JP7468616B2 - Steel pipe for hydrogen gas, manufacturing method of steel pipe for hydrogen gas, pressure vessel for hydrogen gas, and manufacturing method of pressure vessel for hydrogen gas - Google Patents

Steel pipe for hydrogen gas, manufacturing method of steel pipe for hydrogen gas, pressure vessel for hydrogen gas, and manufacturing method of pressure vessel for hydrogen gas Download PDF

Info

Publication number
JP7468616B2
JP7468616B2 JP2022505369A JP2022505369A JP7468616B2 JP 7468616 B2 JP7468616 B2 JP 7468616B2 JP 2022505369 A JP2022505369 A JP 2022505369A JP 2022505369 A JP2022505369 A JP 2022505369A JP 7468616 B2 JP7468616 B2 JP 7468616B2
Authority
JP
Japan
Prior art keywords
steel pipe
hydrogen gas
polishing
streaks
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022505369A
Other languages
Japanese (ja)
Other versions
JPWO2022091846A1 (en
Inventor
和輝 松原
拓史 岡野
周作 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2022091846A1 publication Critical patent/JPWO2022091846A1/ja
Application granted granted Critical
Publication of JP7468616B2 publication Critical patent/JP7468616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/06Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/40Single-purpose machines or devices for grinding tubes internally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/10Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2172Polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、水素ガス用鋼管に関し、特に、優れた耐水素脆化特性と高い生産性を兼ね備え、水素ガス用圧力容器などの部材として極めて好適に用いることができる水素ガス用鋼管に関する。また、本発明は、水素ガス用鋼管の製造方法、水素ガス用圧力容器、および水素ガス用圧力容器の製造方法に関する。 The present invention relates to a steel pipe for hydrogen gas, and in particular to a steel pipe for hydrogen gas that combines excellent hydrogen embrittlement resistance with high productivity and can be used extremely suitably as a component for hydrogen gas pressure vessels, etc. The present invention also relates to a method for manufacturing a steel pipe for hydrogen gas, a hydrogen gas pressure vessel, and a method for manufacturing a hydrogen gas pressure vessel.

鋼管は、強度に優れるとともに比較的安価であることから配管や構造用部材など様々な用途で用いられており、近年では、水素ガス用圧力容器のように水素ガスと接触した状態で用いられる部材として使用することも提案されている。 Steel pipes are strong and relatively inexpensive, so they are used for a variety of purposes, such as piping and structural components, and in recent years, they have also been proposed for use as components that come into contact with hydrogen gas, such as hydrogen gas pressure vessels.

しかし、鋼には、鋼中に侵入した水素によって延性が低下する水素脆化と呼ばれる性質がある。そのため、鋼管を水素ガスと接触した状態で使用すると水素脆化のために破壊が生じるおそれがある。特に、鋼管を水素ガス用圧力容器に利用する場合、内部に充填される高圧の水素ガスにより鋼管に高い内圧が付与されるだけでなく、水素ガスの放出と充填が繰返し行われるために鋼管には繰返し応力がかかることになる。そのため、水素脆化に起因する疲労破壊の問題が顕著となる。However, steel has a property called hydrogen embrittlement, in which hydrogen that penetrates into the steel reduces its ductility. Therefore, when steel pipes are used in contact with hydrogen gas, there is a risk of fracture due to hydrogen embrittlement. In particular, when steel pipes are used as hydrogen gas pressure vessels, not only is high internal pressure exerted on the steel pipe by the high-pressure hydrogen gas filled inside, but the steel pipe is also subjected to repeated stress as the hydrogen gas is repeatedly released and filled. This makes the problem of fatigue fracture due to hydrogen embrittlement prominent.

そこで、鋼材の耐水素脆化特性を向上させるために、様々な技術が提案されている。 Therefore, various technologies have been proposed to improve the hydrogen embrittlement resistance of steel.

例えば、特許文献1では、水素ガス用圧力容器(蓄圧器)用ライナーとして用いられる鋼管の成分組成とミクロ組織を制御することによって耐水素脆化特性を向上させる技術が提案されている。For example, Patent Document 1 proposes a technology for improving hydrogen embrittlement resistance by controlling the chemical composition and microstructure of steel pipes used as liners for hydrogen gas pressure vessels (pressure accumulators).

また、特許文献2では、水素ガス用圧力容器に用いられる低合金鋼の成分組成を制御することによって耐水素脆化特性を向上させる技術が提案されている。Furthermore, Patent Document 2 proposes a technology for improving hydrogen embrittlement resistance by controlling the chemical composition of low-alloy steel used in hydrogen gas pressure vessels.

特許文献3では、水素ガス用圧力容器に用いられる低合金鋼において、疲労破壊の起点となる粗大な介在物の量を低減することによって高圧水素環境下での耐疲労特性を向上させる技術が提案されている。Patent Document 3 proposes a technology for improving fatigue resistance properties in a high-pressure hydrogen environment by reducing the amount of coarse inclusions that serve as the starting point for fatigue fracture in low-alloy steel used in hydrogen gas pressure vessels.

特開2018-053357号公報JP 2018-053357 A 特開2009-275249号公報JP 2009-275249 A 特開2018-012855号公報JP 2018-012855 A

上記特許文献1~3で提案されているような従来技術は、いずれも鋼の冶金的な性質に着目して耐水素脆化特性の向上を図るものである。そのため、それらの技術を鋼管に適用するためには、製鋼段階において鋼の成分組成を調整し、さらに造管工程や熱処理工程における条件を調整することにより鋼のミクロ組織や介在物の状態を厳密に制御する必要があった。したがって、適用できる鋼種が限られることに加え、生産性にも優れるとはいえなかった。 The conventional technologies proposed in the above Patent Documents 1 to 3 all focus on the metallurgical properties of steel to improve hydrogen embrittlement resistance. Therefore, in order to apply these technologies to steel pipes, it was necessary to adjust the composition of the steel at the steelmaking stage, and further to strictly control the microstructure of the steel and the state of inclusions by adjusting the conditions in the pipe-making process and heat treatment process. Therefore, not only were the types of steel that could be applied limited, but productivity could not be said to be excellent.

本発明は、上記事情に鑑みてなされたものであり、優れた耐水素脆化特性と高い生産性を兼ね備え、水素ガス用圧力容器などの部材として極めて好適に用いることができる水素ガス用鋼管を提供することを目的とする。また、本発明は、前記水素ガス用鋼管を用いた水素ガス用圧力容器を提供することを目的とする。The present invention has been made in consideration of the above circumstances, and aims to provide a steel pipe for hydrogen gas that combines excellent hydrogen embrittlement resistance with high productivity and can be used extremely suitably as a component for hydrogen gas pressure vessels, etc. Another aim of the present invention is to provide a hydrogen gas pressure vessel using the above-mentioned steel pipe for hydrogen gas.

本発明者らは上記課題を解決するために検討を行った結果、鋼管の内面を仕上研磨する際に、該鋼管の内面に形成される研磨筋の角度を特定の範囲に制御するという、極めて簡便な方法により、優れた耐水素脆化特性が得られることを見出した。As a result of investigations conducted by the inventors to solve the above problems, they discovered that excellent resistance to hydrogen embrittlement can be obtained by an extremely simple method of controlling the angle of the polishing lines formed on the inner surface of a steel pipe within a specific range when the inner surface of the steel pipe is finish polished.

本発明は上述の知見に基づいてなされたものであり、以下を要旨とするものである。 The present invention has been made based on the above findings and has the following gist:

1.内面が仕上研磨された水素ガス用鋼管であって、
前記内面に存在する研磨筋の、前記水素ガス用鋼管の周方向に対する傾斜角度が0~30°である、水素ガス用鋼管。
1. A steel pipe for hydrogen gas with an inner surface that has been finished and polished,
The steel pipe for hydrogen gas, wherein the inclination angle of the polished streaks present on the inner surface with respect to the circumferential direction of the steel pipe for hydrogen gas is 0 to 30°.

2.前記内面の最大高さRzが20μmより大きい、上記1に記載の水素ガス用鋼管。 2. A steel pipe for hydrogen gas as described in 1 above, in which the maximum height Rz of the inner surface is greater than 20 μm.

3.研磨対象としての鋼管の内面に研磨具を接触させた状態で、前記鋼管を前記研磨具に対し相対的に移動させることによって前記鋼管の内面を研磨する水素ガス用鋼管の製造方法であって、
前記鋼管の内面に形成される研磨筋の、前記鋼管の周方向に対する傾斜角度を0~30°とする、水素ガス用鋼管の製造方法。
3. A method for manufacturing a steel pipe for hydrogen gas, in which an abrasive tool is brought into contact with the inner surface of a steel pipe as an object to be polished, and the steel pipe is moved relative to the abrasive tool to polish the inner surface of the steel pipe,
The method for manufacturing a steel pipe for hydrogen gas, wherein the inclination angle of the polished streaks formed on the inner surface of the steel pipe with respect to the circumferential direction of the steel pipe is 0 to 30°.

4.上記1または2に記載の水素ガス用鋼管を用いた水素ガス用圧力容器。 4. A hydrogen gas pressure vessel using the hydrogen gas steel pipe described in 1 or 2 above.

5.上記1または2に記載の水素ガス用鋼管を加工して水素ガス用圧力容器とする、水素ガス用圧力容器の製造方法。 5. A method for manufacturing a hydrogen gas pressure vessel, comprising processing the hydrogen gas steel pipe described in 1 or 2 above into a hydrogen gas pressure vessel.

本発明の水素ガス用鋼管は、優れた耐水素脆化特性を備えるだけでなく、内面を仕上研磨する際に研磨筋の角度を特定の範囲に制御するという極めて簡便な方法により製造することができるため、生産性にも優れている。したがって、本発明の水素ガス用鋼管を使用することにより、効率的かつ安価に耐水素脆化特性に優れる水素ガス用圧力容器を製造することができる。また、本発明は、後述するように鋼管にかかる応力と研磨筋との力学的な関係を利用したものであるため、鋼の冶金的性質を利用した従来技術とは異なり、鋼種にかかわらず様々な鋼管に適用することができる。 The steel pipe for hydrogen gas of the present invention not only has excellent hydrogen embrittlement resistance, but also has excellent productivity because it can be manufactured by an extremely simple method of controlling the angle of the polishing streaks within a specific range when finish-polishing the inner surface. Therefore, by using the steel pipe for hydrogen gas of the present invention, it is possible to efficiently and inexpensively manufacture a pressure vessel for hydrogen gas that has excellent hydrogen embrittlement resistance. Furthermore, as described below, the present invention utilizes the mechanical relationship between the stress applied to the steel pipe and the polishing streaks, and therefore, unlike conventional techniques that utilize the metallurgical properties of steel, it can be applied to various steel pipes regardless of the steel type.

完全両振り疲労寿命試験の結果を示すグラフである。1 is a graph showing the results of a fully alternating fatigue life test.

以下、本発明について詳細に説明する。なお、本発明はこの実施形態に限定されるものではない。The present invention will be described in detail below. Note that the present invention is not limited to this embodiment.

[水素ガス用鋼管]
まず、本発明の一実施形態における水素ガス用鋼管について説明する。本発明の水素ガス用鋼管は、内面が仕上研磨された水素ガス用鋼管であって、前記内面に存在する研磨筋の、前記水素ガス用鋼管の周方向に対する角度(以下、「傾斜角度」という)が0~30°である。
[Steel pipes for hydrogen gas]
First, a steel pipe for hydrogen gas according to one embodiment of the present invention will be described. The steel pipe for hydrogen gas according to the present invention is a steel pipe for hydrogen gas whose inner surface is finish-polished, and the angle of the polishing streaks present on the inner surface with respect to the circumferential direction of the steel pipe for hydrogen gas (hereinafter referred to as the "inclination angle") is 0 to 30°.

傾斜角度:0~30°
鋼管の内面を仕上研磨する際には、一般的に、砥石などの研磨具を鋼管に対して相対的に移動させることによって研磨が行われる。そのため、仕上研磨後の鋼管の内面には、研磨の際の移動方向に応じた研磨筋が形成される。この研磨筋の一本一本に着目すると、鋼管の内表面から厚さ方向にある程度の深さを持ったノッチ状の欠陥と見なすことができる。
Tilt angle: 0 to 30 degrees
When finish-polishing the inner surface of a steel pipe, polishing is generally performed by moving a grinding tool such as a grindstone relative to the steel pipe. Therefore, polishing streaks are formed on the inner surface of the steel pipe after finish-polishing according to the direction of movement during polishing. If we focus on each of these polishing streaks, we can consider them to be notch-like defects with a certain depth from the inner surface of the steel pipe in the thickness direction.

一方、鋼管は円形の断面を有し、長手方向には開放された形状を有していることから、鋼管を使用する際に圧力がかかると、主に該鋼管の周方向に荷重がかかることになる。例えば、鋼管を水素ガス用圧力容器に用いた場合、該容器の内部に高圧の水素ガスを充填することにより、主に容器(鋼管)の周方向に負荷がかかる。On the other hand, because steel pipes have a circular cross section and an open shape in the longitudinal direction, when pressure is applied to the steel pipe during use, the load is mainly applied in the circumferential direction of the steel pipe. For example, when a steel pipe is used as a hydrogen gas pressure vessel, filling the vessel with high-pressure hydrogen gas results in a load being applied mainly in the circumferential direction of the vessel (steel pipe).

したがって、ノッチ状の欠陥である研磨筋の方向が鋼管の長手方向(管軸方向)に近いと、ノッチを開かせる方向に荷重がかかるため、研磨筋の底部に応力が集中することになる。大気中などの一般的な環境下においては、このように研磨筋に応力がかかったとしても実質的に問題となることはないが、水素ガスが存在する環境では、水素脆化のために研磨筋にかかる応力が疲労特性に大きく影響することになる。これは、応力集中部では鋼中の格子欠陥である転位が増加するため、水素の侵入量が増加し、その結果、水素脆化がより顕著となるためである。したがって、水素ガス環境下では、研磨筋の方向が鋼管の長手方向(管軸方向)に近いと、き裂の発生が促進され、疲労特性が悪くなる。Therefore, if the direction of the grinding streaks, which are notch-shaped defects, is close to the longitudinal direction of the steel pipe (the axial direction), a load is applied in the direction that opens the notch, and stress is concentrated at the bottom of the grinding streaks. In general environments such as in the atmosphere, such stress on the grinding streaks does not actually cause a problem, but in environments where hydrogen gas is present, the stress on the grinding streaks has a significant effect on fatigue properties due to hydrogen embrittlement. This is because dislocations, which are lattice defects in steel, increase in the areas where stress is concentrated, increasing the amount of hydrogen that penetrates, and as a result, hydrogen embrittlement becomes more pronounced. Therefore, in a hydrogen gas environment, if the direction of the grinding streaks is close to the longitudinal direction of the steel pipe (the axial direction), crack generation is promoted and fatigue properties deteriorate.

そこで、本発明では、研磨筋にかかる応力に起因するき裂の発生を抑制するために、鋼管内面に存在する研磨筋の周方向に対する傾斜角度を30°以下とする。傾斜角度が30°以下であれば、研磨筋の方向が鋼管の周方向に近いため、鋼管の周方向に荷重がかかっても研磨筋の底部には応力が集中せず、その結果、水素ガス環境下におけるき裂の発生を抑制することができる。Therefore, in the present invention, in order to suppress the occurrence of cracks due to stress on the polishing streaks, the inclination angle of the polishing streaks present on the inner surface of the steel pipe with respect to the circumferential direction is set to 30° or less. If the inclination angle is 30° or less, the direction of the polishing streaks is close to the circumferential direction of the steel pipe, so even if a load is applied in the circumferential direction of the steel pipe, stress does not concentrate at the bottom of the polishing streaks, and as a result, the occurrence of cracks in a hydrogen gas environment can be suppressed.

研磨筋の方向は鋼管の周方向に近ければ近いほど効果が高まるため、前記傾斜角度は、25°以下とすることが好ましく、20°以下とすることがより好ましく、15°以下とすることがさらに好ましい。一方、研磨筋の方向は、鋼管の周方向と同じであってもよく、したがって、傾斜角度の下限は0°とする。 The closer the direction of the polishing streaks is to the circumferential direction of the steel pipe, the greater the effect, so the inclination angle is preferably 25° or less, more preferably 20° or less, and even more preferably 15° or less. On the other hand, the direction of the polishing streaks may be the same as the circumferential direction of the steel pipe, and therefore the lower limit of the inclination angle is 0°.

本発明では、上記のように、研磨筋の角度を特定の範囲に制御するという極めて簡便な方法により鋼管の耐水素脆化特性を向上させることができる。 In the present invention, as described above, the hydrogen embrittlement resistance of a steel pipe can be improved by an extremely simple method of controlling the angle of the polishing lines within a specific range.

なお、上述した研磨筋への応力集中に起因する疲労特性の低下を防止する方法としては、研磨筋の方向を制御する以外にも、表面粗さを小さくする方法も考えられる。実際、水素ガス用圧力容器などにおいては、容器(鋼管)内面を鏡面研磨して用いられることが一般的であった。しかし、鏡面研磨と呼ばれる水準にまで表面粗さを低減するためには、鋼管の加工後に電解研磨などを行う必要があり、生産性が低下する。これに対して本発明によれば、研磨筋の方向を制御することによって優れた耐水素脆化特性を実現できるため、鏡面研磨と呼ばれる水準にまで研磨する必要がない。したがって、本発明の水素ガス用鋼管は、鏡面研磨などの工程が不要であるという観点からも生産性に優れるといえる。In addition to controlling the direction of the polishing streaks, other methods of preventing the deterioration of fatigue properties due to stress concentration on the polishing streaks described above can also be considered, such as reducing the surface roughness. In fact, in the case of hydrogen gas pressure vessels, the inner surface of the vessel (steel pipe) was generally mirror-polished before use. However, in order to reduce the surface roughness to a level called mirror polishing, electrolytic polishing or the like must be performed after processing the steel pipe, which reduces productivity. In contrast, according to the present invention, excellent hydrogen embrittlement resistance can be achieved by controlling the direction of the polishing streaks, so there is no need to polish to a level called mirror polishing. Therefore, the hydrogen gas steel pipe of the present invention can be said to be highly productive from the viewpoint that processes such as mirror polishing are not required.

なお、研磨筋の傾斜角度は、鋼管の内面を顕微鏡で撮像して得た画像を解析することによって測定することができる。具体的には、まず、鋼管の周方向が画像のx軸と平行になるよう撮像する。次いで、得られた画像に含まれるすべての研磨筋について、x軸からの傾き(研磨筋の傾斜角度の絶対値)を計測する。計測された研磨筋の傾斜角度の頻度分布を作成し、ガウス関数を用いてフィッティングを行うことで得られた平均値を傾斜角度とする。The inclination angle of the polishing streaks can be measured by analyzing images obtained by photographing the inner surface of the steel pipe with a microscope. Specifically, an image is first taken so that the circumferential direction of the steel pipe is parallel to the x-axis of the image. Next, the inclination from the x-axis (absolute value of the inclination angle of the polishing streaks) is measured for all polishing streaks contained in the obtained image. A frequency distribution of the inclination angles of the measured polishing streaks is created, and the average value obtained by fitting using a Gaussian function is taken as the inclination angle.

より具体的には、まず、鋼管から、内表面観察用のサンプル6個を採取する。前記サンプルのサイズは、顕微鏡のステージ上に設置可能なサイズとすればよい。前記顕微鏡としては、例えば、株式会社ハイロックス製のデジタルマイクロスコープHRX-01を用いることができる。前記サンプルサイズは、例えば、肉厚10mm×鋼管周方向長さ100mm×鋼管長手方向長さ100mmとすることができる。前記6個のサンプルは、鋼管のランダムな位置から採取する。ただし、通常は、鋼管の内面全体が同じ条件で研磨されているため、採取が容易な鋼管のそれぞれの端部から3個ずつ採取したサンプルを測定に用いることができる。 More specifically, first, six samples for observing the inner surface are taken from the steel pipe. The size of the samples may be a size that can be placed on the stage of a microscope. For example, a digital microscope HRX-01 manufactured by Hirox Co., Ltd. may be used as the microscope. The sample size may be, for example, 10 mm wall thickness x 100 mm circumferential length of the steel pipe x 100 mm longitudinal length of the steel pipe. The six samples are taken from random positions on the steel pipe. However, since the entire inner surface of the steel pipe is usually polished under the same conditions, three samples taken from each end of the steel pipe, which are easy to take, can be used for measurement.

次に、それぞれのサンプルの表面(鋼管の内面側)を顕微鏡で撮像する。その際には、鋼管の周方向が画像のx軸と平行になるようにサンプルを顕微鏡のステージ上に設置する。撮像する範囲は、例えば、1サンプル当たり3mm×3mmの範囲とし、5視野以上撮影する。なお、鋼管の内面は湾曲しているため、3次元の画像連結システムを利用して画像を取得する。Next, the surface of each sample (the inner surface of the steel pipe) is imaged using a microscope. The sample is placed on the stage of the microscope so that the circumferential direction of the steel pipe is parallel to the x-axis of the image. The imaging range is, for example, 3 mm x 3 mm per sample, and five or more fields of view are photographed. Note that because the inner surface of the steel pipe is curved, a three-dimensional image linking system is used to obtain the images.

次いで、得られた画像を解析してx軸からの傾き(研磨筋の傾斜角度の絶対値)を計測する。その際、画像に観察された線のうち、長さ1mm以上かつ幅0.01mm以上の連続した線を研磨筋とみなす。また、一本の線が湾曲または屈曲している場合は、その線を長さ1mm以上の線分の連続として近似し、各線分を独立した研磨筋とみなす。計測された研磨筋の傾斜角度の頻度分布を作成し、ガウス関数を用いてフィッティングを行うことで得られた平均値を傾斜角度とする。The image obtained is then analyzed to measure the inclination from the x-axis (absolute value of the inclination angle of the polishing streak). At this time, continuous lines observed in the image that are 1 mm or longer in length and 0.01 mm or wider are considered to be polishing streaks. In addition, if a line is curved or bent, the line is approximated as a series of line segments each 1 mm or longer in length, and each line segment is considered to be an independent polishing streak. A frequency distribution of the inclination angles of the measured polishing streaks is created, and the average value obtained by fitting using a Gaussian function is taken as the inclination angle.

なお、自動研磨を行った場合、すべての研磨筋が略平行となるものの、1つの視野の中に観察される研磨筋の本数が極めて多くなるため、すべての研磨筋の傾斜角度を測定することが困難である場合がある。そのように、1視野当たりの研磨筋の本数が極めて多い場合には、以下の手順で算出した角度を研磨筋の傾斜角度として用いることができる。When automatic polishing is performed, all polishing streaks become approximately parallel, but the number of polishing streaks observed in one field of view becomes extremely large, so it may be difficult to measure the inclination angle of all polishing streaks. In such cases where the number of polishing streaks per field of view is extremely large, the angle calculated using the following procedure can be used as the inclination angle of the polishing streaks.

(1)まず、視野内に存在する研磨筋のおおよその角度(以下、「主要角度」という)を目視にて決定する。前記主要角度は、5°刻みとする。言い換えると、視野内に存在するすべての研磨筋の代表的な角度を、0、5、10、15、20、25、30、35、45、50、55、60、65、70、75、80、85、90°の中から選択する。 (1) First, the approximate angles of the grinding streaks present within the field of view (hereinafter referred to as "main angles") are visually determined. The main angles are in increments of 5°. In other words, the representative angles of all grinding streaks present within the field of view are selected from among 0, 5, 10, 15, 20, 25, 30, 35, 45, 50, 55, 60, 65, 70, 75, 80, 85, and 90°.

(2)次いで、視野内に存在するすべての研磨筋の中から、任意の研磨筋の傾斜角度を測定し、得られた傾斜角度と前記主要角度との差が5°以内であれば、前記研磨筋を代表研磨筋として選択する。この手順を、選択された代表研磨筋の数が40本となるまで繰り返す。 (2) Next, the inclination angle of any one of the polishing streaks present within the field of view is measured, and if the difference between the obtained inclination angle and the main angle is within 5°, the polishing streak is selected as a representative polishing streak. This procedure is repeated until the number of selected representative polishing streaks reaches 40.

(3)選択された40本の代表研磨筋の中から、傾斜角度の最大値と最小値との差が最も小さくなるように20本の研磨筋を抽出する。 (3) From the selected 40 representative polishing lines, extract 20 polishing lines so that the difference between the maximum and minimum inclination angles is smallest.

(4)抽出された20本の研磨筋の傾斜角度の頻度分布を作成し、ガウス関数を用いてフィッティングを行うことで得られた平均値を傾斜角度とする。 (4) A frequency distribution of the inclination angles of the 20 extracted polishing lines is created, and the average value obtained by fitting using a Gaussian function is used as the inclination angle.

Rz:20μm以下
本発明の水素ガス用鋼管の内面の粗さはとくに限定されず、任意の粗さであってよい。しかし、上述したように本願発明の水素ガス用鋼管では、従来とは異なり研磨筋の方向を制御することによって耐水素脆化特性を向上させているため、鏡面研磨と呼ばれる水準にまで平滑に仕上げる必要がない。したがって、前記水素ガス用鋼管の内面のRzは、20μmより大きくてもよい。言い換えると、過度な研磨工程を省いて生産性をさらに向上させるという観点からは、Rzを20μmより大きくすることが好ましい。Rzは、25μm以上とすることが好ましく、30μm以上とすることがより好ましい。
Rz: 20 μm or less The roughness of the inner surface of the steel pipe for hydrogen gas of the present invention is not particularly limited and may be any roughness. However, as described above, in the steel pipe for hydrogen gas of the present invention, unlike the conventional steel pipe, the hydrogen embrittlement resistance is improved by controlling the direction of the polishing streaks, so there is no need to finish it to a smoothness level called mirror polishing. Therefore, the Rz of the inner surface of the steel pipe for hydrogen gas may be greater than 20 μm. In other words, from the viewpoint of eliminating excessive polishing steps and further improving productivity, it is preferable to make Rz greater than 20 μm. Rz is preferably 25 μm or more, and more preferably 30 μm or more.

一方、Rzの上限についてもとくに限定されないが、過度に表面が粗いと応力集中の影響が無視できなくなる場合がある。そのため、Rzは300μm以下とすることが好ましく、200μm以下とすることがより好ましく、180μm以下とすることがより好ましく、160μm以下とすることがさらに好ましい。On the other hand, there is no particular limit to the upper limit of Rz, but if the surface is excessively rough, the effect of stress concentration may become unnegligible. Therefore, Rz is preferably 300 μm or less, more preferably 200 μm or less, more preferably 180 μm or less, and even more preferably 160 μm or less.

なお、ここでRzは、JIS B0601:2001における最大高さである。Rzは、実施例に記載した方法で測定することができる。Here, Rz is the maximum height in JIS B0601:2001. Rz can be measured by the method described in the examples.

上記水素ガス用鋼管の材質は特に限定されず、鋼管であれば任意のものを用いることができる。例えば、コストの観点からは低合金鋼からなる鋼管とすることが好ましく、特に、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、マンガンクロム鋼、マンガン鋼、およびボロン添加鋼のいずれかからなる鋼管とすることが好ましい。中でも、材料強度とコストの両立の観点からは、焼き入れ性を確保しやすいクロムモリブデン鋼もしくはクロムモリブデンニッケル鋼を用いることがより好ましい。The material of the steel pipe for hydrogen gas is not particularly limited, and any steel pipe can be used. For example, from the viewpoint of cost, it is preferable to use a steel pipe made of low alloy steel, and in particular, it is preferable to use a steel pipe made of any of chromium molybdenum steel, nickel chromium molybdenum steel, manganese chromium steel, manganese steel, and boron-added steel. Among them, from the viewpoint of achieving both material strength and cost, it is more preferable to use chromium molybdenum steel or chromium molybdenum nickel steel, which is easy to ensure hardenability.

前記鋼管としては、とくに限定されることなく任意の方法で製造された鋼管を用いることができる。前記鋼管は、例えば、鍛接鋼管、溶接鋼管、継目無鋼管のいずれであってもよいが、継目無鋼管であることが好ましい。継目無鋼管は、靭性などの特性に優れることに加え、接合部を有していないことから、高圧ガス用容器などの用途に極めて好適に用いることができる。The steel pipe is not particularly limited and may be any steel pipe manufactured by any method. The steel pipe may be, for example, a butt-welded steel pipe, a welded steel pipe, or a seamless steel pipe, but a seamless steel pipe is preferable. Seamless steel pipes are excellent in properties such as toughness, and because they have no joints, they are extremely suitable for use in applications such as high-pressure gas containers.

前記鋼管のサイズはとくに限定されず、任意のサイズの鋼管を用いることができる。製造性の観点からは、前記鋼管の外径は1800mm以下とすることが好ましく、700mm以下とすることがより好ましく、500mm以下とすることがさらに好ましい。また、前記鋼管の外径は、20mm以上とすることが好ましく、100mm以上とすることがより好ましく、300mm以上とすることがさらに好ましい。前記鋼管の肉厚についてもとくに限定されないが、強度の観点からは、5mm以上とすることが好ましく、10mm以上とすることがより好ましく、30mm以上とすることがさらに好ましい。また、前記鋼管の肉厚は、100mm以下であることが好ましく、80mm以下であることがより好ましく、70mm以下であることがさらに好ましい。The size of the steel pipe is not particularly limited, and any size of steel pipe can be used. From the viewpoint of manufacturability, the outer diameter of the steel pipe is preferably 1800 mm or less, more preferably 700 mm or less, and even more preferably 500 mm or less. The outer diameter of the steel pipe is preferably 20 mm or more, more preferably 100 mm or more, and even more preferably 300 mm or more. The thickness of the steel pipe is not particularly limited, but from the viewpoint of strength, it is preferably 5 mm or more, more preferably 10 mm or more, and even more preferably 30 mm or more. The thickness of the steel pipe is preferably 100 mm or less, more preferably 80 mm or less, and even more preferably 70 mm or less.

[水素ガス用鋼管の製造方法]
次に、本発明の一実施形態における水素ガス用鋼管の製造方法について説明する。本発明の水素ガス用鋼管は、研磨筋の傾斜角度が上述した条件を満たすように鋼管の内面を研磨することにより製造することができる。
[Method of manufacturing steel pipes for hydrogen gas]
Next, a method for producing a steel pipe for hydrogen gas according to one embodiment of the present invention will be described. The steel pipe for hydrogen gas according to the present invention can be produced by polishing the inner surface of the steel pipe so that the inclination angle of the polishing streaks satisfies the above-mentioned condition.

具体的には、研磨対象としての鋼管の内面に研磨具を接触させた状態で、前記鋼管を前記研磨具に対し相対的に移動させることにより鋼管の内面を研磨すればよい。そしてその際、鋼管の内面に形成される研磨筋の、前記鋼管の周方向に対する傾斜角度を0~30°とする。Specifically, the inner surface of the steel pipe to be polished can be polished by moving the steel pipe relative to the polishing tool while the polishing tool is in contact with the inner surface of the steel pipe. In this case, the polishing streaks formed on the inner surface of the steel pipe are inclined at an angle of 0 to 30° with respect to the circumferential direction of the steel pipe.

前記移動の方法は特に限定されないが、例えば、前記鋼管を、前記研磨具に対し相対的に前記鋼管の周方向に回転させるとともに、前記鋼管を、前記研磨具に対し相対的に前記鋼管の長手方向に移動させればよい。前記周方向における回転と前記長手方向の移動は、それぞれ独立に、連続的に行ってもよく、断続的に行ってもよい。例えば、傾斜角度を0°とする場合には、鋼管を長手方向には動かさない状態で周方向に研磨した後、研磨を停止した状態で鋼管を長手方向に移動させ、再度周方向に研磨するという工程を繰り返せばよい。The method of movement is not particularly limited, but for example, the steel pipe may be rotated in the circumferential direction of the steel pipe relative to the grinding tool, and the steel pipe may be moved in the longitudinal direction of the steel pipe relative to the grinding tool. The rotation in the circumferential direction and the movement in the longitudinal direction may be performed independently, continuously or intermittently. For example, when the inclination angle is set to 0°, the steel pipe is ground in the circumferential direction without moving in the longitudinal direction, and then the steel pipe is moved in the longitudinal direction with grinding stopped, and the process of grinding in the circumferential direction again is repeated.

本発明の一実施形態における水素ガス用鋼管の製造方法は、鋼管の内面に形成される研磨筋の、前記鋼管の周方向に対する傾斜角度が0~30°となるように、周方向の回転速度と長手方向の移動速度を決定する研磨条件決定工程を備えることができる。前記研磨条件は、通常は、研磨を開始する前に決定すればよい。 In one embodiment of the present invention, a method for manufacturing a steel pipe for hydrogen gas can include a polishing condition determination step for determining the circumferential rotation speed and the longitudinal movement speed so that the polishing streaks formed on the inner surface of the steel pipe have an inclination angle of 0 to 30° with respect to the circumferential direction of the steel pipe. The polishing conditions can usually be determined before polishing begins.

なお、傾斜角度が0~30°となるように条件を決定するとは、周方向の回転速度と長手方向の移動速度から求められる傾斜角度の計算値が0~30°となるように条件を決定することを意味する。実際の研磨においては略平行な研磨筋が形成されるが、研磨筋の傾斜角度にばらつきがあることは許容される。 Determining the conditions so that the inclination angle is 0 to 30° means determining the conditions so that the calculated inclination angle, obtained from the circumferential rotation speed and the longitudinal movement speed, is 0 to 30°. In actual polishing, polishing streaks are formed that are roughly parallel, but some variation in the inclination angle of the polishing streaks is permitted.

前記研磨具としては、とくに限定されることなく、各種公知の仕上研磨用研磨具など、任意の研磨具を用いることができる。また、研磨の方式は、湿式研磨および乾式研磨のいずれも採用することができるが、洗浄などの後処理を簡略化するという観点からは乾式研磨を用いることが好ましい。The polishing tool is not particularly limited, and any polishing tool, such as various known polishing tools for finish polishing, can be used. In addition, the polishing method can be either wet polishing or dry polishing, but it is preferable to use dry polishing from the viewpoint of simplifying post-processing such as cleaning.

上記の方法によれば、研磨具を鋼管に対して相対的に移動させながら研磨するため、鋼管の内面の総面積よりも小さいサイズの研磨具を用いて、鋼管内面の全体を研磨することができる。ただし、本方法は本発明の水素ガス用鋼管の好適な製造方法の例であって、本発明の水素ガス用鋼管はこの方法で製造されたものに限定されない。According to the above method, since the grinding tool is moved relative to the steel pipe while grinding, the entire inner surface of the steel pipe can be ground using a grinding tool smaller than the total area of the inner surface of the steel pipe. However, this method is an example of a suitable manufacturing method for the steel pipe for hydrogen gas of the present invention, and the steel pipe for hydrogen gas of the present invention is not limited to one manufactured by this method.

また、最終的に得られる研磨筋の傾斜角度が上述した条件を満たす限り、上記の方法による研磨以外にも任意の処理を施してもよい。例えば、前記方法で研磨を行った後に、部分的に追加の研磨を行ってもよい。自動研磨装置を用いて上記の方法で研磨を行った後、研磨ムラや欠陥などが存在する領域を手作業で部分的に研磨することもできる。 In addition, as long as the inclination angle of the polishing streaks finally obtained satisfies the above-mentioned conditions, any other treatment may be performed in addition to the polishing by the above-mentioned method. For example, after polishing by the above-mentioned method, additional polishing may be performed partially. After polishing by the above-mentioned method using an automatic polishing device, areas with uneven polishing or defects may be partially polished by hand.

なお、研磨により得られた表面は活性度が高く、酸化しやすい。そのため、錆の発生を防止するという観点からは、前記鋼管の内面を研磨した後、防食処理を施すことが好ましい。前記防食処理としては、鋼管の表面に防錆油を塗布することが好ましい。また、外部からの水分等が管内に侵入することを防止するために、鋼管の両端に蓋を設けることも好ましい。さらに、鋼管内に乾燥剤を封入することも好ましい。The surface obtained by polishing is highly active and easily oxidized. Therefore, from the viewpoint of preventing rust, it is preferable to perform anticorrosion treatment after polishing the inner surface of the steel pipe. As the anticorrosion treatment, it is preferable to apply anticorrosion oil to the surface of the steel pipe. It is also preferable to provide covers on both ends of the steel pipe to prevent moisture from entering the pipe from the outside. Furthermore, it is also preferable to seal a desiccant inside the steel pipe.

[水素ガス用圧力容器]
本発明の水素ガス用鋼管は、水素ガス用圧力容器や水素ガス用配管など、水素ガスと接触する状態で用いられる任意の用途に用いることができる。中でも、高圧の水素ガス環境下で用いられる高圧水素ガス用鋼管として好適に用いることができる。
[Hydrogen gas pressure vessel]
The steel pipe for hydrogen gas of the present invention can be used for any purpose in which it is used in a state of contact with hydrogen gas, such as a pressure vessel for hydrogen gas, a piping for hydrogen gas, etc. In particular, it can be suitably used as a steel pipe for high-pressure hydrogen gas used in a high-pressure hydrogen gas environment.

例えば、本発明の水素ガス用鋼管を水素ガス用圧力容器に用いる場合には、前記水素ガス用鋼管に、必要な加工を施すことによって水素ガス用圧力容器を製造することができる。前記加工としては、とくに限定されないが、例えば、鋼管の端部に蓋を取り付ける加工などが挙げられる。蓋を取り付けるための加工としては、例えば、鋼管の端部に蓋を螺合させるためのねじを設けることや、蓋をボルトで締付けるためのフランジを形成することなどが挙げられる。For example, when the steel pipe for hydrogen gas of the present invention is used for a hydrogen gas pressure vessel, the hydrogen gas pressure vessel can be manufactured by subjecting the steel pipe for hydrogen gas to the necessary processing. The processing is not particularly limited, but may include, for example, processing for attaching a lid to the end of the steel pipe. Processing for attaching a lid may include, for example, providing a thread for screwing the lid onto the end of the steel pipe, or forming a flange for tightening the lid with a bolt.

本発明の水素ガス用鋼管は、研磨筋が存在した状態のままで優れた耐水素脆化特性を備えているため、水素ガス用圧力容器として使用する場合にも、鋼管(容器)内面に追加で鏡面研磨等の加工を施す必要は無く、そのままの状態で使用することが可能である。The steel pipe for hydrogen gas of the present invention has excellent hydrogen embrittlement resistance even with polishing streaks present, so that when used as a pressure vessel for hydrogen gas, there is no need to perform additional processing such as mirror polishing on the inner surface of the steel pipe (vessel) and it can be used as is.

以下、本発明の作用効果を確認するために、以下に述べる手順で疲労試験を行い、研磨筋の傾斜角度が鋼材の疲労特性に与える影響を評価した。 In order to confirm the effects of the present invention, fatigue tests were conducted using the procedure described below to evaluate the effect of the inclination angle of the polishing grooves on the fatigue properties of the steel material.

まず、ニッケルクロムモリブデン鋼(SNCM439)からなる鋼材に熱処理を施して引張強さ892MPaの鋼材とし、前記鋼材から平行部長さ20mmの平滑丸棒試験片を採取した。前記試験片の表面を一旦鏡面研磨した後、エメリー紙で一方向に擦ることで研磨を行い、様々な傾斜角度の研磨筋を形成した。First, a steel material made of nickel-chromium-molybdenum steel (SNCM439) was heat-treated to obtain a steel material with a tensile strength of 892 MPa, and smooth round bar test pieces with a parallel section length of 20 mm were taken from the steel material. The surface of the test piece was first mirror-polished, and then polished by rubbing it in one direction with emery paper to form polishing streaks of various inclination angles.

(傾斜角度)
前記試験片の表面に形成された研磨筋の傾斜角度を、上述した手順で測定した。ただし、本実施例では丸棒試験片を用いて鋼管を模擬した試験を行ったため、応力が負荷される方向である試験片の長手方向が鋼管における周方向に相当する。そのため、傾斜角度測定用サンプルは、前記丸棒試験片から、試験片の長手方向と画像のx方向が平行となるように採取した。したがって、以下の説明では、試験片の長手方向に対する研磨筋の角度を傾斜角度として表す。研磨筋の観察には、株式会社ハイロックス製のデジタルマイクロスコープHRX-01を使用した。測定結果を表1に示す。
(Tilt angle)
The inclination angle of the polished streaks formed on the surface of the test piece was measured by the above-mentioned procedure. However, in this embodiment, a test was performed simulating a steel pipe using a round bar test piece, so the longitudinal direction of the test piece, which is the direction in which stress is applied, corresponds to the circumferential direction of the steel pipe. Therefore, the sample for measuring the inclination angle was taken from the round bar test piece so that the longitudinal direction of the test piece and the x-direction of the image were parallel. Therefore, in the following description, the angle of the polished streaks relative to the longitudinal direction of the test piece is expressed as the inclination angle. A digital microscope HRX-01 manufactured by Hirox Co., Ltd. was used to observe the polished streaks. The measurement results are shown in Table 1.

(Rz)
また、上記試験片表面の最大高さRz(JIS B0601:2001)は、株式会社ハイロックス製のデジタルマイクロスコープHRX-01に実装されている3D計測機能の一部を用いて測定した。測定結果を表1に示す。
(Rz)
The maximum height Rz (JIS B0601:2001) of the test piece surface was measured using a part of the 3D measurement function implemented in a digital microscope HRX-01 manufactured by Hirox Co., Ltd. The measurement results are shown in Table 1.

(疲労寿命試験)
次に、前記試験片を用いて、室温、圧力105MPaの高圧水素ガス雰囲気中において応力比R=-1での完全両振り疲労寿命試験を実施した。前記疲労寿命試験における応力水準(負荷応力/引張強度)は表1に示したとおりとした。また、前記試験では、試験周波数を1Hzとし、繰返し数Nが100万回に達した時点で破断が生じなかった場合には試験を中断した。
(Fatigue life test)
Next, a fully alternating fatigue life test was carried out using the test specimen at room temperature in a high-pressure hydrogen gas atmosphere at a pressure of 105 MPa with a stress ratio R of -1. The stress level (loaded stress/tensile strength) in the fatigue life test was as shown in Table 1. In the test, the test frequency was 1 Hz, and the test was discontinued if no fracture occurred when the number of cycles N reached 1 million.

上記疲労寿命試験の結果は表1示したとおりであった。また、Rzが8μm前後のサンプルでの結果を図1にプロットした。表1および図1に示した結果から分かるように、本発明の条件を満たす鋼管は、高圧水素ガス雰囲気中において優れた疲労寿命を有する。The results of the fatigue life test are shown in Table 1. The results for samples with Rz of around 8 μm are plotted in Figure 1. As can be seen from the results shown in Table 1 and Figure 1, steel pipes that satisfy the conditions of the present invention have an excellent fatigue life in a high-pressure hydrogen gas atmosphere.

Figure 0007468616000001
Figure 0007468616000001

Claims (5)

内面が仕上研磨された水素ガス用鋼管であって、
前記内面に研磨筋が形成され、前記内面の最大高さRzが6μm以上であり、前記研磨筋の前記水素ガス用鋼管の周方向に対する傾斜角度の頻度分布を作成し、ガウス関数を用いてフィッティングを行うことで得られる平均値が0~30°である、水素ガス用鋼管。
A steel pipe for hydrogen gas, the inner surface of which is finish-polished,
A steel pipe for hydrogen gas, in which grinding streaks are formed on the inner surface, the maximum height Rz of the inner surface is 6 μm or more, and the average value obtained by creating a frequency distribution of the inclination angle of the grinding streaks relative to the circumferential direction of the steel pipe for hydrogen gas and fitting it using a Gaussian function is 0 to 30°.
前記内面の最大高さRzが20μmより大きい、請求項1に記載の水素ガス用鋼管。 A steel pipe for hydrogen gas according to claim 1, in which the maximum height Rz of the inner surface is greater than 20 μm. 研磨対象としての鋼管の内面に研磨具を接触させた状態で、前記鋼管を前記研磨具に対し相対的に移動させることによって前記鋼管の内面を研磨する水素ガス用鋼管の製造方法であって、
前記鋼管の内面に研磨筋を形成し、前記内面の最大高さRzが6μm以上であり、前記研磨筋の前記鋼管の周方向に対する傾斜角度の頻度分布を作成し、ガウス関数を用いてフィッティングを行うことで得られる平均値を0~30°とする、水素ガス用鋼管の製造方法。
A method for manufacturing a steel pipe for hydrogen gas, comprising the steps of: bringing an abrasive tool into contact with an inner surface of a steel pipe as an object to be polished; and moving the steel pipe relative to the abrasive tool to polish the inner surface of the steel pipe,
A method for manufacturing a steel pipe for hydrogen gas, comprising forming polishing streaks on the inner surface of the steel pipe, the maximum height Rz of the inner surface being 6 μm or more, creating a frequency distribution of the inclination angles of the polishing streaks relative to the circumferential direction of the steel pipe, and fitting the frequency distribution using a Gaussian function to obtain an average value of 0 to 30°.
請求項1または2に記載の水素ガス用鋼管を用いた水素ガス用圧力容器。 A hydrogen gas pressure vessel using the hydrogen gas steel pipe according to claim 1 or 2. 請求項1または2に記載の水素ガス用鋼管を加工して水素ガス用圧力容器とする、水素ガス用圧力容器の製造方法。
A method for producing a hydrogen gas pressure vessel, comprising processing the hydrogen gas steel pipe according to claim 1 or 2 into a hydrogen gas pressure vessel.
JP2022505369A 2020-10-30 2021-10-18 Steel pipe for hydrogen gas, manufacturing method of steel pipe for hydrogen gas, pressure vessel for hydrogen gas, and manufacturing method of pressure vessel for hydrogen gas Active JP7468616B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020183266 2020-10-30
JP2020183266 2020-10-30
PCT/JP2021/038462 WO2022091846A1 (en) 2020-10-30 2021-10-18 Hydrogen gas steel pipe, method for manufacturing hydrogen gas steel pipe, hydrogen gas pressure vessel, and method for manufacturing hydrogen gas pressure vessel

Publications (2)

Publication Number Publication Date
JPWO2022091846A1 JPWO2022091846A1 (en) 2022-05-05
JP7468616B2 true JP7468616B2 (en) 2024-04-16

Family

ID=81382552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022505369A Active JP7468616B2 (en) 2020-10-30 2021-10-18 Steel pipe for hydrogen gas, manufacturing method of steel pipe for hydrogen gas, pressure vessel for hydrogen gas, and manufacturing method of pressure vessel for hydrogen gas

Country Status (6)

Country Link
US (1) US20240027022A1 (en)
EP (1) EP4239234A4 (en)
JP (1) JP7468616B2 (en)
KR (1) KR20230058494A (en)
CN (1) CN116490320A (en)
WO (1) WO2022091846A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299174A (en) 2008-06-17 2009-12-24 Nisshin Steel Co Ltd Pressure vessel for high pressure hydrogen gas and pipe
WO2011094592A1 (en) 2010-01-29 2011-08-04 Tokyo Electron Limited Method and system for self-learning and self-improving a semiconductor manufacturing tool
WO2014174845A1 (en) 2013-04-26 2014-10-30 Jfeスチール株式会社 Accumulator
JP2016172909A (en) 2015-03-18 2016-09-29 新日鐵住金株式会社 Container for high pressure hydrogen and method for producing the same
JP2017048912A (en) 2015-09-03 2017-03-09 新日鐵住金株式会社 High pressure tank
CN107435814A (en) 2017-07-12 2017-12-05 鲁西新能源装备集团有限公司 A kind of method for reducing gas cylinder dew point in high-purity hydrogen bundled tube container
CN208468043U (en) 2018-07-03 2019-02-05 河北敬业精密制管有限公司 A kind of steel duct grinding device
JP2019044890A (en) 2017-09-04 2019-03-22 Jfeスチール株式会社 Accumulator for high-pressure hydrogen gas and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475461U (en) * 1977-11-09 1979-05-29
JP5201625B2 (en) 2008-05-13 2013-06-05 株式会社日本製鋼所 High strength low alloy steel with excellent high pressure hydrogen environment embrittlement resistance and method for producing the same
JP6648646B2 (en) 2016-07-20 2020-02-14 日本製鉄株式会社 Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
JP6593395B2 (en) 2016-09-21 2019-10-23 Jfeスチール株式会社 Pressure accumulator liner, accumulator, composite container accumulator, and method for producing accumulator liner
JP6975695B2 (en) * 2017-09-04 2021-12-01 Jfeスチール株式会社 Accumulator for high-pressure hydrogen gas
JP6725485B2 (en) * 2017-12-25 2020-07-22 Jfeスチール株式会社 Accumulator for high-pressure hydrogen gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299174A (en) 2008-06-17 2009-12-24 Nisshin Steel Co Ltd Pressure vessel for high pressure hydrogen gas and pipe
WO2011094592A1 (en) 2010-01-29 2011-08-04 Tokyo Electron Limited Method and system for self-learning and self-improving a semiconductor manufacturing tool
WO2014174845A1 (en) 2013-04-26 2014-10-30 Jfeスチール株式会社 Accumulator
JP2016172909A (en) 2015-03-18 2016-09-29 新日鐵住金株式会社 Container for high pressure hydrogen and method for producing the same
JP2017048912A (en) 2015-09-03 2017-03-09 新日鐵住金株式会社 High pressure tank
CN107435814A (en) 2017-07-12 2017-12-05 鲁西新能源装备集团有限公司 A kind of method for reducing gas cylinder dew point in high-purity hydrogen bundled tube container
JP2019044890A (en) 2017-09-04 2019-03-22 Jfeスチール株式会社 Accumulator for high-pressure hydrogen gas and method for producing the same
CN208468043U (en) 2018-07-03 2019-02-05 河北敬业精密制管有限公司 A kind of steel duct grinding device

Also Published As

Publication number Publication date
WO2022091846A1 (en) 2022-05-05
EP4239234A1 (en) 2023-09-06
JPWO2022091846A1 (en) 2022-05-05
US20240027022A1 (en) 2024-01-25
EP4239234A4 (en) 2024-04-17
CN116490320A (en) 2023-07-25
KR20230058494A (en) 2023-05-03

Similar Documents

Publication Publication Date Title
Vielma et al. Effect of coverage and double peening treatments on the fatigue life of a quenched and tempered structural steel
NO336187B1 (en) Thread joint for an oil well pipe and method for making the same
RU2685565C1 (en) Steel pipe for high-pressure fuel line and production method therefor
EP3578286A1 (en) Linear friction welding method
KR20160129875A (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
Hemanth et al. Design of roller burnishing tool and its effect on the surface integrity of Al 6061
JP6521078B2 (en) Nitrided steel part and method for manufacturing the same
Hermenegildo et al. Microstructural evolution of HSLA ISO 3183 X80M (API 5L X80) friction stir welded joints
JP7468616B2 (en) Steel pipe for hydrogen gas, manufacturing method of steel pipe for hydrogen gas, pressure vessel for hydrogen gas, and manufacturing method of pressure vessel for hydrogen gas
Yuri et al. Effects of surface roughness and notch on fatigue properties for Ti–5Al–2.5 Sn ELI alloy at cryogenic temperatures
Başak et al. Application of burnishing process on friction stir welding and investigation of the effect of burnishing process on the surface roughness, hardness and strength
Miao et al. Multiple analyses of factors influencing fatigue life of linear friction welded low carbon steel
Gupta et al. An experimental evaluation of mechanical properties and microstructure change on thin-film–coated AISI-1020 steel
WO2022209568A1 (en) Crankshaft and manufacturing method therefor
US11739788B2 (en) Crankshaft and method of manufacturing the same
Segurado et al. Enhanced Fatigue Behavior in Quenched and Tempered High-Strength Steel by Means of Double Surface Treatments
JP2006292088A (en) Steel pipe having superior pipe end buckling deformation-proof property
Yu et al. A Study on the Fracture Toughness at Different Locations of SMAW Welded Joint of Primary Coolant Piping
Welsch et al. Forgings For Low Temperature Applications-Influences of the Alloying Concept And Advanced Forging Procedures On Impact Strength And Fracture Toughness
Guterres et al. The Effect of Temperature in Induction Surface Hardening on the Distortion of Gear
Kamjou et al. Innovative steel design and gear machining of advanced engineering steel
Ilia et al. Advancements in Powder Forged Connecting Rod Technology to Facilitate Downsizing of Direct Injection Turbocharged Engines
Nanjo et al. Spinning workability of Al-Mg-Si alloy extruded tube using the forming die
JP6100129B2 (en) High-strength steel and crankshaft for marine or generator diesel engines
KR101978916B1 (en) Production method of joint eye for connecting of automobile pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150