JP7461679B2 - System and method for VOCs recovery that integrates absorption, desorption and recovery - Google Patents

System and method for VOCs recovery that integrates absorption, desorption and recovery Download PDF

Info

Publication number
JP7461679B2
JP7461679B2 JP2023070578A JP2023070578A JP7461679B2 JP 7461679 B2 JP7461679 B2 JP 7461679B2 JP 2023070578 A JP2023070578 A JP 2023070578A JP 2023070578 A JP2023070578 A JP 2023070578A JP 7461679 B2 JP7461679 B2 JP 7461679B2
Authority
JP
Japan
Prior art keywords
absorption
vocs
tower
desorption
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023070578A
Other languages
Japanese (ja)
Other versions
JP2023093659A (en
Inventor
維秋 黄
▲シン▼雅 王
洲楽 黄
暦沛 浮
憲航 孫
学明 曹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Publication of JP2023093659A publication Critical patent/JP2023093659A/en
Application granted granted Critical
Publication of JP7461679B2 publication Critical patent/JP7461679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

本発明は、VOCs回収処理に関し、具体的には、吸収、脱離及び回収を一体化したVOCs回収システム及び方法に関する。 The present invention relates to a VOCs recovery process, and more specifically to a VOCs recovery system and method that integrates absorption, desorption, and recovery.

各種の工業生産及び関連プロセスでは、VOCs(volatile organic compounds)という揮発性有機物がよく発生し、その分子構造には炭素と水素に加えて、酸素、窒素、硫黄、塩素も含まれ、それを排出すれば、社会と企業に多くの深刻な危害をもたらしてしまい、例えば、大量のVOCsが蒸発排出される時、密度が大きくて地表空間を浮遊して集中しているので、火災や爆発などの危険を引き起こしやすくなるだけでなく、人間の呼吸器を刺激して発癌等の危険を引き起こし、更にそれは光化学スモッグを発生させる主な反応物であって、生態と環境に深刻な危害をもたらしてしまう。中国は石油資源が限られており、石油を多く消費、輸入する国ともなっているので、VOCsを効果的に回収する必要がある。既存の回収方法としては、主に、吸着法、吸収法、凝縮法及び膜法といった単一な回収方法を採用しているが、実際の操作では、これらの方法を単一に使用すれば一連の問題が発生し、回収効率が低い。例えば、吸収法は、吸収剤の性能を高く要求し、吸収剤消費量が大きく、その装置が占用する空間が大きいため、プロセス回収率が低い。吸着法は、実際の応用では一般に吸着性能が比較的望ましくて価格が適当な吸着剤、例えば活性炭を選択するが、活性炭の吸着熱が高く、吸着温度が急激に上昇するため、吸着性能や使用期間の低下に繋がることに加えて、火災や爆発等の安全上の問題を増加させる。凝縮法は、温度に対する要求が高く、望ましい凝縮効果を達成するには極めて低い温度でガスを凝縮させる必要があるため、材質とプロセスに対する要求が高く、そして回収と運転費用が比較的高い。膜法によるオイルガス回収は前世紀後半に登場した現代オイルガス分離技術であり、様々な分子サイズで分離を実現し、占用空間面積が小さく、安定的に作動でき、メンテナンスが容易であるが、望ましい分離効率を達成するには、一般に他のプロセスと組み合わせる必要がある。 In various industrial production and related processes, volatile organic compounds (VOCs) are often generated, whose molecular structure contains oxygen, nitrogen, sulfur, and chlorine in addition to carbon and hydrogen. If they are discharged, they will cause many serious harms to society and enterprises. For example, when a large amount of VOCs is evaporated and discharged, they have a high density and float and concentrate in the ground surface space, which not only easily causes fires and explosions, but also irritates the human respiratory tract and causes cancer and other risks. Moreover, they are the main reactants that generate photochemical smog, which causes serious harm to the ecology and environment. China has limited oil resources and is also a country that consumes and imports a lot of oil, so it is necessary to effectively recover VOCs. Existing recovery methods mainly adopt single recovery methods such as adsorption, absorption, condensation, and membrane methods, but in actual operation, the single use of these methods will cause a series of problems and the recovery efficiency is low. For example, the absorption method requires high performance of the absorbent, consumes a large amount of absorbent, and occupies a large space of the device, resulting in low process recovery rate. In practical application, the adsorption method generally selects an adsorbent with relatively desirable adsorption performance and reasonable price, such as activated carbon, but the heat of adsorption of activated carbon is high and the adsorption temperature rises rapidly, which not only leads to a decrease in adsorption performance and service life, but also increases safety issues such as fire and explosion. The condensation method requires high temperature, and needs to condense gas at extremely low temperatures to achieve the desired condensation effect, so it has high requirements for materials and processes, and the recovery and operation costs are relatively high. Oil and gas recovery by membrane method is a modern oil and gas separation technology that emerged in the second half of the last century. It can achieve separation by various molecular sizes, occupy a small space area, operate stably, and are easy to maintain, but it generally needs to be combined with other processes to achieve the desired separation efficiency.

本発明が解決しようとする技術的課題は、どのようにしてVOCs回収処理システムの吸収効率をより一層向上させ、エネルギー消費と運転費をより一層低下させるかということである。 The technical problem that this invention aims to solve is how to further improve the absorption efficiency of VOCs recovery and treatment systems and further reduce energy consumption and operating costs.

上記技術的課題を解決するために、本発明は、下記の技術的解決手段によって実現する。 To solve the above technical problems, the present invention is realized by the following technical solutions.

自動結合予冷ユニットに接続され、VOCs導入ガスを水洗するために用いられる水洗ユニットと、
低温吸収ユニットに接続され、水洗後のVOCsガスを凝縮させるために用いられる自動結合予冷ユニットと、
熱交換器2 20を介して高温脱離ユニットに接続され、凝縮後のVOCsガスを吸収させるために用いられる低温吸収ユニットと、
熱交換器3 24を介して低温回収ユニットに接続され、低温吸収後のVOCsガスを脱離させるために用いられる高温脱離ユニットと、
低温吸収ユニットに接続され、液化後のVOCsを回収すると共に、未液化のVOCsを再度低温吸収ユニットに搬送して処理するために用いられる低温回収ユニットと、を含む吸収、脱離及び回収を一体化したVOCs回収システムである。
a water washing unit connected to the automatic coupling pre-cooling unit and used for washing the VOCs-introducing gas;
an automatic combined pre-cooling unit connected to the low temperature absorption unit and used for condensing the VOCs gas after washing;
a low-temperature absorption unit connected to the high-temperature desorption unit via a heat exchanger 220 and used to absorb the condensed VOCs gas;
a high-temperature desorption unit connected to the low-temperature recovery unit via a heat exchanger 3 24 and used to desorb the VOCs gas after low-temperature absorption;
This is a VOC recovery system that integrates absorption, desorption and recovery, and includes a low-temperature recovery unit that is connected to the low-temperature absorption unit and is used to recover liquefied VOCs and transport unliquefied VOCs back to the low-temperature absorption unit for treatment.

前記水洗ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える水洗塔3を含み、2つのノズルがそれぞれ水洗塔1層目ノズル501と水洗塔2層目ノズル502であり、水洗塔1層目ノズル501と水洗塔2層目ノズル502がそれぞれ水洗塔一段循環スプレーポンプ601、水洗塔二段循環スプレーポンプ602によって給水され、2層目塔板に若干の溢れ小管1 4が設置されている。水洗塔に導入された80%以上のVOCsガスの充分な水洗を実現する。 The water washing unit is a multi-stage spray tower, and includes a water washing tower 3 equipped with two tower plates and two nozzles, the two nozzles being the first water washing tower nozzle 501 and the second water washing tower nozzle 502, which are respectively supplied with water by the first water washing tower circulation spray pump 601 and the second water washing tower circulation spray pump 602, and a small overflow pipe 14 is installed on the second tower plate. This achieves sufficient water washing of more than 80% of the VOCs gas introduced into the water washing tower.

前記自動結合予冷ユニットとしては内部自動結合ワンドリブンツー型除霜システムが使用され、二段凝縮装置A9、二段凝縮装置B10及び一段凝縮装置7を含み、前記二段凝縮装置A、二段凝縮装置B及び一段凝縮装置の間は第1の凝縮回路2801と第2の凝縮回路2802の2種の接続方式があり、
前記第1の凝縮回路の接続方式は、二段凝縮装置Bの入口端が水洗ユニットの水洗塔の出口端に接続され、二段凝縮装置Bの出口端が一段凝縮装置の入口端に接続され、一段凝縮装置の出口端が二段凝縮装置Aの入口端に接続され、二段凝縮装置Aの出口端が低温吸収ユニットに接続されるようになっており、
前記第2の凝縮回路の接続方式は、二段凝縮装置Aの入口端が水洗ユニットの水洗塔の出口端に接続され、二段凝縮装置Aの出口端が一段凝縮装置の入口端に接続され、一段凝縮装置の出口端が二段凝縮装置Bの入口端に接続され、二段凝縮装置Bの出口端が低温吸収ユニットに接続されるようになっている。
The automatic coupling pre-cooling unit is an internal automatic coupling one-driven two-type defrosting system, which includes a two-stage condensing device A9, a two-stage condensing device B10 and a single-stage condensing device 7. There are two types of connection between the two-stage condensing device A, the two-stage condensing device B and the single-stage condensing device, namely, a first condensing circuit 2801 and a second condensing circuit 2802.
The connection manner of the first condensation circuit is as follows: an inlet end of the two-stage condenser B is connected to an outlet end of the water washing tower of the water washing unit, an outlet end of the two-stage condenser B is connected to an inlet end of the single-stage condenser, an outlet end of the single-stage condenser is connected to an inlet end of the two-stage condenser A, and an outlet end of the two-stage condenser A is connected to the low-temperature absorption unit;
The connection method of the second condensation circuit is such that the inlet end of the two-stage condenser A is connected to the outlet end of the water washing tower of the water washing unit, the outlet end of the two-stage condenser A is connected to the inlet end of the single-stage condenser, the outlet end of the single-stage condenser is connected to the inlet end of the two-stage condenser B, and the outlet end of the two-stage condenser B is connected to the low-temperature absorption unit.

前記自動結合予冷ユニットの一段凝縮装置、二段凝縮装置A、二段凝縮装置Bがいずれも液体分離タンク111に接続され、液体分離タンク1は密度で分流し、中間が緩衝領域であり、左側が有機物領域であり、右側が凝縮水領域である。 The single-stage condenser, two-stage condenser A, and two-stage condenser B of the automatic combined pre-cooling unit are all connected to a liquid separation tank 111, and the liquid separation tank 1 is divided based on density, with the middle being a buffer region, the left side being an organic matter region, and the right side being a condensed water region.

一段凝縮装置が初級凝縮を行わせ、二段凝縮装置Aと二段凝縮装置Bが高度凝縮を行わせ、VOCsガスが先に高度凝縮を行い、次に初級凝縮を行い、それによって初級凝縮装置が着霜することを回避し、更に高度凝縮を行い、2回目の高度凝縮ガス出口端が自動結合予冷ユニットの出口端となり、前記低温吸収ユニット入口端に接続される。 The single-stage condenser performs primary condensation, and the two-stage condenser A and the two-stage condenser B perform advanced condensation. The VOCs gas undergoes advanced condensation first, and then primary condensation, thereby preventing the primary condenser from frosting, and then undergoes further advanced condensation. The second highly condensed gas outlet becomes the outlet of the automatically coupled pre-cooling unit, which is connected to the inlet of the low-temperature absorption unit.

二段凝縮装置Bが着霜した場合に除霜する必要がある時、第1の凝縮回路を作動させ、VOCsガスが順に二段凝縮装置B、一段凝縮装置及び二段凝縮装置Aを通過して凝縮し、二段凝縮装置Aが着霜した場合に除霜する必要がある時、第2の凝縮回路を作動させ、VOCsガスがまず二段凝縮装置Aを通過して凝縮し、続いて順に一段凝縮装置と二段凝縮装置Bを通過して凝縮する。 When frost has formed on the two-stage condenser B and defrosting is required, the first condensation circuit is operated and the VOCs gas condenses by passing through the two-stage condenser B, the single-stage condenser, and the two-stage condenser A in that order. When frost has formed on the two-stage condenser A and defrosting is required, the second condensation circuit is operated and the VOCs gas condenses by first passing through the two-stage condenser A, and then condenses by passing through the single-stage condenser and the two-stage condenser B in that order.

前記低温吸収ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える吸収塔13を含み、吸収塔のガス入口端が吸収塔の1層目において吸収液液面より高い上方に設置され、前記吸収塔の2層目塔板にはVOCsガスの伝送と2層目吸収液のオーバーフロー伝送のための若干の溢れ小管2 14が設置され、VOCsガスが吸収塔の1層目のノズル1501によるスプレーを経た後、溢れ小管2を経由して吸収塔の2層目に入り、更に吸収塔の2層目のノズル1502によるスプレーを経て、VOCsガスの充分な吸収を実現し、前記吸収塔の塔頂に更に合格ガス排出口が設置されている。 The low-temperature absorption unit is a multi-stage spray tower, and includes an absorption tower 13 equipped with two tower plates and two nozzles. The gas inlet end of the absorption tower is installed above the liquid level of the absorbing liquid in the first layer of the absorption tower. The second layer tower plate of the absorption tower is equipped with a number of overflow pipes 2 14 for the transmission of VOCs gas and the overflow transmission of the second layer absorbing liquid. After the VOCs gas is sprayed by the nozzle 1501 of the first layer of the absorption tower, it enters the second layer of the absorption tower through the overflow pipe 2, and is further sprayed by the nozzle 1502 of the second layer of the absorption tower, thereby achieving sufficient absorption of the VOCs gas. An approved gas outlet is also installed at the top of the absorption tower.

低温吸収ユニットは、
吸収塔1層目吸収液出口が吸収塔一段循環スプレーポンプ1601を介して吸収塔1層目ノズルに接続され、VOCsガスに対するスプレーを実現する第1の自己循環吸収液回路2803と、
吸収塔2層目吸収液出口が吸収塔二段循環スプレーポンプ1602を介して吸収塔2層目ノズルに接続され、VOCsガスに対する更なるスプレーを実現する第2の自己循環吸収液回路2804と、を含む。
The low temperature absorption unit is
A first self-circulating absorbing liquid circuit 2803 in which an outlet of the absorbing liquid in the first layer of the absorption tower is connected to a nozzle of the first layer of the absorption tower via an absorption tower first-stage circulation spray pump 1601, thereby realizing spraying of VOCs gas;
The second layer absorbent outlet of the absorber is connected to the second layer nozzle of the absorber via the absorber two-stage circulation spray pump 1602, and a second self-circulating absorbent circuit 2804 is included to realize further spraying of VOCs gas.

前記高温脱離ユニットは脱離塔21を含み、前記脱離塔と前記低温吸収ユニット中の吸収塔の間の接続方式は、
低温吸収ユニット中の吸収塔の塔底吸収液出口が熱交換器2の管層を介して高温脱離ユニット中の脱離塔の塔本体上方の吸収液入口端に接続される第1の脱離回路2805と、
高温脱離ユニット中の脱離塔の塔底下方吸収液出口が熱交換器2の殼層を介して低温吸収ユニット中の第2の自己循環吸収液回路の入口に接続される第2の脱離回路2806と、を含み、
吸収塔の第1の自己循環吸収液回路、第2の自己循環吸収液回路、第1の脱離回路及び第2の脱離回路内の吸収液と吸収塔及び脱離塔内の吸収液が流量平衡を形成している。
The high-temperature desorption unit includes a desorption tower 21, and the connection manner between the desorption tower and the absorption tower in the low-temperature absorption unit is as follows:
a first desorption circuit 2805 in which a bottom absorbing liquid outlet of the absorption tower in the low temperature absorption unit is connected to an absorbing liquid inlet end at an upper part of the tower body of the desorption tower in the high temperature desorption unit through a tube layer of a heat exchanger 2;
a second desorption circuit 2806 in which the bottom lower absorbent outlet of the desorption column in the high temperature desorption unit is connected to the inlet of the second self-circulating absorbent circuit in the low temperature absorption unit through the shell of the heat exchanger 2;
The absorbing liquid in the first self-circulating absorbing liquid circuit, the second self-circulating absorbing liquid circuit, the first desorption circuit and the second desorption circuit of the absorber and the absorbing liquid in the absorber and desorption tower form a flow rate balance.

前記高温脱離ユニット中の脱離塔が回収回路2807を介して低温吸収ユニット中の吸収塔に接続され、前記回収回路は、脱離塔の頂端出口が順に熱交換器3、真空ポンプ25を介して回収横型タンク18に接続され、回収横型タンクの頂端出口が吸収塔の入口端に接続されるようになっている。 The desorption tower in the high-temperature desorption unit is connected to the absorption tower in the low-temperature absorption unit via a recovery circuit 2807, and the recovery circuit is configured so that the top outlet of the desorption tower is connected to the horizontal recovery tank 18 via a heat exchanger 3 and a vacuum pump 25, and the top outlet of the horizontal recovery tank is connected to the inlet end of the absorption tower.

前記高温脱離ユニット中の脱離塔の熱源23の出口端がトラップ22に接続される。 The outlet end of the heat source 23 of the desorption tower in the high-temperature desorption unit is connected to the trap 22.

前記低温回収ユニットの回収横型タンクが液体分離タンク2 19に接続され、液体分離タンク2は密度で分流し、中間が緩衝領域で、左側が有機物領域で、右側が凝縮水領域である。 The horizontal recovery tank of the low-temperature recovery unit is connected to liquid separation tank 2 19, which is divided by density, with a buffer zone in the middle, an organic matter zone on the left, and a condensed water zone on the right.

水洗ユニット入口端がフレームアレスター1を介してVOCs現場導入ガスに接続され、いずれのユニットといずれの管路にもブレーキ弁2又は自動制御弁8又はボール弁12と流量計が設置されている。 The inlet end of the water washing unit is connected to the VOCs gas introduced into the site via a flame arrester 1, and each unit and each pipeline is equipped with a brake valve 2 or automatic control valve 8 or ball valve 12 and a flow meter.

VOCsガスは冷源27と熱源によって熱交換し、剰余冷量の回収とVOCsの凝縮又は気化を実現する。 The VOCs gas undergoes heat exchange with the cold source 27 and the heat source, recovering excess cold and condensing or vaporizing the VOCs.

低温吸収ユニットの吸収塔と安全排出口の間に熱交換器1 17が設置されており、前記熱交換器1が低温吸収ユニットの吸収塔の放出した低温ガスを用いて剰余冷量回収を行って、自動結合予冷ユニット後の冷源に冷量を補充し、
低温吸収ユニットの吸収塔と高温脱離ユニットの間には、低温吸収ユニットの排出した低温吸収液と高温脱離ユニットの脱離した高温吸収液を用いて互に熱量を回収する熱交換器2が設置されている。
A heat exchanger 1 17 is installed between the absorption tower of the low-temperature absorption unit and the safety outlet, and the heat exchanger 1 recovers the surplus cold amount using the low-temperature gas discharged from the absorption tower of the low-temperature absorption unit, and supplements the cold amount to the cold source after the automatic coupling pre-cooling unit;
A heat exchanger 2 is installed between the absorption tower of the low-temperature absorption unit and the high-temperature desorption unit, which recovers heat from the low-temperature absorption liquid discharged from the low-temperature absorption unit and the high-temperature absorption liquid desorbed from the high-temperature desorption unit.

一段凝縮装置、二段凝縮装置A、二段凝縮装置B、熱交換器1、吸収塔中の内蔵熱交換器、回収横型タンク中の内蔵熱交換器がいずれも回収ポンプを介して冷源に接続され、脱離塔中の内蔵熱交換器が熱源に接続され、前記熱交換器3が循環水熱交換器である。 The single-stage condenser, the two-stage condenser A, the two-stage condenser B, heat exchanger 1, the built-in heat exchanger in the absorption tower, and the built-in heat exchanger in the horizontal recovery tank are all connected to a cold source via a recovery pump, the built-in heat exchanger in the desorption tower is connected to a heat source, and the heat exchanger 3 is a circulating water heat exchanger.

VOCs現場導入ガスが順にフレームアレスター、水洗ユニットを通過してアンモニアを除去されてから、自動結合予冷ユニットに導入されるステップ(1)と、
自動結合予冷ユニットでVOCsガスが脱水処理されてから、低温吸収ユニットに導入されるステップ(2)と、
低温吸収ユニットが第1の自己循環吸収液回路と第2の自己循環吸収液回路を作動して吸収させ、吸収塔の1層目のリッチ吸収液が第1の脱離回路を通過する過程で、熱交換器2の管層によって冷量を回収された後、高温脱離ユニット中の脱離塔に導入されて脱離し、脱離した新鮮吸収液が第2の脱離回路を通過して熱交換器2の殼層によって熱量を回収された後、吸収塔の2層目のリーン吸収液を優先的に補足されるステップ(3)と、
脱離したVOCsガスが回収回路を通過して回収横型タンクに導入されて凝縮液化して回収され、未液化のVOCsガスが再度低温吸収ユニットに搬送されて吸収するステップ(4)と、を含むVOCs回収処理システムを利用したVOCs回収方法である。
Step (1) of introducing VOCs gas into the site through a flame arrester and a water washing unit to remove ammonia, and then introducing the gas into an automatic combination pre-cooling unit;
(2) the VOCs gas is dehydrated in an automatic combined pre-cooling unit and then introduced into a low-temperature absorption unit;
Step (3) in which the low-temperature absorption unit operates the first self-circulating absorption liquid circuit and the second self-circulating absorption liquid circuit to absorb, the rich absorption liquid in the first layer of the absorption tower passes through the first desorption circuit, the cold amount is recovered by the tube layer of the heat exchanger 2, and then the rich absorption liquid is introduced into the desorption tower in the high-temperature desorption unit for desorption, the desorbed fresh absorption liquid passes through the second desorption circuit, the heat amount is recovered by the shell layer of the heat exchanger 2, and then the lean absorption liquid in the second layer of the absorption tower is preferentially supplemented;
The VOC recovery method utilizing the VOC recovery processing system includes a step (4) in which the desorbed VOC gas passes through a recovery circuit and is introduced into a horizontal recovery tank where it is condensed, liquefied and recovered, and the unliquefied VOC gas is transported again to the low-temperature absorption unit for absorption.

本発明は下記の有用な効果を達成した。 The present invention achieved the following useful effects:

本発明では、水洗+自動結合予冷+低温吸収+高温脱離+低温回収を一体化したVOCs回収方法を採用し、数種の方法の長所を組みわせ、短所を互に補足することで、省エネルギー効果が高くなることに加えて、吸収液の循環再利用を実現し、エネルギー消費コストを大幅に低減した。 In this invention, a VOCs recovery method is adopted that integrates water washing + automatic binding pre-cooling + low-temperature absorption + high-temperature desorption + low-temperature recovery. By combining the advantages of several methods and complementing each other's disadvantages, energy conservation is increased, and the absorption liquid can be recycled and reused, resulting in a significant reduction in energy consumption costs.

本発明では、多段式水洗塔と多段式吸収塔を用いてそれぞれVOCsを充分に水洗し、吸収させ、2層目の塔板に設置された若干の溢れ小管によってVOCsの上への伝送と液体の下へのオーバーフロー伝送を実現し、更に塔の2層の自己循環スプレーを利用して、吸収効率、吸収液の使用効率を向上しただけでなく、エネルギー消費と運転費を低下した。 In this invention, a multi-stage washing tower and a multi-stage absorption tower are used to thoroughly wash and absorb VOCs, respectively, and a few overflow pipes installed in the second tower plate allow the VOCs to be transported upward and the liquid to overflow downward. Furthermore, by utilizing the self-circulating spray in the two tower layers, not only is the absorption efficiency and the efficiency of the absorbent used improved, but energy consumption and operating costs are also reduced.

本発明では、内部自動結合除霜システムが採用され、3台の凝縮装置がワンドリブンツー型になっており、内部の循環管路ユニットは除霜の需要に応じて交互に作動し、即ち2台の高度凝縮装置は交互に使用され、予冷効率を向上しただけでなく、更にVOCs自身の熱量を用いて交互に高度凝縮装置を除霜し、エネルギーの使用を大幅に低減し、エネルギーの浪費を回避した。 In this invention, an internal automatic combined defrosting system is adopted, and the three condensers are one-driven two-type, and the internal circulation piping unit operates alternately according to the demand for defrosting, that is, the two advanced condensers are used alternately, which not only improves the pre-cooling efficiency, but also uses the heat of the VOCs themselves to defrost the advanced condensers alternately, greatly reducing the energy consumption and avoiding energy waste.

本発明における熱交換器1と熱交換器2はそれぞれ吸収塔の低温ガスと低温液体に対して剰余冷量回収を行って、熱量の利用効率を向上し、エネルギーの使用を低減した。 Heat exchanger 1 and heat exchanger 2 in the present invention recover excess cold from the low-temperature gas and low-temperature liquid in the absorption tower, respectively, improving the efficiency of heat utilization and reducing energy consumption.

本発明における自動結合予冷ユニットと低温回収ユニットのいずれにも密度で分流する液体分離タンクが設置されており、その中間が緩衝領域で、左側が有機物領域で、右側が凝縮水領域であり、VOCs回収率と使用安全性を大幅に向上した。 Both the automatic combined pre-cooling unit and the low-temperature recovery unit in this invention are equipped with liquid separation tanks that separate the liquids based on density, with a buffer zone in the middle, an organic matter zone on the left, and a condensed water zone on the right, greatly improving the VOCs recovery rate and safety of use.

本発明による実施例の装置の構造接続模式図である。FIG. 2 is a structural connection schematic diagram of an apparatus according to an embodiment of the present invention. 本発明による実施例の装置の構造接続模式図である。FIG. 2 is a structural connection schematic diagram of an apparatus according to an embodiment of the present invention. 本発明による実施例の装置中の自動結合予冷ユニットの詳細な構造接続の模式図である。FIG. 2 is a detailed structural connection schematic diagram of the automatic combination pre-cooling unit in the apparatus of the embodiment according to the present invention; 本発明による実施例の装置中の水洗塔又は吸収塔の2層目の塔板の溢れ小管の横断面の模式図である。FIG. 2 is a schematic cross-sectional view of an overflow tube in the second layer of a water washing tower or an absorption tower in an embodiment of the present invention. 本発明による実施例の装置中のVOCsが水洗塔又は吸収塔の2層目の塔板の溢れ小管を通過する過程の模式図である。FIG. 2 is a schematic diagram showing the process in which VOCs in an embodiment of the present invention pass through the overflow pipe of the second layer of a water washing tower or an absorption tower. 本発明による実施例の装置中のVOCsが吸収塔の2層目の塔板の溢れ小管を通過する過程の局所模式図である。FIG. 2 is a schematic diagram showing a process in which VOCs in an embodiment of the present invention pass through the overflow tube of the second layer of the absorption tower.

本発明の目的、技術的解決手段及びメリットをより明瞭にするために、以下、実施例を参照しながら本発明を更に詳細に説明する。ここに記載の具体的な実施例は本発明を解釈するためのものに過ぎず、本発明を限定する意図がないことを理解されたい。 In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be described in more detail with reference to the following examples. It should be understood that the specific examples described herein are merely for the purpose of illustrating the present invention, and are not intended to limit the present invention.

以下、図面を参照しながら本発明の応用原理を詳細に説明する。 The application principle of this invention will be explained in detail below with reference to the drawings.

図1に記載の本発明のVOCs処理システムは、
自動結合予冷ユニットに接続され、VOCs導入ガスを水洗するために用いられる水洗ユニットと、
低温吸収ユニットに接続され、水洗後のVOCsガスを凝縮させるために用いられる自動結合予冷ユニットと、
熱交換器2 20を介して高温脱離ユニットに接続され、凝縮後のVOCsガスを吸収させるために用いられる低温吸収ユニットと、
熱交換器3 24を介して低温回収ユニットに接続され、低温吸収後のVOCsガスを脱離させるために用いられる高温脱離ユニットと、
低温吸収ユニットに接続され、液化後のVOCsを回収すると共に、未液化のVOCsを再度低温吸収ユニットに搬送して処理するために用いられる低温回収ユニットと、を含む。
The VOCs treatment system of the present invention shown in FIG.
a water washing unit connected to the automatic coupling pre-cooling unit and used for washing the VOCs-introducing gas;
an automatic combined pre-cooling unit connected to the low temperature absorption unit and used for condensing the VOCs gas after washing;
a low-temperature absorption unit connected to the high-temperature desorption unit via a heat exchanger 220 and used to absorb the condensed VOCs gas;
a high-temperature desorption unit connected to the low-temperature recovery unit via a heat exchanger 3 24 and used to desorb the VOCs gas after low-temperature absorption;
and a low-temperature recovery unit connected to the low-temperature absorption unit for recovering the liquefied VOCs and transporting the unliquefied VOCs back to the low-temperature absorption unit for treatment.

図3、4に記載の水洗ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える水洗塔3を含み、2つのノズルがそれぞれ水洗塔1層目ノズル501と水洗塔2層目ノズル502であり、水洗塔1層目ノズル501と水洗塔2層目ノズル502がそれぞれ水洗塔一段循環スプレーポンプ601、水洗塔二段循環スプレーポンプ602によって給水され、2層目塔板に若干の溢れ小管1 4が設置されている。水洗塔に導入された80%以上のVOCsガスの充分な水洗を実現する。 The water washing unit shown in Figures 3 and 4 is a multi-stage spray tower, and includes a water washing tower 3 equipped with two tower plates and two nozzles, the two nozzles being the first water washing tower nozzle 501 and the second water washing tower nozzle 502, which are respectively supplied with water by the first water washing tower circulation spray pump 601 and the second water washing tower circulation spray pump 602, and a small overflow pipe 14 is installed on the second tower plate. This achieves sufficient washing of more than 80% of the VOCs gas introduced into the water washing tower.

図2に記載の自動結合予冷ユニットとしては内部自動結合ワンドリブンツー型除霜システムが採用され、二段凝縮装置A9、二段凝縮装置B10及び一段凝縮装置7を含み、前記二段凝縮装置A、二段凝縮装置B及び一段凝縮装置の間は第1の凝縮回路2801及び第2の凝縮回路2802の2種の接続方式があり、
前記第1の凝縮回路の接続方式は、二段凝縮装置Bの入口端が水洗ユニットの水洗塔の出口端に接続され、二段凝縮装置Bの出口端が一段凝縮装置の入口端に接続され、一段凝縮装置の出口端が二段凝縮装置Aの入口端に接続され、二段凝縮装置Aの出口端が低温吸収ユニットに接続されるようになっており、
前記第2の凝縮回路の接続方式は、二段凝縮装置Aの入口端が水洗ユニットの水洗塔の出口端に接続され、二段凝縮装置Aの出口端が一段凝縮装置の入口端に接続され、一段凝縮装置の出口端が二段凝縮装置Bの入口端に接続され、二段凝縮装置Bの出口端が低温吸収ユニットに接続されるようになっている。
The automatic coupling pre-cooling unit shown in FIG. 2 adopts an internal automatic coupling one-driven two-type defrosting system, which includes a two-stage condensing device A9, a two-stage condensing device B10 and a single-stage condensing device 7, and there are two types of connection between the two-stage condensing device A, the two-stage condensing device B and the single-stage condensing device, namely a first condensing circuit 2801 and a second condensing circuit 2802;
The connection manner of the first condensation circuit is as follows: an inlet end of the two-stage condenser B is connected to an outlet end of the water washing tower of the water washing unit, an outlet end of the two-stage condenser B is connected to an inlet end of the single-stage condenser, an outlet end of the single-stage condenser is connected to an inlet end of the two-stage condenser A, and an outlet end of the two-stage condenser A is connected to the low-temperature absorption unit;
The connection method of the second condensation circuit is such that the inlet end of the two-stage condenser A is connected to the outlet end of the water washing tower of the water washing unit, the outlet end of the two-stage condenser A is connected to the inlet end of the single-stage condenser, the outlet end of the single-stage condenser is connected to the inlet end of the two-stage condenser B, and the outlet end of the two-stage condenser B is connected to the low-temperature absorption unit.

前記自動結合予冷ユニットの一段凝縮装置、二段凝縮装置A、二段凝縮装置Bがそれぞれ液体分離タンク111に接続され、液体分離タンク1は密度で分流し、中間が緩衝領域で、左側が有機物領域で、右側が凝縮水領域である。 The single-stage condenser, two-stage condenser A, and two-stage condenser B of the automatic combined pre-cooling unit are each connected to a liquid separation tank 111, and the liquid separation tank 1 is divided based on density, with the middle being a buffer region, the left side being an organic matter region, and the right side being a condensed water region.

一段凝縮装置が初級凝縮を行わせ、二段凝縮装置Aと二段凝縮装置Bが高度凝縮を行わせ、VOCsガスが先に高度凝縮を行い、次に初級凝縮を行い、それによって初級凝縮装置が着霜することを回避し、更に高度凝縮を行い、2回目の高度凝縮ガス出口端が自動結合予冷ユニットの出口端となり、前記低温吸収ユニット入口端に接続される。 The single-stage condenser performs primary condensation, and the two-stage condenser A and the two-stage condenser B perform advanced condensation. The VOCs gas undergoes advanced condensation first, and then primary condensation, thereby preventing the primary condenser from frosting, and then undergoes further advanced condensation. The second highly condensed gas outlet becomes the outlet of the automatically coupled pre-cooling unit, which is connected to the inlet of the low-temperature absorption unit.

二段凝縮装置Bが着霜した場合に除霜する必要がある時、第1の凝縮回路を作動させ、VOCsガスが順に二段凝縮装置B、一段凝縮装置及び二段凝縮装置Aを通過して凝縮し、二段凝縮装置Aが着霜した場合に除霜する必要がある時、第2の凝縮回路を作動させ、VOCsガスがまず二段凝縮装置Aを通過して凝縮し、続いて順に一段凝縮装置と二段凝縮装置Bを通過して凝縮する。 When frost has formed on the two-stage condenser B and defrosting is required, the first condensation circuit is operated and the VOCs gas condenses by passing through the two-stage condenser B, the single-stage condenser, and the two-stage condenser A in that order. When frost has formed on the two-stage condenser A and defrosting is required, the second condensation circuit is operated and the VOCs gas condenses by first passing through the two-stage condenser A, and then condenses by passing through the single-stage condenser and the two-stage condenser B in that order.

図3、4、5に記載の低温吸収ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える吸収塔13を含み、吸収塔のガス入口端が吸収塔の1層目において吸収液液面より高い上方に設置され、前記吸収塔の2層目塔板にはVOCsガスの伝送と2層目吸収液のオーバーフロー伝送のための若干の溢れ小管2 14が設置され、VOCsガスが吸収塔の1層目のノズル1501によるスプレーを経た後、溢れ小管2を経由して吸収塔の2層目に入り、更に吸収塔の2層目のノズル1502によるスプレーを経て、VOCsガスの充分な吸収を実現し、前記吸収塔の塔頂に更に合格ガス排出口が設置されている。 The low-temperature absorption unit shown in Figures 3, 4, and 5 is a multi-stage spray tower, and includes an absorption tower 13 equipped with two tower plates and two nozzles. The gas inlet end of the absorption tower is installed above the liquid level of the absorbing liquid in the first layer of the absorption tower, and a number of overflow pipes 2 14 are installed on the tower plate of the second layer of the absorption tower for the transmission of VOCs gas and the overflow transmission of the second layer absorbing liquid. After the VOCs gas is sprayed by the nozzle 1501 of the first layer of the absorption tower, it enters the second layer of the absorption tower through the overflow pipe 2, and then sprayed by the nozzle 1502 of the second layer of the absorption tower, thereby achieving sufficient absorption of the VOCs gas. An approved gas outlet is also installed at the top of the absorption tower.

低温吸収ユニットは、
吸収塔1層目吸収液出口が吸収塔一段循環スプレーポンプ1601を介して吸収塔1層目ノズルに接続され、VOCsガスに対するスプレーを実現する第1の自己循環吸収液回路2803と、
吸収塔2層目吸収液出口が吸収塔二段循環スプレーポンプ1602を介して吸収塔2層目ノズルに接続され、VOCsガスに対する更なるスプレーを実現する第2の自己循環吸収液回路2804と、を含む。
The low temperature absorption unit is
A first self-circulating absorbing liquid circuit 2803 in which an outlet of the absorbing liquid in the first layer of the absorption tower is connected to a nozzle of the first layer of the absorption tower via an absorption tower first-stage circulation spray pump 1601, thereby realizing spraying of VOCs gas;
The second layer absorbent outlet of the absorber is connected to the second layer nozzle of the absorber via the absorber two-stage circulation spray pump 1602, and a second self-circulating absorbent circuit 2804 is included to realize further spraying of VOCs gas.

前記高温脱離ユニットは脱離塔21を含み、前記脱離塔と前記低温吸収ユニット中の吸収塔の間の接続方式は、
低温吸収ユニット中の吸収塔の塔底吸収液出口が、熱交換器2の管層を介して高温脱離ユニット中の脱離塔の塔本体上方の吸収液入口端に接続される第1の脱離回路2805と、
高温脱離ユニット中の脱離塔の塔底下方吸収液出口が、熱交換器2の殼層を介して低温吸収ユニット中の第2の自己循環吸収液回路の入口に接続される第2の脱離回路2806と、を含み、
吸収塔の第1の自己循環吸収液回路、第2の自己循環吸収液回路、第1の脱離回路及び第2の脱離回路内の吸収液と吸収塔及び脱離塔内の吸収液が、流量平衡を形成している。
The high-temperature desorption unit includes a desorption tower 21, and the connection manner between the desorption tower and the absorption tower in the low-temperature absorption unit is as follows:
a first desorption circuit 2805 in which the bottom absorption liquid outlet of the absorption tower in the low temperature absorption unit is connected to the absorption liquid inlet end at the top of the tower body of the desorption tower in the high temperature desorption unit through a tube layer of a heat exchanger 2;
a second desorption circuit 2806, in which the bottom lower absorption liquid outlet of the desorption column in the high temperature desorption unit is connected to the inlet of the second self-circulating absorption liquid circuit in the low temperature absorption unit through the shell of the heat exchanger 2;
The absorbing liquid in the first self-circulating absorbing liquid circuit, the second self-circulating absorbing liquid circuit, the first desorption circuit and the second desorption circuit of the absorber and the absorbing liquid in the absorber and desorption tower form a flow rate balance.

前記高温脱離ユニット中の脱離塔が回収回路2807を介して低温吸収ユニット中の吸収塔に接続され、前記回収回路は、脱離塔の頂端出口が順に熱交換器3、真空ポンプ25を介して回収横型タンク18に接続され、回収横型タンクの頂端出口が吸収塔の入口端に接続されるようになっている。 The desorption tower in the high-temperature desorption unit is connected to the absorption tower in the low-temperature absorption unit via a recovery circuit 2807, and the recovery circuit is configured so that the top outlet of the desorption tower is connected to the horizontal recovery tank 18 via a heat exchanger 3 and a vacuum pump 25, and the top outlet of the horizontal recovery tank is connected to the inlet end of the absorption tower.

前記低温回収ユニットの回収横型タンクが液体分離タンク2 19に接続され、液体分離タンク2は密度で分流し、中間が緩衝領域で、左側が有機物領域で、右側が凝縮水領域である。 The horizontal recovery tank of the low-temperature recovery unit is connected to liquid separation tank 2 19, which is divided by density, with a buffer zone in the middle, an organic matter zone on the left, and a condensed water zone on the right.

水洗ユニット入口端がフレームアレスター1を介してVOCs現場導入ガスに接続され、いずれのユニットといずれの管路にもブレーキ弁2又は自動制御弁8又はボール弁12と流量計が設置されており、前記高温脱離ユニット中の脱離塔の熱源23の出口端がトラップ22に接続される。 The inlet end of the water washing unit is connected to the VOCs gas introduced on-site via a flame arrester 1, and each unit and each pipeline is equipped with a brake valve 2 or an automatic control valve 8 or a ball valve 12 and a flow meter, and the outlet end of the heat source 23 of the desorption tower in the high-temperature desorption unit is connected to a trap 22.

VOCsガスは冷源27と熱源によって熱交換し、剰余冷量の回収とVOCsの凝縮又は気化を実現する。 The VOCs gas undergoes heat exchange with the cold source 27 and the heat source, recovering excess cold and condensing or vaporizing the VOCs.

VOCs現場導入ガスが順にフレームアレスター、水洗ユニットを通過してアンモニアを除去されてから、自動結合予冷ユニットに導入されるステップ(1)と、
自動結合予冷ユニットでVOCsガスが脱水処理されてから、低温吸収ユニットに導入されるステップ(2)と、
低温吸収ユニットが第1の自己循環吸収液回路と第2の自己循環吸収液回路を作動して吸収させ、吸収塔の1層目のリッチ吸収液が第1の脱離回路を通過する過程で、熱交換器2の管層によって冷量を回収された後、高温脱離ユニット中の脱離塔に導入されて脱離し、脱離した新鮮吸収液が第2の脱離回路を通過して熱交換器2の殼層によって熱量を回収された後、吸収塔の2層目のリーン吸収液を優先的に補足されるステップ(3)と、
脱離したVOCsガスが回収回路を通過して回収横型タンクに導入されて凝縮液化して回収され、未液化のVOCsガスが再度低温吸収ユニットに搬送されて吸収するステップ(4)と、を含む吸収、脱離及び回収を一体化したVOCs回収方法である。
Step (1) of introducing VOCs gas into the site through a flame arrester and a water washing unit to remove ammonia, and then introducing the gas into an automatic combination pre-cooling unit;
(2) the VOCs gas is dehydrated in an automatic combined pre-cooling unit and then introduced into a low-temperature absorption unit;
Step (3) in which the low-temperature absorption unit operates the first self-circulating absorption liquid circuit and the second self-circulating absorption liquid circuit to absorb, the rich absorption liquid in the first layer of the absorption tower passes through the first desorption circuit, the cold amount is recovered by the tube layer of the heat exchanger 2, and then the rich absorption liquid is introduced into the desorption tower in the high-temperature desorption unit for desorption, the desorbed fresh absorption liquid passes through the second desorption circuit, the heat amount is recovered by the shell layer of the heat exchanger 2, and then the lean absorption liquid in the second layer of the absorption tower is preferentially supplemented;
The desorbed VOCs gas passes through a recovery circuit and is introduced into a horizontal recovery tank where it is condensed, liquefied and recovered, and the unliquefied VOCs gas is transported again to the low-temperature absorption unit for absorption (4). This is a VOCs recovery method that integrates absorption, desorption and recovery.

前記ステップ(2)において、VOCsガスが二段凝縮装置Bに導入され、続いて順に一段凝縮装置7と二段凝縮装置AによってVOCsを凝縮させ除水させ、続いて未凝縮のVOCsガスが低温吸収ユニットの吸収塔に導入される。 In step (2), the VOCs gas is introduced into the two-stage condenser B, and then the VOCs are condensed and dehydrated in the single-stage condenser 7 and the two-stage condenser A, respectively, and the uncondensed VOCs gas is then introduced into the absorption tower of the low-temperature absorption unit.

前記ステップ(3)において、VOCsガスがまず吸収塔の1層目でスプレーされて吸収し、この時に大量のVOCsが吸収液に吸収し、残りのVOCsガスが更に溢れ小管2を通過して吸収塔の2層目に導入されて新鮮吸収液のスプレーを経て高度に吸収し、合格したガスが熱交換器1を経由して安全排出口から排出される。 In step (3), the VOCs gas is first sprayed and absorbed in the first layer of the absorption tower, at which point a large amount of VOCs is absorbed in the absorbing liquid, and the remaining VOCs gas passes through the overflow pipe 2 and is introduced into the second layer of the absorption tower, where it is highly absorbed through the spray of fresh absorbing liquid, and the gas that passes is discharged from the safety outlet via the heat exchanger 1.

前記ステップ(3)において、吸収塔の2層目の吸収液が自身のスプレーに用いられることに加えて、液位が溢れ小管2の溢れ口を超えると、吸収液が溢れて吸収塔の1層目のリッチ吸収液に入る。 In step (3), in addition to being used for its own spray, when the liquid level exceeds the overflow port of small tube 2, the absorbing liquid overflows and enters the rich absorbing liquid in the first layer of the absorbing tower.

前記ステップ(4)において、高温VOCsガスが脱離塔21の塔頂出口から回収回路を経由して回収され、即ち、先に熱交換器3によって循環水で初級的に降温され、続いて真空ポンプ25によって低温回収横型タンクに導入され、気態VOCsを液化し、液化後のVOCsを回収し、未液化のVOCsを再度吸収塔に導入して処理を継続する。 In step (4), the high-temperature VOC gas is recovered from the top outlet of the desorption tower 21 via a recovery circuit; that is, the temperature is initially lowered with circulating water by the heat exchanger 3, and then the gaseous VOCs are introduced into the low-temperature horizontal recovery tank by the vacuum pump 25, where the gaseous VOCs are liquefied, the liquefied VOCs are recovered, and the unliquefied VOCs are introduced back into the absorption tower to continue the process.

吸収性物質のVOCsの気液の二種状態の変換と気液変換による分離を実現し、分離効率を向上するために、熱交換装置は、以下を含む。
低温吸収ユニットと安全排出口の間に設置され、回収ポンプ26を介して冷源に接続され、放出した低温ガスに対して剰余冷量回収を行って、自動結合予冷ユニットから放出した冷源冷量を補足することに用いられる熱交換器1 17を含み、
低温吸収ユニットの吸収塔と高温脱離ユニットの間に設置され、そのいずれか1つの熱交換管路の一端が前記の低温吸収ユニットに接続され、他端が前記の高温脱離ユニットに接続される熱交換器2を含む。
前記熱交換器2が低温吸収ユニットの排出した低温吸収液と高温脱離ユニットの脱離した高温吸収液を用いて互に熱量を回収する。
高温脱離ユニットと低温回収ユニットの間に設置された熱交換器3を含み、
熱交換器3が循環水熱交換器であり、高温VOCsが真空ポンプに損害を与えることを防止するためのものである。熱交換器3によって降温した後の低温VOCsが真空ポンプによって回収横型タンクに搬送されてから更に凝縮し、液体に変化したVOCsが低温回収ユニットの液体分離タンク2に貯留される。
前記自動結合予冷ユニットに設置された一段凝縮装置、二段凝縮装置A、二段凝縮装置Bを含み、前記の一段凝縮装置、二段凝縮装置A及び二段凝縮装置Bが回収ポンプを介して冷源に接続される。
更に、それぞれ吸収塔、脱離塔及び回収横型タンクに内蔵した内蔵熱交換器と熱交換ユニット中の熱交換循環管路を含み、そのうちの吸収塔と回収横型タンク中の内蔵熱交換器が回収ポンプを介して冷源に接続され、前記の脱離塔中の内蔵熱交換器が熱源に接続される。
In order to realize the conversion of the VOCs in the absorbent into two gas-liquid states and the separation by gas-liquid conversion, and to improve the separation efficiency, the heat exchange device includes:
A heat exchanger 117 is installed between the low-temperature absorption unit and the safety outlet, connected to a cold source via a recovery pump 26, and used for recovering surplus cold from the discharged low-temperature gas to supplement the cold source cold discharged from the automatic coupling pre-cooling unit;
The heat exchanger 2 is installed between the absorption tower of the low-temperature absorption unit and the high-temperature desorption unit, and one end of one of the heat exchange pipes is connected to the low-temperature absorption unit and the other end is connected to the high-temperature desorption unit.
The heat exchanger 2 recovers heat from the low temperature absorption liquid discharged from the low temperature absorption unit and from the high temperature absorption liquid desorbed from the high temperature desorption unit.
A heat exchanger 3 is provided between the high-temperature desorption unit and the low-temperature recovery unit;
The heat exchanger 3 is a circulating water heat exchanger, and is intended to prevent high-temperature VOCs from damaging the vacuum pump. The low-temperature VOCs that have been cooled by the heat exchanger 3 are transported by the vacuum pump to the horizontal recovery tank, where they are further condensed, and the VOCs that have turned into liquid are stored in the liquid separation tank 2 of the low-temperature recovery unit.
The automatic combined pre-cooling unit includes a single-stage condenser, a two-stage condenser A, and a two-stage condenser B, and the single-stage condenser, the two-stage condenser A, and the two-stage condenser B are connected to a cold source via a recovery pump.
The heat exchange unit further includes built-in heat exchangers built into the absorption tower, desorption tower and horizontal recovery tank, respectively, and a heat exchange circulation line in the heat exchange unit, of which the built-in heat exchangers in the absorption tower and horizontal recovery tank are connected to a cold source via a recovery pump, and the built-in heat exchanger in the desorption tower is connected to a heat source.

本発明の一実施例では、前記の冷源が二次冷媒であり、前記の熱源が100℃より高い温度の水蒸気である。 In one embodiment of the present invention, the cold source is a secondary refrigerant and the heat source is water vapor at a temperature greater than 100°C.

本発明の実施例では、VOCs回収システムは、具体的には、
ブレーキ弁、水洗塔、水洗塔1層目ノズル、水洗塔2層目ノズル、水貯留タンク、水洗塔一段循環スプレーポンプ及び水洗塔二段循環スプレーポンプで構成された水洗ユニットを含み、フレームアレスターを通過したVOCsが水洗装置を通過する必要があり、それは水洗によってアンモニアを除去し水に溶解する大量の不純物を除去することを目的とする。
In an embodiment of the present invention, the VOCs recovery system specifically comprises:
The system includes a water washing unit consisting of a brake valve, a water washing tower, a first layer nozzle of the water washing tower, a second layer nozzle of the water washing tower, a water storage tank, a first stage circulation spray pump of the water washing tower, and a second stage circulation spray pump of the water washing tower. The VOCs that have passed through the flame arrester must pass through the water washing device, and the purpose of this is to remove ammonia by water washing and to remove large amounts of impurities that dissolve in water.

水洗塔は、縦型水洗塔を採用し、高さが3m~15mで、直径が0.5m~3mである。水洗塔は多段式スプレー式に設計されており、2層目の塔板に若干の溢れ小管1が設置され、溢れ小管1の直径がφ10mm~φ30mmで、高さが5mm~10mmで、全断面積が塔板断面積の5%~15%であり、水洗塔の1層目に水貯留量が0.5トン~10トンの水貯留タンクが設置され、スプレー量が5m/h~50m/hであり、水洗塔の2層目の水源が水補充口から供給され、水補充量が1m/h~5m/hで、スプレー量が5m/h~50m/hで、水洗塔によるアンモニア(水)回収量が5kg/h~100kg/hである。 The washing tower adopts a vertical washing tower, with a height of 3m-15m and a diameter of 0.5m-3m. The washing tower is designed as a multi-stage spray type, with a few overflow pipes 1 installed on the second layer of tower plate, with the diameter of the overflow pipes 1 being φ10mm-φ30mm, the height being 5mm-10mm, and the total cross-sectional area being 5%-15% of the cross-sectional area of the tower plate, a water storage tank with a water storage capacity of 0.5 tons-10 tons is installed on the first layer of the washing tower, and the spray amount is 5m 3 /h-50m 3 /h, the water source of the second layer of the washing tower is supplied from a water replenishment port, with the water replenishment amount being 1m 3 /h-5m 3 /h, the spray amount being 5m 3 /h-50m 3 /h, and the ammonia (water) recovery amount by the washing tower is 5kg/h-100kg/h.

吸収塔の塔頂にVOCs出口が設置され、塔本体の下方において吸収液の最高液面上方にVOCs入口が設置され、ガスが下方から導入され、スプレーされる吸収液と逆方向に接触して、充分な吸収を実現する。吸収塔も多段式スプレー式に設計されており、2層目の塔板に若干の溢れ小管2が設置され、溢れ小管2の直径がφ10mm~φ30mmで、高さが5mm~10mmで、全断面積が塔板断面積の5%~15%である。塔本体の直径は一般に処理されるオイルガス量に応じて決定し、一般に塔本体の高さが3m~15mで、直径が0.5m~3mで、貯留高さが0.3m~4mで、塔の操作温度が-25℃~-5℃に設計され、内蔵熱交換器中の冷源流量が0.5m/h~3m/hで、1層目のスプレー量と2層目のスプレー量が5m/h~50m/hである。 A VOCs outlet is installed at the top of the absorption tower, and a VOCs inlet is installed at the bottom of the tower body above the highest liquid level of the absorbing liquid, so that gas is introduced from below and comes into contact with the sprayed absorbing liquid in the opposite direction to achieve sufficient absorption. The absorption tower is also designed as a multi-stage spray type, and a number of overflow pipes 2 are installed on the second layer of tower plates, with a diameter of φ10mm to φ30mm, a height of 5mm to 10mm, and a total cross-sectional area of 5% to 15% of the tower plate cross-sectional area. The diameter of the tower body is generally determined according to the amount of oil gas to be treated. Generally, the height of the tower body is 3m to 15m, the diameter is 0.5m to 3m, the storage height is 0.3m to 4m, the operation temperature of the tower is designed to be -25℃ to -5℃, the cold source flow rate in the built-in heat exchanger is 0.5m 3 /h 2 to 3m 3 /h 2 , and the spray rate of the first layer and the second layer is 5m 3 /h to 50m 3 /h.

脱離塔は高温蒸気を熱媒体とし、塔径が0.1m~3mで、高さが0.5m~5mで、高温蒸気の温度が120℃~150℃で、蒸気使用量が1kg/h~5kg/hで、脱離量が0.5kg/h~50kg/hである。 The desorption tower uses high-temperature steam as the heat medium, has a tower diameter of 0.1m to 3m, a height of 0.5m to 5m, a high-temperature steam temperature of 120℃ to 150℃, a steam consumption rate of 1kg/h to 5kg/h, and a desorption rate of 0.5kg/h to 50kg/h.

回収横型タンクは、直径が0.2m~3mで、長さが0.5m~5mで、回収液量が0.5kg/h~50kg/hである。 The horizontal recovery tank has a diameter of 0.2m to 3m, a length of 0.5m to 5m, and a recovery liquid rate of 0.5kg/h to 50kg/h.

熱交換器3中の循環水の温度が10℃~100℃で、流量が0.01m/h~2m/hである。 The temperature of the circulating water in the heat exchanger 3 is 10° C. to 100° C., and the flow rate is 0.01 m 3 /h to 2 m 3 /h.

本発明のVOCs回収システムでは、冷源に接続される二次冷媒管路としては一般にDN10~DN20を利用し、二次冷媒温度が-25℃~-10℃で、二次冷媒流量が1m/h~20m/hである。 In the VOCs recovery system of the present invention, the secondary refrigerant pipe connected to the cold source generally uses DN10 to DN20, the secondary refrigerant temperature is -25°C to -10°C, and the secondary refrigerant flow rate is 1 m 3 /h to 20 m 3 /h.

以上、本発明の基本的原理、主な特徴及び本発明のメリットを示し説明した。本発明が上記実施例に制限されず、上記実施例と明細書が本発明の原理を記載するためのものに過ぎず、本発明の主旨と範囲から逸脱しない限り、本発明では様々な変化や改良が可能であり、これらの変化や改良が全て保護される本発明の範囲に含まれることは当業者に自明である。本発明の保護範囲は添付された特許請求の範囲及びそれと同等効果のものによって限定される。 The above shows and describes the basic principles, main features and advantages of the present invention. The present invention is not limited to the above embodiments, and the above embodiments and specification are merely intended to describe the principles of the present invention. As long as they do not deviate from the spirit and scope of the present invention, various changes and improvements are possible in the present invention, and it is obvious to those skilled in the art that all such changes and improvements are included in the scope of the present invention, which is protected by the present invention. The scope of protection of the present invention is limited by the appended claims and their equivalents.

(付記)
(付記1)
自動結合予冷ユニットに接続され、VOCs導入ガスを水洗するために用いられる水洗ユニットと、
低温吸収ユニットに接続され、水洗後のVOCsガスを凝縮させるために用いられる自動結合予冷ユニットと、
熱交換器2を介して高温脱離ユニットに接続され、凝縮後のVOCsガスを吸収させるために用いられる低温吸収ユニットと、
熱交換器3を介して低温回収ユニットに接続され、低温吸収後のVOCsガスを脱離させるために用いられる高温脱離ユニットと、
低温吸収ユニットに接続され、液化後のVOCsを回収すると共に、未液化のVOCsを再度低温吸収ユニットに搬送して処理するために用いられる低温回収ユニットと、を含む、
ことを特徴とする吸収、脱離及び回収を一体化したVOCs回収システム。
(Additional Note)
(Appendix 1)
a water washing unit connected to the automatic coupling pre-cooling unit and used for washing the VOCs-introducing gas;
an automatic combined pre-cooling unit connected to the low temperature absorption unit and used for condensing the VOCs gas after washing;
a low-temperature absorption unit connected to the high-temperature desorption unit via a heat exchanger 2 and used to absorb the condensed VOCs gas;
a high-temperature desorption unit connected to the low-temperature recovery unit via a heat exchanger 3 and used for desorbing the VOCs gas after low-temperature absorption;
a low-temperature recovery unit connected to the low-temperature absorption unit for recovering the liquefied VOCs and transporting the unliquefied VOCs back to the low-temperature absorption unit for treatment;
A VOCs recovery system that integrates absorption, desorption and recovery.

(付記2)
前記水洗ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える水洗塔を含む、
ことを特徴とする付記1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 2)
The water washing unit is a multi-stage spray tower, and includes a water washing tower having two tower plates and two nozzles.
2. A VOCs recovery system that integrates absorption, desorption and recovery, as described in claim 1.

(付記3)
前記自動結合予冷ユニットは二段凝縮装置A、二段凝縮装置B及び一段凝縮装置を含み、前記二段凝縮装置A、二段凝縮装置B及び一段凝縮装置の間は第1の凝縮回路と第2の凝縮回路の2種の接続方式があり、
前記第1の凝縮回路の接続方式は、二段凝縮装置Bの入口端が水洗ユニットの水洗塔の出口端に接続され、二段凝縮装置Bの出口端が一段凝縮装置の入口端に接続され、一段凝縮装置の出口端が二段凝縮装置Aの入口端に接続され、二段凝縮装置Aの出口端が低温吸収ユニットに接続されるようになっており、
前記第2の凝縮回路の接続方式は、二段凝縮装置Aの入口端が水洗ユニットの水洗塔の出口端に接続され、二段凝縮装置Aの出口端が一段凝縮装置の入口端に接続され、一段凝縮装置の出口端が二段凝縮装置Bの入口端に接続され、二段凝縮装置Bの出口端が低温吸収ユニットに接続されるようになっている、
ことを特徴とする付記1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 3)
The automatic combined pre-cooling unit includes a two-stage condensing device A, a two-stage condensing device B and a single-stage condensing device, and the two-stage condensing device A, the two-stage condensing device B and the single-stage condensing device are connected in two ways, namely, a first condensing circuit and a second condensing circuit;
The connection manner of the first condensation circuit is as follows: an inlet end of the two-stage condenser B is connected to an outlet end of the water washing tower of the water washing unit, an outlet end of the two-stage condenser B is connected to an inlet end of the single-stage condenser, an outlet end of the single-stage condenser is connected to an inlet end of the two-stage condenser A, and an outlet end of the two-stage condenser A is connected to the low-temperature absorption unit;
The connection manner of the second condensation circuit is such that an inlet end of the two-stage condenser A is connected to an outlet end of the water washing tower of the water washing unit, an outlet end of the two-stage condenser A is connected to an inlet end of the single-stage condenser, an outlet end of the single-stage condenser is connected to an inlet end of the two-stage condenser B, and an outlet end of the two-stage condenser B is connected to the low-temperature absorption unit.
2. A VOCs recovery system that integrates absorption, desorption and recovery, as described in claim 1.

(付記4)
前記自動結合予冷ユニットの一段凝縮装置、二段凝縮装置A、二段凝縮装置Bがいずれも液体分離タンク1に接続される、
ことを特徴とする付記3に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 4)
The single-stage condenser, the two-stage condenser A and the two-stage condenser B of the automatic combination pre-cooling unit are all connected to a liquid separation tank 1;
4. A VOCs recovery system that integrates absorption, desorption and recovery, as described in appendix 3.

(付記5)
前記低温吸収ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える吸収塔を含み、吸収塔のガス入口端が吸収塔の1層目において吸収液液面より高い上方に設置され、前記吸収塔の2層目塔板にはVOCsガスの伝送と2層目の吸収液のオーバーフロー伝送のための若干の溢れ小管2が設置され、VOCsガスが吸収塔の1層目のノズルによるスプレーを経た後、溢れ小管2を経由して吸収塔の2層目に入り、更に吸収塔の2層目のノズルによるスプレーを経て、VOCsガスの充分な吸収を実現する、
ことを特徴とする付記1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 5)
The low-temperature absorption unit is a multi-stage spray tower, including an absorption tower with two tower plates and two nozzles, the gas inlet end of the absorption tower is installed above the liquid level of the absorbing liquid in the first layer of the absorption tower, and the tower plate of the second layer of the absorption tower is installed with a number of overflow pipes 2 for the transmission of VOCs gas and the overflow transmission of the absorbing liquid in the second layer, the VOCs gas is sprayed by the nozzles of the first layer of the absorption tower, and then enters the second layer of the absorption tower through the overflow pipes 2, and is further sprayed by the nozzles of the second layer of the absorption tower, thereby achieving sufficient absorption of the VOCs gas.
2. A VOCs recovery system that integrates absorption, desorption and recovery, as described in claim 1.

(付記6)
低温吸収ユニットの吸収塔と安全排出口の間には、低温吸収ユニットの吸収塔の放出した低温ガスを用いて剰余冷量回収を行って、自動結合予冷ユニット後の冷源に冷量を補充する熱交換器1が設置されている、
ことを特徴とする付記5に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 6)
Between the absorption tower of the low-temperature absorption unit and the safety outlet, a heat exchanger 1 is installed, which recovers surplus cold using the low-temperature gas discharged from the absorption tower of the low-temperature absorption unit, and replenishes the cold source after the automatic coupling pre-cooling unit.
6. A VOCs recovery system that integrates absorption, desorption and recovery, as described in appendix 5.

(付記7)
低温吸収ユニットは、
吸収塔1層目吸収液出口が吸収塔一段循環スプレーポンプを介して吸収塔1層目ノズルに接続され、VOCsガスに対するスプレーを実現する第1の自己循環吸収液回路と、
吸収塔2層目吸収液出口が吸収塔二段循環スプレーポンプを介して吸収塔2層目ノズルに接続され、VOCsガスに対する更なるスプレーを実現する第2の自己循環吸収液回路と、を含む、
ことを特徴とする付記1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 7)
The low temperature absorption unit is
a first self-circulating absorbing liquid circuit in which an outlet of the absorbing liquid in the first layer of the absorber is connected to a nozzle of the first layer of the absorber via a first-stage circulating spray pump of the absorber, thereby realizing spraying of the VOCs gas;
and a second self-circulating absorbing liquid circuit in which the outlet of the absorbing liquid in the second layer of the absorber is connected to a nozzle of the second layer of the absorber via a two-stage circulating spray pump in the absorber, thereby realizing further spraying of the VOCs gas.
2. A VOCs recovery system that integrates absorption, desorption and recovery, as described in claim 1.

(付記8)
前記高温脱離ユニットは脱離塔を含み、前記脱離塔と前記低温吸収ユニット中の吸収塔の間の接続方式は、
低温吸収ユニット中の吸収塔の塔底吸収液出口が、熱交換器2の管層を介して高温脱離ユニット中の脱離塔の塔本体上方の吸収液入口端に接続される第1の脱離回路と、
高温脱離ユニット中の脱収塔の塔底下方吸収液出口が、熱交換器2の殼層を介して低温吸収ユニット中の第2の自己循環吸収液回路の入口に接続される第2の脱離回路と、を含み、
吸収塔の第1の自己循環吸収液回路、第2の自己循環吸収液回路、第1の脱離回路及び第2の脱離回路内の吸収液と吸収塔及び脱離塔内の吸収液が、流量平衡を形成している、
ことを特徴とする付記1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 8)
The high temperature desorption unit includes a desorption tower, and the connection manner between the desorption tower and the absorption tower in the low temperature absorption unit is:
a first desorption circuit in which a bottom absorption liquid outlet of an absorption tower in the low temperature absorption unit is connected to an absorption liquid inlet end at an upper part of a tower body of a desorption tower in the high temperature desorption unit through a tube layer of a heat exchanger;
a second desorption circuit in which the bottom lower absorbent outlet of the desorption column in the high temperature desorption unit is connected to the inlet of the second self-circulating absorbent circuit in the low temperature absorption unit through the shell of the heat exchanger 2;
the absorption liquid in the first self-circulating absorption liquid circuit, the second self-circulating absorption liquid circuit, the first desorption circuit and the second desorption circuit of the absorption tower and the absorption liquid in the absorption tower and the desorption tower form a flow rate balance;
2. A VOCs recovery system that integrates absorption, desorption and recovery as described in claim 1.

(付記9)
前記高温脱離ユニット中の脱離塔が回収回路を介して低温吸収ユニット中の吸収塔に接続され、前記回収回路は、脱離塔の頂端出口が順に熱交換器3、真空ポンプを介して回収横型タンクに接続され、回収横型タンクの頂端出口が吸収塔の入口端に接続されるようになっている、
ことを特徴とする付記1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 9)
The desorption tower in the high-temperature desorption unit is connected to the absorption tower in the low-temperature absorption unit through a recovery circuit, and the recovery circuit is configured such that the top outlet of the desorption tower is connected to a horizontal recovery tank through a heat exchanger 3 and a vacuum pump in this order, and the top outlet of the horizontal recovery tank is connected to an inlet end of the absorption tower.
2. A VOCs recovery system that integrates absorption, desorption and recovery as described in claim 1.

(付記10)
前記低温回収ユニットの回収横型タンクが液体分離タンク2に接続される、
ことを特徴とする付記9に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 10)
The horizontal recovery tank of the low temperature recovery unit is connected to a liquid separation tank 2;
10. A VOCs recovery system that integrates absorption, desorption and recovery as described in appendix 9.

(付記11)
低温吸収ユニットの吸収塔と高温脱離ユニットの間には、低温吸収ユニットの排出した低温吸収液と高温脱離ユニットの脱離した高温吸収液を用いて互に熱量を回収する熱交換器2が設置されている、
ことを特徴とする付記5に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
(Appendix 11)
Between the absorption tower of the low-temperature absorption unit and the high-temperature desorption unit, a heat exchanger 2 is installed to recover heat from each other using the low-temperature absorption liquid discharged from the low-temperature absorption unit and the high-temperature absorption liquid desorbed from the high-temperature desorption unit.
6. A VOCs recovery system that integrates absorption, desorption and recovery, as described in appendix 5.

(付記12)
VOCs現場導入ガスが順にフレームアレスター、水洗ユニットを通過してアンモニアを除去されてから、自動結合予冷ユニットに導入されるステップ(1)と、
自動結合予冷ユニットでVOCsガスが脱水処理されてから、低温吸収ユニットに導入されるステップ(2)と、
低温吸収ユニットが第1の自己循環吸収液回路と第2の自己循環吸収液回路を作動して吸収させ、吸収塔の1層目のリッチ吸収液が第1の脱離回路を通過する過程で、熱交換器2の管層によって冷量を回収された後、高温脱離ユニット中の脱離塔に導入されて脱離し、脱離した新鮮吸収液が第2の脱離回路を通過して熱交換器2の殼層によって熱量を回収された後、吸収塔の2層目のリーン吸収液を優先的に補足されるステップ(3)と、
脱離したVOCsガスが回収回路を通過して回収横型タンクに導入されて凝縮液化して回収され、未液化のVOCsガスが再度低温吸収ユニットに搬送されて吸収するステップ(4)と、を含む、
ことを特徴とするVOCs回収システムを利用したVOCs回収方法。
(Appendix 12)
Step (1) of introducing VOCs gas into the site through a flame arrester and a water washing unit to remove ammonia, and then introducing the gas into an automatic combination pre-cooling unit;
(2) the VOCs gas is dehydrated in an automatic combined pre-cooling unit and then introduced into a low-temperature absorption unit;
Step (3) in which the low-temperature absorption unit operates the first self-circulating absorption liquid circuit and the second self-circulating absorption liquid circuit to absorb, the rich absorption liquid in the first layer of the absorption tower passes through the first desorption circuit, the cold amount is recovered by the tube layer of the heat exchanger 2, and then the rich absorption liquid is introduced into the desorption tower in the high-temperature desorption unit for desorption, the desorbed fresh absorption liquid passes through the second desorption circuit, the heat amount is recovered by the shell layer of the heat exchanger 2, and then the lean absorption liquid in the second layer of the absorption tower is preferentially supplemented;
The desorbed VOCs gas passes through a recovery circuit and is introduced into a horizontal recovery tank where it is condensed, liquefied and recovered, and the unliquefied VOCs gas is transported again to a low-temperature absorption unit for absorption.
A method for recovering VOCs using a VOCs recovery system.

(付記13)
前記ステップ(2)において、二段凝縮装置Bが着霜した場合に除霜する必要がある時、第1の凝縮回路を作動させ、VOCsガスが順に二段凝縮装置B、一段凝縮装置及び二段凝縮装置Aを通過して凝縮し、二段凝縮装置Aが着霜した場合に除霜する必要がある時、第2の凝縮回路を作動させ、VOCsガスがまず二段凝縮装置Aを通過して凝縮し、続いて順に一段凝縮装置と二段凝縮装置Bを通過して凝縮する、
ことを特徴とする付記12に記載のVOCs回収システムを利用したVOCs回収方法。
(Appendix 13)
In the step (2), when the two-stage condenser B is frosted and defrosting is required, the first condensation circuit is operated, and the VOCs gas is condensed by passing through the two-stage condenser B, the single-stage condenser, and the two-stage condenser A in order; when the two-stage condenser A is frosted and defrosting is required, the second condensation circuit is operated, and the VOCs gas is first condensed by passing through the two-stage condenser A, and then condensed by passing through the single-stage condenser and the two-stage condenser B in order;
A method for recovering VOCs using the VOCs recovery system described in Appendix 12.

(付記14)
前記ステップ(2)において、VOCsガスが第1の凝縮回路又は第2の凝縮回路を通過する時、一段凝縮装置、二段凝縮装置B及び二段凝縮装置AがそれぞれVOCsを凝縮させ除水させ、続いて未凝縮のVOCsガスが低温吸収ユニットの吸収塔に導入される、
ことを特徴とする付記13に記載のVOCs回収システムを利用したVOCs回収方法。
(Appendix 14)
In the step (2), when the VOCs gas passes through the first condensation circuit or the second condensation circuit, the single-stage condenser, the two-stage condenser B and the two-stage condenser A condense the VOCs and remove water, respectively, and then the uncondensed VOCs gas is introduced into the absorption tower of the low-temperature absorption unit;
A method for recovering VOCs using the VOCs recovery system described in Appendix 13.

(付記15)
前記ステップ(3)において、VOCsガスがまず吸収塔の1層目でスプレーされて吸収し、この時に大量のVOCsが吸収液に吸収し、残りのVOCsガスが更に溢れ小管を経由して吸収塔の2層目に導入されて新鮮吸収液のスプレーを経て高度に吸収し、合格したガスが熱交換器1を経由して安全排出口から排出される、
ことを特徴とする付記12に記載のVOCs回収システムを利用したVOCs回収方法。
(Appendix 15)
In the step (3), the VOCs gas is first sprayed and absorbed in the first layer of the absorption tower, a large amount of VOCs is absorbed in the absorbing liquid, and the remaining VOCs gas is introduced into the second layer of the absorption tower through the overflow pipe and is highly absorbed through the spray of fresh absorbing liquid, and the gas that passes the test is discharged from the safety outlet through the heat exchanger 1.
A method for recovering VOCs using the VOCs recovery system described in Appendix 12.

(付記16)
前記ステップ(3)において、吸収塔の2層目の吸収液が自身のスプレーに用いられることに加えて、液位が溢れ小管2の溢れ口を超えると、吸収液が溢れて吸収塔の1層目のリッチ吸収液に入る、
ことを特徴とする付記12に記載のVOCs回収システムを利用したVOCs回収方法。
(Appendix 16)
In the step (3), in addition to being used for its own spray, when the liquid level exceeds the overflow port of the overflow pipe 2, the absorbing liquid overflows and enters the rich absorbing liquid of the first layer of the absorbing tower;
A method for recovering VOCs using the VOCs recovery system described in Appendix 12.

(付記17)
前記ステップ(4)において、高温VOCsガスが脱離塔の塔頂出口から回収回路を経由して回収され、即ち、先に熱交換器3によって循環水で初級的に降温され、続いて真空ポンプによって低温回収横型タンクに導入され、気態VOCsを液化し、液化後のVOCsを回収し、未液化のVOCsを再度吸収塔に導入して処理を継続する、
ことを特徴とする付記12に記載のVOCs回収システムを利用したVOCs回収方法。
(Appendix 17)
In the step (4), the high-temperature VOC gas is recovered from the top outlet of the desorption tower via a recovery circuit, i.e., the temperature is initially lowered by circulating water in a heat exchanger 3, and then the gaseous VOCs are introduced into a low-temperature recovery horizontal tank by a vacuum pump, where the gaseous VOCs are liquefied, the liquefied VOCs are recovered, and the unliquefied VOCs are introduced back into the absorption tower to continue the treatment.
A method for recovering VOCs using the VOCs recovery system described in Appendix 12.

1 フレームアレスター
2 ブレーキ弁
3 水洗塔
4 溢れ小管1
501 水洗塔1層目ノズル
502 水洗塔2層目ノズル
601 水洗塔一段循環スプレーポンプ
602 水洗塔二段循環スプレーポンプ
7 一段凝縮装置
8 自動制御弁
9 二段凝縮装置A
10 二段凝縮装置B
11 液体分離タンク1
12 ボール弁
13 吸収塔
14 溢れ小管2
1501 吸収塔1層目ノズル
1502 吸収塔2層目ノズル
1601 吸収塔一段循環スプレーポンプ
1602 吸収塔二段循環スプレーポンプ
17 熱交換器1
18 回収横型タンク
19 液体分離タンク2
20 熱交換器2
21 脱離塔
22 トラップ
23 熱源
24 熱交換器3
25 真空ポンプ
26 回収ポンプ
27 冷源
2801 第1の凝縮回路
2802 第2の凝縮回路
2803 第1の自己循環吸収液回路
2804 第2の自己循環吸収液回路
2805 第1の脱離回路
2806 第2の脱離回路
2807 回収回路
1 Flame arrester 2 Brake valve 3 Water washing tower 4 Overflow pipe 1
501: First layer nozzle of water washing tower 502: Second layer nozzle of water washing tower 601: First stage circulation spray pump of water washing tower 602: Second stage circulation spray pump of water washing tower 7: First stage condenser 8: Automatic control valve 9: Second stage condenser A
10 Two-stage condenser B
11 Liquid separation tank 1
12 ball valve 13 absorption tower 14 overflow pipe 2
1501 Absorption tower first layer nozzle 1502 Absorption tower second layer nozzle 1601 Absorption tower first stage circulation spray pump 1602 Absorption tower second stage circulation spray pump 17 Heat exchanger 1
18 Horizontal recovery tank 19 Liquid separation tank 2
20 Heat exchanger 2
21 Desorption column 22 Trap 23 Heat source 24 Heat exchanger 3
25 Vacuum pump 26 Recovery pump 27 Cold source 2801 First condensation circuit 2802 Second condensation circuit 2803 First self-circulating absorbing liquid circuit 2804 Second self-circulating absorbing liquid circuit 2805 First desorption circuit 2806 Second desorption circuit 2807 Recovery circuit

Claims (16)

VOCs導入ガスを水洗するために用いられる水洗ユニットと、
前記水洗ユニットに接続され、水洗後のVOCsガスを冷却し凝縮させるために用いられる自動結合予冷ユニットと、
前記自動結合予冷ユニットに接続され、前記自動結合予冷ユニットで凝縮できなかった冷却されたVOCsガスを吸収液に吸収させるために用いられる低温吸収ユニットと、
前記低温吸収ユニットに接続され、前記吸収液を加熱することにより、前記吸収液に吸収されたVOCsガスを脱離させるために用いられる高温脱離ユニットと、
前記低温吸収ユニットと前記高温脱離ユニットとの間に設けられ、前記低温吸収ユニットで冷却されたVOCsガスが脱離される前の前記吸収液と前記高温脱離ユニットで加熱されVOCsガスが脱離された前記吸収液との間で熱交換を行うために用いられる第1熱交換器と、
前記低温吸収ユニットと前記高温脱離ユニットとに接続され、前記高温脱離ユニットで脱離されたVOCsガスを凝縮液化して回収すると共に、未液化のVOCsガスを再度、前記低温吸収ユニットに搬送して処理するために用いられる低温回収ユニットと、
前記高温脱離ユニットと前記低温回収ユニットとの間に設けられ、前記高温脱離ユニットで脱離された凝縮液化する前のVOCsガスと循環水との間で熱交換を行うために用いられる第2熱交換器と、を含み、
前記自動結合予冷ユニットは、凝縮のために用いられる一段凝縮装置と、前記一段凝縮装置よりも高度な凝縮のために用いられる第1二段凝縮装置及び第2二段凝縮装置と、を有し、
前記第1二段凝縮装置、前記第2二段凝縮装置及び前記一段凝縮装置は、
前記第2二段凝縮装置の入口端が前記水洗ユニットの有する水洗塔の出口端に接続され、
前記第2二段凝縮装置の出口端が前記一段凝縮装置の入口端に接続され、
前記一段凝縮装置の出口端が前記第1二段凝縮装置の入口端に接続され、
前記第1二段凝縮装置の出口端が前記低温吸収ユニットに接続される第1の凝縮回路と、
前記第1二段凝縮装置の入口端が前記水洗塔の出口端に接続され、
前記第1二段凝縮装置の出口端が前記一段凝縮装置の入口端に接続され、
前記一段凝縮装置の出口端が前記第2二段凝縮装置の入口端に接続され、
前記第2二段凝縮装置の出口端が前記低温吸収ユニットに接続される第2の凝縮回路と、
を形成し、
前記第2二段凝縮装置が着霜した場合に、除霜するために、前記第1の凝縮回路が用いられ、
前記第1二段凝縮装置が着霜した場合に、除霜するために、前記第2の凝縮回路が用いられる
ことを特徴とする吸収、脱離及び回収を一体化したVOCs回収システム。
A water washing unit used for washing the VOCs-introducing gas with water;
an automatic combined pre-cooling unit connected to the water washing unit, used for cooling and condensing the VOCs gas after water washing;
a low-temperature absorption unit connected to the automatic combined pre-cooling unit, for absorbing the cooled VOCs gas that could not be condensed by the automatic combined pre-cooling unit into an absorption liquid;
a high-temperature desorption unit connected to the low-temperature absorption unit and used to heat the absorption liquid to desorb the VOCs gas absorbed in the absorption liquid;
a first heat exchanger provided between the low-temperature absorption unit and the high-temperature desorption unit for exchanging heat between the absorption liquid cooled in the low-temperature absorption unit before VOCs gas is desorbed and the absorption liquid heated in the high-temperature desorption unit from which VOCs gas has been desorbed;
a low-temperature recovery unit connected to the low-temperature absorption unit and the high-temperature desorption unit, for condensing and liquefying the VOCs gas desorbed in the high-temperature desorption unit and for transporting the unliquefied VOCs gas back to the low-temperature absorption unit for treatment;
a second heat exchanger provided between the high-temperature desorption unit and the low-temperature recovery unit for performing heat exchange between the VOCs gas desorbed in the high-temperature desorption unit before being condensed and liquefied and circulating water;
The automatic combined pre-cooling unit includes a single-stage condenser used for condensation, and a first two-stage condenser and a second two-stage condenser used for condensation at a higher level than that of the single-stage condenser,
the first two-stage condensation device, the second two-stage condensation device, and the single-stage condensation device,
an inlet end of the second two-stage condenser is connected to an outlet end of a water washing tower of the water washing unit;
an outlet end of the second two-stage condenser is connected to an inlet end of the single-stage condenser;
an outlet end of the first stage condenser is connected to an inlet end of the first two-stage condenser;
a first condensation circuit, an outlet end of the first two-stage condensation device being connected to the low temperature absorption unit;
an inlet end of the first two-stage condenser is connected to an outlet end of the water wash tower;
an outlet end of the first two-stage condenser is connected to an inlet end of the single-stage condenser;
an outlet end of the first stage condenser is connected to an inlet end of the second two stage condenser;
a second condensation circuit, the outlet end of the second two-stage condenser being connected to the low temperature absorption unit;
Forming
the first condensing circuit is used to defrost the second two-stage condensing device when frost forms;
A VOCs recovery system that integrates absorption, desorption and recovery, characterized in that, when frost forms on the first two-stage condenser, the second condensation circuit is used to defrost the frost.
前記水洗ユニットは、多段式スプレー塔であって、2層の塔板と2つのノズルを備える水洗塔を含む、
ことを特徴とする請求項1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
The water washing unit is a multi-stage spray tower, and includes a water washing tower having two tower plates and two nozzles.
2. The VOCs recovery system according to claim 1, which integrates absorption, desorption and recovery.
凝縮水と凝縮されたVOCsとを含む液体を密度の違いにより分離させる第1液体分離タンクをさらに備え、
前記自動結合予冷ユニットの前記一段凝縮装置、前記第1二段凝縮装置、前記第2二段凝縮装置がいずれも前記第1液体分離タンクに接続される、
ことを特徴とする請求項1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
The apparatus further includes a first liquid separation tank for separating the condensed water and the liquid containing the condensed VOCs based on the difference in density,
the single-stage condenser, the first two-stage condenser and the second two-stage condenser of the automatic combination pre-cooling unit are all connected to the first liquid separation tank;
2. The VOCs recovery system according to claim 1, which integrates absorption, desorption and recovery.
前記低温吸収ユニットは、多段式スプレー塔であって2層の塔板と1層目ノズルと2層目ノズルとを備える吸収塔を含み、
前記吸収塔のガス入口端が前記吸収塔の1層目において吸収液液面より高い上方に設置され、
前記吸収塔の2層目塔板にはVOCsガスの伝送と2層目の吸収液のオーバーフロー伝送のための溢れ小管が設置され、
VOCsガスが前記1層目ノズルにより吸収液をスプレーされた後、前記溢れ小管を経由して吸収塔の2層目に入り、更に前記2層目ノズルにより吸収液をスプレーされ、VOCsガスがさらに吸収される、
ことを特徴とする請求項1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
The low-temperature absorption unit includes a multi-stage spray tower having two tower plates, a first-stage nozzle, and a second-stage nozzle;
The gas inlet end of the absorption tower is installed above the liquid level of the absorption liquid in the first layer of the absorption tower,
The second layer of the absorption tower is provided with an overflow pipe for the transmission of VOCs gas and the overflow of the second layer of the absorbing solution.
After the VOCs gas is sprayed with the absorbing liquid by the first layer nozzle, it passes through the overflow pipe and enters the second layer of the absorption tower, where the absorbing liquid is further sprayed by the second layer nozzle, so that the VOCs gas is further absorbed.
2. The VOCs recovery system according to claim 1, which integrates absorption, desorption and recovery.
前記吸収塔と安全排出口の間には、前記吸収塔から放出される冷却されたガスを用いて剰余冷量回収を行って、前記自動結合予冷ユニットの冷源に冷量を補充する第3熱交換器が設置されている、
ことを特徴とする請求項4に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
Between the absorption tower and the safety outlet, a third heat exchanger is installed, which recovers surplus cold energy using the cooled gas discharged from the absorption tower to supplement the cold energy of the cold source of the automatic combination pre-cooling unit.
5. The VOCs recovery system according to claim 4, which integrates absorption, desorption and recovery.
前記低温吸収ユニットは、多段式スプレー塔であって2層の塔板を備える吸収塔を含み、
前記吸収塔が、1層目吸収液出口と、2層目吸収液出口と、1層目ノズルと、2層目ノズルと、一段循環スプレーポンプと、二段循環スプレーポンプと、を有し、
前記1層目吸収液出口が前記一段循環スプレーポンプを介して前記1層目ノズルに接続され、VOCsガスに対して吸収液をスプレーする第1の自己循環吸収液回路と、
前記2層目吸収液出口が前記二段循環スプレーポンプを介して前記2層目ノズルに接続され、VOCsガスに対して吸収液を更にスプレーする第2の自己循環吸収液回路と、を含む、
ことを特徴とする請求項1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
The low-temperature absorption unit includes a multi-stage spray tower having two layers of tower plates;
the absorption tower has a first layer absorbing liquid outlet, a second layer absorbing liquid outlet, a first layer nozzle, a second layer nozzle, a first stage circulation spray pump, and a two stage circulation spray pump;
a first self-circulating absorbing liquid circuit in which the first layer absorbing liquid outlet is connected to the first layer nozzle via the single-stage circulating spray pump and which sprays absorbing liquid against the VOCs gas;
and a second self-circulating absorbing liquid circuit in which the second layer absorbing liquid outlet is connected to the second layer nozzle via the two-stage circulation spray pump and further sprays absorbing liquid against the VOCs gas.
2. The VOCs recovery system according to claim 1, which integrates absorption, desorption and recovery.
前記高温脱離ユニットは脱離塔を含み、
前記脱離塔と前記吸収塔との間には、
前記吸収塔の有する塔底吸収液出口が、前記第1熱交換器の管層を介して前記脱離塔の有する塔本体上方の吸収液入口端に接続される第1の脱離回路と、
前記脱離塔の有する塔底下方吸収液出口が、前記第1熱交換器の殼層を介して前記低温吸収ユニット中の前記第2の自己循環吸収液回路の入口に接続される第2の脱離回路と、が形成され、
前記吸収塔の前記第1の自己循環吸収液回路、前記第2の自己循環吸収液回路、前記第1の脱離回路及び前記第2の脱離回路内の吸収液と前記吸収塔及び前記脱離塔内の吸収液が、流量平衡を形成している、
ことを特徴とする請求項6に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
The high temperature desorption unit includes a desorption column;
Between the desorption tower and the absorption tower,
a first desorption circuit in which a tower bottom absorption liquid outlet of the absorption tower is connected to an absorption liquid inlet end at an upper part of a tower body of the desorption tower via a tube layer of the first heat exchanger;
a second desorption circuit is formed in which a column bottom lower absorption liquid outlet of the desorption column is connected to an inlet of the second self-circulating absorption liquid circuit in the low temperature absorption unit through a shell of the first heat exchanger;
the absorption liquid in the first self-circulating absorption liquid circuit, the second self-circulating absorption liquid circuit, the first desorption circuit and the second desorption circuit of the absorption tower and the absorption liquid in the absorption tower and the desorption tower form a flow rate balance;
7. The VOCs recovery system according to claim 6, which integrates absorption, desorption and recovery.
回収横型タンクと、前記高温脱離ユニット中の脱離塔の頂端出口が順に前記第2熱交換器、真空ポンプを介して前記回収横型タンクに接続された回収回路と、を有し、
前記脱離塔が前記回収回路を介して前記低温吸収ユニット中の吸収塔に接続され、
前記回収横型タンクの有する頂端出口が前記吸収塔の有する入口端に接続されるようになっている、
ことを特徴とする請求項1に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
a recovery horizontal tank; and a recovery circuit in which a top outlet of a desorption column in the high temperature desorption unit is connected to the recovery horizontal tank via the second heat exchanger and a vacuum pump in this order,
the desorption column is connected to an absorption column in the low temperature absorption unit via the recovery circuit;
The top end outlet of the horizontal recovery tank is connected to the inlet end of the absorption tower.
2. The VOCs recovery system according to claim 1, which integrates absorption, desorption and recovery.
凝縮水と凝縮されたVOCsとを含む液体を密度の違いにより分離させる第2液体分離タンクをさらに備え、
前記回収横型タンクが前記第2液体分離タンクに接続される、
ことを特徴とする請求項8に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
The second liquid separation tank separates the condensed water and the liquid containing the condensed VOCs based on the difference in density.
The recovery horizontal tank is connected to the second liquid separation tank.
9. The VOCs recovery system according to claim 8, wherein the VOCs recovery system is an integrated system for absorption, desorption and recovery.
前記吸収塔と前記高温脱離ユニットとの間には、前記低温吸収ユニットから排出された冷却された吸収液と、前記高温脱離ユニットで脱離され加熱された吸収液を用いて互に熱量を回収する前記第1熱交換器が設置されている、
ことを特徴とする請求項4に記載の吸収、脱離及び回収を一体化したVOCs回収システム。
Between the absorption tower and the high-temperature desorption unit, the first heat exchanger is installed, which recovers heat from the cooled absorption liquid discharged from the low-temperature absorption unit and the absorption liquid desorbed and heated in the high-temperature desorption unit.
5. The VOCs recovery system according to claim 4, which integrates absorption, desorption and recovery.
VOCs現場導入ガスを、フレームアレスター、水をスプレーする水洗ユニットを順に通過させてアンモニアを除去してから、前記水洗ユニットに接続された自動結合予冷ユニットに導入する第1ステップと、
VOCsガスを前記自動結合予冷ユニットで冷却することにより、脱水処理して凝縮してから、前記自動結合予冷ユニットに接続された低温吸収ユニットに導入する第2ステップと、
第3ステップであって、
前記低温吸収ユニットが、それぞれ吸収液を含む2層の塔板を有する吸収塔を含み、前記吸収塔の1層目の吸収液を前記吸収塔の1層目のVOCsガスに対してスプレーする第1の自己循環吸収液回路と、前記吸収塔の2層目の吸収液を前記吸収塔の2層目のVOCsガスに対して更にスプレーする第2の自己循環吸収液回路と、を作動させて、VOCsガスを前記吸収液に吸収させ、
前記吸収塔の1層目の吸収液を、前記吸収塔の塔底と、前記低温吸収ユニットに接続された高温脱離ユニット中の脱離塔の塔本体上方と、を接続する第1の脱離回路に通過させ、
前記第1の脱離回路を通過する過程で、前記吸収液を、前記吸収塔と前記脱離塔との間に設けられた第1熱交換器の管層によって冷量を回収した後、前記脱離塔に導入して加熱し、VOCsガスを脱離させ、
脱離された新鮮な吸収液を、前記脱離塔の塔底と、前記第2の自己循環吸収液回路の入口と、を接続する第2の脱離回路に通過させ、
前記第2の脱離回路を通過する過程で、前記吸収液を、前記第1熱交換器の殼層によって熱量を回収した後、前記吸収塔の2層目の吸収液に優先的に補充する、第3ステップと、
脱離したVOCsガスを回収横型タンクに導入して凝縮液化して回収し、未液化のVOCsガスを再度、前記低温吸収ユニットに搬送して吸収させる第4ステップと、を含み、
前記自動結合予冷ユニットは、凝縮のために用いられる一段凝縮装置と、前記一段凝縮装置よりも高度な凝縮のために用いられる第1二段凝縮装置及び第2二段凝縮装置と、を有し、
前記第1二段凝縮装置、前記第2二段凝縮装置及び前記一段凝縮装置は、
前記第2二段凝縮装置の入口端が前記水洗ユニットの有する水洗塔の出口端に接続され、
前記第2二段凝縮装置の出口端が前記一段凝縮装置の入口端に接続され、
前記一段凝縮装置の出口端が前記第1二段凝縮装置の入口端に接続され、
前記第1二段凝縮装置の出口端が前記低温吸収ユニットに接続される第1の凝縮回路と、
前記第1二段凝縮装置の入口端が前記水洗塔の出口端に接続され、
前記第1二段凝縮装置の出口端が前記一段凝縮装置の入口端に接続され、
前記一段凝縮装置の出口端が前記第2二段凝縮装置の入口端に接続され、
前記第2二段凝縮装置の出口端が前記低温吸収ユニットに接続される第2の凝縮回路と、
を形成し、
前記第2二段凝縮装置が着霜した場合に、除霜するために、前記第1の凝縮回路が用いられ、
前記第1二段凝縮装置が着霜した場合に、除霜するために、前記第2の凝縮回路が用いられる、
ことを特徴とするVOCs回収システムを利用したVOCs回収方法。
A first step of passing the VOCs on-site gas through a flame arrester and a water washing unit spraying water in order to remove ammonia, and then introducing the gas into an automatic combined pre-cooling unit connected to the water washing unit;
A second step of cooling the VOCs gas in the automatic combined pre-cooling unit to dehydrate and condense the gas, and then introducing the gas into a low-temperature absorption unit connected to the automatic combined pre-cooling unit;
A third step,
the low-temperature absorption unit includes an absorption tower having two tower plates each containing an absorbing liquid, and a first self-circulating absorbing liquid circuit is operated to spray the absorbing liquid of the first layer of the absorption tower against the VOCs gas of the first layer of the absorption tower, and a second self-circulating absorbing liquid circuit is operated to further spray the absorbing liquid of the second layer of the absorption tower against the VOCs gas of the second layer of the absorption tower, thereby absorbing the VOCs gas into the absorbing liquid,
The absorption liquid in the first layer of the absorption tower is passed through a first desorption circuit connecting the bottom of the absorption tower and an upper part of a tower body of a desorption tower in a high-temperature desorption unit connected to the low-temperature absorption unit;
During the process of passing through the first desorption circuit, the absorption liquid is cooled by a tube layer of a first heat exchanger provided between the absorption tower and the desorption tower, and then introduced into the desorption tower to heat the absorption liquid and desorb VOCs gas;
The desorbed fresh absorption liquid is passed through a second desorption circuit connecting the bottom of the desorption tower and an inlet of the second self-circulating absorption liquid circuit;
a third step of recovering heat from the absorbing liquid by a shell layer of the first heat exchanger during the process of passing through the second desorption circuit, and then preferentially replenishing the absorbing liquid in a second layer of the absorption tower;
and a fourth step of introducing the desorbed VOCs gas into a horizontal recovery tank, condensing and liquefying the desorbed VOCs gas, and recovering the desorbed VOCs gas, and transporting the unliquefied VOCs gas back to the low-temperature absorption unit for absorption.
The automatic combined pre-cooling unit includes a single-stage condenser used for condensation, and a first two-stage condenser and a second two-stage condenser used for condensation at a higher level than that of the single-stage condenser,
the first two-stage condensation device, the second two-stage condensation device, and the single-stage condensation device,
an inlet end of the second two-stage condenser is connected to an outlet end of a water washing tower of the water washing unit;
an outlet end of the second two-stage condenser is connected to an inlet end of the single-stage condenser;
an outlet end of the first stage condenser is connected to an inlet end of the first two-stage condenser;
a first condensation circuit, an outlet end of the first two-stage condensation device being connected to the low temperature absorption unit;
an inlet end of the first two-stage condenser is connected to an outlet end of the water wash tower;
an outlet end of the first two-stage condenser is connected to an inlet end of the single-stage condenser;
an outlet end of the first stage condenser is connected to an inlet end of the second two stage condenser;
a second condensation circuit, the outlet end of the second two-stage condenser being connected to the low temperature absorption unit;
Forming
the first condensing circuit is used to defrost the second two-stage condensing device when frost forms;
When the first two-stage condensing device frosts, the second condensing circuit is used to defrost the device.
A method for recovering VOCs using a VOCs recovery system.
前記第2ステップにおいて、
前記第2二段凝縮装置が着霜した場合に、除霜するために、前記水洗ユニットと、前記第2二段凝縮装置と、前記一段凝縮装置と、前記第1二段凝縮装置と、前記低温吸収ユニットと、がこの順で接続された前記第1の凝縮回路を作動させ、VOCsガスを順に前記第2二段凝縮装置、前記一段凝縮装置及び前記第1二段凝縮装置に通過させて凝縮し、
前記第1二段凝縮装置が着霜した場合に、除霜するために、前記水洗塔と、前記第1二段凝縮装置と、前記一段凝縮装置と、前記第2二段凝縮装置と、前記低温吸収ユニットと、がこの順で接続された前記第2の凝縮回路を作動させ、VOCsガスを順に前記第1二段凝縮装置、前記一段凝縮装置及び前記第2二段凝縮装置に通過させて凝縮する、
ことを特徴とする請求項11に記載のVOCs回収システムを利用したVOCs回収方法。
In the second step,
When frost forms on the second two-stage condenser, in order to defrost the frost, the first condensation circuit in which the water washing unit, the second two-stage condenser, the single-stage condenser, the first two-stage condenser, and the low-temperature absorption unit are connected in this order is operated, and VOCs gas is condensed by passing it through the second two-stage condenser, the single-stage condenser, and the first two-stage condenser in this order;
When frost forms on the first two-stage condenser, in order to defrost the frost, the second condensation circuit in which the water washing tower, the first two-stage condenser, the single-stage condenser, the second two-stage condenser, and the low-temperature absorption unit are connected in this order is operated, and the VOCs gas is condensed by passing it through the first two-stage condenser, the single-stage condenser, and the second two-stage condenser in this order.
A method for recovering VOCs using the VOCs recovery system according to claim 11.
前記第2ステップにおいて、VOCsガスを前記第1の凝縮回路又は前記第2の凝縮回路に通過させるとき、前記一段凝縮装置、前記第2二段凝縮装置及び前記第1二段凝縮装置によりそれぞれVOCsガスを凝縮及び除水し、続いて未凝縮のVOCsガスを前記吸収塔に導入する、
ことを特徴とする請求項12に記載のVOCs回収システムを利用したVOCs回収方法。
In the second step, when the VOCs gas is passed through the first condensation circuit or the second condensation circuit, the VOCs gas is condensed and dehydrated by the single-stage condenser, the second two-stage condenser and the first two-stage condenser, respectively, and then the uncondensed VOCs gas is introduced into the absorption tower.
A method for recovering VOCs using the VOCs recovery system according to claim 12.
前記第3ステップにおいて、VOCsガスを、前記吸収塔の1層目で吸収液をスプレーして吸収液に吸収させ、吸収されなかったVOCsガスを更に溢れ小管を経由して前記吸収塔の2層目に導入して新鮮な吸収液をスプレーして1層目よりも高度に新鮮な吸収液に吸収させ、予め定められた基準に達したガスを、第3熱交換器を経由して排出する、
ことを特徴とする請求項11に記載のVOCs回収システムを利用したVOCs回収方法。
In the third step, the VOCs gas is sprayed with an absorbing liquid in the first layer of the absorption tower to be absorbed in the absorbing liquid, and the VOCs gas that has not been absorbed is introduced into the second layer of the absorption tower via an overflow small pipe, where fresh absorbing liquid is sprayed therein to absorb the VOCs gas to a higher degree than in the first layer, and the gas that has reached a predetermined standard is discharged via a third heat exchanger.
A method for recovering VOCs using the VOCs recovery system according to claim 11.
前記第3ステップにおいて、前記吸収塔の2層目の吸収液を2層目でのスプレーに用い、2層目の吸収液の液位が溢れ小管の溢れ口を超えたとき、2層目の吸収液が溢れて前記吸収塔の1層目の吸収液に入る、
ことを特徴とする請求項11に記載のVOCs回収システムを利用したVOCs回収方法。
In the third step, the absorbing liquid in the second layer of the absorption tower is used for spraying in the second layer, and when the liquid level of the absorbing liquid in the second layer exceeds the overflow mouth of the overflow small tube, the absorbing liquid in the second layer overflows and enters the absorbing liquid in the first layer of the absorption tower.
A method for recovering VOCs using the VOCs recovery system according to claim 11.
前記第4ステップにおいて、前記脱離塔の頂端出口が順に第2熱交換器、真空ポンプを介して前記回収横型タンクに接続された回収回路を有し、加熱されたVOCsガスを前記脱離塔の塔頂出口から前記回収回路を経由して回収し、前記第2熱交換器によって循環水で降温し、続いて真空ポンプによって前記回収横型タンクに導入し、VOCsガスを凝集液化し、液化後のVOCsガスを回収し、未液化のVOCsガスを再度、前記吸収塔に導入して処理する、
ことを特徴とする請求項11に記載のVOCs回収システムを利用したVOCs回収方法。
In the fourth step, the top outlet of the desorption tower has a recovery circuit connected to the horizontal recovery tank via a second heat exchanger and a vacuum pump in this order, the heated VOCs gas is recovered from the top outlet of the desorption tower via the recovery circuit, cooled with circulating water by the second heat exchanger, and then introduced into the horizontal recovery tank by the vacuum pump, the VOCs gas is condensed and liquefied, the liquefied VOCs gas is recovered, and the unliquefied VOCs gas is introduced again into the absorption tower for treatment.
A method for recovering VOCs using the VOCs recovery system according to claim 11.
JP2023070578A 2019-11-14 2023-04-24 System and method for VOCs recovery that integrates absorption, desorption and recovery Active JP7461679B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201911111691.1 2019-11-14
CN201911111691 2019-11-14
CN202010071015.2A CN111036041B (en) 2019-11-14 2020-01-21 VOCs (volatile organic compounds) recovery system and method integrating absorption, desorption and recovery
CN202010071015.2 2020-01-21
JP2020564664A JP2022510051A (en) 2019-11-14 2020-04-13 VOCs recovery system and method that integrates adsorption, desorption and recovery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020564664A Division JP2022510051A (en) 2019-11-14 2020-04-13 VOCs recovery system and method that integrates adsorption, desorption and recovery

Publications (2)

Publication Number Publication Date
JP2023093659A JP2023093659A (en) 2023-07-04
JP7461679B2 true JP7461679B2 (en) 2024-04-04

Family

ID=70230793

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020564664A Pending JP2022510051A (en) 2019-11-14 2020-04-13 VOCs recovery system and method that integrates adsorption, desorption and recovery
JP2023070578A Active JP7461679B2 (en) 2019-11-14 2023-04-24 System and method for VOCs recovery that integrates absorption, desorption and recovery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020564664A Pending JP2022510051A (en) 2019-11-14 2020-04-13 VOCs recovery system and method that integrates adsorption, desorption and recovery

Country Status (3)

Country Link
JP (2) JP2022510051A (en)
CN (1) CN111036041B (en)
WO (1) WO2021093262A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111939728A (en) * 2020-08-28 2020-11-17 天津大学 Treatment device and treatment method for waste gas containing organic matters
TWI785766B (en) * 2021-08-31 2022-12-01 華懋科技股份有限公司 Hollow Fiber Tubular Membrane Oil Gas Recovery System and Method with Scrubbing and Absorbing Tower
CN114887425A (en) * 2022-06-02 2022-08-12 淮阴工学院 Anti-blocking washing tower for ash-removing tail gas
CN115089992A (en) * 2022-07-07 2022-09-23 连云港市拓普科技发展有限公司 Method for recycling VOCs (volatile organic compounds) gas through shallow cold adsorption desorption

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279380A (en) 2007-05-11 2008-11-20 Orion Mach Co Ltd Voc cooling/recovery device
CN204710058U (en) 2015-06-02 2015-10-21 开封赛普空分集团有限公司 A kind of industrial volatile organic matter gas concentration unit
CN105289217A (en) 2015-02-15 2016-02-03 江苏恒联环境技术有限公司 Recycling system of VOCs in exhaust gas
CN106268181A (en) 2016-08-31 2017-01-04 广东俐峰环保科技有限公司 A kind of processing method of VOCs waste gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196331A1 (en) * 2003-06-04 2005-09-08 Jeffrey Dove Hazardous vapor mitigation system
US7128881B2 (en) * 2004-04-30 2006-10-31 Petrik Viktor I Configurations and methods for water purification
JP5298292B2 (en) * 2009-01-28 2013-09-25 吸着技術工業株式会社 A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
CA2709722A1 (en) * 2010-07-15 2012-01-15 Alakh Prasad Integrated biogas cleaning a system to remove water, siloxanes, sulfur, oxygen, chlorides, and volatile organic compounds
CN105233621B (en) * 2015-10-10 2017-09-15 王新洲 A kind of volatile organic matter environment protection treating recovery method and device
CN107469550A (en) * 2017-08-22 2017-12-15 刘祖虎 A kind of integrated condensing and the VOCs emission control systems and its processing method of absorption
JP7181697B2 (en) * 2018-03-30 2022-12-01 高砂熱学工業株式会社 VOC recovery device and VOC recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279380A (en) 2007-05-11 2008-11-20 Orion Mach Co Ltd Voc cooling/recovery device
CN105289217A (en) 2015-02-15 2016-02-03 江苏恒联环境技术有限公司 Recycling system of VOCs in exhaust gas
CN204710058U (en) 2015-06-02 2015-10-21 开封赛普空分集团有限公司 A kind of industrial volatile organic matter gas concentration unit
CN106268181A (en) 2016-08-31 2017-01-04 广东俐峰环保科技有限公司 A kind of processing method of VOCs waste gas

Also Published As

Publication number Publication date
WO2021093262A1 (en) 2021-05-20
CN111036041A (en) 2020-04-21
JP2023093659A (en) 2023-07-04
CN111036041B (en) 2021-01-01
JP2022510051A (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP7461679B2 (en) System and method for VOCs recovery that integrates absorption, desorption and recovery
CN108211648B (en) Heat recovery type condensation and temperature and pressure swing adsorption combined process oil gas recovery device
CN110420536A (en) Tank deck VOCs recycling and nitrogen reutilization system and method
CN103827614B (en) Use the low temperature CO of refrigerating system2separate
JP2010266154A (en) Carbon dioxide liquefying apparatus
CN103394267A (en) Oil gas recovery device combining condensation and adsorption
JP2010266155A (en) Carbon dioxide liquefying apparatus
CN107940801A (en) A kind of space division system for recycling compressed air waste-heat
CN114279254B (en) Flue gas waste heat utilization and carbon dioxide capturing and recycling process
CN105910456A (en) Green comprehensive cold island equipment and cooling method
CN116059784A (en) Method and system for capturing carbon dioxide in flue gas by pressure swing adsorption
CN213556279U (en) Carbon dioxide ammonia method capturing and low-temperature liquefying system of coal-fired power plant
CN106958987B (en) A kind of air pre-dehumidified for air separation and chilldown system
CN108854423A (en) A kind of method for the flue gas purification system and fume treatment that the desulphurization and denitration of fume afterheat driving is coupled with carbon capture
CN210448655U (en) Ammonia working medium circulation process energy-saving whitening device for flue gas after wet desulphurization
CN107754568A (en) A kind of device and gas recovery process of low energy consumption flue gas trapping and recovering carbon dioxide
CN102614742B (en) Flashed vapor regenerating system and technology
CN112221327A (en) Carbon dioxide ammonia capture and low-temperature liquefaction system and method for coal-fired power plant
TWI815464B (en) Separation tower for treating condensate and method thereof
CN111036040A (en) Condensation-adsorption integrated VOCs recycling system and recycling process
JPWO2021093262A5 (en)
CN110440135A (en) A kind of VOCs recovery system based on LNG cold energy
CN211070117U (en) Device for regenerating adsorbent and recovering organic compound by utilizing hot nitrogen
JP2012202589A (en) Absorption heat pump apparatus
CN113908663B (en) Pressurized multistage 'absorption, condensation and adsorption' module combined organic waste gas recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7461679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150