JP7477730B1 - Isopropyl alcohol container, manufacturing method thereof, and quality control method for isopropyl alcohol container - Google Patents

Isopropyl alcohol container, manufacturing method thereof, and quality control method for isopropyl alcohol container Download PDF

Info

Publication number
JP7477730B1
JP7477730B1 JP2023564473A JP2023564473A JP7477730B1 JP 7477730 B1 JP7477730 B1 JP 7477730B1 JP 2023564473 A JP2023564473 A JP 2023564473A JP 2023564473 A JP2023564473 A JP 2023564473A JP 7477730 B1 JP7477730 B1 JP 7477730B1
Authority
JP
Japan
Prior art keywords
container
isopropyl alcohol
content
oxygen concentration
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023564473A
Other languages
Japanese (ja)
Other versions
JPWO2023234202A1 (en
Inventor
彬人 本田
雄輝 山口
裕貴 田森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of JPWO2023234202A1 publication Critical patent/JPWO2023234202A1/ja
Application granted granted Critical
Publication of JP7477730B1 publication Critical patent/JP7477730B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体であって、容器中の酸素含有量がイソプロピルアルコールに対して0.001~0.100molppmであり、イソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbであるイソプロピルアルコール収容体を提供する。また、イソプロピルアルコール収容体の製造方法、及びイソプロピルアルコール収容体の品質管理方法を併せて提供する。The present invention provides an isopropyl alcohol container in which isopropyl alcohol is contained in a container, the oxygen content in the container being 0.001 to 0.100 mol ppm relative to the isopropyl alcohol, and the content of acetone as an impurity in the isopropyl alcohol being 10 to 200 ppb by mass. Also provided are a method for producing the isopropyl alcohol container, and a method for quality control of the isopropyl alcohol container.

Description

本開示は、容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体及び該収容体の製造方法、並びにイソプロピルアルコール収容体の品質管理方法に関する。The present disclosure relates to an isopropyl alcohol container in which isopropyl alcohol is contained, a method for manufacturing the container, and a method for quality control of the isopropyl alcohol container.

イソプロピルアルコール(2-プロパノールとも称される)は、様々な用途で使用される有機溶媒であり、特に、半導体デバイスの製造工程において洗浄液又は乾燥液として使用される。近年、半導体デバイスの高性能化が求められる中、素子及び配線の微細化及び高集積化が進んでおり、洗浄液又は乾燥液として使用されるイソプロピルアルコールについても金属不純物が極めて少ない高純度化が要求されるようになってきている。Isopropyl alcohol (also known as 2-propanol) is an organic solvent used for a variety of purposes, particularly as a cleaning or drying liquid in the manufacturing process of semiconductor devices. In recent years, as semiconductor devices have become more highly functional, elements and wiring have become finer and more highly integrated, and there is a growing demand for highly purified isopropyl alcohol with extremely low levels of metal impurities to be used as a cleaning or drying liquid.

例えば、特許文献1には、長期保存によって不純物が増加したイソプロピルアルコールを半導体デバイスの製造工程において洗浄用途に使用すると、洗浄及び乾燥後にイソプロピルアルコール中の不純物に由来する残渣が半導体デバイスの表面に残ることがあり、半導体デバイスの欠陥発生の要因になることが記載されている。このことからも分かるように、洗浄液又は乾燥液として使用されるイソプロピルアルコールの品質が半導体デバイスの歩留まりに与える影響が無視できなくなっており、イソプロピルアルコールの品質向上が強く要求されている。For example, Patent Document 1 describes that if isopropyl alcohol that has had an increase in impurities due to long-term storage is used for cleaning purposes in the manufacturing process of semiconductor devices, residues derived from impurities in the isopropyl alcohol may remain on the surface of the semiconductor device after cleaning and drying, which may cause defects in the semiconductor device. As can be seen from this, the impact of the quality of isopropyl alcohol used as a cleaning liquid or drying liquid on the yield of semiconductor devices can no longer be ignored, and there is a strong demand for improving the quality of isopropyl alcohol.

また、イソプロピルアルコール中には不純物としてアセトン等の有機不純物が存在しており、イソプロピルアルコール中の溶存酸素濃度が高い場合に、イソプロピルアルコール中の有機不純物の含有量が増加することが知られている(例えば、特許文献2又は3参照)。イソプロピルアルコール中の溶存酸素濃度を低減させる方法として、特許文献2には、イソプロピルアルコールの製造時の蒸留工程において、蒸留塔気相部の酸素分圧を制御する方法が提案されている。また、特許文献3には、イソプロピルアルコール中に窒素等の不活性ガスを吹き込んでバブリングすることで、溶存酸素を除去する方法が提案されている。 In addition, organic impurities such as acetone are present in isopropyl alcohol, and it is known that when the dissolved oxygen concentration in isopropyl alcohol is high, the content of organic impurities in isopropyl alcohol increases (see, for example, Patent Documents 2 and 3). As a method for reducing the dissolved oxygen concentration in isopropyl alcohol, Patent Document 2 proposes a method of controlling the oxygen partial pressure in the gas phase of a distillation column in the distillation process during the production of isopropyl alcohol. In addition, Patent Document 3 proposes a method of removing dissolved oxygen by blowing an inert gas such as nitrogen into isopropyl alcohol and bubbling it.

国際公開第2020/071307号International Publication No. 2020/071307 国際公開第2018/135408号International Publication No. 2018/135408 特開2014-201524号公報JP 2014-201524 A 国際公開第2020/009225号International Publication No. 2020/009225

特許文献2又は3に記載された方法によれば、溶存酸素濃度が低減された高純度のイソプロピルアルコールを製造することができる。製造されたイソプロピルアルコールは、貯槽タンクに保存した後、製品として出荷する際にISO(国際標準化機構)タンクコンテナ、キャニスター缶等の容器に充填され、出荷及び納入される。特許文献4には、容器内に高純度の窒素ガスを封入することが記載されている。According to the methods described in Patent Documents 2 and 3, high-purity isopropyl alcohol with a reduced dissolved oxygen concentration can be produced. The produced isopropyl alcohol is stored in a storage tank, and then filled into containers such as ISO (International Organization for Standardization) tank containers and canisters before being shipped and delivered as a product. Patent Document 4 describes sealing high-purity nitrogen gas in the container.

ISOタンクコンテナ、キャニスター缶等の容器に充填されたイソプロピルアルコールは、半導体デバイスの製造工程において洗浄液又は乾燥液として使用されるまでに数十日から数か月の間隔が空く場合がある。本発明者らが検討したところ、上記方法により製造された溶存酸素濃度の低いイソプロピルアルコールを容器に充填し、酸素濃度の低い窒素ガスで封入した場合においても、数十日から数か月の間隔が空いた後に該容器中のイソプロピルアルコールを分析すると、金属不純物やアセトン等の有機不純物の含有量が増加し、半導体洗浄用途に使用できない場合があることが判明した。Isopropyl alcohol filled in containers such as ISO tank containers and canisters may take several tens of days to several months to be used as a cleaning liquid or drying liquid in the manufacturing process of semiconductor devices. As a result of the inventors' investigations, it was found that even when isopropyl alcohol with a low dissolved oxygen concentration produced by the above method is filled into a container and sealed with nitrogen gas with a low oxygen concentration, when the isopropyl alcohol in the container is analyzed after an interval of several tens of days to several months, the content of metal impurities and organic impurities such as acetone increases, and it may be unusable for semiconductor cleaning applications.

そこで、本開示は、長期保管後においても金属不純物やアセトン等の有機不純物の含有量の増加が抑制されるイソプロピルアルコール収容体、及びその製造方法を提供することを課題とする。Therefore, the objective of the present disclosure is to provide an isopropyl alcohol container in which the increase in the content of metal impurities and organic impurities such as acetone is suppressed even after long-term storage, and a method for manufacturing the same.

本発明者らは、上記課題を解決するために鋭意検討を重ねた。まず、金属不純物やアセトン等の有機不純物の含有量が高くなったコンテナを確認したところ、同じ貯槽タンクから供給されたイソプロピルアルコールを容器に充填し、同じ窒素ガスを使用して封入しても、金属不純物やアセトン等の有機不純物の含有量が高くなる場合があることが分かった。その際に使用したイソプロピルアルコールのロット中の溶存酸素濃度、及び封入に使用した窒素ガスの酸素濃度についても確認したが、いずれも問題となる酸素濃度ではなかった。また、同じコンテナに、同程度の溶存酸素濃度のイソプロピルアルコールを充填し、同程度の酸素濃度の窒素ガスを使用して封入し、長期保管しても、イソプロピルアルコール中の金属不純物やアセトン等の有機不純物の含有量の増加が抑制されている場合があることも確認した。これらのことから、使用したコンテナについても、容器の破損等はないことを確認した。その一方で、金属不純物やアセトン等の有機不純物の含有量が高いコンテナを確認すると、容器内の気相部の酸素濃度、及びイソプロピルアルコール中のクロムの含有率が高いことが分かった。The present inventors have conducted intensive research to solve the above problems. First, when a container with a high content of metal impurities and organic impurities such as acetone was checked, it was found that even if the container was filled with isopropyl alcohol supplied from the same storage tank and sealed using the same nitrogen gas, the content of metal impurities and organic impurities such as acetone may be high. The dissolved oxygen concentration in the lot of isopropyl alcohol used at that time and the oxygen concentration of the nitrogen gas used for sealing were also checked, but neither of them were problematic oxygen concentrations. It was also confirmed that the increase in the content of metal impurities and organic impurities such as acetone in isopropyl alcohol may be suppressed even if the same container is filled with isopropyl alcohol with the same dissolved oxygen concentration, sealed using nitrogen gas with the same oxygen concentration, and stored for a long period of time. From these findings, it was confirmed that there was no damage to the container used. On the other hand, when a container with a high content of organic impurities such as metal impurities and acetone was checked, it was found that the oxygen concentration in the gas phase of the container and the content of chromium in the isopropyl alcohol were high.

これらの知見から、長期保管時のアセトン等の有機不純物及びクロムの含有量が増加した原因は、何らかの理由で充填直後の酸素濃度が高くなり、容器内の酸素により、長期保管中にアセトン等の有機不純物及びクロムの含有率が増加したものと推測された。そして、イソプロピルアルコールを充填し、窒素等の不活性ガスを封入した後の容器内の気体の酸素濃度を所定の濃度以下とすることで、長期保管時におけるアセトン等の有機不純物の含有量の経時的な増加を抑制できることが分かり、本発明を完成させるに至った。From these findings, it was speculated that the increase in the content of organic impurities such as acetone and chromium during long-term storage was caused by some reason that the oxygen concentration increased immediately after filling, and the oxygen in the container increased the content of organic impurities such as acetone and chromium during long-term storage. It was then discovered that the increase over time in the content of organic impurities such as acetone during long-term storage can be suppressed by keeping the oxygen concentration of the gas in the container below a predetermined concentration after filling it with isopropyl alcohol and sealing in an inert gas such as nitrogen, and this led to the completion of the present invention.

上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体であって、
前記容器中の酸素含有量が前記イソプロピルアルコールに対して0.001~0.100molppmであり、
前記イソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbであるイソプロピルアルコール収容体。
Specific means for solving the above problems include the following embodiments.
<1> An isopropyl alcohol container in which isopropyl alcohol is contained in a container,
The oxygen content in the container is 0.001 to 0.100 mol ppm relative to the isopropyl alcohol;
The isopropyl alcohol container, in which the content of acetone as an impurity in the isopropyl alcohol is 10 to 200 ppb by mass.

<2> 前記イソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、<1>に記載のイソプロピルアルコール収容体。 <2> An isopropyl alcohol container described in <1>, in which the content of chromium as an impurity in the isopropyl alcohol is 0.01 to 2.50 ppt by mass.

<3> 前記容器の容積が1000~1500000Lの範囲にある、<1>又は<2>に記載のイソプロピルアルコール収容体。 <3> An isopropyl alcohol container described in <1> or <2>, wherein the volume of the container is in the range of 1,000 to 1,500,000 L.

<4> 前記容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、<3>に記載のイソプロピルアルコール収容体。 <4> An isopropyl alcohol container described in <3>, wherein the container is an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank.

<5> 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体の製造方法であって、
前記容器にイソプロピルアルコールを収容するとともに、該容器中の気体の酸素濃度を体積基準で0.1~10ppmに調整するイソプロピルアルコール収容体の製造方法。
<5> A method for producing an isopropyl alcohol container in which isopropyl alcohol is contained in a container, comprising:
A method for producing an isopropyl alcohol container, comprising: storing isopropyl alcohol in the container; and adjusting the oxygen concentration of the gas in the container to 0.1 to 10 ppm on a volume basis.

<6> 前記容器に収容されるイソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である、<5>に記載のイソプロピルアルコール収容体の製造方法。<6> A method for manufacturing an isopropyl alcohol container described in <5>, wherein the dissolved oxygen concentration in the isopropyl alcohol contained in the container is 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions.

<7> 前記容器に収容されるイソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbである、<5>又は<6>に記載のイソプロピルアルコール収容体の製造方法。 <7> A method for producing an isopropyl alcohol container described in <5> or <6>, wherein the content of acetone as an impurity in the isopropyl alcohol contained in the container is 10 to 200 ppb by mass.

<8> 前記容器に収容されるイソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、<5>~<7>のいずれか1項に記載のイソプロピルアルコール収容体の製造方法。<8> A method for manufacturing an isopropyl alcohol container described in any one of <5> to <7>, wherein the content of chromium as an impurity in the isopropyl alcohol contained in the container is 0.01 to 2.50 ppt by mass.

<9> 前記容器の容積が1000~1500000Lの範囲にある、<5>~<8>のいずれか1項に記載のイソプロピルアルコール収容体の製造方法。 <9> A method for producing an isopropyl alcohol container described in any one of <5> to <8>, wherein the volume of the container is in the range of 1,000 to 1,500,000 L.

<10> 前記容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、<9>に記載のイソプロピルアルコール収容体の製造方法。 <10> A method for manufacturing an isopropyl alcohol container described in <9>, wherein the container is an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank.

<11> 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体の製造方法であって、
前記イソプロピルアルコールを前記容器の容積の2~98%となるように収容するとともに、該容器中の気体の酸素濃度を体積基準で0.1~10ppmに調整するイソプロピルアルコール収容体の製造方法。
<11> A method for producing an isopropyl alcohol container in which isopropyl alcohol is contained in a container, comprising:
The isopropyl alcohol is contained in the container so that the volume of the container is 2 to 98%, and the oxygen concentration of the gas in the container is adjusted to 0.1 to 10 ppm on a volume basis.

<12> 前記容器に収容されるイソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である、<11>に記載のイソプロピルアルコール収容体の製造方法。<12> A method for manufacturing an isopropyl alcohol container described in <11>, wherein the dissolved oxygen concentration in the isopropyl alcohol contained in the container is 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions.

<13> 前記容器に収容されるイソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbである、<11>又は<12>に記載のイソプロピルアルコールの収容体の製造方法。 <13> A method for producing an isopropyl alcohol container described in <11> or <12>, wherein the content of acetone as an impurity in the isopropyl alcohol contained in the container is 10 to 200 ppb by mass.

<14> 前記容器に収容されるイソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、<11>~<13>のいずれか1項に記載のイソプロピルアルコール収容体の製造方法。<14> A method for manufacturing an isopropyl alcohol container described in any one of <11> to <13>, wherein the content of chromium as an impurity in the isopropyl alcohol contained in the container is 0.01 to 2.50 ppt by mass.

<15> 前記容器の容積が1000~1500000Lの範囲にある、<11>~<14>のいずれか1項に記載のイソプロピルアルコール収容体の製造方法。 <15> A method for producing an isopropyl alcohol container described in any one of <11> to <14>, wherein the volume of the container is in the range of 1,000 to 1,500,000 L.

<16> 前記容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、<15>に記載のイソプロピルアルコール収容体の製造方法。 <16> A method for producing an isopropyl alcohol container described in <15>, wherein the container is an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank.

<17> 第一の容器に収容されたイソプロピルアルコールを第二の容器に収容するイソプロピルアルコール収容体の製造方法であって、
前記第二の容器にイソプロピルアルコールを収容するとともに、該第二の容器中の気体の酸素濃度を体積基準で0.1~10ppmに調整するイソプロピルアルコール収容体の製造方法。
<17> A method for producing an isopropyl alcohol container in which isopropyl alcohol contained in a first container is contained in a second container, comprising:
A method for producing an isopropyl alcohol container, comprising: storing isopropyl alcohol in the second container; and adjusting the oxygen concentration of the gas in the second container to 0.1 to 10 ppm on a volumetric basis.

<18> 前記第二の容器に収容されるイソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である、<17>に記載のイソプロピルアルコール収容体の製造方法。<18> A method for manufacturing an isopropyl alcohol container described in <17>, wherein the dissolved oxygen concentration in the isopropyl alcohol contained in the second container is 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions.

<19> 前記第二の容器に収容されるイソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbである、<17>又は<18>に記載のイソプロピルアルコール収容体の製造方法。 <19> A method for producing an isopropyl alcohol container described in <17> or <18>, wherein the content of acetone as an impurity in the isopropyl alcohol contained in the second container is 10 to 200 ppb by mass.

<20> 前記第二の容器に収容されるイソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、<17>~<19>のいずれか1項に記載のイソプロピルアルコール収容体の製造方法。<20> A method for manufacturing an isopropyl alcohol container described in any one of <17> to <19>, wherein the content of chromium as an impurity in the isopropyl alcohol contained in the second container is 0.01 to 2.50 ppt by mass.

<21> 前記第一の容器及び前記第二の容器の容積が1000~1500000Lの範囲にある、<17>~<20>のいずれか1項に記載のイソプロピルアルコール収容体の製造方法。 <21> The method for producing an isopropyl alcohol container according to any one of <17> to <20>, wherein the first container and the second container have a volume in the range of 1000 to 1500000 L.

<22> 前記第一の容器及び前記第二の容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、<21>に記載のイソプロピルアルコール収容体の製造方法。 <22> The method for producing an isopropyl alcohol container according to <21>, wherein the first container and the second container are an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank.

<23> 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体の品質管理方法であって、
前記イソプロピルアルコール中の溶存酸素濃度を、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%とし、かつ、前記容器中の気体の酸素濃度を体積基準で0.1~10ppmとするイソプロピルアルコール収容体の品質管理方法。
<23> A quality control method for an isopropyl alcohol container in which isopropyl alcohol is contained in a container, comprising:
The quality control method for an isopropyl alcohol container, in which the dissolved oxygen concentration in the isopropyl alcohol is 0.001 to 0.050% relative to the oxygen saturation solubility at 25 ° C. in the atmosphere, and the oxygen concentration of the gas in the container is 0.1 to 10 ppm by volume.

本開示によれば、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の増加を抑制することが可能なイソプロピルアルコール収容体を提供することができる。特に、本開示の製造方法は、ISOタンクコンテナや貯槽タンク等の内容積の大きな容器にイソプロピルアルコールを収容する場合にも適用が可能である。本開示のイソプロピルアルコール収容体は、数十日から数か月の長期保管が可能であり、収容されたイソプロピルアルコールを半導体デバイスの洗浄液又は乾燥液として好適に使用することができ、産業上の利用可能性が高い。According to the present disclosure, it is possible to provide an isopropyl alcohol container capable of suppressing an increase in the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage. In particular, the manufacturing method of the present disclosure can be applied to the case where isopropyl alcohol is stored in a container with a large internal volume such as an ISO tank container or a storage tank. The isopropyl alcohol container of the present disclosure can be stored for a long period of time, for several tens of days to several months, and the stored isopropyl alcohol can be suitably used as a cleaning liquid or drying liquid for semiconductor devices, and has high industrial applicability.

本明細書においては特に断らない限り、数値A及びBを用いた「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。In this specification, unless otherwise specified, the notation "A-B" using numerical values A and B means "greater than or equal to A and less than or equal to B." In such notations, when a unit is assigned only to numerical value B, the unit is also applied to numerical value A.

以下の説明において、特に断らない限り、濃度を表す「%」、「ppm」、「ppb」、及び「ppt」は実施例も含めていずれも質量基準である。また、濃度を表す「vol%」及び「volppm」は実施例も含めていずれも体積分率を示し、「molppm」はモル分率を示す。In the following description, unless otherwise specified, the concentrations "%", "ppm", "ppb", and "ppt" are all based on mass, including in the examples. In addition, the concentrations "vol%" and "volppm" are all based on volume fraction, including in the examples, and "molppm" is all based on molar fraction.

<イソプロピルアルコール収容体>
本開示のイソプロピルアルコール収容体(以下、単に「収容体」ともいう。)は、容器にイソプロピルアルコールが収容された収容体であって、容器中の酸素含有量がイソプロピルアルコールに対して0.001~0.100molppmであり、イソプロピルアルコール中の不純物としてのアセトンの含有量が10~200ppbであることを特徴とする。該収容体の内部は、イソプロピルアルコールが充填された部分(以下、当該部分を「液相部」ともいう。)と、イソピルアルコールが充填されていない空間部分(以下、当該部分を「気相部」ともいう。)とで構成されている。
<Isopropyl alcohol container>
The isopropyl alcohol container (hereinafter also simply referred to as "container") of the present disclosure is a container in which isopropyl alcohol is contained, characterized in that the oxygen content in the container is 0.001 to 0.100 mol ppm relative to the isopropyl alcohol, and the content of acetone as an impurity in the isopropyl alcohol is 10 to 200 ppb. The inside of the container is composed of a portion filled with isopropyl alcohol (hereinafter also referred to as the "liquid phase portion") and a space portion not filled with isopropyl alcohol (hereinafter also referred to as the "gas phase portion").

このような収容体とすることで、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の増加が抑制され、数十日から数か月の長期保管が可能となる。その理由は必ずしも明確ではないが、本発明者らは以下のとおり推測している。By using such a container, the increase in the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage is suppressed, making it possible to store the material for a long period of time, from several tens of days to several months. The reason for this is not entirely clear, but the inventors speculate as follows.

イソプロピルアルコール中に酸素が存在する場合、酸素とイソプロピルアルコールとが反応し、アセトンが副生される。このため、溶存酸素濃度の低いイソプロピルアルコールを容器に充填し、窒素ガス等の不活性ガスを封入することで、容器中のイソプロピルアルコール中のアセトン等の有機不純物の含有量の増加が抑制されるものと考えられた。しかし、貯槽タンクから容器に移液するための配管、窒素ガスを封入するための配管等に極僅かな隙間等があった場合には、極少量ながら酸素が混入することがある。また、ISOタンクコンテナ等の容器は、内部のイソプロピルアルコールが消費された後に返却され、同じ容器にイソプロピルアルコールを充填し再出荷されることが多い。通常、容器を十分に洗浄した後にイソプロピルアルコールの充填を行うが、その際の洗浄によって容器中に酸素が残存してしまうことが考えられる。 When oxygen is present in isopropyl alcohol, it reacts with the isopropyl alcohol, producing acetone as a by-product. For this reason, it was thought that filling a container with isopropyl alcohol with a low concentration of dissolved oxygen and sealing in an inert gas such as nitrogen gas would suppress the increase in the content of organic impurities such as acetone in the isopropyl alcohol in the container. However, if there is a very small gap in the piping for transferring the liquid from the storage tank to the container or the piping for sealing in the nitrogen gas, a very small amount of oxygen may be mixed in. In addition, containers such as ISO tank containers are often returned after the isopropyl alcohol inside is consumed, and the same container is filled with isopropyl alcohol and reshipped. Usually, the container is thoroughly washed before filling with isopropyl alcohol, but it is thought that oxygen may remain in the container due to the washing at that time.

かかる場合には、仮に溶存酸素濃度の低いイソプロピルアルコールを容器に充填し、窒素ガス等の不活性ガスを封入したとしても、収容体中には酸素が比較的多量に存在することとなる。酸素はイソプロピルアルコール中に一定量溶解するため、溶存する酸素がイソプロピルアルコールと反応して消費されると、容器内の気相部の酸素がイソプロピルアルコールに溶解し、イソプロピルアルコールと反応するものと推測される。そして、酸素とイソプロピルアルコールとの反応によってアセトンの他に過酸化水素も副生し、過酸化水素もイソプロピルアルコールと反応する。このため、長期保管により収容体中の酸素がほとんど消費されるまでアセトン等の有機不純物の含有量が増加するものと推測される。また、ISOタンクコンテナ等の容器の内部はステンレス鋼等で構成されるところ、ステンレス鋼には通常クロムが含有されている。容器中の酸素、及び副生する過酸化水素の影響によって、ステンレス鋼に含有するクロムが極微量ながら溶出し、イソプロピルアルコール中のクロムの含有量も増加するものと推測される。そして、イソプロピルアルコール中に溶出したクロムは、酸素がイソプロピルアルコールと反応する際に触媒的に作用しているものと推測され、保管中のアセトン等の有機不純物の含有量の増加を促進する作用をもたらすものと推測される。In such a case, even if the container is filled with isopropyl alcohol with a low dissolved oxygen concentration and an inert gas such as nitrogen gas is sealed in, a relatively large amount of oxygen will be present in the container. Since a certain amount of oxygen dissolves in isopropyl alcohol, it is presumed that when the dissolved oxygen reacts with isopropyl alcohol and is consumed, the oxygen in the gas phase in the container dissolves in isopropyl alcohol and reacts with isopropyl alcohol. Then, the reaction between oxygen and isopropyl alcohol produces hydrogen peroxide as a by-product in addition to acetone, and the hydrogen peroxide also reacts with isopropyl alcohol. For this reason, it is presumed that the content of organic impurities such as acetone will increase until the oxygen in the container is almost consumed due to long-term storage. In addition, the inside of a container such as an ISO tank container is made of stainless steel, and stainless steel usually contains chromium. It is presumed that the chromium contained in the stainless steel will be dissolved, albeit in very small amounts, due to the influence of the oxygen in the container and the by-product hydrogen peroxide, and the content of chromium in the isopropyl alcohol will also increase. It is speculated that the chromium dissolved in the isopropyl alcohol acts as a catalyst when oxygen reacts with isopropyl alcohol, and that this promotes an increase in the content of organic impurities such as acetone during storage.

したがって、容器にイソプロピルアルコールを収容し、気相部に窒素ガス等の不活性ガスを充填した際の容器中の酸素含有量を所定の範囲とすることにより、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の増加が抑制されるとともに、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の制御が可能となり、数十日から数か月の長期保管が可能になるものと推測される。Therefore, by storing isopropyl alcohol in a container and filling the gas phase with an inert gas such as nitrogen gas, the oxygen content in the container is set within a specified range, and it is presumed that the increase in the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage can be suppressed, and the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage can be controlled, making it possible to store the alcohol for long periods of time ranging from several tens of days to several months.

(収容体中の酸素含有量)
本開示の収容体においては、容器中の酸素含有量を、イソプロピルアルコールに対して0.001~0.100molppmとする必要がある。長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の増加抑制効果の観点から、容器中の酸素含有量は、イソプロピルアルコールに対して0.001~0.050molppmであることが好ましく、0.001~0.010molppmであることがより好ましい。
(Oxygen content in container)
In the container of the present disclosure, the oxygen content in the container needs to be 0.001 to 0.100 mol ppm relative to isopropyl alcohol. From the viewpoint of the effect of suppressing the increase in the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage, the oxygen content in the container is preferably 0.001 to 0.050 mol ppm relative to isopropyl alcohol, and more preferably 0.001 to 0.010 mol ppm.

容器中の酸素含有量は、収容体の気相部の酸素量、及び液相部のイソプロピルアルコール中の溶存酸素量を測定し、その合計量を算出することで求めることができる。そして、算出した酸素含有量と、収容体中のイソプピルアルコールの量とから、酸素含有量をイソプロピルアルコールに対するモル分率として求めることができる。The oxygen content in the container can be determined by measuring the amount of oxygen in the gas phase of the container and the amount of oxygen dissolved in the isopropyl alcohol in the liquid phase and calculating the total amount. The oxygen content can then be calculated as a molar fraction relative to isopropyl alcohol from the calculated oxygen content and the amount of isopropyl alcohol in the container.

ここで、気相部の酸素量は、気相部をサンプリングし、サンプル中の酸素量を公知の酸素分析法によって測定した上で、サンプル中の酸素量と、収容体の気相部の容積及び内圧とから算出することができる。公知の酸素分析法としては、パルス放電型光イオン化検出器を用いたガスクロマトグラフィー(GC)法、ポーラログラフ法、光学式酸素分析法(蛍光物質の発光現象及び消光現象を利用した分析方法)等が挙げられる。Here, the amount of oxygen in the gas phase can be calculated by sampling the gas phase, measuring the amount of oxygen in the sample using a known oxygen analysis method, and then calculating the amount of oxygen in the sample and the volume and internal pressure of the gas phase of the container. Known oxygen analysis methods include gas chromatography (GC) using a pulse discharge photoionization detector, polarographic methods, and optical oxygen analysis (analysis methods that utilize the luminescence and quenching phenomena of fluorescent substances).

また、液相部のイソプロピルアルコール中の溶存酸素量は、液相部のイソプロピルアルコールをサンプリングし、サンプル中の酸素量をポーラログラフ法又は光学式酸素分析法(蛍光物質の発光現象及び消光現象を利用した分析方法)によって測定した上で、サンプル中の溶存酸素量と、収容体中のイソプロピルアルコールの容積とから算出することができる。In addition, the amount of dissolved oxygen in the isopropyl alcohol in the liquid phase can be calculated by sampling the isopropyl alcohol in the liquid phase and measuring the amount of oxygen in the sample using a polarographic method or optical oxygen analysis method (an analytical method that utilizes the luminescence and quenching phenomena of fluorescent substances), and then calculating the amount of dissolved oxygen in the sample from the amount of dissolved oxygen in the sample and the volume of isopropyl alcohol in the container.

(イソプロピルアルコール中の不純物としてのアセトンの含有量)
本開示の収容体において、イソプロピルアルコール中の不純物としてのアセトンの含有量は、10~200ppbである。イソプロピルアルコール中のアセトンの含有量を上記範囲とすることで、収容されたイソプロピルアルコールを半導体デバイスの洗浄液又は乾燥液として好適に使用することができる。収容されたイソプロピルアルコールを半導体デバイスの洗浄液又は乾燥液として使用する場合のデバイスへの影響低減の観点から、イソプロピルアルコール中のアセトンの含有量は、10~200ppbであることが好ましく、10~100ppbであることがより好ましい。
(Acetone content as an impurity in isopropyl alcohol)
In the container of the present disclosure, the content of acetone as an impurity in isopropyl alcohol is 10 to 200 ppb. By setting the content of acetone in isopropyl alcohol to the above range, the contained isopropyl alcohol can be suitably used as a cleaning liquid or drying liquid for semiconductor devices. From the viewpoint of reducing the influence on the device when the contained isopropyl alcohol is used as a cleaning liquid or drying liquid for semiconductor devices, the content of acetone in isopropyl alcohol is preferably 10 to 200 ppb, more preferably 10 to 100 ppb.

ここで、イソプロピルアルコール中のアセトンの含有量は、収容体の液相部のイソプロピルアルコールをサンプリングした上で、ガスクロマトグラフィー質量分析(GC-MS)法によって測定することができる。Here, the acetone content in the isopropyl alcohol can be measured by sampling the isopropyl alcohol in the liquid phase of the container and then using gas chromatography-mass spectrometry (GC-MS).

(イソプロピルアルコール中の不純物としてのクロムの含有量)
上述のとおり、イソプロピルアルコール中に溶出したクロムは、酸素がイソプロピルアルコールと反応する際に触媒的に作用しているものと推測される。長期保管時のアセトン等の有機不純物の含有量の増加抑制、及び有機不純物の含有量の制御の観点から、イソプロピルアルコール中のクロムの含有量は、0.01~2.50pptであることが好ましく、0.01~1.00pptであることがより好ましい。
(Chromium content as an impurity in isopropyl alcohol)
As described above, it is presumed that the chromium dissolved in isopropyl alcohol acts as a catalyst when oxygen reacts with isopropyl alcohol. From the viewpoint of suppressing the increase in the content of organic impurities such as acetone during long-term storage and controlling the content of organic impurities, the content of chromium in isopropyl alcohol is preferably 0.01 to 2.50 ppt, more preferably 0.01 to 1.00 ppt.

ここで、イソプロピルアルコール中のクロムの含有量は、収容体の液相部のイソプロピルアルコールをサンプリングした上で、誘導結合プラズマ質量分析(ICP-MS)法によって測定することができる。Here, the chromium content in the isopropyl alcohol can be measured by sampling the isopropyl alcohol in the liquid phase of the container and then using inductively coupled plasma mass spectrometry (ICP-MS).

(イソプロピルアルコール)
容器に収容されるイソプロピルアルコールとしては、容器に収容された後に、上述したアセトンの含有量となるイソプロピルアルコールであれば特に制限されない。収容されたイソプロピルアルコールを半導体デバイスの洗浄液又は乾燥液として使用する場合のデバイスへの影響低減の観点から、イソプロピルアルコールの純度は、99.99%以上であることが好ましく、99.9999%以上であることがより好ましい。また、長期保管時のアセトン等の有機不純物の含有量の増加抑制効果の観点から、イソプロピルアルコールとしては、以下に示す溶存酸素濃度、アセトン含有量、及びクロム含有量の条件を満たすものが好ましい。
(Isopropyl alcohol)
The isopropyl alcohol contained in the container is not particularly limited as long as it has the above-mentioned acetone content after being contained in the container. From the viewpoint of reducing the influence on the device when the contained isopropyl alcohol is used as a cleaning liquid or drying liquid for a semiconductor device, the purity of the isopropyl alcohol is preferably 99.99% or more, more preferably 99.9999% or more. In addition, from the viewpoint of the effect of suppressing the increase in the content of organic impurities such as acetone during long-term storage, it is preferable that the isopropyl alcohol satisfies the following conditions of dissolved oxygen concentration, acetone content, and chromium content.

イソプロピルアルコール中の溶存酸素濃度としては、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%であることが好ましく、0.001~0.025%であることがより好ましい。イソプロピルアルコール中の溶存酸素濃度は、収容体の液相部の溶存酸素量を上述した方法により測定し、大気下、25℃のイソプロピルアルコール中に存在する溶存酸素に対応した酸素分圧を測定し、その測定された酸素分圧を、大気下、25℃における酸素分圧で除した上で百分率に換算することで求めることができる。The dissolved oxygen concentration in isopropyl alcohol is preferably 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions, and more preferably 0.001 to 0.025%. The dissolved oxygen concentration in isopropyl alcohol can be determined by measuring the amount of dissolved oxygen in the liquid phase of the container using the method described above, measuring the oxygen partial pressure corresponding to the dissolved oxygen present in isopropyl alcohol at 25°C under atmospheric conditions, and dividing the measured oxygen partial pressure by the oxygen partial pressure at 25°C under atmospheric conditions and converting it to a percentage.

ここで、大気下とは、1気圧の空気組成下を意味する。また、大気下、25℃における酸素分圧とは、25℃、1気圧の空気中の酸素分圧を意味し、21kPaである。また、本開示において、大気下、25℃での酸素飽和溶解度とは、1気圧、酸素分圧が21kPaの雰囲気下で、その溶存酸素が平衡となったときの酸素濃度である。Here, "atmosphere" refers to an air composition at 1 atmosphere. The oxygen partial pressure at 25°C under atmosphere refers to the oxygen partial pressure in air at 25°C and 1 atmosphere, which is 21 kPa. In this disclosure, the oxygen saturation solubility at 25°C under atmosphere refers to the oxygen concentration when the dissolved oxygen is in equilibrium in an atmosphere at 1 atmosphere and with an oxygen partial pressure of 21 kPa.

イソプロピルアルコールに対する酸素飽和溶解度は、文献によって値が異なる。例えば、参考文献(佐藤天ら、「有機溶媒への酸素の溶解度と酸素のハンセン溶解度パラメータの計算(Solubility of Oxygen in Organic Solvents and Caluculation of the Hansen Solubility Parameters of Oxygen)」、インダストリアル アンド エンジニアリング ケミストリー リサーチ(Ind.Eng.Chem.Res.)、2014年、第53巻、第19831-19337頁)によると、酸素分圧101.3kPaの雰囲気下、25℃におけるイソプロピルアルコールに対する酸素飽和溶解度は、7.78×10-4mol/molである。イソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である場合、イソプロピルアルコール中の溶存酸素濃度は、0.9~43.5ppbと計算できる。 The oxygen saturation solubility in isopropyl alcohol varies depending on the literature. For example, according to a reference (Sato Ten et al., "Solubility of Oxygen in Organic Solvents and Calculation of the Hansen Solubility Parameters of Oxygen", Industrial and Engineering Chemistry Research (Ind. Eng. Chem. Res.), 2014, Vol. 53, pp. 19831-19337), the oxygen saturation solubility in isopropyl alcohol at 25° C. under an atmosphere of oxygen partial pressure of 101.3 kPa is 7.78×10 −4 mol/mol. When the dissolved oxygen concentration in isopropyl alcohol is 0.001 to 0.050% relative to the oxygen saturation solubility at 25° C. in the atmosphere, the dissolved oxygen concentration in isopropyl alcohol can be calculated to be 0.9 to 43.5 ppb.

イソプロピルアルコール中に不純物として含まれるアセトンの含有量は、10~200ppbであることが好ましく、10~100ppbであることがより好ましい。イソプロピルアルコール中のアセトンの含有量は、収容体の液相部におけるアセトンの測定方法と同様の方法により測定することができる。The content of acetone contained as an impurity in isopropyl alcohol is preferably 10 to 200 ppb, and more preferably 10 to 100 ppb. The content of acetone in isopropyl alcohol can be measured by a method similar to the method for measuring acetone in the liquid phase of the container.

イソプロピルアルコール中に含まれる金属不純物のうち、クロムの含有量は、0.01~2.50pptであることが好ましく、0.01~1.00pptであることがより好ましい。イソプロピルアルコール中のクロムの含有量は、収容体の液相部におけるクロムの測定方法と同様の方法により測定することができる。Of the metal impurities contained in isopropyl alcohol, the chromium content is preferably 0.01 to 2.50 ppt, and more preferably 0.01 to 1.00 ppt. The chromium content in isopropyl alcohol can be measured by a method similar to the method for measuring chromium in the liquid phase of the container.

容器に収容されるイソプロピルアルコールとしては、公知の製造方法で得られたイソプロピルアルコールを用いることができる。公知の製造方法としては、アセトンを還元するアセトン還元法、固定床触媒法の気相法であるVeba Chemie法、固定床触媒法の気液混相法であるDeutsche Texaco法、直接水和法等が挙げられる。これらの製造方法の中でも、高純度のイソプロピルアルコールが得られ、精製が容易である点から、直接水和法が好ましい。The isopropyl alcohol contained in the container may be isopropyl alcohol obtained by a known manufacturing method. Known manufacturing methods include the acetone reduction method in which acetone is reduced, the Veba Chemie method, which is a gas-phase method of a fixed bed catalyst method, the Deutsche Texaco method, which is a gas-liquid mixed phase method of a fixed bed catalyst method, and the direct hydration method. Among these manufacturing methods, the direct hydration method is preferred because it can obtain high-purity isopropyl alcohol and is easy to purify.

上記方法で得られたイソプロピルアルコールの精製方法としては、公知の方法を採用することができる。具体的には、イソプロピルアルコールを蒸留により精製する方法、イソプロピルアルコールをフィルターで濾過する方法、これらを組み合わせた方法等が挙げられる。半導体デバイスの洗浄液又は乾燥液に用いる場合、高純度で微粒子等を含まないイソプロピルアルコールとする必要があり、精製方法として、蒸留及び濾過を組み合わせた方法を採用することが好ましい。As a purification method for the isopropyl alcohol obtained by the above method, a known method can be adopted. Specifically, a method of purifying isopropyl alcohol by distillation, a method of filtering isopropyl alcohol through a filter, a combination of these, etc. can be mentioned. When using it as a cleaning solution or drying solution for semiconductor devices, it is necessary to obtain isopropyl alcohol that is high in purity and does not contain fine particles, etc., and it is preferable to adopt a method of combining distillation and filtration as a purification method.

(収容体の容器)
イソプロピルアルコールを収容する容器としては、有機薬液を収容する容器として公知の容器を特に制限なく用いることができる。これらの容器の容積は、例えば、10~1500000Lの範囲である。かかる容器として具体的には、キャニスター缶(容積:18~200L)、中間バルクコンテナ(IBC)(容積:1000~2000L)、タンクローリー(容積:2000~4000L)、ISOタンクコンテナ(容積:13000~26000L)、貯槽タンク(容積:100000~1500000L)等が挙げられる。特に、本開示の容器としては、容積が1000~1500000Lの範囲である容器(中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、貯槽タンク等)が好ましい。かかる内容積の大きな容器は、イソプロピルアルコールを容器に充填した後、窒素ガス等の不活性ガスを封入した際に、気相部に酸素が残存してしまうことが多い。この点、本開示のように容器中の酸素含有量を所定の範囲に管理することにより、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の増加が抑制されるとともに、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の制御が可能となり、数十日から数か月の長期保管が可能となる。
(Container of storage body)
As the container for containing isopropyl alcohol, a container known as a container for containing an organic chemical liquid can be used without any particular limitation. The volume of these containers is, for example, in the range of 10 to 1,500,000 L. Specific examples of such containers include canisters (volume: 18 to 200 L), intermediate bulk containers (IBCs) (volume: 1,000 to 2,000 L), tank trucks (volume: 2,000 to 4,000 L), ISO tank containers (volume: 13,000 to 26,000 L), and storage tanks (volume: 100,000 to 1,500,000 L). In particular, as the container of the present disclosure, a container having a volume in the range of 1,000 to 1,500,000 L (intermediate bulk containers, tank trucks, ISO tank containers, storage tanks, etc.) is preferable. In such a container with a large internal volume, oxygen often remains in the gas phase when an inert gas such as nitrogen gas is sealed in after isopropyl alcohol is filled in the container. In this regard, by controlling the oxygen content in the container within a predetermined range as in the present disclosure, an increase in the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage is suppressed, and the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage can be controlled, making it possible to store the product for a long period of time ranging from several tens of days to several months.

容器に収容されるイソプロピルアルコール中の不純物の増加抑制効果の観点から、容器のイソプロピルアルコールとの接液部における材質は、樹脂(ポリオレフィン樹脂、フッ素樹脂等)、ガラス、及び金属(ステンレス鋼、ハステロイ、インコネル、モネル等)からなる群より選択される少なくとも1種であることが好ましく、ステンレス鋼であることがより好ましい。ステンレス鋼としては、例えば、SUS304(Cr含有率:18~20%、Ni含有率:8~10.5%)、SUS304L(Cr含有率:18~20%、Ni含有率:9~13%)、SUS316(Cr含有率:16~18%、Ni含有率:10~14%)、SUS316L(Cr含有率:16~18%、Ni含有率:12~15%)等のオーステナイト系ステンレス鋼が挙げられる。From the viewpoint of suppressing the increase of impurities in the isopropyl alcohol contained in the container, the material of the container in contact with the isopropyl alcohol is preferably at least one selected from the group consisting of resins (polyolefin resins, fluororesins, etc.), glass, and metals (stainless steel, Hastelloy, Inconel, Monel, etc.), and more preferably stainless steel. Examples of stainless steel include austenitic stainless steels such as SUS304 (Cr content: 18-20%, Ni content: 8-10.5%), SUS304L (Cr content: 18-20%, Ni content: 9-13%), SUS316 (Cr content: 16-18%, Ni content: 10-14%), and SUS316L (Cr content: 16-18%, Ni content: 12-15%).

上述のとおり、イソプロピルアルコール中に溶出したクロムは、酸素がイソプロピルアルコールと反応する際に触媒的に作用しているものと推測される。容器の材質にSUS304等のステンレス鋼を用いる場合、クロム等の金属分がイソプロピルアルコールへ溶出するのを抑制するため、ステンレス鋼の表面に不動態層を形成する不動態化処理を施しておくことが好ましい。イソプロピルアルコールとの接液部に不動態化処理を施しておくことにより、貯蔵、充填、又は輸送工程においてイソプロピルアルコール中の金属不純物の含有量が増加するのを抑制することができる。不動態化処理としては、公知の方法を用いることができる。As described above, it is presumed that the chromium dissolved in the isopropyl alcohol acts as a catalyst when oxygen reacts with the isopropyl alcohol. When stainless steel such as SUS304 is used as the material for the container, it is preferable to perform a passivation treatment to form a passive layer on the surface of the stainless steel in order to prevent metals such as chromium from dissolving into the isopropyl alcohol. By performing a passivation treatment on the part that comes into contact with the isopropyl alcohol, it is possible to prevent the content of metal impurities in the isopropyl alcohol from increasing during the storage, filling, or transportation process. A known method can be used for the passivation treatment.

容器に収容するイソプロピルアルコールの量については、収容の目的等を勘案して適宜決定すればよい。イソプロピルアルコールが揮発性である点、輸送コスト等を勘案して、イソプロピルアルコールを該容器の容積の2~98%の範囲で収容することが好ましく、80~98%の範囲で収容することがより好ましい。The amount of isopropyl alcohol to be contained in the container may be determined appropriately taking into consideration the purpose of the container, etc. Taking into consideration the volatility of isopropyl alcohol and transportation costs, it is preferable to contain isopropyl alcohol in the range of 2 to 98% of the container's volume, and more preferably in the range of 80 to 98%.

<収容体の製造方法>
本開示の収容体の製造方法は、容器にイソプロピルアルコールを収容した際の、容器中の気体の酸素濃度を0.1~10vоlppmとすることが特徴である。このような製造方法により、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の制御が可能となり、数十日から数か月の長期保管が可能な収容体を製造することが可能である。長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の制御の観点から、容器にイソプロピルアルコールを収容した際の、容器中の気体の酸素濃度は、0.1~5vоlppmとすることが好ましく、0.1~1vоlppmとすることがより好ましく、0.1~0.5vоlppmとすることがさらに好ましい。
<Method of Manufacturing Container>
The method for producing a container according to the present disclosure is characterized in that the oxygen concentration of the gas in the container when isopropyl alcohol is contained in the container is 0.1 to 10 volppm. This manufacturing method makes it possible to control the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage, and makes it possible to produce a container that can be stored for a long period of several tens of days to several months. From the viewpoint of controlling the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage, the oxygen concentration of the gas in the container when isopropyl alcohol is contained in the container is preferably 0.1 to 5 volppm, more preferably 0.1 to 1 volppm, and even more preferably 0.1 to 0.5 volppm.

また、一旦イソプロピルアルコールを貯槽タンク(第一の容器)に収容し、さらにISOタンクコンテナ等(第二の容器)に収容する場合もある。第二の容器にイソプロピルアルコールを収容する際にも、上述した本開示の製造方法を実施することにより、第二の容器に収容されたイソプロピルアルコールについても長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の制御が可能となり、数十日から数か月の長期保管が可能となる。In some cases, isopropyl alcohol is first stored in a storage tank (first container) and then stored in an ISO tank container or the like (second container). By carrying out the manufacturing method of the present disclosure described above when storing isopropyl alcohol in the second container, it is possible to control the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage of the isopropyl alcohol stored in the second container, making it possible to store the isopropyl alcohol for a long period of time, from several tens of days to several months.

以下、本開示の製造方法の一例として、精製工程を経たイソプロピルアルコールを貯槽タンクに収容し、収容されたイソプロピルアルコールをさらにISOタンクコンテナに収容する方法について説明する。Below, as an example of the manufacturing method of the present disclosure, we will explain a method in which isopropyl alcohol that has undergone a purification process is stored in a storage tank, and the stored isopropyl alcohol is further stored in an ISO tank container.

(貯槽タンクへのイソプロピルアルコールの収容)
本開示の製造方法において、貯槽タンクには、貯槽タンクに精製工程からのイソプロピルアルコールを送液する送液ラインと、貯槽タンクに不活性ガスを供給するガス供給ラインとが接続される。貯槽タンクへは、送液ラインを介してイソプロピルアルコールが収容され、ガス供給ラインを介して不活性ガスが封入される。
(Storage of isopropyl alcohol in a storage tank)
In the manufacturing method of the present disclosure, a liquid delivery line for delivering isopropyl alcohol from the refining process to the storage tank and a gas supply line for supplying an inert gas to the storage tank are connected to the storage tank. Isopropyl alcohol is stored in the storage tank via the liquid delivery line, and the inert gas is sealed in the storage tank via the gas supply line.

不活性ガスとしては、窒素ガス、アルゴンガス等の安定な不活性ガスを用いることができ、工業的に高純度の不活性ガスが安価に入手可能な点で窒素ガスを用いることが好ましい。不活性ガスの純度は、99.999%以上であることが好ましい。不活性ガス中の酸素濃度は、5volppm以下であることが好ましく、0.5volppm以下であることがより好ましく、0.1volppm以下であることがさらに好ましい。As the inert gas, a stable inert gas such as nitrogen gas or argon gas can be used, and it is preferable to use nitrogen gas because high-purity inert gas is available industrially at low cost. The purity of the inert gas is preferably 99.999% or more. The oxygen concentration in the inert gas is preferably 5 volppm or less, more preferably 0.5 volppm or less, and even more preferably 0.1 volppm or less.

本開示の製造方法において、イソプロピルアルコール中の不純物の増加抑制の観点から、送液ライン及びガス供給ラインに用いられる移送管の材質は、上述した容器の材質と同様であることが好ましい。具体的には、ステンレス鋼又はフッ素樹脂(PFA、PTFE等)であることが好ましい。ステンレス鋼としては、例えば、SUS304、SUS304L、SUS316、SUS316L等が挙げられる。ステンレス鋼には、上述のように、不動態化処理を施しておくことができる。In the manufacturing method of the present disclosure, from the viewpoint of suppressing the increase of impurities in isopropyl alcohol, it is preferable that the material of the transfer pipe used in the liquid delivery line and the gas supply line is the same as the material of the container described above. Specifically, it is preferable that it is stainless steel or fluororesin (PFA, PTFE, etc.). Examples of stainless steel include SUS304, SUS304L, SUS316, SUS316L, etc. The stainless steel can be subjected to a passivation treatment as described above.

貯槽タンクに最初にイソプロピルアルコールを送液する前には、貯槽タンク内の気相部を不活性ガスで置換し、不活性ガスで充満させた際の不活性ガス中の酸素濃度を測定し、該酸素濃度が0.1~10vоlppmであることを確認した後、貯槽タンク内へイソプロピルアルコールを収容することが好ましい。Before initially pumping isopropyl alcohol into the storage tank, it is preferable to replace the gas phase in the storage tank with an inert gas, measure the oxygen concentration in the inert gas when the tank is filled with inert gas, and confirm that the oxygen concentration is 0.1 to 10 vol ppm before placing the isopropyl alcohol into the storage tank.

送液ラインを介して貯槽タンク内へイソプロピルアルコールを収容する際のイソプロピルアルコール中の溶存酸素濃度、アセトン含有量、及びクロム含有量としては、上述した収容体中のイソプロピルアルコールの溶存酸素濃度等と同様の好ましい範囲にあることが好ましい。When isopropyl alcohol is stored in a storage tank via a liquid delivery line, the dissolved oxygen concentration, acetone content, and chromium content in the isopropyl alcohol are preferably within the same preferred ranges as the dissolved oxygen concentration of the isopropyl alcohol in the container described above.

貯槽タンク内に収容するイソプロピルアルコールの量としては、容積の2~98%とすることが好ましい。The amount of isopropyl alcohol contained in the storage tank is preferably 2-98% of the volume.

次に、イソプロピルアルコールを収容した貯槽タンク内の気相部へ不活性ガスを封入する。不活性ガス封入後の貯槽タンク内の気相部の内圧は、特に限定されないが、0.0001~0.30MPaであることが好ましい。Next, an inert gas is sealed in the gas phase of the storage tank containing the isopropyl alcohol. The internal pressure of the gas phase of the storage tank after the inert gas is sealed is not particularly limited, but is preferably 0.0001 to 0.30 MPa.

不活性ガスの封入後、貯槽タンク内の気相部をサンプリングして酸素濃度を測定し、酸素濃度が0.1~10vоlppmであれば、本開示の収容体とすることができる。気相部の酸素濃度が上記範囲にない場合には、気相部の酸素濃度が上記範囲となるまで、不活性ガスを供給して気相部の置換を行うことにより、本開示の収容体を製造することができる。あるいは、収容したイソプロピルアルコールを排出し、貯槽タンク内を洗浄し、配管(送液ライン、ガス供給ライン、その他設備)の気密性を確認し、イソプロピルアルコールを再度収容することにより、本開示の収容体を製造することができる。After the inert gas is sealed in, the gas phase in the storage tank is sampled to measure the oxygen concentration. If the oxygen concentration is 0.1 to 10 vol ppm, the container of the present disclosure can be produced. If the oxygen concentration in the gas phase is not within the above range, the container of the present disclosure can be produced by supplying an inert gas to replace the gas phase until the oxygen concentration in the gas phase falls within the above range. Alternatively, the container of the present disclosure can be produced by discharging the stored isopropyl alcohol, cleaning the inside of the storage tank, checking the airtightness of the piping (liquid delivery line, gas supply line, and other equipment), and storing isopropyl alcohol again.

収容体中でイソプロピルアルコールを保管する際の温度は、特に制限されないが、長期保存時の不純物含有量の増加抑制の観点から、通常-20~50℃の範囲で適宜設定すればよい。The temperature at which isopropyl alcohol is stored in the container is not particularly limited, but it is usually set appropriately within the range of -20 to 50°C from the viewpoint of preventing an increase in the impurity content during long-term storage.

(貯槽タンク中のイソプロピルアルコールのISOタンクコンテナへの収容)
次いで、貯槽タンク中のイソプロピルアルコールをISOタンクコンテナへ収容し、本開示の収容体を製造する方法について説明する。
(Storage of isopropyl alcohol in a storage tank into an ISO tank container)
Next, a method for producing the container of the present disclosure by storing isopropyl alcohol in a storage tank into an ISO tank container will be described.

ISOタンクコンテナとしては、使用済みのISOタンクコンテナが再度使用されることがある。かかる場合には、イソプロピルアルコールを収容する前に、ISOタンクコンテナをイソプロピルアルコールにより共洗洗浄することが好ましい。As an ISO tank container, a used ISO tank container may be reused. In such a case, it is preferable to co-wash the ISO tank container with isopropyl alcohol before storing isopropyl alcohol.

通常、貯槽タンクとISOタンクコンテナとは接続されておらず、それぞれ独立している。そのため、貯槽タンクからISOタンクコンテナへイソプロピルアルコールを送液するためには、ISOタンクコンテナに対して、貯槽タンク内のイソプロピルアルコールを送液するための送液ライン、及びISOタンクコンテナに不活性ガスを供給するガス供給ラインの移送管を接続する。 Normally, the storage tank and the ISO tank container are not connected and are independent of each other. Therefore, in order to transfer isopropyl alcohol from the storage tank to the ISO tank container, a transfer line for transferring the isopropyl alcohol in the storage tank and a transfer pipe for a gas supply line for supplying inert gas to the ISO tank container are connected to the ISO tank container.

ISOタンクコンテナと、送液ライン及びガス供給ラインの移送管との接続は、公知の方法を用いることができる。ISOタンクコンテナは、送液ライン及びガス供給ラインの移送管と接続するために、継手を備える。ISOタンクコンテナに設けられた継手に対して、送液ライン及びガス供給ラインの移送管に設けられた継手を接続する。継手の種類としては、レバー式継手、迅速流体継手等が挙げられる。送液ライン及びガス供給ラインには、フレキシブルホースが使用されてもよい。A known method can be used to connect the ISO tank container to the transfer pipes of the liquid delivery line and the gas supply line. The ISO tank container is provided with fittings for connecting to the transfer pipes of the liquid delivery line and the gas supply line. Fittings provided on the transfer pipes of the liquid delivery line and the gas supply line are connected to the fittings provided on the ISO tank container. Types of fittings include lever-type fittings and quick fluid fittings. Flexible hoses may be used for the liquid delivery line and the gas supply line.

ISOタンクコンテナに充填されたイソプロピルアルコールの酸素濃度が増加する要因として、ISOタンクコンテナに設けられた継手と、送液ライン及びガス供給ラインの移送管に設けられた継手とを接続する際や、継手の接続が密閉できておらず隙間がある際等に、空気がライン中に混入し、容器内のイソプロピルアルコール中へ酸素が溶解する可能性が考えられる。そのため、ガス供給ライン中にベント用の排気ラインを設けて、不活性ガスの加圧によってライン内のパージを行い、酸素濃度が所定の範囲になるまで、ガス供給ライン及びISOタンクコンテナ内の雰囲気を十分に置換することが好ましい。 One of the reasons for the increase in the oxygen concentration of isopropyl alcohol filled in an ISO tank container is that when connecting the fittings on the ISO tank container to the fittings on the transfer pipes of the liquid delivery line and gas supply line, or when the fittings are not sealed and there are gaps, air may get mixed into the line and oxygen may dissolve in the isopropyl alcohol in the container. Therefore, it is preferable to provide a vent exhaust line in the gas supply line, purge the line by pressurizing with an inert gas, and sufficiently replace the atmosphere in the gas supply line and ISO tank container until the oxygen concentration reaches a predetermined range.

ISOタンクコンテナへイソプロピルアルコールを充填する前に、ISOタンクコンテナ中のイソプロピルアルコールの残液は、ガス供給ラインからの不活性ガスの加圧によって、ISOタンクコンテナ外へ排出することが好ましい。Before filling the ISO tank container with isopropyl alcohol, it is preferable to discharge the remaining isopropyl alcohol in the ISO tank container outside the ISO tank container by pressurizing it with inert gas from the gas supply line.

そして、送液ラインを介して、貯槽タンク内のイソプロピルアルコールをISOタンクコンテナ内へ送液する。このとき、ISOタンクコンテナ内に収容するイソプロピルアルコールの量としては、容積の2~98%であることが好ましい。Then, the isopropyl alcohol in the storage tank is pumped into the ISO tank container via the liquid supply line. At this time, the amount of isopropyl alcohol contained in the ISO tank container is preferably 2 to 98% of the volume.

次に、イソプロピルアルコールを充填したISOタンクコンテナ内の気相部に不活性ガスを封入する。不活性ガスの封入後のISOタンクコンテナ内の気相部は、内圧が0.01~0.30MPaであることが好ましく、0.02~0.12MPaであることがより好ましく、0.02~0.07MPaであることがさらに好ましい。Next, an inert gas is sealed in the gas phase inside the ISO tank container filled with isopropyl alcohol. After the inert gas is sealed in, the internal pressure of the gas phase inside the ISO tank container is preferably 0.01 to 0.30 MPa, more preferably 0.02 to 0.12 MPa, and even more preferably 0.02 to 0.07 MPa.

不活性ガスの封入後、ISOタンクコンテナ内の気相部をサンプリングして酸素濃度を測定し、酸素濃度が0.1~10vоlppmであれば、本開示の収容体とすることができる。該気相部の酸素濃度が上記範囲にない場合には、気相部の酸素濃度が上記範囲となるまで、不活性ガスを供給して気相部の置換を行うことにより、本開示の収容体を製造することができる。あるいは、収容したイソプロピルアルコールを排出し、ISOタンクコンテナ内を洗浄し、配管(送液ライン、ガス供給ライン、その他設備)の気密性を確認し、イソプロピルアルコールを再度収容することにより、本開示の収容体を製造することができる。排出したイソプロピルアルコールは、溶存酸素濃度、アセトン含有量、及びクロム含有量を分析し、いずれも好ましい範囲にあれば、ISOタンクコンテナに再度収容するためのイソプロピルアルコールとして使用することができる。一方、好ましい範囲にない場合には、公知の精製方法にて精製した後、ISOタンクコンテナに収容するイソプロピルアルコールとして使用することができる。After the inert gas is sealed in, the gas phase in the ISO tank container is sampled to measure the oxygen concentration. If the oxygen concentration is 0.1 to 10 vol ppm, the container of the present disclosure can be obtained. If the oxygen concentration in the gas phase is not within the above range, the container of the present disclosure can be produced by supplying an inert gas to replace the gas phase until the oxygen concentration in the gas phase is within the above range. Alternatively, the container of the present disclosure can be produced by discharging the isopropyl alcohol contained therein, cleaning the inside of the ISO tank container, checking the airtightness of the piping (liquid transfer line, gas supply line, and other equipment), and re-accommodating the isopropyl alcohol. The discharged isopropyl alcohol is analyzed for its dissolved oxygen concentration, acetone content, and chromium content. If all of these are within the preferred ranges, it can be used as isopropyl alcohol to be accommodated in the ISO tank container again. On the other hand, if the oxygen concentration is not within the preferred range, it can be purified by a known purification method and then used as isopropyl alcohol to be accommodated in the ISO tank container.

以上、貯槽タンク中のイソプロピルアルコールをISOタンクコンテナへ送液する方法について説明したが、本開示の製造方法はこれらの態様に限られるものではなく、容器としてキャニスター缶等を用いることも可能である。 The above describes a method for transferring isopropyl alcohol from a storage tank to an ISO tank container, but the manufacturing method disclosed herein is not limited to these aspects, and it is also possible to use a canister or the like as a container.

キャニスター缶の共洗洗浄は以下の手順で実施することができる。すなわち、容器内へ、送液ラインからイソプロピルアルコールを容積の1~10%となるように充填して共洗洗浄を行い、共洗洗浄後、容器内にあるイソプロピルアルコールの残液を、ガス供給ラインからの不活性ガスの加圧によって、容器外へ排出することにより実施することができる。共洗洗浄は1回に限らず複数回実施してもよい。 Co-washing of canisters can be carried out by the following procedure. That is, co-washing is carried out by filling the container with isopropyl alcohol from the liquid supply line so that it accounts for 1-10% of the container's volume, and after co-washing, the remaining isopropyl alcohol in the container is discharged from the container by pressurizing it with inert gas from the gas supply line. Co-washing may be carried out multiple times, not just once.

また、中間バルクコンテナ、タンクローリー、及びISOタンクコンテナの共洗洗浄は以下の手順で実施することができる。まず、容器内へ、フィルターを通した純水を供給し、容器からオーバーフローするまで充填して純水洗浄を行う。15分間放置後、容器内にある純水は、ガス供給ラインからの不活性ガスの加圧によって容器外に排出する。容器内へ、送液ラインからイソプロピルアルコールを容積の1~10%となるように充填して共洗洗浄を行い、共洗洗浄後、容器内に存在するイソプロピルアルコールの残液を、ガス供給ラインからの不活性ガスの加圧によって容器外へ排出する。共洗洗浄は1回に限らず複数回実施してもよい。ただし、容器の共洗洗浄を複数回行った後に、容器内へイソプロピルアルコールのみが充填され、不活性ガスで封入されている場合、容器の純水洗浄及び共洗洗浄は必ずしも行わなくてもよい。 In addition, the co-washing cleaning of intermediate bulk containers, tank trucks, and ISO tank containers can be performed in the following procedure. First, pure water passed through a filter is supplied into the container, and the container is filled with pure water until it overflows, and then the pure water is washed. After leaving it for 15 minutes, the pure water in the container is discharged from the container by pressurizing the inert gas from the gas supply line. The container is filled with isopropyl alcohol from the liquid supply line to 1 to 10% of the volume, and after the co-washing, the remaining isopropyl alcohol in the container is discharged from the container by pressurizing the inert gas from the gas supply line. The co-washing cleaning may be performed multiple times, not just once. However, if the container is filled with only isopropyl alcohol and sealed with inert gas after the co-washing cleaning of the container multiple times, the pure water cleaning and co-washing cleaning of the container are not necessarily performed.

<収容体の品質管理方法>
上述のとおり、収容体の気相部に酸素が存在すると、長期保管により収容体中の酸素がほとんど消費されるまでクロム等の金属不純物やアセトン等の有機不純物の含有量が増加するものと推測される。このため、収容体の気相部の酸素濃度、及び液相部のイソプロピルアルコール中の溶存酸素濃度を測定し、所定の範囲内となるよう管理することで、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の増加が抑制されるとともに、長期保管時のクロム等の金属不純物やアセトン等の有機不純物の含有量の制御が可能となり、数十日から数か月の長期保管が可能となる。
<Quality control method for container>
As described above, if oxygen is present in the gas phase of the container, it is presumed that the content of metal impurities such as chromium and organic impurities such as acetone will increase until the oxygen in the container is almost consumed due to long-term storage. Therefore, by measuring the oxygen concentration in the gas phase of the container and the dissolved oxygen concentration in the isopropyl alcohol in the liquid phase and managing them to be within a predetermined range, the increase in the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage is suppressed, and the content of metal impurities such as chromium and organic impurities such as acetone during long-term storage can be controlled, making it possible to store the container for a long period of time from several tens of days to several months.

収容体の気相部の酸素濃度測定で、酸素濃度が0.1~10volppmの範囲ではない場合、あるいは液相部のイソプロピルアルコール中の溶存酸素濃度測定で、溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%の範囲ではない場合、品質管理方法として、以下の方法を行う。まず、容器内のイソプロピルアルコールを排出し、容器内を不活性ガスでパージを行う。その際、容器と移送管との継手に漏れがないことを確認する。次に、容器内の気相部の酸素濃度を測定し、酸素濃度が0.1~10volppmの範囲であることを確認した後、再度容器内に上述の方法で精製されたイソプロピルアルコールを充填する。充填後、容器内の気相部の酸素濃度を測定し、酸素濃度が0.1~10volppmの範囲であること、及び容器内のイソプロピルアルコール中の溶存酸素濃度を測定し、溶存酸素濃度が大気下、25℃での酸素飽和溶解度に対して0.001~0.050%であることを確認する。If the oxygen concentration in the gas phase of the container is not within the range of 0.1 to 10 vol ppm, or if the dissolved oxygen concentration in the isopropyl alcohol in the liquid phase is not within the range of 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C in air, the following quality control method is performed. First, the isopropyl alcohol in the container is discharged and the container is purged with an inert gas. At that time, it is confirmed that there are no leaks in the joint between the container and the transfer tube. Next, the oxygen concentration in the gas phase of the container is measured to confirm that the oxygen concentration is within the range of 0.1 to 10 vol ppm, and then the container is filled again with isopropyl alcohol purified by the above method. After filling, the oxygen concentration in the gas phase of the container is measured to confirm that the oxygen concentration is within the range of 0.1 to 10 vol ppm, and the dissolved oxygen concentration in the isopropyl alcohol in the container is measured to confirm that the dissolved oxygen concentration is within the range of 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C in air.

以上の手順により、イソプロピルアルコール収容体の酸素濃度を管理することができる。上記収容体は、保管時又は輸送時においても、イソプロピルアルコール中の有機不純物、及びクロム含有量の増加を抑制することが可能である。上記収容体中のイソプロピルアルコールは、長期の保管が可能であり、半導体デバイスの洗浄液又は乾燥液として好適に使用することができる。 By the above procedure, the oxygen concentration of the isopropyl alcohol container can be controlled. The container can suppress an increase in the organic impurities and chromium content in the isopropyl alcohol even during storage or transportation. The isopropyl alcohol in the container can be stored for a long period of time and can be suitably used as a cleaning liquid or drying liquid for semiconductor devices.

なお、収容体中のイソプロピルアルコールでは、有機不純物のうち、アセトン含有量のみならず、有機酸等の含有量の増加を抑制することもできる。 In addition, the isopropyl alcohol in the container can suppress the increase in the content of organic impurities, including not only acetone but also organic acids.

以下、本発明について実施例を用いて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。The present invention will be described in detail below using examples, but the present invention is not limited to these examples.

<イソプロピルアルコール収容体中の酸素含有量>
イソプロピルアルコール収容体の気相部の酸素含有量の算出は、以下のとおり実施した。まず、光学式酸素濃度計(PreSens社製、Fibox 4 trace(センサー:Pst6))を用いて、純度99.999%以上、酸素濃度が1volppm以下の窒素、及び酸素濃度が1000volppmに調整された窒素の測定を行い、予め校正を行った。次に、収容体に設置された圧力計から、収容体の気相部の内圧の値を確認し、収容体の気相部の内圧によって収容体の気相部を光学式酸素濃度計へ圧送し、パージを1分間行い、収容体の気相部の酸素濃度の測定を実施した。最後に、収容体の気相部の酸素量を、(収容体の気相部の酸素濃度×(大気圧+内圧)÷大気圧×気体のモル体積×気相部の容積)の式から算出した。
<Oxygen content in isopropyl alcohol container>
The oxygen content of the gas phase of the isopropyl alcohol container was calculated as follows. First, an optical oxygen concentration meter (PreSens, Fibox 4 trace (sensor: Pst6)) was used to measure nitrogen with a purity of 99.999% or more and an oxygen concentration of 1 volppm or less, and nitrogen with an oxygen concentration adjusted to 1000 volppm, and was calibrated in advance. Next, the value of the internal pressure of the gas phase of the container was confirmed from the pressure gauge installed in the container, and the gas phase of the container was pumped to the optical oxygen concentration meter by the internal pressure of the gas phase of the container, and purging was performed for 1 minute, and the oxygen concentration of the gas phase of the container was measured. Finally, the amount of oxygen in the gas phase of the container was calculated from the formula (oxygen concentration of the gas phase of the container x (atmospheric pressure + internal pressure) ÷ atmospheric pressure x molar volume of gas x volume of gas phase).

また、収容体中の液相部の酸素量の算出は、以下のとおり実施した。まず、光学式酸素濃度計(PreSens社製、Fibox 4 trace(センサー:Pst6))を用いて、純度99.999%以上、酸素濃度が1volppm以下の窒素、及び酸素濃度が1000volppmに調整された窒素の測定を行い、予め校正を行った。次に、収容体の気相部の内圧によって収容体の液相部を光学式酸素濃度計へ圧送し、パージを1分間行い、収容体の液相部の酸素濃度の測定を実施した。最後に、収容体の液相部の酸素量を、(収容体の液相部の酸素濃度÷酸素のモル質量×液相部の重量)の式から算出した。 The amount of oxygen in the liquid phase of the container was calculated as follows. First, an optical oxygen concentration meter (PreSens, Fibox 4 trace (sensor: Pst6)) was used to measure nitrogen with a purity of 99.999% or more and an oxygen concentration of 1 volppm or less, and nitrogen with an oxygen concentration adjusted to 1000 volppm, and calibration was performed in advance. Next, the liquid phase of the container was pumped to the optical oxygen concentration meter by the internal pressure of the gas phase of the container, purging was performed for 1 minute, and the oxygen concentration of the liquid phase of the container was measured. Finally, the amount of oxygen in the liquid phase of the container was calculated from the formula (oxygen concentration in the liquid phase of the container ÷ molar mass of oxygen × weight of the liquid phase).

収容体の気相部及び液相部の酸素量の合計を容器中の酸素含有量とした。容器中の酸素含有量のイソプロピルアルコールに対するモル分率は、(容器中の酸素含有量÷液相部の重量×イソプロピルアルコールのモル質量)の式から算出した。The oxygen content in the container was determined as the sum of the oxygen amounts in the gas phase and liquid phase of the container. The molar fraction of the oxygen content in the container relative to isopropyl alcohol was calculated using the formula (oxygen content in container ÷ weight of liquid phase × molar mass of isopropyl alcohol).

<イソプロピルアルコール収容体中のアセトン含有量>
イソプロピルアルコール収容体中のアセトン含有量は、GC-MS(ガスクロマトグラフィー質量分析法)を用い、選択イオン検出法(SIM)にて以下に示した測定条件で測定した。予め、同測定条件によるアセトン含有量の検量線を作成し、検量線に基づき、測定したサンプル中のアセトン含有量を決定し、収容体中のイソプロピルアルコールの量に換算して、イソプロピルアルコール収容体中のアセトン含有量とした。
-測定条件-
装置:GCMS-QP2010 Ultra((株)島津製作所製)
カラム:CP-WAX 52CB(60m×0.25mm、0.50μm)
キャリアガス:ヘリウム
キャリアガス流量:0.98mL/分
注入口温度:150℃
カラム温度:75℃
検出器温度:230℃
注入モード:スプリット法
スプリット比:1対10
SIMモードセットイオン:m/Z=43
<Acetone content in isopropyl alcohol container>
The acetone content in the isopropyl alcohol container was measured using GC-MS (gas chromatography-mass spectrometry) with the selected ion detection method (SIM) under the measurement conditions shown below. A calibration curve for the acetone content under the same measurement conditions was created in advance, and the acetone content in the measured sample was determined based on the calibration curve, and converted into the amount of isopropyl alcohol in the container to determine the acetone content in the isopropyl alcohol container.
-Measurement condition-
Apparatus: GCMS-QP2010 Ultra (Shimadzu Corporation)
Column: CP-WAX 52CB (60 m x 0.25 mm, 0.50 μm)
Carrier gas: Helium Carrier gas flow rate: 0.98 mL/min Injection port temperature: 150° C.
Column temperature: 75 ° C.
Detector temperature: 230°C
Injection mode: split method Split ratio: 1:10
SIM mode set ion: m/Z=43

<イソプロピルアルコール収容体中のクロム含有量>
イソプロピルアルコール中に含まれる金属不純物は、ICP-MS(誘導結合プラズマ質量分析計)を用いて以下のように定量した。イソプロピルアルコール約500mLをナス型フラスコに採取し、ロータリーエバポレーターで濃縮及び乾固させた後、0.1N硝酸約25mLで2回に分けて回収した。回収した0.1N硝酸溶液について、ICP-MS(アジレント・テクノロジー社製、Agilent8900)を用いて金属溶出量を定量した。このとき、濃縮前のイソプロピルアルコールの重量と回収後の0.1N硝酸溶液の重量との比から濃縮倍率を算出し、イソプロピルアルコール重量当たりの金属不純物量に換算した。
<Chromium content in isopropyl alcohol container>
Metal impurities contained in isopropyl alcohol were quantified using ICP-MS (inductively coupled plasma mass spectrometry) as follows. Approximately 500 mL of isopropyl alcohol was collected in an eggplant-shaped flask, concentrated and dried using a rotary evaporator, and then collected in two portions using approximately 25 mL of 0.1 N nitric acid. The amount of metal elution from the collected 0.1 N nitric acid solution was quantified using ICP-MS (Agilent Technologies, Agilent 8900). At this time, the concentration factor was calculated from the ratio of the weight of isopropyl alcohol before concentration to the weight of the 0.1 N nitric acid solution after collection, and converted into the amount of metal impurities per weight of isopropyl alcohol.

<実施例1>
精製工程を経たイソプロピルアルコールを、貯槽タンク内へ以下の方法で収容した。まず、貯槽タンクへイソプロピルアルコールを送液する前に、ガス供給ラインを介して貯槽タンク内を窒素で気相置換した。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。気相置換後、収容体中の酸素含有量を測定したところ、貯槽タンク内の気相部の酸素濃度は1vоlppm以下であった。次に、送液ラインを介して、貯槽タンク内に精製工程を経たイソプロピルアルコールを収容した。貯槽タンク内に収容するイソプロピルアルコールの収容量は、内容積の80%とした。次に、イソプロピルアルコールを収容した貯槽タンク中の気相部に、ガス供給ラインを介して窒素を封入した。窒素封入後の貯槽タンク中の気相部の内圧は0.0005MPaであった。
Example 1
The isopropyl alcohol that had undergone the purification process was accommodated in the storage tank by the following method. First, before the isopropyl alcohol was sent to the storage tank, the inside of the storage tank was subjected to gas-phase substitution with nitrogen through a gas supply line. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 volppm or less. After the gas-phase substitution, the oxygen content in the container was measured, and the oxygen concentration in the gas phase part in the storage tank was 1 volppm or less. Next, the isopropyl alcohol that had undergone the purification process was accommodated in the storage tank through a liquid sending line. The amount of isopropyl alcohol accommodated in the storage tank was 80% of the internal volume. Next, nitrogen was sealed in the gas phase part of the storage tank containing the isopropyl alcohol through a gas supply line. The internal pressure of the gas phase part in the storage tank after nitrogen sealing was 0.0005 MPa.

貯槽タンク中の気相部に窒素を封入し、イソプロピルアルコール収容体とした後、収容体中の酸素含有量を測定したところ、収容体の気相部の酸素濃度は1.0vоlppmであり、収容体中のイソプロピルアルコールの溶存酸素濃度は、大気下、25℃での酸素飽和溶解度に対して0.024%であり、収容体中の酸素含有量のイソプロピルアルコールに対するモル分率は0.040molppmであった。また、収容体中のアセトン含有量は10ppbであり、クロム含有量は0.19pptであった。Nitrogen was sealed in the gas phase of the storage tank to create an isopropyl alcohol container, and the oxygen content in the container was measured. The oxygen concentration in the gas phase of the container was 1.0 vol ppm, the dissolved oxygen concentration of the isopropyl alcohol in the container was 0.024% relative to the oxygen saturation solubility at 25°C in the atmosphere, and the molar fraction of the oxygen content in the container relative to the isopropyl alcohol was 0.040 mol ppm. The acetone content in the container was 10 ppb, and the chromium content was 0.19 ppt.

このように製造された収容体を、15~30℃の温度範囲で30日間保管した。保管後、収容体中の酸素含有量を測定したところ、収容体中の気相部の酸素濃度は0.7vоlppmであり、容器中のイソプロピルアルコールの溶存酸素濃度は、大気下、25℃での酸素飽和溶解度に対して0.016%であり、収容体中の酸素含有量のイソプロピルアルコールに対するモル分率は0.027molppmであった。また、収容体中のアセトン含有量は46ppbであり、クロム含有量は0.64pptであった。The container thus manufactured was stored for 30 days at a temperature range of 15 to 30°C. After storage, the oxygen content in the container was measured, and the oxygen concentration in the gas phase of the container was 0.7 volppm, the dissolved oxygen concentration of the isopropyl alcohol in the container was 0.016% relative to the oxygen saturation solubility at 25°C in the atmosphere, and the molar fraction of the oxygen content in the container relative to the isopropyl alcohol was 0.027 molppm. The acetone content in the container was 46 ppb, and the chromium content was 0.64 ppt.

<比較例1>
精製工程を経たイソプロピルアルコールを、貯槽タンク内へ以下の方法で収容した。まず、送液ラインを介して、貯槽タンク内に精製工程を経たイソプロピルアルコールを収容した。貯槽タンク内に収容するイソプロピルアルコールの収容量は、内容積の80%とした。次に、イソプロピルアルコールを収容した貯槽タンク中の気相部に、ガス供給ラインを介して窒素を封入した。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。窒素封入後の貯槽タンク中の気相部の内圧は0.0005MPaであった。
<Comparative Example 1>
The isopropyl alcohol that had undergone the purification process was accommodated in the storage tank by the following method. First, the isopropyl alcohol that had undergone the purification process was accommodated in the storage tank through a liquid transfer line. The amount of isopropyl alcohol accommodated in the storage tank was 80% of the internal volume. Next, nitrogen was sealed in the gas phase of the storage tank containing isopropyl alcohol through a gas supply line. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 vol ppm or less. The internal pressure of the gas phase of the storage tank after nitrogen sealing was 0.0005 MPa.

このように製造された収容体を、15~30℃の温度範囲で51日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The container thus manufactured was stored for 51 days at a temperature range of 15 to 30° C. The storage conditions of the container are shown in Table 1, and the oxygen content, acetone content, and chromium content in the container before and after storage are shown in Table 2.

<実施例2>
貯槽タンク内のイソプロピルアルコールを、ISOタンクコンテナ内へ以下の方法で収容した。まず、ISOタンクコンテナの継手に対して、貯槽タンクと接続された送液ライン及びガス供給ラインの移送管に設けられた継手を接続した。ガス供給ライン内のベント用の排気ラインへの窒素加圧によってライン内のパージを5分間行った。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。また、移送管の継手部分に漏れがないことを確認した。気相置換後、ガス供給ライン内の酸素濃度が1vоlppm以下であることを確認した。次に、ISOタンクコンテナへイソプロピルアルコールを送液する前に、ISOタンクコンテナのイソプロピルアルコールの残液を、ガス供給ラインからの窒素加圧によって、ISOタンクコンテナ外へ排出した。イソプロピルアルコールの排出後、ISOタンクコンテナ中の気相部の酸素濃度が1vоlppm以下であることを確認した。次に、ISOタンクコンテナ内に、送液ラインを介して、貯槽タンク中のイソプロピルアルコールを収容した。ISOタンクコンテナ内に収容するイソプロピルアルコールの収容量は、内容積の87%とした。次に、イソプロピルアルコールを収容したISOタンクコンテナ中の気相部に、ガス供給ラインを介して窒素を封入した。窒素封入後のISOタンクコンテナ中の気相部の内圧は0.07MPaであった。
Example 2
The isopropyl alcohol in the storage tank was accommodated in the ISO tank container by the following method. First, the joints provided on the liquid supply line connected to the storage tank and the transfer pipe of the gas supply line were connected to the joints of the ISO tank container. The inside of the line was purged for 5 minutes by applying nitrogen pressure to the exhaust line for venting in the gas supply line. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 volppm or less. It was also confirmed that there was no leakage in the joints of the transfer pipe. After the gas phase substitution, it was confirmed that the oxygen concentration in the gas supply line was 1 volppm or less. Next, before the isopropyl alcohol was delivered to the ISO tank container, the remaining liquid of isopropyl alcohol in the ISO tank container was discharged outside the ISO tank container by applying nitrogen pressure from the gas supply line. After the isopropyl alcohol was discharged, it was confirmed that the oxygen concentration in the gas phase part in the ISO tank container was 1 volppm or less. Next, the isopropyl alcohol in the storage tank was accommodated in the ISO tank container via the liquid supply line. The amount of isopropyl alcohol contained in the ISO tank container was 87% of the internal volume. Next, nitrogen was sealed into the gas phase of the ISO tank container containing isopropyl alcohol through a gas supply line. The internal pressure of the gas phase of the ISO tank container after nitrogen sealing was 0.07 MPa.

このように製造された収容体を、15~30℃の温度範囲で20日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The containers thus manufactured were stored for 20 days at a temperature range of 15 to 30° C. The storage conditions of the containers are shown in Table 1, and the oxygen content, acetone content, and chromium content in the containers before and after storage are shown in Table 2.

<比較例2>
貯槽タンク内のイソプロピルアルコールを、ISOタンクコンテナ内へ以下の方法で収容した。まず、ISOタンクコンテナの継手に対して、貯槽タンクと接続された送液ライン及びガス供給ラインの移送管に設けられた継手を接続した。ただし、窒素加圧によるライン内のパージは行わなかった。次に、ISOタンクコンテナへイソプロピルアルコールを送液する前に、ISOタンクコンテナのイソプロピルアルコールの残液を、ガス供給ラインからの窒素加圧によって、ISOタンクコンテナ外へ1分間排出した。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。次に、ISOタンクコンテナ内に、送液ラインを介して、貯槽タンク中のイソプロピルアルコールを収容した。ISOタンクコンテナ内に収容するイソプロピルアルコールの収容量は、内容積の87%とした。次に、イソプロピルアルコールを収容したISOタンクコンテナ中の気相部に、ガス供給ラインを介して窒素を封入した。窒素封入後のISOタンクコンテナ中の気相部の内圧は0.06MPaであった。
<Comparative Example 2>
The isopropyl alcohol in the storage tank was accommodated in the ISO tank container by the following method. First, the joints provided on the liquid transfer line connected to the storage tank and the transfer pipe of the gas supply line were connected to the joints of the ISO tank container. However, purging of the lines by nitrogen pressure was not performed. Next, before the isopropyl alcohol was transferred to the ISO tank container, the remaining liquid of isopropyl alcohol in the ISO tank container was discharged outside the ISO tank container for 1 minute by nitrogen pressure from the gas supply line. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 vol ppm or less. Next, the isopropyl alcohol in the storage tank was accommodated in the ISO tank container via the liquid transfer line. The amount of isopropyl alcohol accommodated in the ISO tank container was 87% of the internal volume. Next, nitrogen was sealed in the gas phase part of the ISO tank container containing isopropyl alcohol via the gas supply line. The internal pressure of the gas phase part of the ISO tank container after nitrogen sealing was 0.06 MPa.

このように製造された収容体を、15~30℃の温度範囲で21日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The containers thus manufactured were stored for 21 days at a temperature range of 15 to 30° C. The storage conditions of the containers are shown in Table 1, and the oxygen content, acetone content, and chromium content in the containers before and after storage are shown in Table 2.

<実施例3>
貯槽タンク内のイソプロピルアルコールを、キャニスター缶内へ以下の方法で収容した。まず、キャニスター缶の継手に対して、貯槽タンクと接続された送液ライン及びガス供給ラインの移送管に設けられた継手を接続した。送液ラインを介して、キャニスター缶内へ、イソプロピルアルコールを容積の1~10%となるように充填して共洗洗浄を行い、共洗洗浄後、キャニスター缶内にあるイソプロピルアルコールの残液を、ガス供給ラインからの窒素加圧によって容器外へ排出した。共洗洗浄は3回実施した。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。また、移送管の継手部分に漏れがないことを確認した。共洗洗浄後、キャニスター缶内の酸素濃度が1vоlppm以下であることを確認した。次に、キャニスター缶内に、送液ラインを介して、貯槽タンク中のイソプロピルアルコールを収容した。キャニスター缶内に収容するイソプロピルアルコールの収容量は、内容積の82%とした。次に、イソプロピルアルコールを収容したキャニスター缶中の気相部に、ガス供給ラインを介して窒素を封入した。窒素封入後のキャニスター缶中の気相部の内圧は0.20MPaであった。
Example 3
The isopropyl alcohol in the storage tank was accommodated in the canister can by the following method. First, the joints provided on the liquid supply line connected to the storage tank and the transfer pipe of the gas supply line were connected to the joints of the canister can. The canister can was filled with isopropyl alcohol through the liquid supply line so that the volume was 1 to 10% to perform co-washing. After the co-washing, the remaining liquid of isopropyl alcohol in the canister was discharged outside the container by nitrogen pressure from the gas supply line. The co-washing was performed three times. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 vol ppm or less. It was also confirmed that there was no leakage in the joints of the transfer pipe. After the co-washing, it was confirmed that the oxygen concentration in the canister was 1 vol ppm or less. Next, the isopropyl alcohol in the storage tank was accommodated in the canister can by the liquid supply line. The amount of isopropyl alcohol accommodated in the canister can was 82% of the internal volume. Next, nitrogen was sealed into the gas phase of the canister containing the isopropyl alcohol via a gas supply line. The internal pressure of the gas phase in the canister after the nitrogen sealing was 0.20 MPa.

このように製造された収容体を、15~30℃の温度範囲で59日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The container thus manufactured was stored for 59 days at a temperature range of 15 to 30° C. The storage conditions of the container are shown in Table 1, and the oxygen content, acetone content, and chromium content in the container before and after storage are shown in Table 2.

<比較例3>
貯槽タンク内のイソプロピルアルコールを、キャニスター缶内へ以下の方法で収容した。まず、キャニスター缶の継手に対して、貯槽タンクと接続された送液ライン及びガス供給ラインの移送管に設けられた継手を接続した。送液ラインを介して、キャニスター缶内へ、イソプロピルアルコールを容積の1~10%となるように充填して共洗洗浄を行い、共洗洗浄後、キャニスター缶内にあるイソプロピルアルコールの残液を、ガス供給ラインからの窒素加圧によって容器外へ排出した。共洗洗浄は3回実施した。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。また、移送管の継手部分に漏れがないことを確認した。共洗洗浄後、キャニスター缶内の酸素濃度が1vоlppm以下であることを確認した。次に、キャニスター缶内に、送液ラインを介して、貯槽タンク中のイソプロピルアルコールを収容した。キャニスター缶内に収容するイソプロピルアルコールの収容量は、内容積の82%とした。次に、イソプロピルアルコールを収容したキャニスター缶中の気相部に、ガス供給ラインを介して窒素を封入し、キャニスター缶内の内圧を0.05MPaとした。さらに、酸素濃度が1000volppmである窒素を封入し、窒素封入後のキャニスター缶中の気相部の内圧を0.20MPaとした。
<Comparative Example 3>
The isopropyl alcohol in the storage tank was accommodated in the canister can by the following method. First, the joints provided on the liquid supply line connected to the storage tank and the transfer pipe of the gas supply line were connected to the joints of the canister can. The canister can was filled with isopropyl alcohol through the liquid supply line so that the volume was 1 to 10% to perform co-washing. After the co-washing, the remaining liquid of isopropyl alcohol in the canister was discharged outside the container by nitrogen pressure from the gas supply line. The co-washing was performed three times. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 vol ppm or less. It was also confirmed that there was no leakage in the joints of the transfer pipe. After the co-washing, it was confirmed that the oxygen concentration in the canister was 1 vol ppm or less. Next, the isopropyl alcohol in the storage tank was accommodated in the canister can by the liquid supply line. The amount of isopropyl alcohol accommodated in the canister can was 82% of the internal volume. Next, nitrogen was sealed into the gas phase of the canister containing isopropyl alcohol through a gas supply line, and the internal pressure in the canister was set to 0.05 MPa. Further, nitrogen with an oxygen concentration of 1000 vol ppm was sealed in, and the internal pressure in the gas phase of the canister after the nitrogen sealing was set to 0.20 MPa.

このように製造された収容体を、15~30℃の温度範囲で59日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The container thus manufactured was stored for 59 days at a temperature range of 15 to 30° C. The storage conditions of the container are shown in Table 1, and the oxygen content, acetone content, and chromium content in the container before and after storage are shown in Table 2.

<実施例4>
貯槽タンク内のイソプロピルアルコールを、ISOタンクコンテナ内へ以下の方法で収容した。まず、ISOタンクコンテナの継手に対して、貯槽タンクと接続された送液ライン及びガス供給ラインの移送管に設けられた継手を接続した。ガス供給ライン内のベント用の排気ラインへの窒素加圧によってライン内のパージを5分間行った。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。また、移送管の継手部分に漏れがないことを確認した。気相置換後、ガス供給ライン内の酸素濃度が1vоlppm以下であることを確認した。次に、ISOタンクコンテナへイソプロピルアルコールを送液する前に、ISOタンクコンテナのイソプロピルアルコールの残液を、ガス供給ラインからの窒素加圧によって、ISOタンクコンテナ外へ排出した。イソプロピルアルコールの排出後、ISOタンクコンテナ中の気相部の酸素濃度が1vоlppm以下であることを確認した。次に、ISOタンクコンテナ内に、送液ラインを介して、貯槽タンク中のイソプロピルアルコールを収容した。ISOタンクコンテナ内に収容するイソプロピルアルコールの収容量は、内容積の87%とした。次に、イソプロピルアルコールを収容したISOタンクコンテナ中の気相部に、ガス供給ラインを介して窒素を封入した。窒素封入後のISOタンクコンテナ中の気相部の内圧は0.05MPaであった。
Example 4
The isopropyl alcohol in the storage tank was accommodated in the ISO tank container by the following method. First, the joints provided on the liquid supply line connected to the storage tank and the transfer pipe of the gas supply line were connected to the joints of the ISO tank container. The line was purged for 5 minutes by applying nitrogen pressure to the exhaust line for venting in the gas supply line. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 volppm or less. It was also confirmed that there was no leakage in the joints of the transfer pipe. After the gas phase substitution, it was confirmed that the oxygen concentration in the gas supply line was 1 volppm or less. Next, before the isopropyl alcohol was delivered to the ISO tank container, the remaining liquid of isopropyl alcohol in the ISO tank container was discharged outside the ISO tank container by applying nitrogen pressure from the gas supply line. After the isopropyl alcohol was discharged, it was confirmed that the oxygen concentration in the gas phase part in the ISO tank container was 1 volppm or less. Next, the isopropyl alcohol in the storage tank was accommodated in the ISO tank container via the liquid supply line. The amount of isopropyl alcohol contained in the ISO tank container was 87% of the internal volume. Next, nitrogen was sealed into the gas phase of the ISO tank container containing isopropyl alcohol through a gas supply line. The internal pressure of the gas phase of the ISO tank container after nitrogen sealing was 0.05 MPa.

このように製造された収容体を、15~30℃の温度範囲で98日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The containers thus manufactured were stored for 98 days at temperatures ranging from 15 to 30° C. The storage conditions for the containers are shown in Table 1, and the oxygen content, acetone content, and chromium content in the containers before and after storage are shown in Table 2.

<実施例5>
貯槽タンク内のイソプロピルアルコールを、ISOタンクコンテナ内へ以下の方法で収容した。まず、ISOタンクコンテナの継手に対して、貯槽タンクと接続された送液ライン及びガス供給ラインの移送管に設けられた継手を接続した。ガス供給ライン内のベント用の排気ラインへの窒素加圧によってライン内のパージを5分間行った。このとき使用した窒素の純度は99.999%以上であり、酸素濃度は5volppm以下であった。また、移送管の継手部分に漏れがないことを確認した。気相置換後、ガス供給ライン内の酸素濃度が5vоlppm以下であることを確認した。次に、ISOタンクコンテナへイソプロピルアルコールを送液する前に、ISOタンクコンテナのイソプロピルアルコールの残液を、ガス供給ラインからの窒素加圧によって、ISOタンクコンテナ外へ排出した。イソプロピルアルコールの排出後、ISOタンクコンテナ中の気相部の酸素濃度が5vоlppm以下であることを確認した。次に、ISOタンクコンテナ内に、送液ラインを介して、貯槽タンク中のイソプロピルアルコールを収容した。ISOタンクコンテナ内に収容するイソプロピルアルコールの収容量は、内容積の87%とした。次に、イソプロピルアルコールを収容したISOタンクコンテナ中の気相部に、ガス供給ラインを介して窒素を封入した。窒素封入後のISOタンクコンテナ中の気相部の内圧は0.05MPaであった。
Example 5
The isopropyl alcohol in the storage tank was accommodated in the ISO tank container by the following method. First, the joints provided on the liquid supply line connected to the storage tank and the transfer pipe of the gas supply line were connected to the joints of the ISO tank container. The inside of the line was purged for 5 minutes by applying nitrogen pressure to the exhaust line for venting in the gas supply line. The purity of the nitrogen used at this time was 99.999% or more, and the oxygen concentration was 5 volppm or less. It was also confirmed that there was no leakage in the joints of the transfer pipe. After the gas phase substitution, it was confirmed that the oxygen concentration in the gas supply line was 5 volppm or less. Next, before the isopropyl alcohol was delivered to the ISO tank container, the remaining liquid of isopropyl alcohol in the ISO tank container was discharged outside the ISO tank container by applying nitrogen pressure from the gas supply line. After the isopropyl alcohol was discharged, it was confirmed that the oxygen concentration in the gas phase part in the ISO tank container was 5 volppm or less. Next, the isopropyl alcohol in the storage tank was accommodated in the ISO tank container via the liquid supply line. The amount of isopropyl alcohol contained in the ISO tank container was 87% of the internal volume. Next, nitrogen was sealed into the gas phase of the ISO tank container containing isopropyl alcohol through a gas supply line. The internal pressure of the gas phase of the ISO tank container after nitrogen sealing was 0.05 MPa.

このように製造された収容体を、15~30℃の温度範囲で35日間保管した。収容体の保管条件を表1に示し、保管前後における、収容体中の酸素含有量、アセトン含有量、及びクロム含有量を表2に示す。The containers thus manufactured were stored for 35 days at a temperature range of 15 to 30° C. The storage conditions of the containers are shown in Table 1, and the oxygen content, acetone content, and chromium content in the containers before and after storage are shown in Table 2.

Figure 0007477730000001
Figure 0007477730000001

Figure 0007477730000002
Figure 0007477730000002

表2に示すとおり、収容体中の酸素含有量をイソプロピルアルコールに対して0.001~0.100molppmとし、イソプロピルアルコール中の不純物としてのアセトンの含有量を質量基準で10~200ppbとした実施例1~5の収容体は、比較例1~3の収容体に比べて、数十日から数か月の長期保管後におけるアセトン含有量及びクロム含有量の増加が抑制された。

As shown in Table 2, the containers of Examples 1 to 5, in which the oxygen content in the container was 0.001 to 0.100 mol ppm relative to isopropyl alcohol and the content of acetone as an impurity in isopropyl alcohol was 10 to 200 ppb by mass, showed a suppressed increase in the acetone content and chromium content after long-term storage of several tens of days to several months, compared to the containers of Comparative Examples 1 to 3.

Claims (23)

容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体であって、
前記容器中の酸素含有量が前記イソプロピルアルコールに対して0.001~0.100molppmであり、
前記イソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbであるイソプロピルアルコール収容体。
An isopropyl alcohol container in which isopropyl alcohol is contained in a container,
The oxygen content in the container is 0.001 to 0.100 mol ppm relative to the isopropyl alcohol;
The isopropyl alcohol container, in which the content of acetone as an impurity in the isopropyl alcohol is 10 to 200 ppb by mass.
前記イソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、請求項1に記載のイソプロピルアルコール収容体。 The isopropyl alcohol container according to claim 1, wherein the content of chromium as an impurity in the isopropyl alcohol is 0.01 to 2.50 ppt by mass. 前記容器の容積が1000~1500000Lの範囲にある、請求項1又は2に記載のイソプロピルアルコール収容体。 The isopropyl alcohol container according to claim 1 or 2, wherein the volume of the container is in the range of 1,000 to 1,500,000 L. 前記容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、請求項3に記載のイソプロピルアルコール収容体。 The isopropyl alcohol container of claim 3, wherein the container is an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank. 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体の製造方法であって、
前記容器にイソプロピルアルコールを収容するとともに、該容器中の気体の酸素濃度を体積基準で0.1~10ppmに調整するイソプロピルアルコール収容体の製造方法。
A method for producing an isopropyl alcohol container in which isopropyl alcohol is contained in a container,
A method for producing an isopropyl alcohol container, comprising: storing isopropyl alcohol in the container; and adjusting the oxygen concentration of the gas in the container to 0.1 to 10 ppm on a volume basis.
前記容器に収容されるイソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である、請求項5に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 5, wherein the dissolved oxygen concentration in the isopropyl alcohol contained in the container is 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions. 前記容器に収容されるイソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbである、請求項5又は6に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 5 or 6, wherein the content of acetone as an impurity in the isopropyl alcohol contained in the container is 10 to 200 ppb by mass. 前記容器に収容されるイソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、請求項5又は6に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 5 or 6, wherein the content of chromium as an impurity in the isopropyl alcohol contained in the container is 0.01 to 2.50 ppt by mass. 前記容器の容積が1000~1500000Lの範囲にある、請求項5又は6に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 5 or 6, wherein the volume of the container is in the range of 1,000 to 1,500,000 L. 前記容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、請求項9に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 9, wherein the container is an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank. 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体の製造方法であって、
前記イソプロピルアルコールを前記容器の容積の2~98%となるように収容するとともに、該容器中の気体の酸素濃度を体積基準で0.1~10ppmに調整するイソプロピルアルコール収容体の製造方法。
A method for producing an isopropyl alcohol container in which isopropyl alcohol is contained in a container,
The isopropyl alcohol is contained in the container so that the volume of the container is 2 to 98%, and the oxygen concentration of the gas in the container is adjusted to 0.1 to 10 ppm on a volume basis.
前記容器に収容されるイソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である、請求項11に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 11, wherein the dissolved oxygen concentration in the isopropyl alcohol contained in the container is 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions. 前記容器に収容されるイソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbである、請求項11又は12に記載のイソプロピルアルコールの収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 11 or 12, wherein the content of acetone as an impurity in the isopropyl alcohol contained in the container is 10 to 200 ppb by mass. 前記容器に収容されるイソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、請求項11又は12に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 11 or 12, wherein the content of chromium as an impurity in the isopropyl alcohol contained in the container is 0.01 to 2.50 ppt by mass. 前記容器の容積が1000~1500000Lの範囲にある、請求項11又は12に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 11 or 12, wherein the volume of the container is in the range of 1,000 to 1,500,000 L. 前記容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、請求項15に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 15, wherein the container is an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank. 第一の容器に収容されたイソプロピルアルコールを第二の容器に収容するイソプロピルアルコール収容体の製造方法であって、
前記第二の容器にイソプロピルアルコールを収容するとともに、該第二の容器中の気体の酸素濃度を体積基準で0.1~10ppmに調整するイソプロピルアルコール収容体の製造方法。
A method for producing an isopropyl alcohol container in which isopropyl alcohol contained in a first container is contained in a second container,
A method for producing an isopropyl alcohol container, comprising: storing isopropyl alcohol in the second container; and adjusting the oxygen concentration of the gas in the second container to 0.1 to 10 ppm on a volumetric basis.
前記第二の容器に収容されるイソプロピルアルコール中の溶存酸素濃度が、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%である、請求項17に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 17, wherein the dissolved oxygen concentration in the isopropyl alcohol contained in the second container is 0.001 to 0.050% relative to the oxygen saturation solubility at 25°C under atmospheric conditions. 前記第二の容器に収容されるイソプロピルアルコール中の不純物としてのアセトンの含有量が質量基準で10~200ppbである、請求項17又は18に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 17 or 18, wherein the content of acetone as an impurity in the isopropyl alcohol contained in the second container is 10 to 200 ppb by mass. 前記第二の容器に収容されるイソプロピルアルコール中の不純物としてのクロムの含有量が質量基準で0.01~2.50pptである、請求項17又は18に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 17 or 18, wherein the content of chromium as an impurity in the isopropyl alcohol contained in the second container is 0.01 to 2.50 ppt by mass. 前記第一の容器及び前記第二の容器の容積が1000~1500000Lの範囲にある、請求項17又は18に記載のイソプロピルアルコール収容体の製造方法。 The method for producing an isopropyl alcohol container according to claim 17 or 18, wherein the volume of the first container and the second container is in the range of 1000 to 1500000 L. 前記第一の容器及び前記第二の容器が、中間バルクコンテナ、タンクローリー、ISOタンクコンテナ、又は貯槽タンクである、請求項21に記載のイソプロピルアルコール収容体の製造方法。 22. The method for producing an isopropyl alcohol container according to claim 21, wherein the first container and the second container are an intermediate bulk container, a tank truck, an ISO tank container, or a storage tank. 容器にイソプロピルアルコールが収容されたイソプロピルアルコール収容体の品質管理方法であって、
前記イソプロピルアルコール中の溶存酸素濃度を、大気下、25℃での酸素飽和溶解度に対して0.001~0.050%とし、かつ、前記容器中の気体の酸素濃度を体積基準で0.1~10ppmとするイソプロピルアルコール収容体の品質管理方法。
A quality control method for an isopropyl alcohol container in which isopropyl alcohol is contained in a container, comprising:
The quality control method for an isopropyl alcohol container, in which the dissolved oxygen concentration in the isopropyl alcohol is 0.001 to 0.050% relative to the oxygen saturation solubility at 25 ° C. in the atmosphere, and the oxygen concentration of the gas in the container is 0.1 to 10 ppm by volume.
JP2023564473A 2022-06-03 2023-05-26 Isopropyl alcohol container, manufacturing method thereof, and quality control method for isopropyl alcohol container Active JP7477730B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022090812 2022-06-03
JP2022090812 2022-06-03
PCT/JP2023/019666 WO2023234202A1 (en) 2022-06-03 2023-05-26 Isopropyl alcohol accommodating body, manufacturing method for said accommodating body, and quality control method for isopropyl alcohol accommodating body

Publications (2)

Publication Number Publication Date
JPWO2023234202A1 JPWO2023234202A1 (en) 2023-12-07
JP7477730B1 true JP7477730B1 (en) 2024-05-01

Family

ID=89024962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023564473A Active JP7477730B1 (en) 2022-06-03 2023-05-26 Isopropyl alcohol container, manufacturing method thereof, and quality control method for isopropyl alcohol container

Country Status (2)

Country Link
JP (1) JP7477730B1 (en)
WO (1) WO2023234202A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524818A (en) 2012-09-06 2015-08-27 エルジー・ケム・リミテッド Method and apparatus for producing isopropyl alcohol
JP2016179956A (en) 2015-03-24 2016-10-13 国立大学法人山口大学 Secondary alcohol storage method and filling body
WO2018135408A1 (en) 2017-01-23 2018-07-26 株式会社トクヤマ Isopropyl alcohol composition and production method for isopropyl alcohol
WO2020009225A1 (en) 2018-07-06 2020-01-09 富士フイルム株式会社 Member, container, medicinal-solution-accommodating body, reaction vessel, distillation column, filter unit, reservoir tank, piping, and method for producing medicinal solution
WO2020071307A1 (en) 2018-10-03 2020-04-09 株式会社トクヤマ High-purity isopropyl alcohol and method for manufacturing same
WO2021200936A1 (en) 2020-04-02 2021-10-07 株式会社トクヤマ Semiconductor treatment liquid and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324368A (en) * 1997-03-21 1998-12-08 Tokuyama Corp Container for highly pure isopropyl alcohol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524818A (en) 2012-09-06 2015-08-27 エルジー・ケム・リミテッド Method and apparatus for producing isopropyl alcohol
JP2016179956A (en) 2015-03-24 2016-10-13 国立大学法人山口大学 Secondary alcohol storage method and filling body
WO2018135408A1 (en) 2017-01-23 2018-07-26 株式会社トクヤマ Isopropyl alcohol composition and production method for isopropyl alcohol
WO2020009225A1 (en) 2018-07-06 2020-01-09 富士フイルム株式会社 Member, container, medicinal-solution-accommodating body, reaction vessel, distillation column, filter unit, reservoir tank, piping, and method for producing medicinal solution
WO2020071307A1 (en) 2018-10-03 2020-04-09 株式会社トクヤマ High-purity isopropyl alcohol and method for manufacturing same
WO2021200936A1 (en) 2020-04-02 2021-10-07 株式会社トクヤマ Semiconductor treatment liquid and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2023234202A1 (en) 2023-12-07
WO2023234202A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP6845235B2 (en) Hydrogen sulfide mixture and its manufacturing method and filling container
EP1882631B2 (en) Aqueous hydrogen peroxide for sterilization
JP7117134B2 (en) Corrosion test apparatus and corrosion test method
TWI812945B (en) Isopropanol composition and method for producing isopropanol
JP2001089131A (en) Purification process and apparatus for boron trichloride
US20150082981A1 (en) Capture of trifluoromethane using ionic liquids
JP2013533869A (en) Method for producing formic acid
EP3900810A1 (en) Method for removing halogen fluoride, quantitative analysis method for gas component contained in halogen fluoride mixed gas, and quantitative analyzer
JP7477730B1 (en) Isopropyl alcohol container, manufacturing method thereof, and quality control method for isopropyl alcohol container
CN113874300B (en) Sulfur dioxide mixture, process for producing the same, and filled container
KR102471394B1 (en) Semiconductor processing liquid and its manufacturing method
TW202408655A (en) Isopropyl alcohol container, manufacturing method of the container, and quality control method of the isopropyl alcohol container
US20200354217A1 (en) Hydrogen chloride mixture, method for producing the same, and filling container
US20230074641A1 (en) Biopharmaceutical manufacturing process and product
KR20170093164A (en) Method for cleaning high-pressure gas container, and high-pressure gas container
US20090142248A1 (en) Method For Purifying Nitrogen Trifluoride
EP2871669A1 (en) Gas mixture and gas transportation vessel therefor
WO2005044725A1 (en) Method for producing high purity liquid chlorine
TW202146704A (en) Method for supplying composition, composition and dry etching method
TW202413269A (en) Production method of high purity hydrochloric acid
US6605137B2 (en) Ammonia composition and process therefor and therewith
JP2007238471A (en) Method for storage of n-vinyl-2-pyrrolidone
Mukhortov et al. Interaction of trichloromethane and tetrachloromethane with nitrogen trifluoride
KR20140108293A (en) Method of feeding hydrogen fluoride into an electrolytic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231020

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418

R150 Certificate of patent or registration of utility model

Ref document number: 7477730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150