JP7464236B2 - 複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法 - Google Patents

複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法 Download PDF

Info

Publication number
JP7464236B2
JP7464236B2 JP2022553145A JP2022553145A JP7464236B2 JP 7464236 B2 JP7464236 B2 JP 7464236B2 JP 2022553145 A JP2022553145 A JP 2022553145A JP 2022553145 A JP2022553145 A JP 2022553145A JP 7464236 B2 JP7464236 B2 JP 7464236B2
Authority
JP
Japan
Prior art keywords
complex
node
nodes
network
autonomous vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022553145A
Other languages
English (en)
Other versions
JP2023528114A (ja
Inventor
英▲鳳▼ 蔡
成龍 滕
暁夏 熊
海 王
暁東 孫
▲チン▼超 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Publication of JP2023528114A publication Critical patent/JP2023528114A/ja
Application granted granted Critical
Publication of JP7464236B2 publication Critical patent/JP7464236B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Feedback Control In General (AREA)

Description

本発明は、自動運転車応用技術分野に関し、特に複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法に関する。
複雑ネットワークは、高い複雑さを呈するネットワークであり、複雑システムの抽象であり、一般的に自己組織化、自己相似、アトラクタ、スモールワールド、スケールフリーのうちの一部又は全ての性質を有する。複雑ネットワークの特性は複雑さであり、具体的に下記のように表され、即ちネットワークの規模が大きく、接続構造が複雑であり、ノードの複雑さ(例えば、ノード動力学的複雑さ及びノードの多様性)、ネットワークの時空間進化プロセスが複雑であり、ネットワーク接続のスパース性、様々な複雑性の融合などである。複雑ネットワークの複雑さ研究方法、例えば、ノードの複雑さ、接続構造の複雑さ及びネットワークの時空間進化プロセスの複雑さなどの研究方法は、複雑システムのモデリング及び研究の重要なツールとなっている。
自動運転車は、環境感知、計画決定、制御実行などの機能を一体に統合する統合システムである。レーザーレーダー、ミリ波レーダー、カメラなどのセンサ技術の急速な発展に伴い、環境感知方法は深く研究され、大きな進歩を遂げた。現在、環境の個体タイプ、位置、運動などの底層感知情報と、個体行動スタイル、階層化ローカル環境、グローバル環境認知との間の関連を確立し、環境感知から個体認知へ、ローカル認知から交通総合的姿勢のグローバル認知への発展を支持し、自動運転車の自己決定及び運動計画の安全性を保障する重要な前提となっている。しかしながら、自動運転車の直面する環境は複雑システムであり、この複雑システムでは、個体の運動行動は当該個体自身に依存するだけでなく、周囲の他の個体運動行動及び運転環境からの影響も受け、複雑な多次元結合性及び動的不確実性がある。したがって、複雑ネットワークから、自動運転車の複雑環境モデル、認知方法及び装置を確立し、自動運転車の直面する環境の非線形動的進化の法則を開示することは、既に高レベル自動運転環境認知課題を解決するための重要な部分となっている。
上記技術課題を解決するために、本発明では、複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法が提供され、自動運転車の外部環境を感知した上で、まず、個体運転行動認知の複雑さ課題について、運転操作のアグレッシブ度合及びモードシフトプリファレンスを表すための運転特徴パラメータに従って、運転スタイル認識を行い、次に、環境内運動本体のグループ行動特徴に従って、運転スタイル認識の上で、複雑ネットワークにより、運動本体をノードとして道路を制約として、時変の複雑動的ネットワークを自動運転車の複雑環境モデルとして確立し、最後に、複雑環境モデルにおけるノードに対してパラメトリック表現を行い、複雑環境に対するノード差別化認知を実現し、凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードを層分け、複雑環境に対する階層化認知を実現し、複雑環境モデルの無秩序度合の測定方法を確立し、複雑環境に対するグローバルリスク姿勢認知を実現する。
本発明の複雑ネットワークによる自動運転車の認知システムは、運転スタイル認識モジュール、複雑環境モデルモジュール、ノード差別化認知モジュール、階層化認知モジュール、グローバルリスク姿勢認知モジュールを含む。
前記運転スタイル認識モジュールは、運転特徴パラメータを抽出した上で、運転スタイル特徴マトリックスCを構築し、運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、ランダムフォレスト分類子Rにより運転スタイルカテゴリKdriveを出力する。
前記運転特徴パラメータは、縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを含む。前記縦方向運転特徴パラメータとは、限られた時間枠での縦方向加速度a、運転間隔dtimeを指し、前記横方向運転特徴パラメータとは、限られた時間枠での横方向加速度の二乗平均平方根RMS(a_)、ヨーレートの標準偏差SD(r)を指し、前記モードシフト特徴パラメータとは、限られた時間枠での左車線変更状態遷移確率P(l)及び右車線変更状態遷移確率P(r)を指す。
前記運転スタイル特徴マトリックスCとは、縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータから構成された三次元の六自由度の特徴マトリックス
Figure 0007464236000001
前記ランダムフォレスト分類子Rは、下記のステップで生成され、即ち運転スタイルデータからなるオリジナルトレーニングセットに対して、置換を伴うランダムサンプリングを行い、m個のトレーニングセットを生成し、各トレーニングセットに対してn個の特徴を選択し、それぞれm個の決定木分類モデルをトレーニングし、全てのトレーニング例が同一カテゴリに属するまで、各決定木分類モデルに対して情報ゲイン率に基づいて最高のサンプル特徴を選択し分裂し、最後に生成された全ての決定木分類モデルをランダムフォレストとして構成し、投票法により運転スタイルカテゴリKdriveを出力する。
前記運転スタイルカテゴリKdriveは、急進型、平和型、保守型の三つのカテゴリを含み、
drive=R(C) (2)である。
前記複雑環境モデルモジュールは、自動運転車複雑環境のランダム、動的、非線形進化の法則を描き、複雑ネットワーク理論から、運動本体をノードとして、時変の複雑動的ネットワークGを複雑環境モデル
G=(V,B,X,P,Θ) (3)として構築する。
ただし、Gは時変の複雑動的ネットワークであり、Vは時変の複雑動的ネットワークGにおけるノードコレクションであり、Bは時変の複雑動的ネットワークGにおけるエッジのコレクションであり、ノード間の繋がり線を表し、Xは時変の複雑動的ネットワークGにおけるノードの状態ベクトルであり、Pは時変の複雑動的ネットワークGにおけるエッジの強度関数であり、ノード間のカップリング関係を表し、Θは時変の複雑動的ネットワークGのエリア関数であり、時変の複雑動的ネットワークGに対する動的制約を表す。
時変の複雑動的ネットワークGを、N個のノードを有する連続時間動的システムとして等価化し、第iノードの状態変数をxとすると、第iノードの運動方程式は、
Figure 0007464236000002
ただし、f(x)は、第iノードの状態変数の可変関数であり、ξ>0は共接続関係強度係数であり、pij(t)は第iノードと第jノードとの間のカップリング係数であり、H(x)はノード間のインライン関数であり、運転スタイルとノード距離の関数である。
Figure 0007464236000003
とすると、時変の複雑動的ネットワークGのノードシステム運動方程式は、
Figure 0007464236000004
ただし、Xは時変の複雑動的ネットワークGにおけるノードの状態ベクトルであり、F(X)は時変の複雑動的ネットワークGにおけるノードの動的方程式ベクトルであり、P(t)は時変の複雑動的ネットワークGにおけるノード間のカップリングマトリックスであり、H(X)は時変の複雑動的ネットワークGにおけるノードのインラインベクトルである。
複雑環境モデルでは、ノードの運動及び環境の変化に伴い、ノードの位置及び状態が動的変化にあり、ノードが時変の複雑動的ネットワークに対して流入して流出することがあり、ノード間のカップリング関係及び時変の複雑動的ネットワークのエリア関数もそれに伴って変化し、複雑ネットワークシステムは時間に伴って絶えず発展している。
前記ノード差別化認知モジュールは、複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の合計四つのパラメータを用いてネットワークノードの違いを説明するとともに、正規分布図を用いて全てのノードに対して差別化分析を行う。
前記ノードの量gは、第iノードの構造サイズで表される。
前記ノードの度kは、第iノードに直接繋がるノードの数で表される。
前記ノードの重みsは、第iノードの全ての隣接するエッジの重みの合計を表す。
前記ノードの重要度I(i)は、
Figure 0007464236000005
(6)式で、pij(t)はノード間のカップリング係数であり、K(i)は第iノードの次数中心性要因
Figure 0007464236000006
(7)式で、
Figure 0007464236000007
モジュールの平均単位重みを表す。
前記階層化認知モジュールは、凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードに対して階層分けを行い、自動運転車複雑環境の階層化、段階性に対する認知を実現し、操作ステップは以下のようである。
自動運転車を中心ノードとして、中心ノードとのカップリング関係を有するノードと中心ノードとが内層モジュールを構成するステップ1、
内層モジュールの非中心ノードに対して重要度を並べ替えて、順にカップリング係数が最も大きい点を見つけて、中間層モジュールを構成するステップ2、
中間層モジュールのノードに対して重要度を並べ替えて、順にカップリング係数が最も大きい点を見つけて、外層モジュールを構成するステップ3、
他のノードから端層モジュールが構成されるステップ4である。
前記グローバルリスク姿勢認知モジュールは、エントロピー理論の基本思想により、システムエントロピー及びエントロピー変更を用いて、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、グローバル共性に対する状態認知を実現する。
前記システムエントロピーは、
S=V/Θ+D(P)+D(U) (8)である。
ただし、Vは複雑環境モデルのノード数であり、Θは複雑環境モデルのネットワークエリアであり、D(P)はカップリング係数の分散を表し、D(U)は複雑環境モデルにおけるノード速度の分散である。
前記エントロピー変更は、
Figure 0007464236000008
ただし、dは、対応変数を算出するディファレンシャルを表し、その変化傾向を表す。
上記複雑ネットワークによる自動運転車の認知システムによれば、本発明で提出される自動運転車の認知方法は、
縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを抽出し、運転スタイル特徴マトリックスCを構築し、ランダムフォレスト分類子Rを生成し、運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、ランダムフォレスト分類子Rの出力である運転スタイルカテゴリKdriveは、運転スタイルを急進型、平和型、保守型の三つのカテゴリとして認識するステップ1)と、
複雑環境全体的関連付け特徴を説明するために、時変の複雑動的ネットワークGを複雑環境モデルとして構築し、さらに複雑環境モデルにおけるノード運動方程式を確立してから、時変の複雑動的ネットワークGにおける全てのノードの特徴を組み合わせて動的方程式ベクトルF(X)、時変の複雑動的ネットワークGにおけるノード間のカップリングマトリックスP(t)及びノードのインラインベクトルH(X)を形成し、複雑環境の動的特徴を説明するために、時変の複雑動的ネットワークGのノードシステム運動方程式を確立するステップ2)と、
複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の四つのパラメータを構築するとともに、正規分布図を用いて全てのノードに対して差別化分析を行い、ノード差別化認知を実現するステップ3)と、
凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードに対して階層分けを行い、自動運転車複雑環境の階層化、階段性に対する認知を実現するステップ4)と、
エントロピー理論の基本思想により、システムエントロピー及びエントロピー変更を用いて、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、グローバル共性に対する状態認知を実現するステップ5)と、を含む。
本発明では、自動運転車の外部環境を感知した上で、まず、個体運転行動認知の複雑さ課題について、運転操作のアグレッシブ度合及びモードシフトプリファレンスを表す運転特徴パラメータに従って、運転スタイル認識を行い、次に、複雑環境における運動本体のグループ行動特徴に従って、運転スタイル認識の上で、複雑ネットワークにより、運動本体をノードとして道路を制約として、時変の複雑動的ネットワークGを自動運転車の複雑環境モデルとして構築し、最後に、複雑環境モデルにおけるノードに対してパラメトリック表現を行い、複雑環境に対するノード差別化認知を実現し、凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードを層分け、複雑環境に対する階層化認知を実現し、複雑環境モデルの無秩序度合測定方法を確立し、複雑環境に対するグローバルリスク姿勢認知を実現することによって、複雑ネットワークによる自動運転車の複雑環境モデル、認知方法及び装置を確立し、自動運転車の安全運転及び制御ポリシーの設計へ良好な基礎を提供する。
本発明の有益な効果:
1、本発明では、運転スタイル認識方法を確立し、運転特徴パラメータを抽出した上で、運転スタイル特徴マトリックスCを構築し、運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、ランダムフォレスト分類子Rにより運転スタイルカテゴリKdriveを出力し、運転スタイル認識を実現する。
2、本発明では、複雑ネットワーク理論から、運動本体をノードとして、時変の複雑動的ネットワークGを複雑環境モデルとして、自動運転車複雑環境のランダム、動的、非線形進化の法則を描き、時変の複雑動的ネットワークGのノードシステム運動方程式も確立し、複雑環境の動的特性を説明する。
3、本発明では、複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の四つのパラメータを構築するとともに、正規分布図を用いて全てのノードに対して差別化分析を行い、自動運転車複雑環境に対するノード差別化認知を実現する。
4、本発明では、ノードカップリング関係を根拠として、凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードに対して階層分けを行い、自動運転車複雑環境の階層化、階段性に対する認知を実現する。
5、本発明では、自動運転車の複雑環境モデルのシステムエントロピー及びエントロピー変更を構築し、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、自動運転車の複雑環境グローバル共性に対する状態認知を実現する。
図1は、運転スタイル認識モジュールの構造フローチャートである。 図2は、自動運転車の複雑環境モデルモジュールの構造フローチャートである。 図3は、ノード差別化認知モジュールの構造図である。 図4は、階層化認知モジュールの構造フローチャートである。 図5は、グローバルリスク姿勢認知モジュールの構造図である。 図6は、複雑ネットワークによる自動運転車の認知システムの構造概略図である。
以下に図面を参照して本出願をさらに説明する。
図1に示すように、運転スタイル認識モジュールの構造フローであり、まず、縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを抽出し、前記縦方向運転特徴パラメータとは、限られた時間枠で的縦方向加速度a、運転間隔dtimeを指し、前記横方向運転特徴パラメータとは、限られた時間枠での横方向加速度二乗平均平方根RMS(a_)、ヨーレートの標準偏差SD(r)を指し、前記モードシフト特徴パラメータとは、限られた時間枠での左車線変更状態遷移確率P(l)及び右車線変更状態遷移確率P(r)を指し、次に、運転スタイル特徴マトリックスCを構築し、前記運転スタイル特徴マトリックスCとは、縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータから構成された三次元の六自由度の特徴マトリックスを指し、その後、運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、運転スタイルカテゴリKdriveを出力し、前記運転スタイルカテゴリKdriveは、急進型、平和型、保守型の三つのカテゴリを含み、運転スタイル認識を実現する。
図2に示すように、自動運転車の複雑環境モデルモジュール構造フローであり、まず、時変の複雑動的ネットワークGを複雑環境モデルG=(V,B,X,P,Θ)として構築し、次に、時変の複雑動的ネットワークGを、N個のノードを有する連続時間動的システムとして等価化し、ノードの運動方程式
Figure 0007464236000009
を確立し、その後、ノードの運動方程式から、ノードシステム運動方程式
Figure 0007464236000010
を確立し、最後に、複雑環境の動的特性を説明するために、ノードシステム運動方程式を複雑環境モデルに応用する。
図3に示すように、ノード差別化認知モジュール構造であり、複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の合計四つのパラメータを併用してネットワークノードの違いを説明するとともに、正規分布図を用いて全てのノードに対して差別化分析を行い、ノードに対する差別化認知を実現する。
図4に示すように、階層化認知モジュール構造フローであり、凝集クラスタリングアルゴリズムを用いて、複雑環境モデルにおけるノードに対して階層分けを行い、複雑環境モデルにおけるノードを順に分けて内層モジュール、中間層モジュール、外層モジュール、端層モジュールをそれぞれ構成し、複雑環境に対する階層化認知を実現する。
図5に示すように、グローバルリスク姿勢認知モジュール構造であり、
システムエントロピーS=V/Θ+D(P)+D(U)及びエントロピー変更
Figure 0007464236000011
を併用して、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、複雑環境グローバル共性に対する状態認知を実現する。
図6に示すように、複雑ネットワークによる自動運転車の認知システムは、運転スタイル認識モジュール、複雑環境モデルモジュール、ノード差別化認知モジュール、階層化認知モジュール、グローバルリスク姿勢認知モジュールを含む。前記運転スタイル認識モジュールは、ノード間のインライン関数H(x)を構築するために、認識されたノード運転スタイルを複雑環境モデルモジュールに入力し、前記ノード差別化認知モジュール、階層化認知モジュール、グローバルリスク姿勢認知モジュールは、複雑環境モデルモジュールにおけるV,B,X,P,Θパラメータのデータを受け、それぞれノード差別化認知、階層化認知及びグローバルリスク姿勢認知を実現する。
複雑ネットワークによる自動運転車の認知方法は、下記ステップを含む。
ステップ1)縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを抽出し、運転スタイル特徴マトリックスCを構築し、ランダムフォレスト分類子Rを生成し、運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、ランダムフォレスト分類子Rの出力である運転スタイルカテゴリKdriveは、運転スタイルを急進型、平和型、保守型の三つのカテゴリとして認識し、具体的なステップは以下のようである。
(A)縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを抽出するステップ、
(B)運転スタイル特徴マトリックスCを構築するステップ、
(C)ランダムフォレスト分類子Rを生成するステップ、
(D)運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、ランダムフォレスト分類子Rの出力である運転スタイルカテゴリKdriveは、運転スタイルを急進型、平和型、保守型の三つのカテゴリとして認識するステップであり、
ステップ2)複雑環境全体的関連付け特徴を説明するために、時変の複雑動的ネットワークGを複雑環境モデルとして構築し、さらに複雑環境モデルにおけるノード運動方程式を確立してから、時変の複雑動的ネットワークGにおける全てのノードの特徴を組み合わせて動的方程式ベクトルF(X)、時変の複雑動的ネットワークGにおけるノード間のカップリングマトリックスP(t)及びノードのインラインベクトルH(X)を形成し、複雑環境の動的特性を説明するために、時変の複雑動的ネットワークGのノードシステム運動方程式を確立し、具体的なステップは以下のようである。
(A)時変の複雑動的ネットワークGを複雑環境モデルとして構築するステップ、
(B)複雑環境モデルにおけるパラメータから、複雑環境モデルにおけるノード運動方程式を確立するステップ、
(C)複雑環境の動的特性を説明するために、ノード運動方程式から、時変の複雑動的ネットワークGのノードシステム運動方程式を確立するステップであり、
ステップ3)複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の四つのパラメータを構築するとともに、正規分布図を用いて全てのノードに対して差別化分析を行い、ノード差別化認知を実現し、具体的なステップは以下のようである。
(A)複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の四つのパラメータを構築するステップ、
(B)上記四つのパラメータを用いて複雑環境モデルにおける全てのノードをそれぞれ説明するステップ、
(C)正規分布図を用いて全てのノードに対して差別化分析を行い、ノードの差別化認知を実現するステップである。
ステップ4)凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードに対して階層分けを行い、自動運転車複雑環境の階層化、階段性に対する認知を実現し、具体的なステップは以下のようである。
(A)自動運転車を中心ノードとして、中心ノードとのカップリング関係を有するノードと中心ノードとが内層モジュールを構成するステップ、
(B)内層モジュールの非中心ノードに対して重要度を並べ替えて、順にカップリング係数が最も大きい点を見つけて、中間層モジュールを構成するステップ、
(C)中間層モジュールのノードに対して重要度を並べ替えて、順にカップリング係数が最も大きい点を見つけて、外層モジュールを構成するステップ、
(D)他のノードから端層モジュールが構成されるステップである。
ステップ5)エントロピー理論の基本思想により、システムエントロピー及びエントロピー変更を用いて、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、グローバル共性に対する状態認知を実現し、具体的なステップは以下のようである。
(A)システムエントロピーS=V/Θ+D(P)+D(U)を用いて複雑環境モデルの無秩序度合を測定し、複雑環境全体リスクを説明するステップ、
(B)エントロピー変更dS=d(V/Θ)+d(D(P))+d(D(U))を用いて、複雑環境モデルの無秩序度合を測定し、複雑環境全体リスクの変化姿勢を説明し、グローバル共性に対する状態認知を実現するステップである。
本発明の具体的実施例としては、Pythonで運転スタイル認識モジュールを作成し、Scikit-learn第三者の機械学習ライブラリに基づいて運転スタイル特徴マトリックスCを構築し、ランダムフォレスト分類子Rを生成し、運転スタイル認識を実現し、MATLAB/Simulinkで数学モデルを作成して複雑環境モデルモジュールを構成し、Pythonでノード差別化認知モジュール、階層化認知モジュール、グローバルリスク姿勢認知モジュールを作成し、PyTorchフレームにおいて自動運転車複雑環境の差別化、階層化、グローバルリスク姿勢認知方法を実現し、UbuntuシステムによりMATLAB、Scikit-learn及びPyTorchインタフェースを作成し、産業用制御コンピュータでインストールし配置して、複雑ネットワークによる自動運転車の複雑環境モデル、認知方法及び装置を実現する。
以上に列挙された一連の詳細な説明は単に本発明の実現可能な実施形態に対する具体的な説明に過ぎず、それらは本発明の保護範囲を限定するためのものではなく、本発明の技術から逸脱しない同等方式又は変更はいずれも本発明の保護範囲内に含まれている。

Claims (9)

  1. 複雑ネットワークによる自動運転車認知システムの認知方法であって、
    縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを抽出し、運転スタイル特徴マトリックスCJを構築し、ランダムフォレスト分類子Rfを生成し、運転スタイル特徴マトリックスCJをランダムフォレスト分類子Rfに入力し、ランダムフォレスト分類子Rfの出力である運転スタイルカテゴリKdriveは、運転スタイルを急進型、平和型、保守型の三つのカテゴリとして認識するステップ1)と、
    複雑環境全体的関連付け特徴を説明するために、時変の複雑動的ネットワークGを複雑環境モデルとして構築し、さらに複雑環境モデルにおけるノード運動方程式を確立してから、時変の複雑動的ネットワークGにおける全てのノードの特徴を組み合わせて動的方程式ベクトルF(X)、時変の複雑動的ネットワークGにおけるノード間のカップリングマトリックスP(t)及びノードのインラインベクトルH(X)を形成し、複雑環境の動的特性を説明するために、時変の複雑動的ネットワークGのノードシステム運動方程式を確立するステップ2)と、
    複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の四つのパラメータを構築するとともに、正規分布図を用いて全てのノードに対して差別化分析を行い、ノード差別化認知を実現するステップ3)と、
    凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードに対して階層分けを行い、自動運転車複雑環境の階層化、階段性に対する認知を実現するステップ4)と、
    システムエントロピー及びエントロピー変更を用いて、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、グローバル共性に対する状態認知を実現するステップ5)と、を含む、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  2. 請求項1に記載する複雑ネットワークによる自動運転車認知システムの認知方法を実行するための自動運転車認知システムであり、
    前記複雑環境モデルであって、運動本体をノードとして、時変の複雑動的ネットワークGを複雑環境モデル
    G=(V,B,X,P,Θ) (3)として構築し、
    ただし、Gは時変の複雑動的ネットワークであり、Vは時変の複雑動的ネットワークGにおけるノードコレクションであり、Bは時変の複雑動的ネットワークGにおけるエッジのコレクションであり、ノード間の繋がり線を表し、Xは時変の複雑動的ネットワークGにおけるノードの状態ベクトルであり、Pは時変の複雑動的ネットワークGにおけるエッジの強度関数であり、ノード間のカップリング関係を表し、Θは時変の複雑動的ネットワークGのエリア関数であり、時変の複雑動的ネットワークGに対する動的制約を表し、
    時変の複雑動的ネットワークGを、N個のノードを有する連続時間動的システムとして等価化し、第iノードの状態変数をxiとすると、第iノードの運動方程式は、
    Figure 0007464236000012
    ただし、f(x)は、第iノードの状態変数の可変関数であり、ξ>0は共接続関係強度係数であり、pij(t)は第iノードと第jノードの間のカップリング係数であり、H(x)はノード間のインライン関数であり、
    Figure 0007464236000013
    とすると、時変の複雑動的ネットワークGのノードシステム運動方程式は、
    Figure 0007464236000014
    ただし、Xは時変の複雑動的ネットワークGにおけるノードの状態ベクトルであり、F(X)は時変の複雑動的ネットワークGにおけるノードの動的方程式ベクトルであり、P(t)は時変の複雑動的ネットワークGにおけるノード間のカップリングマトリックスであり、H(X)は時変の複雑動的ネットワークGにおけるノードのインラインベクトルであり、
    前記複雑環境モデルでは、ノードの運動及び環境の変化に伴い、ノードの位置及び状態が動的変化にあり、ノード間のカップリング関係及び時変の複雑動的ネットワークのエリア関数もそれに伴って変化している、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  3. 請求項2に記載する自動運転車認知システムの認知方法において、
    前記複雑ネットワークによる自動運転車認知システムであって、運転スタイル認識モジュール、複雑環境モデルモジュール、ノード差別化認知モジュール、階層化認知モジュール、グローバルリスク姿勢認知モジュールを含み、
    前記運転スタイル認識モジュールは、運転特徴パラメータを抽出した上で、運転スタイル特徴マトリックスCを構築し、運転スタイル特徴マトリックスCをランダムフォレスト分類子Rに入力し、ランダムフォレスト分類子Rにより運転スタイルカテゴリKdriveを出力し、
    前記複雑環境モデルモジュールは、
    前記ノード差別化認知モジュールは、複雑環境モデルにおけるノードの量g、度k、重みs及び重要度I(i)の合計四つのパラメータを用いてネットワークノードの違いを説明するとともに、正規分布図を用いて全てのノードに対して差別化分析を行い、
    前記階層化認知モジュールは、凝集クラスタリングアルゴリズムを用いて複雑環境モデルにおけるノードに対して階層分けを行い、自動運転車複雑環境の階層化、段階性に対する認知を実現し、
    前記グローバルリスク姿勢認知モジュールは、システムエントロピー及びエントロピー変更を用いて、複雑環境モデルの無秩序度合を測定し、全体リスク及び変化姿勢を説明し、グローバル共性に対する状態認知を実現する、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  4. 請求項3に記載する自動運転車認知システムの認知方法において、
    前記運転特徴パラメータは、縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータを含み、前記縦方向運転特徴パラメータとは、限られた時間枠での縦方向加速度a+、運転間隔dtimeを指し、前記横方向運転特徴パラメータとは、限られた時間枠での横方向加速度の二乗平均平方根RMS(a_)、ヨーレートの標準偏差SD(r)を指し、前記モードシフト特徴パラメータとは、限られた時間枠での左車線変更状態遷移確率P(l)及び右車線変更状態遷移確率P(r)を指す、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  5. 前記運転スタイル特徴マトリックスCとは、縦方向運転特徴パラメータ、横方向運転特徴パラメータ及びモードシフト特徴パラメータから構成された三次元の六自由度の特徴マトリックス
    Figure 0007464236000015
    ことを特徴とする請求項2に記載の自動運転車認知システムの認知方法
  6. 請求項3に記載する自動運転車認知システムの認知方法において、
    前記ランダムフォレスト分類子Rfは、下記のステップで生成され、即ち運転スタイルデータからなるオリジナルトレーニングセットに対して、置換を伴うランダムサンプリングを行って、m個のトレーニングセットを生成し、各トレーニングセットに対してn個の特徴を選択し、それぞれm個の決定木分類モデルをトレーニングし、全てのトレーニング例が同一カテゴリに属するまで、各決定木分類モデルに対して情報ゲイン率に基づいて最高のサンプル特徴を選択して分裂し、最後に生成された全ての決定木分類モデルをランダムフォレストとして構成し、投票法により運転スタイルカテゴリKdriveを出力し、
    前記運転スタイルカテゴリKdriveは、急進型、平和型、保守型の三つのカテゴリを含み、
    drive=R(C) (2)である、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  7. 請求項3に記載する自動運転車認知システムの認知方法において、
    前記ノードの量gは、第iノードの構造サイズで表され、
    前記ノードの度kは、第iノードに直接繋がるノードの数で表され、
    前記ノードの重みsは、第iノードの全ての隣接するエッジの重みの合計を表し、
    前記ノードの重要度I(i)は、
    Figure 0007464236000016
    (6)式で、pij(t)はノード間のカップリング係数であり、K(i)は第iノードの次数中心性要因
    Figure 0007464236000017
    はモジュールの平均単位重みを表す、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  8. 請求項3に記載する自動運転車認知システムの認知方法において、
    前記階層化認知モジュールで、まず自動運転車を中心ノードとして、中心ノードとのカップリング関係を有するノードと中心ノードとが内層モジュールを構成し、次に内層モジュールの非中心ノードに対して重要度を並べ替えて、順にカップリング係数が最も大きい点を見つけて、中間層モジュールを構成し、その後、中間層モジュールのノードに対して重要度を並べ替えて、順にカップリング係数が最も大きい点を見つけて、外層モジュールを構成し、最後に他のノードから端層モジュールが構成される、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
  9. 請求項3に記載する自動運転車認知システムの認知方法において、
    前記グローバルリスク姿勢認知モジュールで、前記システムエントロピーは、
    S=V/Θ+D(P)+D(U) (8)として設計され、
    ただし、Vnは複雑環境モデルのノード数であり、Θは複雑環境モデルのネットワークエリアであり、D(P)はカップリング係数の分散を表し、D(U)は複雑環境モデルにおけるノード速度の分散であり、
    前記エントロピー変更は、
    Figure 0007464236000018
    ただし、dは、対応変数を算出するディファレンシャルを表し、その変化傾向を表す、
    ことを特徴とする複雑ネットワークによる自動運転車認知システムの認知方法。
JP2022553145A 2021-05-10 2022-01-07 複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法 Active JP7464236B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110504041.4 2021-05-10
CN202110504041.4A CN113406955B (zh) 2021-05-10 2021-05-10 基于复杂网络的自动驾驶汽车复杂环境模型、认知系统及认知方法
PCT/CN2022/070671 WO2022237212A1 (zh) 2021-05-10 2022-01-07 基于复杂网络的自动驾驶汽车复杂环境模型、认知系统及认知方法

Publications (2)

Publication Number Publication Date
JP2023528114A JP2023528114A (ja) 2023-07-04
JP7464236B2 true JP7464236B2 (ja) 2024-04-09

Family

ID=77678411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022553145A Active JP7464236B2 (ja) 2021-05-10 2022-01-07 複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法

Country Status (4)

Country Link
JP (1) JP7464236B2 (ja)
CN (1) CN113406955B (ja)
DE (1) DE112022000019T5 (ja)
WO (1) WO2022237212A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406955B (zh) * 2021-05-10 2022-06-21 江苏大学 基于复杂网络的自动驾驶汽车复杂环境模型、认知系统及认知方法
CN115622903B (zh) * 2022-12-19 2023-04-07 中国人民解放军国防科技大学 一种基于网络结构的电信网节点重要度计算方法
CN116811894B (zh) * 2023-08-30 2023-11-21 北京理工大学 一种连续型驾驶风格识别方法、系统及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182399A (ja) 2018-04-03 2019-10-24 バイドゥ ユーエスエー エルエルシーBaidu USA LLC 自動運転に用いられる感知と計画のコラボレーションフレームワーク
CN111539112A (zh) 2020-04-27 2020-08-14 吉林大学 一种用于自动驾驶车快速查找交通对象的场景建模方法
CN112015842A (zh) 2020-09-02 2020-12-01 中国科学技术大学 自行车轨迹预测的自动驾驶车辆风险评估方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260515B2 (en) * 2008-07-24 2012-09-04 GM Global Technology Operations LLC Adaptive vehicle control system with driving style recognition
CN103077603A (zh) * 2012-06-06 2013-05-01 王晓原 基于动态人车环境协同推演的自由流状态汽车驾驶倾向性辨识系统
CN106023344B (zh) * 2016-06-06 2019-04-05 清华大学 基于驾驶模式转换概率的驾驶风格估计方法
US10545503B2 (en) * 2017-06-29 2020-01-28 Continental Automotive Systems, Inc. Propulsion efficient autonomous driving strategy
EP3695284A4 (en) * 2017-10-10 2021-04-14 The Government of the United States of America, as represented by the Secretary of the Navy PROCESS FOR IDENTIFYING OPTIMAL VEHICLE ROUTES WHEN ENERGY IS A KEY METRIC OR CONSTRAINT
CN108725453A (zh) * 2018-06-11 2018-11-02 南京航空航天大学 基于驾驶员模型和操纵逆动力学的人机共驾控制系统及其切换模式
CN109144076B (zh) * 2018-10-31 2020-05-22 吉林大学 一种多车辆横纵向耦合协同控制系统及控制方法
CN109829577B (zh) * 2019-01-17 2021-10-01 北京交通大学 基于深度神经网络结构模型的轨道列车运行状态预测方法
CN109927725B (zh) * 2019-01-28 2020-11-03 吉林大学 一种具有驾驶风格学习能力的自适应巡航系统及实现方法
CN109948781A (zh) * 2019-03-21 2019-06-28 中国人民解放军国防科技大学 用于自动驾驶车辆的连续动作在线学习控制方法及系统
CN110160804B (zh) * 2019-05-31 2020-07-31 中国科学院深圳先进技术研究院 一种自动驾驶车辆的测试方法、装置及系统
CN110321954A (zh) * 2019-07-03 2019-10-11 中汽研(天津)汽车工程研究院有限公司 适合国内人群的驾驶风格分类和识别方法及系统
CN111897217B (zh) * 2020-07-20 2022-03-11 清华大学 一种模型预测控制器的时域分解加速方法
CN112437501B (zh) * 2020-10-19 2022-11-18 江苏大学 一种基于交通语义和博弈论的多传感器超视距自组网方法
CN113406955B (zh) * 2021-05-10 2022-06-21 江苏大学 基于复杂网络的自动驾驶汽车复杂环境模型、认知系统及认知方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182399A (ja) 2018-04-03 2019-10-24 バイドゥ ユーエスエー エルエルシーBaidu USA LLC 自動運転に用いられる感知と計画のコラボレーションフレームワーク
CN111539112A (zh) 2020-04-27 2020-08-14 吉林大学 一种用于自动驾驶车快速查找交通对象的场景建模方法
CN112015842A (zh) 2020-09-02 2020-12-01 中国科学技术大学 自行车轨迹预测的自动驾驶车辆风险评估方法及系统

Also Published As

Publication number Publication date
JP2023528114A (ja) 2023-07-04
DE112022000019T5 (de) 2023-01-26
CN113406955B (zh) 2022-06-21
CN113406955A (zh) 2021-09-17
WO2022237212A1 (zh) 2022-11-17

Similar Documents

Publication Publication Date Title
JP7464236B2 (ja) 複雑ネットワークによる自動運転車の複雑環境モデル、認知システム及び認知方法
Sheng et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving
Kashinath et al. Review of data fusion methods for real-time and multi-sensor traffic flow analysis
Malek et al. Multivariate deep learning approach for electric vehicle speed forecasting
CN109508360B (zh) 一种基于元胞自动机的地理多元流数据时空自相关分析方法
JP2022016419A (ja) 軌跡予測方法及び装置
Zhang et al. Artificial intelligence and its applications
Malik et al. Driving pattern profiling and classification using deep learning
CN113449736B (zh) 一种基于深度学习的摄影测量点云语义分割方法
CN107480696A (zh) 一种分类模型构建方法、装置及终端设备
CN108320051B (zh) 一种基于gru网络模型的移动机器人动态避碰规划方法
CN111881802B (zh) 基于双分支时空图卷积网络的交警手势识别方法
Gaier et al. Aerodynamic design exploration through surrogate-assisted illumination
García Balboa et al. Generalization-oriented road line classification by means of an artificial neural network
CN114566052B (zh) 一种基于车流方向判别高速公路车流监控设备转动的方法
CN116151270A (zh) 泊车测试系统及方法
Shereef et al. A new weather forecasting technique using back propagation neural network with modified Levenberg Marquardt algorithm for learning
Ji et al. Learning the dynamics of time delay systems with trainable delays
Zhang et al. Direction-decision learning based pedestrian flow behavior investigation
Yu et al. Traffic prediction method based on RBF neural network with improved artificial bee colony algorithm
He et al. Explainable deep reinforcement learning for UAV autonomous navigation
Huisken Soft-computing techniques applied to short-term traffic flow forecasting
Li et al. PointLAE: A Point Cloud Semantic Segmentation Neural Network via Multifeature Aggregation for Large-Scale Application
CN114987495A (zh) 一种面向高度自动驾驶的人机混合决策方法
Yu et al. Longitudinal wind field prediction based on DDPG

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240320