JP2009299174A - Pressure vessel for high pressure hydrogen gas and pipe - Google Patents

Pressure vessel for high pressure hydrogen gas and pipe Download PDF

Info

Publication number
JP2009299174A
JP2009299174A JP2008158239A JP2008158239A JP2009299174A JP 2009299174 A JP2009299174 A JP 2009299174A JP 2008158239 A JP2008158239 A JP 2008158239A JP 2008158239 A JP2008158239 A JP 2008158239A JP 2009299174 A JP2009299174 A JP 2009299174A
Authority
JP
Japan
Prior art keywords
less
stainless steel
hydrogen
hydrogen gas
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008158239A
Other languages
Japanese (ja)
Inventor
Hiroki Tomimura
宏紀 冨村
Taichiro Mizoguchi
太一朗 溝口
Wakahiro Harada
和加大 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008158239A priority Critical patent/JP2009299174A/en
Publication of JP2009299174A publication Critical patent/JP2009299174A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure vessel which has excellent hydrogen embrittlement resistance and stress corrosion cracking resistance, and suitable for high pressure hydrogen gas, e.g. under ≥70 MPa without depending on remarkable thickening, and to provide a pipe for piping. <P>SOLUTION: Disclosed is a pressure vessel for storing high pressure hydrogen gas made of stainless steel, which has a steel composition comprising, by mass, ≤0.08% C, 1.3 to 3.5% Si, ≤3.5% Mn, ≤0.05% P, ≤0.03% S, 8 to 17% Ni, 15 to 20% Cr and ≤0.2% N, and, if required, further comprising one or more selected from ≤3% Mo and ≤3.5% Cu, one or more selected from V and W by ≤4% in total, one or more selected from Nb, Ti and Al by ≤0.4% in total and ≤0.01% B, and in which at least the surface on the side to be exposed to hydrogen gas is provided with a passive film in which the content of Si in the metallic elements is ≥1.0 mass%. Also, disclosed is a pipe for transporting high pressure hydrogen gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、1MPa以上の高圧水素ガスに対して優れた耐水素脆化性を有し、かつ優れた耐応力腐食割れ性を兼ね備えた高圧水素ガス用圧力容器およびパイプに関する。   The present invention relates to a pressure vessel and a pipe for high-pressure hydrogen gas that have excellent hydrogen embrittlement resistance with respect to high-pressure hydrogen gas of 1 MPa or more and also have excellent stress corrosion cracking resistance.

近年、地球環境保全の問題から、二酸化炭素(CO2)、窒素酸化物(NOX)、硫黄酸化物(SOX)などの環境破壊の原因となる物質を排出しないクリーンなエネルギー源として水素が注目され、水素を利用した各種燃料電池の研究が盛んに行われている。 In recent years, hydrogen has become a clean energy source that does not emit substances that cause environmental destruction such as carbon dioxide (CO 2 ), nitrogen oxides (NO x ), and sulfur oxides (SO x ) due to global environmental conservation issues. Attention has been focused on research on various fuel cells using hydrogen.

燃料電池を搭載した自動車に水素を供給する方式として、大きく以下の3つが検討されている。
(1)外部プラントにて水素を製造 → 水素ステーションに保存(オフサイト型) → 燃料電池自動車へ水素を供給
(2)水素ステーションにて水素を製造・保存(オンサイト型) → 燃料電池自動車へ水素を供給
(3)燃料電池自動車にて水素を製造
The following three methods for supplying hydrogen to automobiles equipped with fuel cells have been studied.
(1) Production of hydrogen at an external plant → Storage at a hydrogen station (offsite type) → Supplying hydrogen to a fuel cell vehicle (2) Production and storage of hydrogen at a hydrogen station (onsite type) → To a fuel cell vehicle Supplying hydrogen (3) Producing hydrogen in fuel cell vehicles

これらいずれの方式においても、水素ガスを貯留するタンクおよび輸送する配管が必要となる。その際、水素ガスは1MPa以上の高圧ガスの状態で取り扱われることが多い。従来、水素貯蔵用の高圧タンクにはCr−Mo鋼やマンガン鋼が使用されてきた。しかしこれらの鋼は強度が低いためタンクの肉厚を非常に厚くする必要があり、設備の大型化、運搬のし難さを招いていた。特に車載用のタンクとしては省スペース化や車両の軽量化に相反するという問題がある。   In any of these systems, a tank for storing hydrogen gas and a pipe for transporting are required. At that time, the hydrogen gas is often handled in a high-pressure gas state of 1 MPa or more. Conventionally, Cr-Mo steel and manganese steel have been used for high-pressure tanks for hydrogen storage. However, since these steels are low in strength, it is necessary to make the thickness of the tank very thick, resulting in an increase in size of the equipment and difficulty in transportation. In particular, there is a problem that the tank for vehicle mounting conflicts with space saving and vehicle weight reduction.

高圧水素ガスに適用するタンクや配管の薄肉化・軽量化を図るためには、耐水素脆化性に優れ、かつ高強度を有する材料が求められる。そこで、前記のCr−Mo鋼、マンガン鋼より高強度化が可能なオーステナイト系ステンレス鋼を水素貯蔵用のタンク等に用いることが検討された。特許文献1には窒化を利用してオーステナイト系ステンレス鋼の耐水素脆化性を改善する手法が示されている。特許文献2には高Mnオーステナイト鋼を使用する手法が示されている。特許文献3には集合組織の制御を行う手法が示されている。   In order to reduce the thickness and weight of tanks and pipes applied to high-pressure hydrogen gas, materials having excellent hydrogen embrittlement resistance and high strength are required. Thus, it has been studied to use austenitic stainless steel, which can be made stronger than the Cr-Mo steel and manganese steel, for a hydrogen storage tank or the like. Patent Document 1 discloses a technique for improving the hydrogen embrittlement resistance of austenitic stainless steel using nitriding. Patent Document 2 discloses a technique using high Mn austenitic steel. Patent Document 3 discloses a technique for controlling texture.

特開2007−270350号公報JP 2007-270350 A 特開2007−126688号公報JP 2007-126688 A 国際公開第2004/111285号パンフレットInternational Publication No. 2004/111285 Pamphlet 特開昭64−62443号公報JP-A 64-62443 特開平1−159351号公報JP-A-1-159351 特開平8218151号公報Japanese Patent Laid-Open No. 8218151

高圧ガスのタンクや配管では溶接加工が施される場合が多く、オーステナイト系ステンレス鋼の弱点とされる耐応力腐食割れ性を十分に克服した鋼を採用することが望まれる。しかし、耐水素脆化性を改善した既存のオーステナイト系ステンレス鋼は、耐応力腐食割れ性の観点からは必ずしも満足できる特性を有していない。   High pressure gas tanks and piping are often welded, and it is desirable to employ steel that sufficiently overcomes the stress corrosion cracking resistance, which is a weak point of austenitic stainless steel. However, existing austenitic stainless steel with improved hydrogen embrittlement resistance does not necessarily have satisfactory characteristics from the viewpoint of stress corrosion cracking resistance.

一方、温水環境での耐応力腐食割れ性を改善したオーステナイト系ステンレス鋼としては特許文献4、5、6に開示されるようなSi含有量を増大させた鋼種が知られている。しかし、これらのオーステナイト系ステンレス鋼種は、温水環境以外での耐応力腐食割れ性について考慮されておらず、発明者らの検討によれば、塩乾湿環境での耐応力腐食割れ性は必ずしも満足できるものではないことが判った。このため、これらの鋼種を例えば車載用の部材などにそのまま適用することには無理がある。   On the other hand, as an austenitic stainless steel having improved stress corrosion cracking resistance in a hot water environment, steel types having an increased Si content as disclosed in Patent Documents 4, 5, and 6 are known. However, these austenitic stainless steel grades are not considered for stress corrosion cracking resistance other than in a hot water environment, and according to the study by the inventors, the stress corrosion cracking resistance in a salty and wet environment is not always satisfactory. It turns out that it is not a thing. For this reason, it is impossible to apply these steel types as they are to, for example, on-vehicle members.

また、オーステナイト系ステンレス鋼の耐水素脆化性を改善する手法についても、前記特許文献1〜3の方法はコスト増大を招きやすく、さらに簡単な手法で優れた耐水素脆化性を付与する技術の確立が望まれている。   In addition, with respect to the technique for improving the hydrogen embrittlement resistance of austenitic stainless steel, the methods described in Patent Documents 1 to 3 tend to increase the cost, and provide a technique for imparting excellent hydrogen embrittlement resistance by a simple technique. Establishment of is desired.

本発明は、耐水素脆化性および耐応力腐食割れ性に優れ、大幅な厚肉化に頼ることなく例えば70MPa以上といった高圧水素ガスに適用可能な圧力容器および配管用パイプを提供しようというものである。   The present invention is intended to provide a pressure vessel and piping pipe that are excellent in hydrogen embrittlement resistance and stress corrosion cracking resistance, and can be applied to high-pressure hydrogen gas such as 70 MPa or more without relying on a significant increase in thickness. is there.

上記目的を達成するために本発明では、質量%で、C:0.08%以下、Si:1.3〜3.5%、Mn:3.5%以下、P:0.05%以下、S:0.03%以下、Ni:8〜17%、Cr:15〜20%、N:0.2%以下、残部Feおよび不可避的不純物からなる組成を有し、少なくとも水素ガスに曝される側の表面に、金属元素中に占めるSi量が1.0質量%以上の不動態皮膜を有するステンレス鋼製の高圧水素ガス貯留用圧力容器、および高圧水素ガス輸送用パイプを提供する。このステンレス鋼は上記の元素の他、さらに必要に応じて(i)Mo:3%以下、Cu:3.5%以下の1種以上、(ii)V、Wの1種以上:合計4%以下、(iii)Nb、Ti、Alの1種以上:合計0.4%以下、(iv)B:0.01%以下、のいずれかを単独または複合で選択的に含有しても構わない。このステンレス鋼の金属組織はオーステナイト単相組織であることが好ましい。   In order to achieve the above object, in the present invention, by mass%, C: 0.08% or less, Si: 1.3 to 3.5%, Mn: 3.5% or less, P: 0.05% or less, S: 0.03% or less, Ni: 8-17%, Cr: 15-20%, N: 0.2% or less, remaining Fe and unavoidable impurities, at least exposed to hydrogen gas A stainless steel high-pressure hydrogen gas storage pressure vessel and a high-pressure hydrogen gas transport pipe having a passive film having a Si content of 1.0% by mass or more on the surface of the metal element are provided. In addition to the above-mentioned elements, this stainless steel may further comprise (i) one or more of Mo: 3% or less, Cu: 3.5% or less, and (ii) one or more of V and W: 4% in total Hereinafter, (iii) one or more of Nb, Ti, and Al: a total of 0.4% or less, and (iv) B: 0.01% or less may be selectively contained alone or in combination. . The metal structure of the stainless steel is preferably an austenite single phase structure.

発明者らの検討によれば、上記のSi含有量が高い不動態皮膜を形成させたとき、塩乾湿環境等におけるオーステナイト系ステンレス鋼の耐応力腐食割れ性を顕著に改善することが可能になる。不動態皮膜の組成はEDX等の微視的な分析手法により特定される。   According to the study by the inventors, when the above-described passive film having a high Si content is formed, the stress corrosion cracking resistance of the austenitic stainless steel in a salt wet / dry environment can be remarkably improved. . The composition of the passive film is specified by a microscopic analysis technique such as EDX.

本発明によれば、オーステナイト系ステンレス鋼を用いて耐水素脆化性および耐応力腐食割れ性に優れる高圧水素ガス用の圧力容器および輸送パイプを得ることが可能になった。この圧力容器およびパイプには、厚肉化に頼ることなく例えば70MPa以上といった高圧水素ガスに適用できる強度を具備させることができ、水素ガス供給設備の小型・軽量化に適している。また、この圧力容器およびパイプは、塩乾湿環境における耐応力腐食割れ性にも優れる。したがって本発明は、特に車載用の燃料電池システムの普及に大きく寄与できるものと期待される。   According to the present invention, it has become possible to obtain a pressure vessel and a transport pipe for high-pressure hydrogen gas that are excellent in hydrogen embrittlement resistance and stress corrosion cracking resistance using austenitic stainless steel. The pressure vessel and the pipe can be provided with a strength applicable to high-pressure hydrogen gas such as 70 MPa or more without depending on the increase in thickness, and is suitable for reducing the size and weight of the hydrogen gas supply facility. Moreover, this pressure vessel and pipe are also excellent in stress corrosion cracking resistance in a salt dry and wet environment. Therefore, the present invention is expected to contribute greatly to the spread of the fuel cell system for in-vehicle use.

高圧の水素ガスに触れるタンクや配管には、結晶格子が体心立方構造である普通鋼、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼は水素拡散係数が大きく、水素溶解度が小さいため不向きであり、面心立方構造のオーステナイト系ステンレス鋼の採用が有利となる。しかし、オーステナイト系ステンレス鋼は応力腐食割れを起こしやすいことから、高圧タンクや高圧配管に適用するには注意を要する。特に車載用では塩化物が付着した場合の耐応力腐食割れ性が重要となる。一方、その耐応力腐食割れ性と同時に、耐水素脆化性をも付与しなければならない。   For tanks and pipes that come into contact with high-pressure hydrogen gas, plain steel, ferritic stainless steel, and martensitic stainless steel with a crystal lattice of body-centered cubic structure are not suitable because of high hydrogen diffusion coefficient and low hydrogen solubility. Adopting austenitic stainless steel with face-centered cubic structure is advantageous. However, since austenitic stainless steel is prone to stress corrosion cracking, care must be taken when applying it to a high-pressure tank or high-pressure piping. Especially for in-vehicle use, stress corrosion cracking resistance when chloride adheres is important. On the other hand, hydrogen embrittlement resistance must be imparted simultaneously with the stress corrosion cracking resistance.

発明者らは詳細な検討の結果、不動態皮膜中のSi含有量を増大させることによって、オーステナイト系ステンレス鋼の塩乾湿環境における耐応力腐食割れ性を顕著に改善することが可能になることを発見した。
一方、耐水素脆化性に関しては、オーステナイト系鋼中に固溶するSi含有量を一定以上に高めることが極めて有利であることが明らかになった。
そして、Si含有量を増大させた組成のオーステナイト系ステンレス鋼に対して特定条件で酸洗を施すことにより、不動態皮膜中に所定の濃度でSiを濃化させることができることを見出した。以下、本発明を特定するための事項についてより詳しく説明する。
As a result of detailed studies, the inventors have found that by increasing the Si content in the passive film, the stress corrosion cracking resistance of the austenitic stainless steel in a salt-wet environment can be significantly improved. discovered.
On the other hand, with regard to hydrogen embrittlement resistance, it has become clear that it is extremely advantageous to increase the Si content of solid solution in the austenitic steel above a certain level.
And it discovered that Si could be concentrated by the predetermined density | concentration in a passive film by performing pickling on specific conditions with respect to the austenitic stainless steel of the composition which increased Si content. Hereinafter, matters for specifying the present invention will be described in more detail.

〔不動態皮膜中のSi含有量〕
本発明では、後述の化学組成に調整されたオーステナイト系ステンレス鋼において、不動態皮膜中の金属元素に占めるSiの含有量を1.0質量%以上とする必要がある。これにより、オーステナイト系ステンレス鋼の塩乾湿環境での耐応力腐食割れ性を安定して顕著に改善することが可能になる。そのメカニズムについては現時点で必ずしも明確ではないが、不動態皮膜中にSiが多量に存在すると塩乾湿環境下において鋼素地中の金属の活性溶解が促進され、それによって不動態皮膜の破壊形態はより均一性の高いものとなることが考えられる。オーステナイト系ステンレス鋼の応力腐食割れは局部的な腐食欠陥に起因するとされるが、上記のような不動態皮膜の破壊形態は局部的な腐食欠陥の生成を防止する上で有利に作用するものと考えられ、これが耐応力腐食割れを顕著に改善する要因になっているものと推察される。
[Si content in the passive film]
In the present invention, in the austenitic stainless steel adjusted to the chemical composition described later, the content of Si in the metal element in the passive film needs to be 1.0% by mass or more. This makes it possible to stably and significantly improve the stress corrosion cracking resistance of the austenitic stainless steel in a salt wet / dry environment. Although the mechanism is not necessarily clear at the present time, if a large amount of Si is present in the passive film, active dissolution of the metal in the steel substrate is promoted in a salt dry / wet environment, and the failure mode of the passive film is further improved. It can be considered to be highly uniform. The stress corrosion cracking of austenitic stainless steel is attributed to local corrosion defects, but the failure mode of the passive film as described above is advantageous in preventing the formation of local corrosion defects. It is thought that this is a factor that significantly improves the stress corrosion cracking resistance.

不動態皮膜の元素分析は、皮膜の厚さ方向に平行な断面についてEDXにより行うことができる。分析箇所は厚さ方向に、(a)不動態皮膜最表面近傍(最表面から約1nm位置)、(b)不動態皮膜の膜厚中央部、(c)不動態皮膜と鋼素地の界面近傍(最表面から約3nm位置)の3点とし、その平均値を採用すればよい。不動態皮膜は酸化物を主体とするものであるから、その構成元素中にはO(酸素)が多く含まれる。また、分析時には通常、コンタミ成分としてC(炭素)が検出される。種々検討の結果、不動態皮膜を構成する元素のうち、O、Cを除いた金属元素中に占めるSi量によって、応力腐食割れに対する抵抗力を把握できることが明らかとなった。分析対象とする金属元素は本発明で規定される鋼成分元素(非金属元素C、P、S、Nを除く)とすればよい。以下、本明細書において「不動態皮膜中のSi量」というときは、特に断らない限り「不動態皮膜中における金属元素に占めるSi量」を意味する。   Elemental analysis of the passive film can be performed by EDX on a cross section parallel to the thickness direction of the film. The analysis location is in the thickness direction, (a) near the outermost surface of the passive film (position about 1 nm from the outermost surface), (b) the central part of the film thickness of the passive film, Three points (about 3 nm from the outermost surface) may be used, and the average value may be adopted. Since the passive film is mainly composed of oxide, its constituent elements contain a large amount of O (oxygen). Further, C (carbon) is usually detected as a contamination component during analysis. As a result of various studies, it has been clarified that the resistance to stress corrosion cracking can be grasped by the amount of Si in the metal elements excluding O and C among the elements constituting the passive film. The metal element to be analyzed may be a steel component element (except for the nonmetallic elements C, P, S, and N) defined in the present invention. Hereinafter, the “Si amount in the passive film” in the present specification means “the Si amount in the metal element in the passive film” unless otherwise specified.

このようにして特定される不動態皮膜中のSi量は、1.0質量%以上であることが必要であるが、あまり過剰にSi含有量を高める必要はない。発明者らの検討によれば、不動態皮膜中のSi量は1.0〜7.0質量%程度とすればよく、1.0〜5.0質量%程度に管理してもよい。   The amount of Si in the passive film thus identified needs to be 1.0% by mass or more, but it is not necessary to increase the Si content too much. According to the study by the inventors, the amount of Si in the passive film may be about 1.0 to 7.0% by mass, and may be controlled to about 1.0 to 5.0% by mass.

Siが濃化した上記の不動態皮膜を得るためには、鋼中のSi含有量を後述の所定範囲に調整したオーステナイト系ステンレス鋼を用意し、その鋼に対して、フッ酸濃度:5〜25質量%、硝酸濃度:95〜75質量%のフッ硝酸(混酸)を用いた酸洗を施すことが有効である。液温は概ね40〜80℃、浸漬時間は30〜90秒程度とすればよい。酸洗後には必要に応じてスキンパス圧延を施しても構わない。ただし、後工程に不動態皮膜を機械的に除去する工程(研磨やショットブラストなど)を入れることは好ましくない。   In order to obtain the above-described passivated film in which Si is concentrated, an austenitic stainless steel in which the Si content in the steel is adjusted to a predetermined range described below is prepared, and the hydrofluoric acid concentration: 5 to 5 for the steel. It is effective to perform pickling using 25% by mass and nitric acid concentration: 95 to 75% by mass hydrofluoric acid (mixed acid). The liquid temperature may be about 40 to 80 ° C., and the immersion time may be about 30 to 90 seconds. After the pickling, skin pass rolling may be performed as necessary. However, it is not preferable to include a process (such as polishing or shot blasting) for mechanically removing the passive film in the subsequent process.

〔鋼の化学組成〕
本発明の圧力容器およびパイプは、成分元素の含有量が以下のように調整されたオーステナイト系ステンレス鋼で作られる。なお、鋼組成における「%」は特に断らない限り「質量%」を意味する。
C:0.08%以下
Cは強力なオーステナイト形成元素であり、かつ強度向上に有効な元素であるが、過剰の含有は再結晶処理で粗大なCr炭化物を形成し、粒界腐食や溶接性低下の原因となるので、上記範囲で含有させる。
[Chemical composition of steel]
The pressure vessel and pipe of the present invention are made of austenitic stainless steel in which the content of component elements is adjusted as follows. “%” In the steel composition means “mass%” unless otherwise specified.
C: 0.08% or less C is a strong austenite forming element and is an element effective for improving the strength. However, excessive inclusion forms coarse Cr carbide by recrystallization treatment, intergranular corrosion and weldability. Since it becomes a cause of a fall, it is made to contain in the said range.

Si:1.3〜3.5%
Siは本発明において重要な元素である。鋼中のSi含有量が低いと、上述のSi濃度が高い不動態皮膜を形成させることが困難となり、塩乾湿環境での優れた耐応力腐食割れ性を十分に付与することが難しくなる。
Si: 1.3-3.5%
Si is an important element in the present invention. When the Si content in the steel is low, it becomes difficult to form a passive film having a high Si concentration as described above, and it becomes difficult to sufficiently provide excellent stress corrosion cracking resistance in a salty and wet environment.

また発明者らの詳細な検討の結果、鋼中のSiは耐水素脆性を付与する上で極めて有効であることがわかった。鋼の水素脆化は、鋼中に侵入した水素により歪みが局所的に集中して破壊が起こりやすくなることが大きな要因であるとされる(いわゆる水素誘起局所塑性変形モデル)。Siは固溶強化作用を呈する元素であるが、その固溶量が十分に多い場合、水素の侵入によって生じた歪みに誘起される局所的な塑性変形をくい止める上で極めて有効に作用するのではないかと推察される。ただし、過剰のSi含有は鋼を硬質化させ加工性低下の要因となる。したがって鋼中のSi含有量は上記の範囲に規定される。   As a result of detailed studies by the inventors, it has been found that Si in steel is extremely effective in imparting hydrogen embrittlement resistance. The hydrogen embrittlement of steel is considered to be caused mainly by strains locally concentrated by hydrogen that has penetrated into the steel, and fracture is likely to occur (so-called hydrogen-induced local plastic deformation model). Si is an element exhibiting a solid solution strengthening action. However, when the amount of the solid solution is sufficiently large, it does not act extremely effectively in suppressing local plastic deformation induced by strain caused by hydrogen penetration. It is guessed that there is not. However, excessive Si content hardens the steel and causes deterioration of workability. Therefore, Si content in steel is prescribed | regulated in said range.

Mn:3.5%以下
Mnはオーステナイト形成元素として有効であるが、過剰の含有は加工性低下や表面欠陥の原因となるので、上記含有量範囲とする。
Mn: 3.5% or less Although Mn is effective as an austenite-forming element, excessive content causes deterioration in workability and surface defects, so the content is within the above range.

P:0.05%以下
Pは鋼の靭性を損なうのでP含有量は低い方が好ましいが、含Cr鋼の溶製において精錬での脱燐は困難であることから低P化には原料の厳選が必要となる。このため過剰のP低減はコスト増を伴うので好ましくない。種々検討の結果、本発明では上記範囲でP含有が許容される。
P: 0.05% or less Since P impairs the toughness of steel, it is preferable that the P content is low. However, since dephosphorization in refining is difficult in the production of Cr-containing steel, it is difficult to reduce the P content. Careful selection is required. For this reason, excessive P reduction is not preferable because it increases costs. As a result of various studies, the present invention allows P content within the above range.

S:0.03%以下
Sは孔食の起点となりやすいMnSを形成し耐食性低下の要因となるので上記範囲に制限される。
S: 0.03% or less S is limited to the above range because it forms MnS that tends to be the starting point of pitting corrosion and causes a decrease in corrosion resistance.

Ni:8〜17%
Niはオーステナイト形成元素として不可欠である。圧力容器やパイプの加工部においても加工誘起マルテンサイトができるだけ生成しないことが望ましく、そのためには8%以上のNi含有が必要である。9.5%以上のNi含有量を確保することがより好ましい。ただし、Niは高価な元素であり過剰の含有は好ましくない。Ni含有量の上限は15%、あるいは13%に管理しても構わない。
Ni: 8-17%
Ni is indispensable as an austenite forming element. It is desirable that the processing-induced martensite is not generated as much as possible in the processing portion of the pressure vessel or the pipe, and for that purpose, Ni content of 8% or more is necessary. It is more preferable to ensure a Ni content of 9.5% or more. However, Ni is an expensive element and excessive content is not preferable. The upper limit of the Ni content may be managed at 15% or 13%.

Cr:15〜20%
Crは不動態皮膜の主要構成元素であり、一般にその含有量が多くなるほど孔食や隙間腐食などの局部腐食に対する抵抗力は増大する。一方、Crはフェライト形成元素であることから多量の含有は高温でδフェライト相を多量に生成し好ましくない。種々検討の結果、本発明で対象とする圧力容器やパイプの用途において十分な耐食性を確保し、かつδフェライトの生成を適正に抑制するために、Cr含有量は上記範囲に規定される。
Cr: 15-20%
Cr is a main constituent element of the passive film. Generally, as its content increases, resistance to local corrosion such as pitting corrosion and crevice corrosion increases. On the other hand, since Cr is a ferrite-forming element, a large amount is not preferable because a large amount of δ ferrite phase is generated at a high temperature. As a result of various studies, the Cr content is specified in the above range in order to ensure sufficient corrosion resistance in the application of the pressure vessel and pipe targeted by the present invention and to appropriately suppress the formation of δ ferrite.

N:0.2%以下
Nはオーステナイト形成元素として有効であり、鋼の高強度化にも有効である。ただし過剰のN含有は鋳造時のブローホールの原因となるなど、弊害を招く。したがってN含有量は上記の範囲に規定される。0.15%以下に管理しても構わない。
N: 0.2% or less N is effective as an austenite forming element and is also effective in increasing the strength of steel. However, excessive N content causes a bad effect such as causing blow holes during casting. Therefore, N content is prescribed | regulated in said range. You may manage to 0.15% or less.

Mo:3%以下
MoはCrとともに耐食性レベルを向上させるのに有効な元素であり、必要に応じて添加される。その場合、0.1%以上のMo含有量を確保することがより効果的である。ただし、Moの多量添加は高温でのδフェライト相の生成を招き、またコスト増大を伴うので好ましくない。Moを添加する場合は上記含有量範囲にて行う。
Mo: 3% or less Mo is an element effective for improving the corrosion resistance level together with Cr, and is added as necessary. In that case, it is more effective to secure a Mo content of 0.1% or more. However, addition of a large amount of Mo is undesirable because it leads to the formation of a δ ferrite phase at a high temperature and increases the cost. When adding Mo, it carries out in the said content range.

Cu:3.5%以下
Cuはオーステナイト相の積層欠陥エネルギーを上昇させ、塑性変形時の交差滑り間隔を小さくする作用を有する。この作用により表面の不動態皮膜が塑性変形時に局所的に破壊されることが抑制され、耐応力腐食割れ性の向上に効果がある。このためCuは必要に応じて添加される。その場合、0.1%以上のCu含有量を確保することがより効果的である。ただし、過剰のCu添加は耐孔食性や熱間加工性を阻害するので、Cuを添加する場合は上記の含有量範囲で行う。
Cu: 3.5% or less Cu has the effect of increasing the stacking fault energy of the austenite phase and reducing the cross-slip interval during plastic deformation. This action suppresses local destruction of the passive film on the surface during plastic deformation, and is effective in improving stress corrosion cracking resistance. For this reason, Cu is added as needed. In that case, it is more effective to secure a Cu content of 0.1% or more. However, excessive addition of Cu hinders pitting corrosion resistance and hot workability. Therefore, when Cu is added, the content is within the above range.

V、Wの1種以上:合計4%以下
V、Wは鋼の高強度化に有利な元素であり、必要に応じて添加することができる。ただし、これらの元素を過剰に添加すると熱間加工性に悪影響を及ぼすようになる。検討の結果、V、Wの1種または2種を添加する場合は、その合計含有量を上記の範囲とする。
One or more of V and W: 4% or less in total V and W are elements advantageous for increasing the strength of steel, and can be added as necessary. However, when these elements are added excessively, the hot workability is adversely affected. As a result of the study, when one or two of V and W are added, the total content is within the above range.

Nb、Ti、Alの1種以上:合計0.4%以下
Nb、Ti、Alは析出強化に有効な元素であり、またAlは製鋼時の脱酸にも効果的である。このため、本発明ではこれらの元素の1種以上を必要に応じて添加することができる。ただし、これらの元素を過剰に添加すると、熱間加工性の低下、製品の表面疵の多発等の弊害を招く。したがってNb、Ti、Alの1種以上を添加する場合は、その合計含有量を上記の範囲とする。
One or more of Nb, Ti and Al: 0.4% or less in total Nb, Ti and Al are effective elements for precipitation strengthening, and Al is also effective for deoxidation during steelmaking. For this reason, in this invention, 1 or more types of these elements can be added as needed. However, excessive addition of these elements causes adverse effects such as a decrease in hot workability and frequent occurrence of surface defects on the product. Therefore, when adding 1 or more types of Nb, Ti, and Al, let the total content be said range.

B:0.01%以下
Bは熱間圧延温度でのδフェライト相とオーステナイト相の変形抵抗の差異により生じる熱延鋼帯エッジクラックの発生防止に有効な元素であり、必要に応じて添加することができる。ただし、Bを過剰に添加すると低融点の硼化物が生成しやすくなり、熱間加工性を逆に低下させる要因となる。このためBを添加する場合は上記含有量範囲で行う。
B: 0.01% or less B is an element effective for preventing the occurrence of hot-rolled steel strip edge cracks caused by the difference in deformation resistance between the δ ferrite phase and the austenite phase at the hot rolling temperature, and is added as necessary. be able to. However, if B is added excessively, a low-melting boride is likely to be formed, which is a factor that adversely decreases hot workability. For this reason, when adding B, it carries out in the said content range.

その他、REM(希土類元素)、Y、Ca、Mgは合計0.1質量%以下の範囲で混入が許容される。これらの元素はスクラップ原料や製鋼工程で使用する耐火物から入り込むことがあるが、上記範囲内であれば特に弊害はない。   In addition, REM (rare earth element), Y, Ca, and Mg are allowed to be mixed within a total range of 0.1% by mass or less. Although these elements may enter from scrap materials and refractories used in the steel making process, there is no particular adverse effect within the above range.

〔圧力容器、パイプの製造〕
本発明の圧力容器およびパイプは、
(i)上記の化学組成を有するオーステナイト系ステンレス鋼であって、好ましくはオーステナイト単相組織を有する材料で作られている点、
(ii)その内面すなわち高圧水素ガスに曝される表面に上記のSi濃度が高い不動態皮膜が形成されている点、
を満たすものである限り、特に製造方法は限定されるものではない。一般的には通常のオーステナイト系ステンレス鋼板の製造ラインにて鋼板素材を製造し、それを加工することにより製造される。
[Manufacture of pressure vessels and pipes]
The pressure vessel and pipe of the present invention are:
(I) an austenitic stainless steel having the above chemical composition, preferably made of a material having an austenite single phase structure,
(Ii) The passive film having a high Si concentration is formed on the inner surface, that is, the surface exposed to high-pressure hydrogen gas,
The production method is not particularly limited as long as the above is satisfied. Generally, it is manufactured by manufacturing a steel plate material in a normal austenitic stainless steel plate manufacturing line and processing it.

圧力容器の場合は、鋼板素材で形成した各部材を溶接接合して容器を構成し、内面を前述のような酸洗処理に供することにより製造することができる。あるいは、鋼板素材を製造する過程で例えば連続焼鈍酸洗ラインにて上述の酸洗処理を施すことによりSi濃度が高い不動態皮膜を形成してもよい。その後は当該動態皮膜が除去されない範囲で必要に応じてスキンパス圧延などの各種仕上処理を施し、得られた鋼板素材を加工して圧力容器とする。加工の段階で溶接を伴う場合は、容器内面の溶接部を混酸酸洗することなどにより、内面全体に前記の不動態皮膜を形成させることが好ましい。   In the case of a pressure vessel, each member formed of a steel plate material can be welded to form a vessel, and the inner surface can be manufactured by subjecting it to a pickling treatment as described above. Or you may form a passive film with high Si concentration by performing the above-mentioned pickling process in the process of manufacturing a steel plate raw material, for example in a continuous annealing pickling line. Thereafter, various finishing treatments such as skin pass rolling are performed as necessary within a range in which the dynamic film is not removed, and the obtained steel plate material is processed into a pressure vessel. When welding is involved in the processing stage, it is preferable to form the passive film on the entire inner surface by, for example, pickling the welded portion on the inner surface of the container.

パイプの場合は、鋼板素材を鋼帯の状態で溶接造管ラインに通す一般的なステンレス鋼管の製造工程が利用できる。所定長さに切断された鋼管を前述の混酸で酸洗処理することにより内面にSi濃度が高い不動態皮膜が形成される。   In the case of a pipe, a general manufacturing process of a stainless steel pipe in which a steel plate material is passed through a welded pipe making line in the state of a steel strip can be used. A steel pipe cut to a predetermined length is pickled with the above-mentioned mixed acid to form a passive film having a high Si concentration on the inner surface.

表1に示す化学組成を有するステンレス鋼を溶製し、熱間圧延にて板厚3.5mmとし、焼鈍、冷間圧延、「1050℃×1分保持→水冷」の溶体化処理を経て板厚0.8mmの冷延焼鈍材を得た。その後、以下のいずれかの仕上処理を施し、供試材とした。
〔混酸酸洗仕上〕
フッ酸濃度:10質量%、硝酸濃度:90質量%のフッ硝酸(混酸)、液温:60℃、浸漬時間:約60secの条件で酸洗を実施。
〔研磨仕上〕
上記混酸酸洗を施した後に、#600エメリー紙による研磨を実施。
Stainless steel having the chemical composition shown in Table 1 is melted, hot rolled to a thickness of 3.5 mm, subjected to annealing, cold rolling, and solution treatment of “1050 ° C. × 1 minute holding → water cooling”. A cold-rolled annealed material having a thickness of 0.8 mm was obtained. Thereafter, any one of the following finishing treatments was applied to obtain a test material.
[Mixed pickling finish]
Pickling was performed under conditions of hydrofluoric acid concentration: 10% by mass, nitric acid concentration: 90% by mass hydrofluoric acid (mixed acid), liquid temperature: 60 ° C., immersion time: about 60 sec.
[Polished finish]
After the mixed pickling, polishing with # 600 emery paper.

Figure 2009299174
Figure 2009299174

各供試材の金属組織を顕微鏡観察したところ、いずれもマトリクスはオーステナイト単相組織を呈していることが確認された。
各供試材について、以下の方法で不動態皮膜の組成分析、水素チャージ試験、応力腐食割れ試験、水素チャージ前後の引張試験を実施した。
When the metal structure of each test material was observed with a microscope, it was confirmed that the matrix exhibited an austenite single phase structure.
About each test material, the composition analysis of the passive film, the hydrogen charge test, the stress corrosion cracking test, and the tensile test before and after the hydrogen charge were carried out by the following methods.

〔不動態皮膜の組成分析〕
供試材の板厚方向に平行な断面について、EDX装置を備えるFE−TEMで観察し、不動態皮膜の深さ方向3箇所の位置をEDXにより組成分析した。分析箇所は、(a)不動態皮膜最表面近傍(最表面から約1nm位置)、(b)不動態皮膜の膜厚中央部、(c)不動態皮膜と鋼素地の界面近傍(最表面から約3nm位置)の3点とした。分析元素は表1に示されるC、P、S、Nを除く全金属元素とし、それらの金属元素に占めるSiの含有量を質量%で算出し、3点での算出結果の平均値を当該不動態皮膜中におけるSi量として採用した。
[Composition analysis of passive film]
About the cross section parallel to the plate | board thickness direction of a test material, it observed with FE-TEM provided with an EDX apparatus, and analyzed the composition of the position of three positions of the passive film in the depth direction by EDX. The analysis location is (a) near the outermost surface of the passive film (position about 1 nm from the outermost surface), (b) the central part of the film thickness of the passive film, (c) near the interface between the passive film and the steel substrate (from the outermost surface) 3 points). Analytical elements are all metal elements except for C, P, S, and N shown in Table 1, and the Si content in those metal elements is calculated in mass%, and the average value of the calculation results at three points is It was adopted as the amount of Si in the passive film.

〔水素チャージ試験〕
タンクや配管の用途を考慮して、電解による水素チャージ法ではなく、ここでは高圧水素ガスを用いた水素チャージ法によりステンレス鋼中に水素を吸蔵させた。
供試材から試験片を切り出し、これを、純水素、圧力20MPa、350℃の雰囲気中に24時間保持することにより水素チャージを行った。オーステナイト系ステンレス鋼は約350℃付近で最も多量の水素を吸蔵することから、この温度を採用した。オーステナイト系ステンレス鋼について知られている各温度での「水素分圧と水素吸蔵量の関係(Sievertsの法則)」を適用して換算すれば、圧力20MPa、350℃の条件でオーステナイト系ステンレス鋼中に吸蔵される水素量は、圧力70MPa、100℃の条件で吸蔵される水素量に相当する。
[Hydrogen charge test]
Considering the use of tanks and pipes, hydrogen was occluded in stainless steel by the hydrogen charging method using high-pressure hydrogen gas, instead of the hydrogen charging method by electrolysis.
A test piece was cut out from the test material and charged with hydrogen by holding it in an atmosphere of pure hydrogen, pressure 20 MPa, 350 ° C. for 24 hours. This temperature was adopted because austenitic stainless steel absorbs the largest amount of hydrogen at around 350 ° C. Applying the “relationship between hydrogen partial pressure and hydrogen storage amount (Sieverts's law)” at various temperatures known for austenitic stainless steels, the austenitic stainless steels have a pressure of 20 MPa and a temperature of 350 ° C. The amount of hydrogen occluded in is equivalent to the amount of hydrogen occluded under conditions of pressure 70 MPa and 100 ° C.

水素チャージ終了後、直ちにMPI−MS法により試験片中の拡散性水素量を測定した。測定条件は、温度範囲:室温〜900℃、昇温速度:12℃/min、サンプリング間隔:0.5分とし、室温から600℃までの拡散性水素トータル量を求めた。   Immediately after the completion of hydrogen charging, the amount of diffusible hydrogen in the test piece was measured by the MPI-MS method. The measurement conditions were temperature range: room temperature to 900 ° C., temperature increase rate: 12 ° C./min, sampling interval: 0.5 minutes, and the total amount of diffusible hydrogen from room temperature to 600 ° C. was determined.

〔水素チャージ前後の引張試験〕
上記の水素チャージ試験に供する前の供試材サンプル、および水素チャージ試験後のサンプルについて、平行部長さ30mmの引張試験片を用いてSSRT(Slow Strain Rate Technique)法により常温大気中で歪速度1×10-6での引張試験を行った。
下記(1)式により水素チャージ前後の破断伸び変化率(%)を求めた。
[破断伸び変化率]=([水素チャージ後の破断伸び]−[水素チャージ前の破断伸び])/[水素チャージ前の破断伸び]×100 ……(1)
[Tensile test before and after hydrogen charging]
With respect to the specimen material sample before the hydrogen charge test and the sample after the hydrogen charge test, a strain rate of 1 in a normal temperature atmosphere is obtained by a SSRT (Slow Strain Rate Technique) method using a tensile test piece having a parallel part length of 30 mm. A tensile test at × 10 -6 was performed.
The rate of change in elongation at break (%) before and after hydrogen charging was determined by the following equation (1).
[Change rate of breaking elongation] = ([breaking elongation after hydrogen charging] − [breaking elongation before hydrogen charging]) / [breaking elongation before hydrogen charging] × 100 (1)

〔応力腐食割れ試験〕
供試材から29mm×31mmの大片と14mm×16mmの小片を切り出し、それらを重ねてスポット溶接により接合し、図1に示す形状のスポット溶接試験片を作製した。各試験片に「塩水噴霧(5%塩化ナトリウム水溶液、35℃×15分)→乾燥(60℃、30%RH×1時間)→湿潤(50℃、90%RH×3時間)」を1サイクルとする塩乾湿試験を600サイクル施し、試験後のスポット溶接試験片から大片と小片を分離して、大片、小片それぞれについて応力腐食割れが生じているか否かを観察した。各供試材とも試験数n=3にて実施し、3個のスポット溶接試験片の大片および小片いずれにも応力腐食割れが認められなかったものを○(良好)、それ以外を×(不良)と評価した。
これらの結果を表2に示す。
[Stress corrosion cracking test]
A large piece of 29 mm × 31 mm and a small piece of 14 mm × 16 mm were cut out from the test material, and they were overlapped and joined by spot welding to produce a spot welding test piece having the shape shown in FIG. One cycle of “salt spray (5% aqueous sodium chloride solution, 35 ° C. × 15 minutes) → drying (60 ° C., 30% RH × 1 hour) → wet (50 ° C., 90% RH × 3 hours)” on each test piece The salt dry / wet test was performed for 600 cycles, the large piece and the small piece were separated from the spot welded test piece after the test, and it was observed whether each of the large piece and the small piece had stress corrosion cracking. For each specimen, the number of tests was n = 3, and no stress corrosion cracking was found in any of the three spot welded specimens, ○ (good), and the others x (defective) ).
These results are shown in Table 2.

Figure 2009299174
Figure 2009299174

表2からわかるように、所定の化学組成を有するオーステナイト系ステンレス鋼の表面にSi濃度1.0質量%以上の不動態皮膜を形成させた本発明例のものは、塩乾湿環境での耐応力腐食割れ性に優れ、かつ水素チャージ前後の破断伸び変化率は−2〜2%の範囲であり、水素脆化はほとんど認められなかった。したがって、これらのオーステナイト系ステンレス鋼を用いて耐水素脆化性および耐応力腐食割れ性に優れる高圧水素ガス用の圧力容器および配管用パイプを構築することができる。   As can be seen from Table 2, the example of the present invention in which a passive film having a Si concentration of 1.0% by mass or more was formed on the surface of an austenitic stainless steel having a predetermined chemical composition is resistant to stress in a salty and dry environment. The corrosion cracking property was excellent, and the rate of change in elongation at break before and after hydrogen charging was in the range of -2 to 2%, and hydrogen embrittlement was hardly observed. Therefore, a pressure vessel and piping pipe for high-pressure hydrogen gas, which is excellent in hydrogen embrittlement resistance and stress corrosion cracking resistance, can be constructed using these austenitic stainless steels.

一方、比較例No.21、22は本発明で対象とする化学組成を有しているが、研磨仕上としたことにより不動態皮膜中のSi濃度が不足し、塩乾湿環境での耐応力腐食割れ性に劣った。No.23、24、25は鋼中のSi含有量が不足するため水素チャージ前後の破断伸び変化率が非常に低い値(マイナス側に大きい値)となり、耐水素脆化性に劣った。また不動態皮膜中のSi濃度が不足して塩乾湿環境での耐応力腐食割れ性にも劣った。No.26は鋼中のC含有量が多すぎたことにより炭化物析出による鋭敏化が生じたものと考えられ、粒界腐食が観察された。また不動態皮膜中のSi濃度は十分高いにもかかわらず耐水素脆化性は改善されていない。No.27は鋼中のMn含有量が高すぎたことにより、不動態皮膜中のMn濃度が高まり、そのMnが不動態皮膜を弱めてしまったと考えられ、結果的に耐応力腐食割れ性に劣った。   On the other hand, Comparative Examples No. 21 and 22 have the chemical composition targeted by the present invention, but due to the polishing finish, the Si concentration in the passive film is insufficient, and the stress corrosion resistance in a salty and wet environment It was inferior in cracking property. In Nos. 23, 24 and 25, since the Si content in the steel was insufficient, the rate of change in elongation at break before and after hydrogen charging was a very low value (a large value on the minus side), and the hydrogen embrittlement resistance was poor. In addition, the Si concentration in the passive film was insufficient, and the resistance to stress corrosion cracking in a salt dry / wet environment was inferior. In No. 26, it was considered that sensitization due to carbide precipitation occurred due to excessive C content in the steel, and intergranular corrosion was observed. Further, the hydrogen embrittlement resistance is not improved despite the sufficiently high Si concentration in the passive film. In No. 27, it was considered that the Mn concentration in the passive film increased because the Mn content in the steel was too high, and that Mn weakened the passive film, resulting in stress corrosion cracking resistance. inferior.

スポット溶接試験片の形状を模式的に示した図。The figure which showed typically the shape of the spot welding test piece.

Claims (10)

質量%で、C:0.08%以下、Si:1.3〜3.5%、Mn:3.5%以下、P:0.05%以下、S:0.03%以下、Ni:8〜17%、Cr:15〜20%、N:0.2%以下、残部Feおよび不可避的不純物からなる組成を有し、少なくとも水素ガスに曝される側の表面に、金属元素中に占めるSi量が1.0質量%以上の不動態皮膜を有するステンレス鋼製の高圧水素ガス貯留用圧力容器。   In mass%, C: 0.08% or less, Si: 1.3-3.5%, Mn: 3.5% or less, P: 0.05% or less, S: 0.03% or less, Ni: 8 Si having a composition consisting of ˜17%, Cr: 15-20%, N: 0.2% or less, the balance Fe and unavoidable impurities, at least on the surface exposed to hydrogen gas, in the metal element A pressure vessel for high-pressure hydrogen gas storage made of stainless steel having a passive film with an amount of 1.0 mass% or more. ステンレス鋼が、さらにMo:3%以下、Cu:3.5%以下の1種以上を含有する組成を有するものである請求項1に記載の圧力容器。   The pressure vessel according to claim 1, wherein the stainless steel further has a composition containing at least one of Mo: 3% or less and Cu: 3.5% or less. ステンレス鋼が、さらにV、Wの1種以上を合計4%以下の範囲で含有する組成を有するものである請求項1または2に記載の圧力容器。   The pressure vessel according to claim 1 or 2, wherein the stainless steel further has a composition containing one or more of V and W in a total range of 4% or less. ステンレス鋼が、さらにNb、Ti、Alの1種以上を合計0.4%以下の範囲で含有する組成を有するものである請求項1〜3のいずれかに記載の圧力容器。   The pressure vessel according to any one of claims 1 to 3, wherein the stainless steel further has a composition containing at least one of Nb, Ti, and Al in a range of 0.4% or less in total. ステンレス鋼が、さらにBを0.01%以下の範囲で含有する組成を有するものである請求項1〜4のいずれかに記載の圧力容器。   The pressure vessel according to any one of claims 1 to 4, wherein the stainless steel further has a composition containing B in a range of 0.01% or less. 質量%で、C:0.08%以下、Si:1.3〜3.5%、Mn:3.5%以下、P:0.05%以下、S:0.03%以下、Ni:8〜17%、Cr:15〜20%、N:0.2%以下、残部Feおよび不可避的不純物からなる組成を有し、少なくとも水素ガスに曝される側の表面に、金属元素中に占めるSi量が1.0質量%以上の不動態皮膜を有するステンレス鋼製の高圧水素ガス輸送用パイプ。   In mass%, C: 0.08% or less, Si: 1.3-3.5%, Mn: 3.5% or less, P: 0.05% or less, S: 0.03% or less, Ni: 8 Si having a composition consisting of ˜17%, Cr: 15-20%, N: 0.2% or less, the balance Fe and unavoidable impurities, at least on the surface exposed to hydrogen gas, in the metal element A stainless steel high-pressure hydrogen gas transport pipe having a passive film with an amount of 1.0% by mass or more. ステンレス鋼が、さらにMo:3%以下、Cu:3.5%以下の1種以上を含有する組成を有するものである請求項6に記載のパイプ。   The pipe according to claim 6, wherein the stainless steel has a composition further containing one or more of Mo: 3% or less and Cu: 3.5% or less. ステンレス鋼が、さらにV、Wの1種以上を合計4%以下の範囲で含有する組成を有するものである請求項6または7に記載のパイプ。   The pipe according to claim 6 or 7, wherein the stainless steel further has a composition containing at least one of V and W in a total range of 4% or less. ステンレス鋼が、さらにNb、Ti、Alの1種以上を合計0.4%以下の範囲で含有する組成を有するものである請求項6〜8のいずれかに記載のパイプ。   The pipe according to any one of claims 6 to 8, wherein the stainless steel further has a composition containing at least one of Nb, Ti, and Al in a range of 0.4% or less in total. ステンレス鋼が、さらにBを0.01%以下の範囲で含有する組成を有するものである請求項6〜9のいずれかに記載のパイプ。   The pipe according to any one of claims 6 to 9, wherein the stainless steel further has a composition containing B in a range of 0.01% or less.
JP2008158239A 2008-06-17 2008-06-17 Pressure vessel for high pressure hydrogen gas and pipe Withdrawn JP2009299174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158239A JP2009299174A (en) 2008-06-17 2008-06-17 Pressure vessel for high pressure hydrogen gas and pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158239A JP2009299174A (en) 2008-06-17 2008-06-17 Pressure vessel for high pressure hydrogen gas and pipe

Publications (1)

Publication Number Publication Date
JP2009299174A true JP2009299174A (en) 2009-12-24

Family

ID=41546362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158239A Withdrawn JP2009299174A (en) 2008-06-17 2008-06-17 Pressure vessel for high pressure hydrogen gas and pipe

Country Status (1)

Country Link
JP (1) JP2009299174A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043877A1 (en) 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
WO2012132992A1 (en) * 2011-03-28 2012-10-04 住友金属工業株式会社 High-strength austenitic stainless steel for high-pressure hydrogen gas
JP5579316B1 (en) * 2013-09-30 2014-08-27 大陽日酸株式会社 Welding method and welded structure
CN109457196A (en) * 2018-12-28 2019-03-12 宁波永享不锈钢管道有限公司 A kind of stainless steel tube and its manufactured zinc-plated stainless steel elbow
CN110527924A (en) * 2019-09-26 2019-12-03 江苏兴洋管业股份有限公司 A kind of hydrogen environment 2D stainless steel bend and preparation method
JP2022029825A (en) * 2020-08-05 2022-02-18 株式会社アサヒメッキ Stainless steel structure excellent in hydrogen embrittlement resistance and corrosion resistance and method for manufacturing the same
US11268177B2 (en) 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel
WO2022091846A1 (en) * 2020-10-30 2022-05-05 Jfeスチール株式会社 Hydrogen gas steel pipe, method for manufacturing hydrogen gas steel pipe, hydrogen gas pressure vessel, and method for manufacturing hydrogen gas pressure vessel
WO2024070647A1 (en) * 2022-09-26 2024-04-04 日鉄ステンレス株式会社 Austenitic stainless steel sheet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175361B2 (en) 2010-09-29 2015-11-03 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic high Mn stainless steel and method production of same and member using that steel
WO2012043877A1 (en) 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
US10260125B2 (en) 2011-03-28 2019-04-16 Nippon Steel & Sumitomo Metal Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
US10266909B2 (en) 2011-03-28 2019-04-23 Nippon Steel & Sumitomo Metal Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
AU2012234641B2 (en) * 2011-03-28 2015-01-29 Nippon Steel Corporation High-strength austenitic stainless steel for high-pressure hydrogen gas
WO2012132992A1 (en) * 2011-03-28 2012-10-04 住友金属工業株式会社 High-strength austenitic stainless steel for high-pressure hydrogen gas
JP5131794B2 (en) * 2011-03-28 2013-01-30 新日鐵住金株式会社 High-strength austenitic stainless steel for high-pressure hydrogen gas
JP2015066586A (en) * 2013-09-30 2015-04-13 大陽日酸株式会社 Welding construction method and welding structure
JP5579316B1 (en) * 2013-09-30 2014-08-27 大陽日酸株式会社 Welding method and welded structure
US11268177B2 (en) 2015-09-30 2022-03-08 Nippon Steel Corporation Austenitic stainless steel
CN109457196A (en) * 2018-12-28 2019-03-12 宁波永享不锈钢管道有限公司 A kind of stainless steel tube and its manufactured zinc-plated stainless steel elbow
CN110527924A (en) * 2019-09-26 2019-12-03 江苏兴洋管业股份有限公司 A kind of hydrogen environment 2D stainless steel bend and preparation method
JP2022029825A (en) * 2020-08-05 2022-02-18 株式会社アサヒメッキ Stainless steel structure excellent in hydrogen embrittlement resistance and corrosion resistance and method for manufacturing the same
WO2022091846A1 (en) * 2020-10-30 2022-05-05 Jfeスチール株式会社 Hydrogen gas steel pipe, method for manufacturing hydrogen gas steel pipe, hydrogen gas pressure vessel, and method for manufacturing hydrogen gas pressure vessel
JPWO2022091846A1 (en) * 2020-10-30 2022-05-05
JP7468616B2 (en) 2020-10-30 2024-04-16 Jfeスチール株式会社 Steel pipe for hydrogen gas, manufacturing method of steel pipe for hydrogen gas, pressure vessel for hydrogen gas, and manufacturing method of pressure vessel for hydrogen gas
WO2024070647A1 (en) * 2022-09-26 2024-04-04 日鉄ステンレス株式会社 Austenitic stainless steel sheet

Similar Documents

Publication Publication Date Title
JP2009299174A (en) Pressure vessel for high pressure hydrogen gas and pipe
JP6989004B2 (en) Method for manufacturing high-pressure hydrogen gas environmental steel, high-pressure hydrogen gas environmental steel structure, and high-pressure hydrogen gas environmental steel
KR101730432B1 (en) Steel material, hydrogen container, method for producing the steel material, and method for producing the hydrogen container
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
KR101570629B1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
EP2505683B1 (en) Process for producing a welded steel pipe for linepipe with superior compressive strength and excellent sour resistance
JP5713152B2 (en) Steel structure for hydrogen, pressure accumulator for hydrogen and method for producing hydrogen line pipe
CN110225988B (en) Hot rolled ferritic stainless steel sheet and method for producing same
CN109983144B (en) Nickel-containing steel for low temperature use and tank for low temperature use
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
JP5353283B2 (en) Corrosion-resistant steel for marine vessels and method for producing the same
JP5130828B2 (en) High strength marine corrosion resistant steel and method for producing the same
CN108138281B (en) Austenitic stainless steel
JP2008274379A (en) Steel sheet having excellent pit resistance, and method for producing the same
JPWO2016143486A1 (en) High strength austenitic stainless steel with excellent hydrogen embrittlement resistance and method for producing the same
CN110475886B (en) Nickel-containing steel sheet for low temperature use and low temperature use tank using same
JP2016183412A (en) High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
EP3093362B1 (en) Ferritic stainless steel and method for producing same
JP6326265B2 (en) Austenitic stainless steel excellent in hot workability and hydrogen embrittlement resistance and its production method
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
EP4006177B1 (en) Martensitic stainless steel pipe and method of manufacturing martensitic stainless steel pipe
JP7121142B2 (en) Cr-based stainless steel sheet with excellent resistance to hydrogen embrittlement
JP2005002386A (en) Steel for use in high-pressure hydrogen environment, steel tube made thereof, and manufacturing method therefor
Kain et al. Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steels
EP3686306A1 (en) Steel plate and method for manufacturing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906