) [77.5: 22.5] + SDS100 mM mixed solution at the time of temperature rise is 70 ° C. or higher, and the upper limit critical solution temperature at the time of lowering the temperature is At 69 ° C., there was no significant difference in the upper limit critical solution temperature compared to before the addition of SDS (FIG. 2 (a)). The upper limit critical solution temperature of the F2 Poly (AAm-co-AN) [80:20] + SDS100 mM mixed solution at the time of temperature rise is 53 ° C., the upper limit critical solution temperature at the time of lowering the temperature is 47 ° C., and the light transmittance-temperature. The slope of the curve became gentle, and the upper limit critical solution temperature at the time of temperature rise and temperature decrease became low (Fig. 2 (b)). F3 Poly (AAm-co-AN) [82.5: 17.5] + SDS100 mM mixed solution (FIG. 2 (c)), F4 [Poly (AAm-co-AN)] [85:15] + SDS100 mM Mixed solution (FIG. 2 (d)), F5 Poly (AAm-co-AN) [87.5: 12.5] + SDS100 mM mixed solution (FIG. 2 (e)), F6 Poly (AAm-co-). AN) [90:10] + SDS 100 mM mixed solution (FIG. 2 (f)) did not draw a light transmittance-temperature curve, and the mixed solution remained dissolved without showing agglomeration.

[実施例4]
上記F3のPoly(AAm-co-AN)[82.5:17.5]について、さらに検討を続けた。
[Example 4]
Further studies were continued on the F3 Poly (AAm-co-AN) [82.5: 17.5].

上記F3のPoly(AAm-co-AN)[82.5:17.5]の1w/v%水溶液に、終濃度がそれぞれ5mM、10mM、15mM、20mM、30mM、100mMとなるようにSDSを添加した混合溶液について、実施例2と同様に、各混合溶液の溶解性を確認した。結果を図3(a)~(f)に示す。 SDS is added to a 1 w / v% aqueous solution of Poly (AAm-co-AN) [82.5: 17.5] of F3 so that the final concentrations are 5 mM, 10 mM, 15 mM, 20 mM, 30 mM, and 100 mM, respectively. The solubility of each mixed solution was confirmed in the same manner as in Example 2. The results are shown in FIGS. 3 (a) to 3 (f).

(結果)
上記F3のPoly(AAm-co-AN)[82.5:17.5]の1w/v%水溶液に、終濃度が5mMとなるようにSDSを添加した混合溶液の昇温時の上限臨界溶液温度は44.5℃、降温時の上限臨界溶液温度は41℃であり(図3(a))、終濃度が10mMとなるようにSDSを添加した混合溶液の昇温時の上限臨界溶液温度は36℃、降温時の上限臨界溶液温度は29.5℃であって、昇温時及び降温時の上限臨界溶液温度は、SDSが水溶液に添加されない場合に比べて、15℃前後いずれも低くなった(図3(b))。
終濃度が15mMとなるようにSDSを添加した混合溶液の、昇温時の上限臨界溶液温度は27℃、降温時の上限臨界溶液温度は17℃であって、昇温時及び降温時の上限臨界溶液温度は、SDSが水溶液に添加されない場合に比べて、20℃前後いずれも低くなった(図3(c))。
終濃度が20mMとなるようにSDSを添加した混合溶液の、降温時の上限臨界溶液温度は9.5℃であった。昇温時の光透過率-温度カーブが描かれなかった(図3(d))。
終濃度が30mM及び100mMとなるようにSDSを添加した混合溶液においては、光透過率-温度カーブが描かれず、混合溶液は凝集性を示すことなく溶解したままであった(図3(e)及び(f))。
(result)
The upper limit critical solution at the time of temperature rise of the mixed solution in which SDS was added so that the final concentration was 5 mM to the 1 w / v% aqueous solution of Poly (AAm-co-AN) [82.5: 17.5] of F3. The temperature is 44.5 ° C., the upper limit critical solution temperature at the time of lowering is 41 ° C (Fig. 3 (a)), and the upper limit critical solution temperature at the time of raising the temperature of the mixed solution to which SDS is added so that the final concentration is 10 mM. Is 36 ° C., the upper limit critical solution temperature at the time of temperature decrease is 29.5 ° C., and the upper limit critical solution temperature at the time of temperature increase and temperature decrease is about 15 ° C. lower than that when SDS is not added to the aqueous solution. (Fig. 3 (b)).
The upper limit critical solution temperature at the time of temperature rise is 27 ° C, the upper limit critical solution temperature at the time of temperature decrease is 17 ° C, and the upper limit at the time of temperature rise and temperature decrease of the mixed solution to which SDS is added so that the final concentration is 15 mM. The critical solution temperature was lower at around 20 ° C. than when SDS was not added to the aqueous solution (FIG. 3 (c)).
The upper limit critical solution temperature at the time of lowering the temperature of the mixed solution to which SDS was added so that the final concentration was 20 mM was 9.5 ° C. The light transmittance-temperature curve at the time of temperature rise was not drawn (FIG. 3 (d)).
In the mixed solution to which SDS was added so that the final concentration was 30 mM and 100 mM, the light transmittance-temperature curve was not drawn, and the mixed solution remained dissolved without showing cohesiveness (FIG. 3 (e)). And (f)).

[実施例5]
界面活性剤としてSDS(終濃度100mM)の代わりに陽イオン性界面活性剤であるCTAC(終濃度100mM)を用い、実施例3と同様に検討を行った。結果を図4(a)~(f)に示す。
[Example 5]
As the surfactant, CTAC (final concentration 100 mM), which is a cationic surfactant, was used instead of SDS (final concentration 100 mM), and the same study as in Example 3 was conducted. The results are shown in FIGS. 4A to 4F.

(結果)
図4から明らかなとおり、上記F1~F6の共重合体のCTAC混合溶液について、モノマー仕込み比がF6[90:10]を除く、F1[77.5:22.5]、F2[80:20]、F3[82.5:17.5]、F4[85:15]及びF5[87.5:12.5]の場合に、光透過率-温度カーブを描いた。またかかる5つの共重合体含有混合溶液において上限臨界溶液温度の相違はあるものの、可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from FIG. 4, for the CTAC mixed solution of the above F1 to F6 copolymers, the monomer charging ratio is F1 [77.5: 22.5] and F2 [80:20] excluding F6 [90:10]. ], F3 [82.5: 17.5], F4 [85:15] and F5 [87.5: 12.5], a light transmittance-temperature curve was drawn. Further, although there was a difference in the upper limit critical solution temperature in the five copolymer-containing mixed solutions, the reversible dissolution / aggregation phenomenon was repeated.

上記F1~F6の共重合体を含有するCTAC(終濃度100mM)混合溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記F1のCTAC混合溶液の昇温時の上限臨界溶液温度は66℃、降温時の上限臨界溶液温度は62.5℃(図4(a));
上記F2のCTAC混合溶液の昇温時の上限臨界溶液温度は54℃、降温時の上限臨界溶液温度は50℃(図4(b));
上記F3のCTAC混合溶液の昇温時の上限臨界溶液温度は42℃、降温時の上限臨界溶液温度は38℃(図4(c));
上記F4のCTAC混合溶液の昇温時の上限臨界溶液温度は27.5℃、降温時の上限臨界溶液温度は23.5℃(図4(d));
上記F5のCTAC混合溶液の昇温時の上限臨界溶液温度は17.5℃、降温時の上限臨界溶液温度は13℃(図4(e));
上記F6のCTAC混合溶液は、凝集性を示さなかった(図4(f))。このF6のCTAC混合溶液を除くF1~F5のいずれのCTAC混合溶液においても、上限臨界溶液温度は低温側にシフトした。しかし、その低下効果は、SDSに比べると弱かった。
The upper limit critical solution temperature at the time of raising the temperature and the upper limit critical solution temperature at the time of lowering the temperature of the CTAC (final concentration 100 mM) mixed solution containing the above F1 to F6 copolymers were as follows.
The upper limit critical solution temperature at the time of raising the temperature of the CTAC mixed solution of F1 is 66 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 62.5 ° C. (FIG. 4A);
The upper limit critical solution temperature at the time of raising the temperature of the CTAC mixed solution of F2 is 54 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 50 ° C. (FIG. 4 (b)).
The upper limit critical solution temperature at the time of raising the temperature of the CTAC mixed solution of F3 is 42 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 38 ° C. (FIG. 4 (c)).
The upper limit critical solution temperature at the time of raising the temperature of the CTAC mixed solution of F4 is 27.5 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 23.5 ° C. (FIG. 4 (d)).
The upper limit critical solution temperature at the time of raising the temperature of the CTAC mixed solution of F5 is 17.5 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 13 ° C. (FIG. 4 (e)).
The CTAC mixed solution of F6 did not show cohesiveness (FIG. 4 (f)). In any of the CTAC mixed solutions of F1 to F5 excluding the CTAC mixed solution of F6, the upper limit critical solution temperature was shifted to the low temperature side. However, the lowering effect was weaker than that of SDS.

[比較例]
SDS(終濃度100mM)の代わりに塩化ナトリウム(終濃度100mM)を用い、実施例3と同様に検討を行った。結果を図5(a)~(f)に示す。
[Comparison example]
Sodium chloride (final concentration 100 mM) was used instead of SDS (final concentration 100 mM), and the same study as in Example 3 was conducted. The results are shown in FIGS. 5 (a) to 5 (f).

(結果)
図5(a)~(f)から明らかなとおり、これら6つのF1~F6共重合体の水溶液について塩化ナトリウムを添加した場合、上限臨界溶液温度の変化はいずれの共重合体溶液においてもほとんど見られなかった。
(result)
As is clear from FIGS. 5 (a) to 5 (f), when sodium chloride is added to the aqueous solutions of these six F1 to F6 copolymers, the change in the upper limit critical solution temperature is almost observed in all the copolymer solutions. I couldn't.

[実施例6]
(RAFT重合による[Poly(AAm-co-AN)]の合成)
モノマー質量仕込み比[アクリルアミド(AAm):アクリロニトリル(AN)]が、80:20~85:15の範囲にあり、CMDTの含量が相違する6種類のランダム共重合体、Poly(AAm-co-AN)(表2のR1~R6)を、Polym. Chem. 2016, 7, 1979-1986を参考にして以下の手順によりRAFT重合法により合成した。
[Example 6]
(Synthesis of [Poly (AAm-co-AN)] by RAFT polymerization)
Poly (AAm-co-AN), 6 types of random copolymers in which the monomer mass charging ratio [acrylamide (AAm): acrylonitrile (AN)] is in the range of 80:20 to 85:15 and the content of CMDT is different. ) (R1 to R6 in Table 2) were synthesized by the RAFT polymerization method according to the following procedure with reference to Polymer. Chem. 2016, 7, 1979-1986.

アクリルアミドとAIBNとをDMSO(6mL)に溶解し、CMDTを加えてさらに溶解した後、30分間アルゴンガスを吹き込むことにより溶存酸素を除いた。アクリルアミドに対応する割合のアクリロニトリルを、ガスタイトシリンジを用いて添加して反応溶液とし、アルゴン雰囲気下で70oCにて3.5時間反応させた後、室温まで冷却した。
冷却された反応溶液を150mLのメタノールに注ぎ、析出した共重合体をろ取した。得られた共重合体をさらに150mLのメタノールで洗浄した後、デシケータにて終夜乾燥した。
Acrylamide and AIBN were dissolved in DMSO (6 mL), CMDT was added to further dissolve the mixture, and then the dissolved oxygen was removed by blowing argon gas for 30 minutes. Acrylonitrile in a proportion corresponding to acrylamide was added using a gas tight syringe to prepare a reaction solution, which was reacted at 70 oC for 3.5 hours in an argon atmosphere and then cooled to room temperature.
The cooled reaction solution was poured into 150 mL of methanol, and the precipitated copolymer was collected by filtration. The obtained copolymer was further washed with 150 mL of methanol and then dried in a desiccator overnight.

共重合体中のAAmとANのユニット比、共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、前記[フリーラジカル重合によるPoly(AAm-co-AN)共重合体の合成]に記載されている方法を用いて測定を行った。 The unit ratio of AAm and AN in the copolymer, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the copolymer are determined by the above-mentioned [Synthesis of Poly (AAm-co-AN) copolymer by free radical polymerization. ], The measurement was performed using the method described in.

RAFT重合により合成された6種類の[Poly(AAm-co-AN)](R1~R6)の特性について以下の表2に示す。 The characteristics of the six types of [Poly (AAm-co-AN)] (R1 to R6) synthesized by RAFT polymerization are shown in Table 2 below.

Figure 2022090046000005
Figure 2022090046000005

[実施例7]
[RAFT重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定1]
上記R1の共重合体について、水を溶媒として溶解し、1w/v%水溶液又は0.1w/v%水溶液について0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を確認した。RAFT重合で合成した共重合体は、単位温度当たりの透過率変化が大きいため、昇温又は降温の速度を、それぞれ0.5℃/minとした他は、実施例2の[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]に記載されている方法で測定を行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして図6(A)及び(A1)にそれぞれ示す。また、上記R1の共重合体含有水溶液のグラフの微分曲線を、それぞれ図6(a)及び(a1)に示す。比較として、フリーラジカル重合により合成された前記F3の共重合体の1w/v%水溶液及び0.1w/v%水溶液についての同様の検討結果を図6(F)及び(F1)に、それらの微分曲線を図6(f)及び(f1)に示す。
[Example 7]
[Measurement of Upper Critical Solution Temperature of Copolymer-Containing Aqueous Solution Synthesized by RAFT Polymerization 1]
The above R1 copolymer is dissolved in water as a solvent, and the temperature of the 1 w / v% aqueous solution or the 0.1 w / v% aqueous solution is lowered and raised in 0.5 ° C. increments to improve the solubility of each copolymer. confirmed. Since the copolymer synthesized by RAFT polymerization has a large change in transmittance per unit temperature, the rate of temperature rise or fall was set to 0.5 ° C./min, respectively, and the [By free radical polymerization] of Example 2 was used. Measurement of the upper limit critical solution temperature of the synthesized copolymer-containing aqueous solution] was used for the measurement. The results are shown in FIGS. 6 (A) and 6 (A1) as graphs plotting the light transmittance (vertical axis) and the temperature (horizontal axis) of each solution. Further, the differential curves of the graph of the copolymer-containing aqueous solution of R1 are shown in FIGS. 6A and 6A, respectively. For comparison, the same study results for the 1 w / v% aqueous solution and the 0.1 w / v% aqueous solution of the F3 copolymer synthesized by free radical polymerization are shown in FIGS. 6 (F) and 6 (F1). The differential curves are shown in FIGS. 6 (f) and 6 (f1).

(結果)
図6から明らかなとおりR1の[Poly(AAm-co-AN)][82.5:17.5]の1w/v%水溶液の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は27.5℃(図6(A))であり、0.1w/v%水溶液の昇温時の上限臨界溶液温度は28℃、降温時の上限臨界溶液温度は25.5℃(図6(A1))であった。一方、上記F3の[Poly(AAm-co-AN)][82.5:17.5]の1w/v%水溶液の昇温時の上限臨界溶液温度は45.5℃、降温時の上限臨界溶液温度は42.5℃(図6(F))であり、0.1w/v%水溶液の昇温時の上限臨界溶液温度は39.5℃、降温時の上限臨界溶液温度は37℃(図6(F1))であった。
(result)
As is clear from FIG. 6, the upper limit critical solution temperature at the time of raising the temperature of the 1 w / v% aqueous solution of [Poly (AAm-co-AN)] [82.5: 17.5] of R1 is 30 ° C., and the upper limit at the time of lowering the temperature. The critical solution temperature is 27.5 ° C. (FIG. 6 (A)), the upper limit critical solution temperature at the time of raising the temperature of the 0.1 w / v% aqueous solution is 28 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 25.5 ° C. (FIG. 6 (A1)). On the other hand, the upper limit critical solution temperature at the time of raising the temperature of the 1w / v% aqueous solution of [Poly (AAm-co-AN)] [82.5: 17.5] of F3 is 45.5 ° C., and the upper limit criticality at the time of lowering the temperature. The solution temperature is 42.5 ° C. (FIG. 6 (F)), the upper limit critical solution temperature at the time of raising the temperature of the 0.1 w / v% aqueous solution is 39.5 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 37 ° C. ( FIG. 6 (F1)).

また、RAFT重合で合成した[Poly(AAm-co-AN)]の水溶液は、1w/v%水溶液(図6(a))及び0.1w/v%水溶液(図6(a1))の降温時の上限臨界溶液温度単位温度当たりの透過率変化の最大値は、それぞれ190d%T/dT、90d%T/dTであり、フリーラジカル重合で合成した[Poly(AAm-co-AN)]の1w/v%水溶液(図6(f))及び0.1w/v%水溶液(図6(f1))におけるそれぞれの値27d%T/dT、6d%T/dTとを比較して、単位温度当たりの透過率変化が顕著に大きかった。 Further, the aqueous solution of [Poly (AAm-co-AN)] synthesized by RAFT polymerization is a 1 w / v% aqueous solution (FIG. 6 (a)) and a 0.1 w / v% aqueous solution (FIG. 6 (a1)). The maximum value of the change in transmittance per unit temperature of the upper limit critical solution temperature at that time is 190 d% T / dT and 90 d% T / dT, respectively, and of [Poly (AAm-co-AN)] synthesized by free radical polymerization. The unit temperature is compared with the respective values of 27 d% T / dT and 6 d% T / dT in the 1 w / v% aqueous solution (FIG. 6 (f)) and the 0.1 w / v% aqueous solution (FIG. 6 (f1)). The change in transmittance per hit was remarkably large.

[実施例8]
[RAFT重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定2]
上記合成された6種類の共重合体Poly(AAm-co-AN)のうち、いずれもユニット比が[82.5:17.5]であってMwが異なる、上記R1~R4の共重合体の1w/v%水溶液について、0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を、670nmにおける透過率の変化を測定することにより確認した。昇温又は降温の速度を、0.5℃/minとした他は、実施例2の[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]に記載されている方法で測定を行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして図7(A)~(D)にそれぞれ示す。また、それらの微分曲線を、それぞれ図7(a)~(d)に示す。
[Example 8]
[Measurement of Upper Critical Solution Temperature of Copolymer-Containing Aqueous Solution Synthesized by RAFT Polymerization 2]
Among the above-mentioned 6 kinds of synthesized copolymers Poly (AAm-co-AN), the above-mentioned R1 to R4 copolymers having a unit ratio of [82.5: 17.5] and different Mw. The temperature of the 1 w / v% aqueous solution was lowered and raised in 0.5 ° C. increments, and the solubility of each copolymer was confirmed by measuring the change in transmittance at 670 nm. The method described in Example 2 [Measurement of Upper Limit Critical Solution Temperature of Copolymer-Containing Aqueous Solution Synthesized by Free Radical Polymerization] except that the rate of temperature increase or decrease was set to 0.5 ° C./min. The measurement was performed at. The results are shown in FIGS. 7A to 7D as graphs plotting the light transmittance (vertical axis) and the temperature (horizontal axis) of each solution. Further, the differential curves thereof are shown in FIGS. 7 (a) to 7 (d), respectively.

(結果)
図7(A)~(D)から明らかなとおり、上記R1~R4の共重合体の水溶液について、いずれも光透過率-温度カーブを描いた。また、上限臨界溶液温度の相違はあるものの、全ての共重合体含有溶液において可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from FIGS. 7A to 7D, a light transmittance-temperature curve was drawn for each of the aqueous solutions of the above-mentioned R1 to R4 copolymers. Moreover, although there was a difference in the upper limit critical solution temperature, the reversible dissolution / aggregation phenomenon was repeated in all the copolymer-containing solutions.

図7において、上記R1~R4の共重合体の1w/v%水溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記R1のPoly(AAm-co-AN)[82.5:17.5](Mw:9970)の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は27.5℃(図7(A));
上記R2のPoly(AAm-co-AN)[82.5:17.5](Mw:26400)の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は28.5℃(図7(B));
上記R3のPoly(AAm-co-AN)[82.5:17.5](Mw:38700)の昇温時の上限臨界溶液温度は32.5℃、降温時の上限臨界溶液温度は29.5℃(図7(C));
上記R4のPoly(AAm-co-AN)[82.5:17.5](Mw:74800)の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は29℃(図7(D));
In FIG. 7, the upper limit critical solution temperature at the time of raising the temperature and the upper limit critical solution temperature at the time of lowering the temperature of the 1 w / v% aqueous solution of the copolymers of R1 to R4 were as follows.
The upper limit critical solution temperature of Poly (AAm-co-AN) [82.5: 17.5] (Mw: 9970) of R1 at the time of raising the temperature is 30 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 27.5 ° C. (Fig. 7 (A));
The upper limit critical solution temperature of Poly (AAm-co-AN) [82.5: 17.5] (Mw: 26400) of R2 at the time of temperature rise is 30 ° C., and the upper limit critical solution temperature at the time of temperature decrease is 28.5 ° C. (Fig. 7 (B));
The upper limit critical solution temperature at the time of raising the temperature of Poly (AAm-co-AN) [82.5: 17.5] (Mw: 38700) of R3 is 32.5 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 29. 5 ° C (Fig. 7 (C));
The upper limit critical solution temperature of Poly (AAm-co-AN) [82.5: 17.5] (Mw: 74800) of the above R4 at the time of temperature rise is 30 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 29 ° C. (Fig.). 7 (D));

図7(A)~(D)の結果から明らかなとおり、ユニット比が同じであるがMwが相違する、4種類のRAFT重合による[Poly(AAm-co-AN)]を含む、各水溶液において、昇温時及び降温時の上限臨界溶液温度はそれほど相違がなかった。しかし、図7(a)~(d)から明らかなとおり、単位温度当たりの透過率変化について検討すると、図6のF3の水溶液と比較して、透過率変化はいずれもより大きく、共重合体の水溶液における温度応答の感度が高いことが確認された。具体的には、R1では、降温時のd%T/dTの最大値は190であり、R2では105であり、R3では100であり、R4では115であった。また、分子量が小さいほど透過率変化の度合いは大きい傾向があり、なかでも分子量の一番小さいR1において、透過率変化は顕著に大きかった。 As is clear from the results of FIGS. 7A to 7D, in each aqueous solution containing [Poly (AAm-co-AN)] by four types of RAFT polymerization having the same unit ratio but different Mw. , The upper limit critical solution temperature at the time of temperature rise and the temperature decrease was not so different. However, as is clear from FIGS. 7 (a) to 7 (d), when the change in transmittance per unit temperature is examined, the change in transmittance is larger than that of the aqueous solution of F3 in FIG. It was confirmed that the sensitivity of the temperature response in the aqueous solution was high. Specifically, in R1, the maximum value of d% T / dT at the time of temperature decrease was 190, in R2 it was 105, in R3 it was 100, and in R4 it was 115. Further, the smaller the molecular weight, the larger the degree of change in transmittance tended to be, and among them, the change in transmittance was remarkably large in R1 having the smallest molecular weight.

[実施例9]
[RAFT重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定3]
上記R5、R2、R6及びR5とR6とが1:1の混合物について、水を溶媒として溶解した、1w/v%水溶液について0.5℃刻みで降温及び昇温を行い、各共重合体の溶解性を確認した。昇温又は降温の速度を、0.5℃/minとした他は、実施例2の[フリーラジカル重合により合成された共重合体含有水溶液の上限臨界溶液温度の測定]に記載されている方法で測定を行った。結果を、光透過率(縦軸)とそれぞれの溶液の温度(横軸)をプロットしたグラフとして上記R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体含有水溶液のプロット図8(E)、(B)、(G)、(H)に示す。またそれらの微分曲線を、それぞれプロット図8(e)、(b)、(g)、(h)に示す。
[Example 9]
[Measurement of Upper Critical Solution Temperature of Copolymer-Containing Aqueous Solution Synthesized by RAFT Polymerization 3]
For the above-mentioned mixture of R5, R2, R6 and R5 and R6 of 1: 1, the temperature was lowered and raised in 0.5 ° C. increments for a 1 w / v% aqueous solution in which water was dissolved as a solvent, and each copolymer was subjected to temperature reduction and temperature rise. Solubility was confirmed. The method described in Example 2 [Measurement of Upper Limit Critical Solution Temperature of Copolymer-Containing Aqueous Solution Synthesized by Free Radical Polymerization] except that the rate of temperature increase or decrease was set to 0.5 ° C./min. The measurement was performed at. The results are shown as a graph in which the light transmittance (vertical axis) and the temperature (horizontal axis) of each solution are plotted. Plots are shown in FIGS. 8 (E), (B), (G), and (H). The differential curves thereof are shown in plots 8 (e), (b), (g), and (h), respectively.

(結果)
図8(E)、(B)、(G)、(H)から明らかなとおり、上記R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体の水溶液について、いずれも光透過率-温度カーブを描いた。また、上限臨界溶液温度の相違はあるものの、全ての共重合体含有溶液において可逆的な溶解・凝集の現象を繰り返した。
(result)
As is clear from FIGS. 8 (E), (B), (G), and (H), all of the above-mentioned aqueous solutions of the copolymer of R5, R2, R6, and a mixture of R5 and R6 in a ratio of 1: 1 are used. A light transmittance-temperature curve was drawn. Moreover, although there was a difference in the upper limit critical solution temperature, the reversible dissolution / aggregation phenomenon was repeated in all the copolymer-containing solutions.

図8において、上記R5、R2、R6、及びR5とR6とが1:1の混合物の共重合体の1w/v%水溶液の昇温時の上限臨界溶液温度と降温時の上限臨界溶液温度は以下のとおりであった。
上記R5のPoly(AAm-co-AN)[85:15]の昇温時の上限臨界溶液温度は12.5℃、降温時の上限臨界溶液温度は10.5℃(図8(E));
上記R2のPoly(AAm-co-AN)[82.5:17.5]の昇温時の上限臨界溶液温度は30℃、降温時の上限臨界溶液温度は28.5℃(図8(B));
上記R6のPoly(AAm-co-AN)[85:15]の昇温時の上限臨界溶液温度は37℃、降温時の上限臨界溶液温度は36℃(図8(G));
上記R5と上記R6とが1:1の混合物の昇温時の上限臨界溶液温度は37.5℃、降温時の上限臨界溶液温度は34℃(図8(H));であった。
In FIG. 8, the upper limit critical solution temperature at the time of raising the temperature and the upper limit critical solution temperature at the time of lowering the temperature of the 1 w / v% aqueous solution of the copolymer of the above R5, R2, R6, and the mixture of R5 and R6 are 1: 1. It was as follows.
The upper limit critical solution temperature of Poly (AAm-co-AN) [85:15] of R5 at the time of temperature rise is 12.5 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 10.5 ° C. (FIG. 8 (E)). ;
The upper limit critical solution temperature of Poly (AAm-co-AN) [82.5: 17.5] of R2 at the time of temperature rise is 30 ° C., and the upper limit critical solution temperature at the time of temperature decrease is 28.5 ° C. (FIG. 8 (B). ));
The upper limit critical solution temperature of Poly (AAm-co-AN) [85:15] of R6 at the time of temperature rise is 37 ° C., and the upper limit critical solution temperature at the time of lowering the temperature is 36 ° C. (FIG. 8 (G)).
The upper limit critical solution temperature of the mixture of R5 and R6 of 1: 1 when the temperature was raised was 37.5 ° C, and the upper limit critical solution temperature when the temperature was lowered was 34 ° C (FIG. 8 (H)).

図8の結果より、(E)、(B)、(G)等RAFT重合により合成された[Poly(AAm-co-AN)]を1種類含む各水溶液において、昇温時及び降温時の上限臨界溶液温度は、図6のF3の水溶液と比較して、透過率変化はいずれもより大きく、共重合体の水溶液における温度応答の感度が高いことが確認された。一方、(H)のRAFT重合により合成された[Poly(AAm-co-AN)]を2種類含む水溶液の単位温度当たりの透過率変化は非常に小さくなり、温度応答の感度は低下した。このことから、RAFT重合により合成された[Poly(AAm-co-AN)]の透過率変化の増加は、RAFT重合により合成された共重合体において、各ポリマー鎖のユニット比がそろっていることによるものと考えられる。 From the results of FIG. 8, in each aqueous solution containing one kind of [Poly (AAm-co-AN)] synthesized by RAFT polymerization such as (E), (B), (G), the upper limit at the time of temperature rise and the temperature decrease. It was confirmed that the critical solution temperature had a larger change in transmittance than the aqueous solution of F3 in FIG. 6, and the sensitivity of the temperature response in the aqueous solution of the copolymer was high. On the other hand, the change in transmittance per unit temperature of the aqueous solution containing two types of [Poly (AAm-co-AN)] synthesized by RAFT polymerization of (H) became very small, and the sensitivity of the temperature response decreased. From this, the increase in the transmittance change of [Poly (AAm-co-AN)] synthesized by RAFT polymerization means that the unit ratio of each polymer chain is the same in the copolymer synthesized by RAFT polymerization. It is thought that this is due to.

[実施例10]
下記処方及び製造方法によりマスカラを調製した。
(成分) (質量%)
(1)水素添加ポリイソブテン 残量
(2)パルミチン酸デキストリン 2.0
(3)ミツロウ 9.0
(4)カルナウバロウ 5.0
(5)ポリメチルシルセスキオキサン 5.0
(6)ジステアルジモニウムヘクトライト 1.0
(7)タルク 5.0
(8)黒酸化鉄 5.0
(9)無水ケイ酸 1.0
(10)精製水 10.0
(11)実施例1のF3;poly(AAm-co-AN)[85:15] 1.0
[Example 10]
Mascara was prepared by the following formulation and manufacturing method.
(Component) (% by mass)
(1) Hydrogenated polyisobutene remaining amount (2) Dextrin palmitate 2.0
(3) Beeswax 9.0
(4) Carnauba wax 5.0
(5) Polymethylsilsesquioxane 5.0
(6) Disteardimonium hectorite 1.0
(7) Talc 5.0
(8) Black iron oxide 5.0
(9) Silicic anhydride 1.0
(10) Purified water 10.0
(11) F3 of Example 1; poly (AAm-co-AN) [85:15] 1.0

(製造方法)
A.成分(1)~(5)を100℃で加熱溶解し、70℃になるまで冷却する。
B.Aに成分(6)~(9)を加え均一に混合する。
C.成分(10)~(11)を70℃で均一に混合溶解したのち、Bに加えて70℃で乳化し、室温に冷却してマスカラを得た。
(Production method)
A. The components (1) to (5) are heated and dissolved at 100 ° C. and cooled to 70 ° C.
B. Ingredients (6) to (9) are added to A and mixed uniformly.
C. After the components (10) to (11) were uniformly mixed and dissolved at 70 ° C., they were added to B and emulsified at 70 ° C. and cooled to room temperature to obtain mascara.

以上のようにして得られたマスカラは、水や汗によっては落ちないが、42℃のお湯と石鹸を用いることで容易に落とすことができた。上記石鹸は界面活性剤成分として脂肪酸ナトリウムを含む。 The mascara obtained as described above was not removed by water or sweat, but could be easily removed by using hot water and soap at 42 ° C. The soap contains sodium fatty acid as a surfactant component.

[実施例11]
下記処方及び製造方法により軟膏を調製した。
(成分) (質量%)
(1)ステアリルアルコール 18.0
(2)モクロウ 15.0
(3)ポリオキシエチレン(20モル)モノオレイン酸エステル 0.3
(4)トコフェロール 0.1
(5)ワセリン 30.0
(6)グリセリン 10.0
(7)精製水 残量
(8)実施例6のR6;poly(AAm-co-AN)[80:20] 3.0
[Example 11]
An ointment was prepared according to the following formulation and manufacturing method.
(Component) (% by mass)
(1) Stearyl alcohol 18.0
(2) Japan wax 15.0
(3) Polyoxyethylene (20 mol) monooleic acid ester 0.3
(4) Tocopherol 0.1
(5) Vaseline 30.0
(6) Glycerin 10.0
(7) Remaining amount of purified water (8) R6 of Example 6; poly (AAm-co-AN) [80:20] 3.0

(製造方法)
A:成分(1)~(5)を70℃で均一に混合する。
B:成分(7)、(8)を70℃で均一に混合溶解したのち、成分(6)を加え均一に混合する。
C:AにBを加え70℃で乳化し、室温に冷却して軟膏を得た。
(Production method)
A: Ingredients (1) to (5) are uniformly mixed at 70 ° C.
B: After the components (7) and (8) are uniformly mixed and dissolved at 70 ° C., the component (6) is added and uniformly mixed.
C: B was added to A, emulsified at 70 ° C., and cooled to room temperature to obtain an ointment.

以上のようにして得られた軟膏は、水や汗によっては落ちないが、42℃のお湯を用いることで容易に落とすことができた。 The ointment obtained as described above was not removed by water or sweat, but could be easily removed by using hot water at 42 ° C.

本発明は、化粧料や皮膚外用剤の分野において非常に有用である。 The present invention is very useful in the fields of cosmetics and external skin preparations.

Claims (9)

化粧料又は皮膚外用剤として使用するための、アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物。 A composition having an upper critical solution temperature containing a copolymer of acrylamide and acrylonitrile or a temperature at which the solubility rapidly increases for use as a cosmetic or an external preparation for skin. 共重合体が、モノマー質量仕込み比アクリルアミド:アクリロニトリルが77.5:22.5~85:15であることを特徴とする請求項1記載の組成物。 The composition according to claim 1, wherein the copolymer has a monomer mass charging ratio of acrylamide: acrylonitrile of 77.5: 22.5 to 85:15. 共重合体が、8000~200000の重量平均分子量を有することを特徴とする請求項1又は2記載の組成物。 The composition according to claim 1 or 2, wherein the copolymer has a weight average molecular weight of 8,000 to 200,000. 共重合体が、ランダム共重合体であることを特徴とする請求項1~3のいずれか記載の組成物。 The composition according to any one of claims 1 to 3, wherein the copolymer is a random copolymer. ランダム共重合体が、フリーラジカル重合によって合成されたランダム共重合体であることを特徴とする請求項4記載の組成物。 The composition according to claim 4, wherein the random copolymer is a random copolymer synthesized by free radical polymerization. ランダム共重合体が、RAFT重合によって合成されたランダム共重合体であることを特徴とする請求項4記載の組成物。 The composition according to claim 4, wherein the random copolymer is a random copolymer synthesized by RAFT polymerization. ドデシル硫酸ナトリウム1~20mMを添加した場合に温度感受性を有することを特徴とする請求項1~6のいずれか記載の組成物。 The composition according to any one of claims 1 to 6, wherein the composition has temperature sensitivity when 1 to 20 mM of sodium dodecyl sulfate is added. 界面活性剤を含まない1w/v%水溶液における光透過率-温度カーブの微分曲線の最大値が50d%T/dT以上であることを特徴とする請求項6又は7記載の組成物。 The composition according to claim 6 or 7, wherein the maximum value of the differential curve of the light transmittance-temperature curve in a 1 w / v% aqueous solution containing no surfactant is 50 d% T / dT or more. アクリルアミドとアクリロニトリルとの共重合体を含む上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を有する組成物からなる化粧料又は皮膚外用剤に、界面活性剤を接触させることを特徴とする上限臨界溶液温度、もしくは、急激に溶解度が上昇する温度を低下させる方法。 An upper limit characterized by contacting a surfactant with a cosmetic or skin external preparation comprising a composition having an upper limit critical solution temperature containing a copolymer of acrylamide and acrylonitrile or a temperature at which the solubility rapidly increases. A method of lowering the critical solution temperature or the temperature at which the solubility rises rapidly.
JP2022070697A 2016-05-09 2022-04-22 Compositions Having Upper Critical Solution Temperatures Active JP7477848B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016094038 2016-05-09
JP2016094038 2016-05-09
JP2017092520A JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017092520A Division JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature

Publications (2)

Publication Number Publication Date
JP2022090046A true JP2022090046A (en) 2022-06-16
JP7477848B2 JP7477848B2 (en) 2024-05-02

Family

ID=60321997

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017092520A Pending JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature
JP2022070697A Active JP7477848B2 (en) 2016-05-09 2022-04-22 Compositions Having Upper Critical Solution Temperatures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017092520A Pending JP2017203028A (en) 2016-05-09 2017-05-08 Composition having upper critical solution temperature

Country Status (1)

Country Link
JP (2) JP2017203028A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218728A (en) * 1997-02-10 1998-08-18 L'oreal Sa Application of polymer having lcst-or ucst-type critical temperature to cosmetic or skin medicine during and for its production and composition containing the same polymer
JP2007217348A (en) * 2006-02-17 2007-08-30 Shiseido Co Ltd Thickener and cosmetic and cleaner containing the same
JP2008248105A (en) * 2007-03-30 2008-10-16 Kose Corp Detergent composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002100371A2 (en) * 2001-06-08 2002-12-19 Cosmetica, Inc. Colored sunscreen compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218728A (en) * 1997-02-10 1998-08-18 L'oreal Sa Application of polymer having lcst-or ucst-type critical temperature to cosmetic or skin medicine during and for its production and composition containing the same polymer
JP2007217348A (en) * 2006-02-17 2007-08-30 Shiseido Co Ltd Thickener and cosmetic and cleaner containing the same
JP2008248105A (en) * 2007-03-30 2008-10-16 Kose Corp Detergent composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LANGMUIR, JPN6023008870, ISSN: 0005004815 *
MACROMOLECULES, 2012, VOL.45, P.3910-3918, JPN6020051055, ISSN: 0005157219 *
POLYM. CHEM., 2016 FEB., VOL.7, P.1979-1986, JPN7020004276, ISSN: 0005157218 *

Also Published As

Publication number Publication date
JP2017203028A (en) 2017-11-16
JP7477848B2 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
ES2326674T3 (en) ETHYLENE COPOLYMERS, COMPOSITIONS THAT CONTAIN THEM AND TREATMENT PROCEDURE.
ES2307128T3 (en) HYPERRAMIFIED COPOLYMERS CONTAINING SELECTED MONOMERS, COMPOSITION AND COSMETIC PROCEDURE.
CN102361894B (en) Based on acrylamido-, methacrylamido-or ethyl propylene amidoalkyl sulfonic acid or-alkylsulfonate and carboxyalkyl-acrylate ,-methacrylic ester or-ethyl propylene acid esters or these carboxylic compounds the polymkeric substance of oligopolymer
JP5528118B2 (en) (Meth) acrylic acid / (meth) acrylic acid alkyl ester copolymer and cosmetics containing the same
US8303943B2 (en) Ampholytic copolymer based on quaternized nitrogen-containing monomers
JP5976687B2 (en) Polymers based on sulfonic acids, amides and specific crosslinkers
KR101293347B1 (en) Water-soluble copolymer having alkyl-modified carboxyl group
ES2366860T3 (en) CATIÓNIC POLYMERS AS THICKENERS FOR AQUOUS AND ALCOHOLIC MIXTURES.
JP4277041B2 (en) Substances for cosmetics and pharmaceuticals based on polyelectrolyte complexes
ES2280975T3 (en) WATERPROOF POLYMERIC DISPERSION AND THE USE OF THE SAME IN COSMETICS.
BRPI0613806A2 (en) cosmetic or pharmaceutical composition, polymeric composition, process of cosmetic treatment of keratin materials, hairstyle preservation process, cosmetic treatment, care, washing, make-up and / or make-up of keratin materials and cationic ethylene polymer
ES2446977T3 (en) Anionic associative rheology modifiers
JP6885396B2 (en) A copolymer, a thickener containing the copolymer, and a cosmetic containing the copolymer.
JP2011511117A (en) Linear precipitation polymer
BR112014024450B1 (en) dual response block copolymer compositions
JP2021088554A (en) Ultraviolet-absorbing skin/hair cosmetic composition
JP2021088555A (en) Ultraviolet-absorbing cationic polymer particle
EP2542598A1 (en) Anionic associative rheology modifiers
US20110218295A1 (en) Anionic associative rheology modifiers
JP2014227384A (en) Inorganic/organic hybrid hydrogel particle and production method thereof
JP2005113124A (en) Block ethylene copolymer containing vinyl lactam block, cosmetic composition containing them and cosmetic use of these copolymer
JP2022090046A (en) Composition having upper critical solution temperature
JP6948176B2 (en) Cosmetics
US20060088487A1 (en) Block ethylenic copolymers comprising a vinyllactam block, cosmetic or pharmaceutical compositions containing them and cosmetic use of these copolymers
US20150174042A1 (en) Aqueous dispersion of polymer particles, film-forming composition containing same and uses thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7477848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150