JP7458046B2 - Method for producing apocarotenoids - Google Patents

Method for producing apocarotenoids Download PDF

Info

Publication number
JP7458046B2
JP7458046B2 JP2020021146A JP2020021146A JP7458046B2 JP 7458046 B2 JP7458046 B2 JP 7458046B2 JP 2020021146 A JP2020021146 A JP 2020021146A JP 2020021146 A JP2020021146 A JP 2020021146A JP 7458046 B2 JP7458046 B2 JP 7458046B2
Authority
JP
Japan
Prior art keywords
compound
meoh
apocarotenoid
freesia
crocetin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020021146A
Other languages
Japanese (ja)
Other versions
JP2021126053A (en
Inventor
典彦 三沢
一敏 新藤
文子 清河
正子 小牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefectural Public University Corp
Original Assignee
Ishikawa Prefectural Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefectural Public University Corp filed Critical Ishikawa Prefectural Public University Corp
Priority to JP2020021146A priority Critical patent/JP7458046B2/en
Publication of JP2021126053A publication Critical patent/JP2021126053A/en
Application granted granted Critical
Publication of JP7458046B2 publication Critical patent/JP7458046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アポカロテノイドの製造方法に関する。 The present invention relates to a method for producing apocarotenoids.

カロテノイドは、すべての光合成生物、及び一部の細菌、カビ、酵母などが生産する黄~橙~赤色の天然色素であり、その多くは、8個の炭素数5(C5)のイソプレン骨格からなるC40の脂溶性色素である(非特許文献1、2)。現在までに、自然界から750種以上のカロテノイドが単離・同定されている。一方、食品産業上重要なサフラン(単子葉植物鋼・キジカクシ目・アヤメ科・Crocus sativusの柱頭)やクチナシ(双子葉植物鋼・リンドウ目・アカネ科・Gardenia jasminoidesの果実)の橙色色素は、C20のcrocetinやcrocin(crocetinの両端が2分子ずつのD-glucoseでエステル化したもの)といった水溶性のカロテノイド(アポカロテノイド)からなり、食品添加物、機能性食品、及び、医薬品原料として利用されている。また、黄花Crocus属植物の花弁にも、crocetin配糖体が含まれている(非特許文献3)。また、ヒメヒオウギズイセン(クロコスミア、Crocosmia;アヤメ科・Crocosmia x crocosmiiflora)の橙色花弁(開花期:7月~9月)、及びハナビシソウ(California poppy;双子葉植物鋼・キンポウゲ目・ケシ科・Eschsholtzia californica)の橙色花弁(開花期:5月~6月)にも、それぞれ、crocin及びcrocetinが含まれているという報告もある(非特許文献2)。なお、Crocosmiaはラテン語で「サフランの香り」を意味する。 Carotenoids are natural yellow-orange-red pigments produced by all photosynthetic organisms, as well as some bacteria, fungi, and yeasts. Most of them are fat-soluble C40 pigments consisting of an isoprene skeleton with 8 carbon atoms (C5) (Non-Patent Documents 1, 2). To date, more than 750 carotenoids have been isolated and identified from nature. Meanwhile, the orange pigments of saffron (the stigma of Crocus sativus , a monocotyledonous order, Asparagales, family Iridaceae) and gardenia (the fruit of Gardenia jasminoides, a dicotyledonous order, Rubiaceae, family Gentianales ), which are important in the food industry, consist of water-soluble carotenoids (apocarotenoids) such as C20 crocetin and crocin (crocetin esterified with two molecules of D-glucose at each end), and are used as food additives, functional foods, and pharmaceutical raw materials. The petals of yellow Crocus plants also contain crocetin glycosides (Non-Patent Document 3). It has also been reported that the orange petals (flowering period: July to September) of Crocosmia (Iridaceae, Crocosmia x crocosmiiflora ) and the orange petals (flowering period: May to June) of California poppy (Dicotyledonous plant class, Ranunculales, Papaveraceae, Eschsholtzia californica ) contain crocin and crocetin, respectively (Non-Patent Document 2). Crocosmia means "saffron scent" in Latin.

フリージア(Freesia;アヤメ科・Freesia refracta)は、アサギズイセン、ショウブスイセン、コウセツランといった別名を持つ南アフリカ・ケープ地方原産の花卉植物であり、多数の園芸品種(Freesia x hybrida)が育種されている。白色、黄、橙、赤、ピンク、紫、青といった幅広い花色を有するが(開花期:3月~4月)、日本で流通しているフリージアでは、その78%が黄花である(非特許文献4)。 Freesia (Iridaceae, Freesia refracta ) is a flowering plant native to the Cape region of South Africa, and is also known by other names such as Asagizuinen, Kabusuinen, and Kosetsuran. Many horticultural varieties ( Freesia x hybrida ) have been bred. Freesia has a wide range of flower colors, including white, yellow, orange, red, pink, purple, and blue (flowering season: March to April), but 78% of freesias sold in Japan are yellow (Non-Patent Document 4).

「エアリーフローラ」は石川県オリジナル品種のフリージア(Freesia x hybrida)である。エアリーフローラでは多彩な花色が特長であり、現在流通する10品種はそれぞれに異なる個性的な花色を示す。淡紫色をはじめ赤色、橙色、黄色、白色など様々な花色の品種が揃っている。なお、エアリーフローラ・f2株(‘石川f2号’)が黄花品種である。 ``Airy Flora'' is an original variety of freesia ( Freesia x hybrida ) from Ishikawa Prefecture. Airy flora is characterized by its wide variety of flower colors, and there are currently 10 varieties in circulation, each with its own unique flower color. There are varieties with various flower colors including pale purple, red, orange, yellow, and white. Note that Airy Flora f2 strain ('Ishikawa f2-go') is a yellow-flowered variety.

三沢典彦, 生物工学93: 403-406, 2015Norihiko Misawa, Bioengineering 93: 403-406, 2015 AkemiOhmiya, JARQ 45: 163-171, 2011AkemiOhmiya, JARQ 45: 163-171, 2011 A. Rubio Moraga et al, Crocins with High Levels of Sugar ConjugationContribute to the Yellow Colours of Early-Spring Flowering CrocusTepals. PLoS ONE 8(9): e71946, 2013.https://doi.org/10.1371/journal.pone.0071946A. Rubio Moraga et al, Crocins with High Levels of Sugar ConjugationContribute to the Yellow Colors of Early-Spring Flowering CrocusTepals. PLoS ONE 8(9): e71946, 2013. https://doi.org/10.1371/journal.pone. 0071946 本図竹司, フリージアにおける育種,栽培技術および生産の変遷, 茨城農総セ生工研研報15: 1~31,2015Takeshi Honzu, Changes in breeding, cultivation technology, and production in freesia, Ibaraki National Agriculture and Food Research Institute Research Report 15: 1-31, 2015

本発明が解決しようとする課題は、食品産業上重要で、ヒトの健康への有用性が期待されているアポカロテノイドであるcrocetin配糖体を、植物を用いて製造する方法を提供することである。 The problem to be solved by the present invention is to provide a method for producing crocetin glycoside, an apocarotenoid that is important in the food industry and expected to be useful for human health, using plants. be.

本発明者らは、上記課題を解決するために、鋭意研究を行った結果、「エアリーフローラ」黄花品種である‘石川f2号’や、汎用黄花品種「アラジン」といった黄色花弁を持つフリージアが、黄色色素として、crocetin配糖体であるcrocetin neapolitanosyl ester[crocetinの片側に3分子のD-glucoseがエステル結合した水溶性アポカロテノイド:式(1)で表されるアポカロテノイド]、及びcrocetin di-neapolitanosyl ester[crocetinの両側に3分子のD-glucoseがエステル結合した水溶性アポカロテノイド:式(2)で表されるアポカロテノイド]が花弁に生産されることを見出し、本課題を解決するに至った。 The present inventors conducted intensive research to solve the above problems, and discovered that freesias with yellow petals, such as the yellow-flowered "Airleaf Flora" variety "Ishikawa f2" and the versatile yellow-flowered variety "Aladdin," produce the crocetin glycoside crocetin neapolitanosyl ester [a water-soluble apocarotenoid in which three molecules of D-glucose are ester-bonded to one side of crocetin: an apocarotenoid represented by formula (1)] and crocetin di-neapolitanosyl ester [a water-soluble apocarotenoid in which three molecules of D-glucose are ester-bonded to both sides of crocetin: an apocarotenoid represented by formula (2)] as yellow pigments in their petals, thereby solving the problem.

なお、フリージアがcrocetin配糖体を作ることは、これまで知られていなかった。黄花フリージアはcrocetin neapolitanosyl esterまたはcrocetindi-neapolitanosyl esterを主成分として生産する唯一の植物体材料である。さらに、crocetin neapolitanosyl esterの自然界の植物からの単離についても、これが最初の報告である。 It was previously unknown that freesia produces crocetin glycosides. Yellow freesia is the only plant material that produces crocetin neapolitanosyl ester or crocetin di-neapolitanosyl ester as the main component. Furthermore, this is the first report of the isolation of crocetin neapolitanosyl ester from a plant in nature.

本発明は以下の通りである。
1.式(1)で表されるアポカロテノイドをアポカロテノイド産生植物から抽出する工程を含む、アポカロテノイドの製造方法。
2.式(2a)で表されるアポカロテノイドをアポカロテノイド産生植物から抽出する工程を含む、アポカロテノイドの製造方法。
(式中、Rは式(2b)で表される。)
3.前記抽出されたアポカロテノイドを分解して式(3)で表されるアポカロテノイドを得る工程を更に含む、前項1又は2に記載のアポカロテノイドの製造方法。
4.前記アポカロテノイド産生植物がフリージア植物である前項1乃至3に記載の製造方法。
5.前記フリージア植物が、黄花フリージアである前項4に記載の製造方法。
6.前記フリージア植物が、エアリーフローラまたはアラジンである前項4に記載の製造方法。
7.前項1乃至6のいずれか1に記載の方法から得られたアポカロテノイドを含む色素組成物又は食品組成物。
The invention is as follows.
1. A method for producing an apocarotenoid, comprising a step of extracting an apocarotenoid represented by formula (1) from an apocarotenoid-producing plant.
2. A method for producing an apocarotenoid, comprising a step of extracting an apocarotenoid represented by formula (2a) from an apocarotenoid-producing plant.
(In the formula, R is represented by formula (2b).)
3. 3. The method for producing apocarotenoid according to item 1 or 2, further comprising the step of decomposing the extracted apocarotenoid to obtain the apocarotenoid represented by formula (3).
4. 4. The production method according to any of the preceding items 1 to 3, wherein the apocarotenoid-producing plant is a Freesia plant.
5. 4. The production method according to item 4, wherein the freesia plant is yellow-flowered freesia.
6. 4. The production method according to item 4, wherein the Freesia plant is Airy Flora or Aladdin.
7. A pigment composition or food composition containing an apocarotenoid obtained by the method according to any one of items 1 to 6 above.

本発明により、式(1)、式(2)または式(3)で表されるアポカロテノイドの製造方法を提供することができる。 According to the present invention, a method for producing an apocarotenoid represented by formula (1), formula (2), or formula (3) can be provided.

CH2Cl2-MeOH (1:1) 溶液による抽出物のHPLC分析結果を示す図である。FIG. 2 is a diagram showing the results of HPLC analysis of an extract using a CH 2 Cl 2 -MeOH (1:1) solution. 100%MeOH溶液による抽出物のHPLC分析結果を示す図である。It is a figure showing the HPLC analysis result of the extract by 100% MeOH solution. 80%MeOH溶液による抽出物のHPLC分析結果を示す図である。It is a figure showing the HPLC analysis result of the extract by 80% MeOH solution. 50%MeOH溶液による抽出物のHPLC分析結果を示す図である。It is a figure showing the HPLC analysis result of the extract by 50% MeOH solution. HP20の100% MeOH画分のHPLC分析結果を示す図である。It is a figure showing the HPLC analysis result of 100% MeOH fraction of HP20. フリージア100% MeOH画分のHPLC分取図である。It is an HPLC fractionation diagram of Freesia 100% MeOH fraction. HP20の50% MeOH画分のHPLC分析結果を示す図である。It is a figure showing the HPLC analysis result of 50% MeOH fraction of HP20. フリージア50%MeOH画分のHPLC分取図である。It is an HPLC fractionation diagram of Freesia 50% MeOH fraction. crocetin neapolitanosyl ester(化合物1)の1H NMRスペクトル(CD3OD中)。 1 H NMR spectrum of crocetin neapolitanosyl ester (compound 1) in CD 3 OD. crocetin neapolitanosyl ester(化合物1)の13C NMRスペクトル(CD3OD中)。 13 C NMR spectrum (in CD 3 OD) of crocetin neapolitanosyl ester (compound 1). 化合物1の1H-1H DQF COSYスペクトル(CD3OD中)。 1H- 1H DQF COSY spectrum of compound 1 (in CD3OD ). 化合物1のHMQCスペクトル(CD3OD中)。HMQC spectrum of compound 1 (in CD3OD ). 化合物1のHMBCスペクトル(CD3OD中)。HMBC spectrum of compound 1 (in CD3OD ). crocetin(化合物3)の1HNMRスペクトル(CD3OD中)。 1 H NMR spectrum of crocetin (compound 3) in CD 3 OD. crocetin(化合物3)の13CNMRスペクトル(CD3OD中)。 13 C NMR spectrum of crocetin (compound 3) (in CD 3 OD). crocetin di-neapolitanosyl ester(化合物2)の13CNMRスペクトル(CD3OD中)。 13 CNMR spectrum (in CD 3 OD) of crocetin di-neapolitanosyl ester (compound 2).

本発明は、アポカロテノイド、特に式(1)、式(2)または式(3)で表されるアポカロテノイドの製造方法に関する。本発明の製造方法は、アポカロテノイド産生植物(特に、フリージア)から上記アポカロテノイドを抽出することにより製造できる。
以下に、本発明を詳細に説明する。
The present invention relates to a method for producing apocarotenoids, particularly apocarotenoids represented by formula (1), formula (2), or formula (3). The production method of the present invention can be produced by extracting the apocarotenoid from an apocarotenoid-producing plant (particularly Freesia).
The present invention will be explained in detail below.

(アポカロテノイド)
本発明のアポカロテノイドは、以下のアポカロテノイドである。これらのアポカロテノイドは、合成が困難であることが知られている。
(apocarotenoid)
The apocarotenoids of the present invention are the following apocarotenoids. These apocarotenoids are known to be difficult to synthesize.

{クロセチンネアポリタノシルエステル(crocetin neapolitanosyl ester)}
クロセチンネアポリタノシルエステルは、下記の実施例において化合物1として得られ、式(1)で表される構造を有する。
{crocetin neapolitanosyl ester}
Crocetin neapolitanosyl ester is obtained as compound 1 in the examples below and has a structure represented by formula (1).

{クロセチンジネアポリタノシルエステル(crocetindi-neapolitanosyl ester)}
クロセチンジネアポリタノシルエステルは、下記の実施例において化合物2として得られ、式(2a)で表される構造を有する。
{crocetindi-neapolitanosyl ester}
Crocetin dineapolitanosyl ester is obtained as compound 2 in the following examples and has a structure represented by formula (2a).

(式中、Rは式(2b)で表される。) (In the formula, R is represented by formula (2b).)

{クロセチン(crocetin)}
クロセチンは、下記の実施例において化合物3として得られ、式(3)で表される構造を有する。また、クロセチンは、クロセチンネアポリタノシルエステル又はクロセチンジネアポリタノシルエステルを分解(特に酸加水分解)することによって得ることができる。
{crocetin}
Crocetin is obtained as compound 3 in the examples below and has a structure represented by formula (3). Crocetin can also be obtained by decomposing (particularly by acid hydrolysis) crocetin neapolitanosyl ester or crocetin dineapolitanosyl ester.

(アポカロテノイド産生植物)
本発明のアポカロテノイドは、アポカロテノイド産生植物から得られる。
アポカロテノイド産生植物は、本発明のアポカロテノイドを産生する能力を有する植物であれば特に限定されないが、例えばフリージア等のアヤメ科植物、ケシ科植物、アカネ科植物等が挙げられ、フリージア、黄花植物が好ましく、黄花フリージアがより好ましい。黄花フリージアとしては、例えば‘石川f2号’、アラジン等が挙げられる。
(Apocarotenoid-producing plants)
The apocarotenoids of the present invention are obtained from apocarotenoid-producing plants.
The apocarotenoid-producing plant is not particularly limited as long as it is a plant capable of producing the apocarotenoid of the present invention, but examples thereof include Iridaceae plants such as freesia, Papaveraceae plants, Rubiaceae plants, etc., and freesia and yellow flower plants are preferred, with yellow freesia being more preferred. Examples of yellow freesia include 'Ishikawa f2' and Aladdin.

(本発明のアポカロテノイドの製造方法)
本発明のアポカロテノイドの製造方法は、自体公知の植物から有用化合物(得に、カロテノイド)の抽出方法を採用することができる。例えば、以下を例示することができる。
アポカロテノイド産生植物の植物体の全部又は一部、好ましくは花弁を採取後、必要に応じて凍結乾燥し、さらに凍結乾燥品を粉砕後、抽出溶媒で抽出すること又は抽出溶媒で抽出したアポカロテノイドを分解(特に酸加水分解)することによって得られる。
抽出溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類あるいはそれらアルコール類と水を任意の割合で混合した含水アルコール類、1,3-ブチレングリコール、グリセリン、プロピレングリコール等のグリコール類あるいはそれらグリコール類と水を任意の割合で混合した含水グリコール類、酢酸エチル、酢酸ブチル等のエステル類、エチルエーテル、プロピルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ジクロロメタン、塩化メチレン、クロロホルム等のハロゲン化炭化水素、アセトン等の極性有機溶媒、ヘキサン、シクロヘキサン、石油エーテル等の無極性有機溶媒等を用いることができる。また、これらの溶媒を単独で又は2種以上の混合溶媒として用いることもできる。好ましい抽出溶媒としては、ジクロロメタン及びメタノールの混合溶媒、含水メタノール等を例示することができる。
上記方法によって抽出物を得た後、必要に応じて、水(H2O)、メタノール(MeOH)、エタノール(EtOH)、プロパノール、ブタノール、クロロホルム、ジクロロメタン(CH2Cl2)、酢酸エチル(EtOAc)、トルエン、ヘキサン、ベンゼン等の有機溶媒で互いに混和しない2種の溶媒を用いた二相分配操作によって、得られた抽出液から活性画分(例えば、酢酸エチル/水の二相分配の水相画分)を分取することができる。
更に必要に応じて、シリカゲルクロマトグラフィー、疎水クロマトグラフィー、逆相系クロマトグラフィー、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー等のガラス管カラムクロマトグラフィーあるいは高速液体クロマトグラフィーを適当な溶媒で用いる分離精製手段を1種若しくは2種以上組み合わせて精製することもできる。
(Method for producing apocarotenoid of the present invention)
The method for producing apocarotenoids of the present invention can employ a known method for extracting useful compounds (especially carotenoids) from plants. For example, the following can be exemplified.
After collecting all or a part of the plant body, preferably the petals, of the apocarotenoid-producing plant, freeze-drying as necessary, and crushing the freeze-dried product, and then extracting with an extraction solvent or apocarotenoids extracted with an extraction solvent. obtained by decomposing (especially acid hydrolysis).
Extraction solvents include, for example, alcohols such as methanol, ethanol, propanol, and butanol, hydroalcohols prepared by mixing these alcohols and water in any proportion, and glycols such as 1,3-butylene glycol, glycerin, and propylene glycol. Or hydrous glycols made by mixing these glycols and water in any proportion, esters such as ethyl acetate and butyl acetate, ethers such as ethyl ether, propyl ether, isopropyl ether, tetrahydrofuran, dioxane, dichloromethane, methylene chloride, chloroform, etc. halogenated hydrocarbons such as, polar organic solvents such as acetone, nonpolar organic solvents such as hexane, cyclohexane, petroleum ether, etc. can be used. Further, these solvents can be used alone or as a mixed solvent of two or more. Preferred extraction solvents include a mixed solvent of dichloromethane and methanol, aqueous methanol, and the like.
After obtaining the extract by the above method, add water (H 2 O), methanol (MeOH), ethanol (EtOH), propanol, butanol, chloroform, dichloromethane (CH 2 Cl 2 ), ethyl acetate (EtOAc) as necessary. ), toluene, hexane, benzene, and other organic solvents, and the active fraction is extracted from the resulting extract by a two-phase partition operation using two types of organic solvents that are immiscible with each other (e.g., water in a two-phase partition of ethyl acetate/water). phase fraction) can be fractionated.
Furthermore, if necessary, separation and purification means using glass tube column chromatography such as silica gel chromatography, hydrophobic chromatography, reversed phase chromatography, gel filtration chromatography, ion exchange chromatography, or high performance liquid chromatography in an appropriate solvent may be used. It is also possible to purify one type or a combination of two or more types.

例えば、本発明のアポカロテノイドは、アポカロテノイド産生植物の植物体の一部、例えばフリージアの花弁を採取し、破砕後、水又は上述の溶媒を加えて遠心分離を行なった上清を回収する工程を1回以上行い、上清として得ることもできる。 For example, the apocarotenoid of the present invention can be obtained through the step of collecting a part of an apocarotenoid-producing plant, such as a freesia petal, crushing it, adding water or the above-mentioned solvent, and performing centrifugation to collect the supernatant. The supernatant can also be obtained by performing this procedure one or more times.

より詳しくは、crocetin neapolitanosyl ester(及びcrocetin)の抽出方法の一例を挙げると、以下のようになる。
温室にて促成栽培を行い、開花したフリージア‘石川f2号’から順次花弁を採取し、-80℃フリーザーにて冷凍する。
この花弁を3日間凍結乾燥させたものをミキサーで粉末とし、これをCH2Cl2-MeOH(1:1)、100% MeOH、80% MeOH、50% MeOHで順次抽出することにより(各溶媒を加えて30分程度攪拌抽出した後減圧ろ過したろ液を抽出液とする)、黄色色素を溶媒抽出する。
次に黄色色素を含む抽出液を少量まで濃縮して有機溶媒を除去後、EtOAc/H2Oで二相分配する。黄色色素は水相に分配されるため、水相を半分量まで濃縮してEtOAcを除いた後HP20カラムに吸着させる。HP20カラムは水と50%MeOHで洗浄後、100%MeOHで黄色色素を溶出する。
溶出物を濃縮乾固後、逆相(C30)のHPLC分取(展開溶媒:30%CH3CN+0.1%TFA)により黄色色素の純品を単離する。
More specifically, an example of a method for extracting crocetin neapolitanosyl ester (and crocetin) is as follows.
Compulsory cultivation is performed in a greenhouse, and petals are collected one by one from flowering freesia 'Ishikawa F2' and frozen in a -80℃ freezer.
The petals were freeze-dried for 3 days, turned into powder using a mixer, and extracted sequentially with CH 2 Cl 2 -MeOH (1:1), 100% MeOH, 80% MeOH, and 50% MeOH (each solvent The yellow pigment is extracted with a solvent.
Next, the extract containing the yellow pigment is concentrated to a small volume to remove the organic solvent, and then partitioned into two phases using EtOAc/H 2 O. Since the yellow pigment is distributed into the aqueous phase, the aqueous phase is concentrated to half its volume to remove EtOAc and then adsorbed onto an HP20 column. After washing the HP20 column with water and 50% MeOH, the yellow dye is eluted with 100% MeOH.
After concentrating the eluate to dryness, a pure yellow pigment is isolated by reverse phase (C30) HPLC fractionation (developing solvent: 30% CH 3 CN + 0.1% TFA).

(各化合物の確認方法)
必要に応じて、得られた純品について各種NMR(1H、13C、DQF COSY、HMBC、HMQC、NOESY)やHRESI-MS((+)あるいは(-))の測定を行う。
次に、2N HClを用いてアグリコンと糖に加水分解する。アグリコンと糖はEtOAc/H2Oの二相分配でそれぞれ精製する(EtOAc相:アグリコン、水相:糖)。
必要に応じて、アグリコンは各種NMR解析を行い、糖は旋光度及び1H NMRの測定を行うことにより、得られた色素を同定する。
(How to confirm each compound)
If necessary, perform various NMR ( 1 H, 13 C, DQF COSY, HMBC, HMQC, NOESY) and HRESI-MS ((+) or (-)) measurements on the obtained pure product.
Next, hydrolyze into aglycones and sugars using 2N HCl. Aglycones and sugars are each purified by two-phase partitioning of EtOAc/H 2 O (EtOAc phase: aglycone, aqueous phase: sugar).
If necessary, the aglycone is subjected to various NMR analyses, and the sugar is measured by optical rotation and 1 H NMR to identify the obtained dye.

(本発明の製造方法で得られたアポカロテノイド)
本発明の製造方法で得られたアポカロテノイドは、色素、食品、機能性食品、医薬品原料等に利用することができる。
(Apocarotenoid obtained by the production method of the present invention)
Apocarotenoids obtained by the production method of the present invention can be used as pigments, foods, functional foods, pharmaceutical raw materials, etc.

以下に具体例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be explained in detail by giving specific examples below, but the present invention is not limited to these examples.

1-1 フリージアの栽培と黄色色素の抽出
フリージア(Freesia x hybrida)の黄花品種として、石川県のオリジナル品種である「エアリーフローラ」‘石川f2号’、及び、汎用品種である「アラジン」を用いた。‘石川f2号’は石川県農林総合研究センターの温室にて促成栽培を行い、開花させた花弁を用いた。「アラジン」は、花ギフト専門店Edelweissから購入した「フリージアの花束 3L」から採取した花弁を用いた。両者から抽出された黄色色素は全く同じ化合物から構成されていたので、以下には、‘石川f2号’の実施例のみを示す。
‘石川f2号’から順次花弁を採取し、-80℃フリーザーで冷凍した。凍結させた‘石川f2号’の花弁(179.3 g)を72時間凍結乾燥し、ドライフリージア(18.6 g)を得た。得られたドライフリージアをミキサーにて1分間粉砕し、1LのCH2Cl2-MeOH(1 : 1) 溶液を加えて消灯下室温で30分撹拌抽出し、減圧濾過を行った。次にろ過残渣に100% MeOH 1 Lを加えて同様に溶媒抽出した後減圧ろ過し、さらにそのろ過残渣に80% MeOH 1 L、50% MeOH 1 Lを加えて同様の抽出を行った。
上記抽出の結果、花弁に含有される黄色色素が全て抽出されたため最後に残った残渣はほぼ白色となった。
得られた4つの濾過液を濃縮せずに30 μLずつ、以下に示すHPLC分析条件で分析した。CH2Cl2-MeOH (1 : 1) 溶液の結果を図1、100% MeOH溶液の結果を図2、80%MeOH溶液の結果を図3、50% MeOH溶液の結果を図4に示す。
(HPLC分析条件)
カラム:CAPCELL PAK (SHISEIDO) 4.6 mm×100 mm
流速:1.0 mL/min
溶媒:A液5% CH3CN+20 mM H2PO4,B液95% CH3CN+20 mM H2PO4
0→3 min:A液100%, 3→20 min:A液 100%→B液 100%, 20→30 min:A液 100%
検出:DAD(200~600 nm)
1-1 Cultivation of Freesia and Extraction of Yellow Pigment As yellow-flowered varieties of Freesia (Freesia there was. 'Ishikawa F2' was produced by forced cultivation in the greenhouse of the Ishikawa Prefectural Agriculture and Forestry Research Center, and flower petals were used. ``Aladdin'' uses petals collected from ``Freesia Bouquet 3L'' purchased from flower gift specialty store Edelweiss. Since the yellow pigments extracted from both were composed of exactly the same compound, only the example of 'Ishikawa f2' will be shown below.
Petals were collected one by one from 'Ishikawa F2' and frozen in a -80°C freezer. Frozen 'Ishikawa F2' petals (179.3 g) were freeze-dried for 72 hours to obtain dry Freesia (18.6 g). The obtained dry Freesia was pulverized for 1 minute using a mixer, 1 L of CH 2 Cl 2 -MeOH (1:1) solution was added, and the mixture was stirred and extracted at room temperature for 30 minutes with the lights off, followed by vacuum filtration. Next, 1 L of 100% MeOH was added to the filtration residue and solvent extraction was performed in the same manner, followed by vacuum filtration, and 1 L of 80% MeOH and 1 L of 50% MeOH were further added to the filtration residue to perform the same extraction.
As a result of the above extraction, all the yellow pigment contained in the petals was extracted, so the residue that remained at the end was almost white.
The four obtained filtrates were analyzed in 30 μL portions each under the HPLC analysis conditions shown below without being concentrated. The results for CH 2 Cl 2 -MeOH (1:1) solution are shown in Figure 1, the results for 100% MeOH solution in Figure 2, the results for 80% MeOH solution in Figure 3, and the results for 50% MeOH solution in Figure 4.
(HPLC analysis conditions)
Column: CAPCELL PAK (SHISEIDO) 4.6 mm×100 mm
Flow rate: 1.0 mL/min
Solvent: A solution 5% CH 3 CN + 20 mM H 2 PO 4 , B solution 95% CH 3 CN + 20 mM H 2 PO 4
0→3 min: A liquid 100%, 3→20 min: A liquid 100% → B liquid 100%, 20→30 min: A liquid 100%
Detection: DAD (200-600 nm)

本分析の結果、CH2Cl2-MeOH (1 : 1)及び100% MeOH抽出物中には、楕円形で囲った保持時間12.5分の434.3 nmに最大吸収を持つ化合物(化合物1)が(図1及び図2)、50% MeOH抽出物中には長方形で囲った439.9 nmに最大吸収を持つ化合物(化合物2)が(図4)、80% MeOH抽出物中には化合物1と化合物2が共に含まれていることがわかった(図3)。 As a result of this analysis, in the CH 2 Cl 2 -MeOH (1 : 1) and 100% MeOH extracts, there is a compound (compound 1) that has a maximum absorption at 434.3 nm with a retention time of 12.5 minutes, which is surrounded by an oval ( 1 and 2), the 50% MeOH extract contains a compound (compound 2) with maximum absorption at 439.9 nm, which is surrounded by a rectangle (Fig. 4), and the 80% MeOH extract contains compound 1 and compound 2. It was found that both were included (Figure 3).

1-2 化合物1の精製
1-1で得られた濾過液のうち、化合物1が多く含まれているCH2Cl2-MeOH(1 : 1)溶液と100% MeOH 溶液を合一し、減圧下濃縮乾固した(14.5 g)。乾固物を300 mLのEtOAcと300 mLの蒸留水を用いて溶解して、1 L容分液漏斗中で振とうし、二相分配を行った。その結果、黄色色素のほとんどは水相に分配された。その後一度EtOAc相と水相を分液ロートからそれぞれ別の三角フラスコの移したのち、EtOAc相は分液漏斗に戻してさらに300 mLの水を加え、再び分液漏斗中で二相分配を行った。得られた2つの水相を合一し、減圧下濃縮乾固した(13.8 g)。
濃縮乾固した水層を、試薬塩酸を数滴滴下してpH=4前後とした255 mLの蒸留水に溶解し、水で展開したHP20カラム(50 mm×130 mm)を通過させ、黄色色素はカラムに吸着された。その後、255 mLの蒸留水をカラム通過させて未吸着物質を完全に除去(洗浄)した後、まず765 mL(255 mL×3)の50% MeOHを流して吸着物を溶出した。溶出液(赤色溶液)は1つの三角フラスコに集めた。次に765 mLの100% MeOHを流して溶出された溶出液(オレンジ色溶液)、最後に765 mLの60% acetoneを流して溶出された溶出液(薄い黄色)も、それぞれ1つの三角フラスコに集めた。
得られた3つの画分(50% MeOH溶出画分、100% MeOH溶出画分、60% acetone溶出画分)を濃縮せずに30 μLずつ、上記のHPLC分析条件で分析した。その結果、100% MeOH画分のみに450 nm付近に極大吸収を有するピーク(化合物1とする)が12.5分に検出されることが判明した(図5)。
得られた100% MeOH画分を以下に示したHPLC分取条件1で打ち、化合物1を分取しようと試みた。しかし、保持時間47分に目的のカロテノイドではないピークが検出されており、効率よくHPLCでの分取を繰り返し行うためには、47分のピークの化合物(化合物1より極性の低い物質)を取り除くことが必要であった。そこで、濃縮乾固した100%MeOH画分(1.1077 g)を6 mL のCH2Cl2-MeOH(1 : 1) に一度完全に溶解し、ここにさらに15 mLのCH2Cl2を加えた。化合物1はCH2Cl2-MeOH (1 : 1) には溶解するがCH2Cl2を加えた結果の溶媒(CH2Cl2 : MeOH = 6 : 1)には溶解しないため、生じた沈殿を集めることにより、極性の低い物質を除いた(上清にも若干の化合物1が含まれていたため、本操作は2回実施した)。2つの沈殿は合わせて濃縮乾固した(914.9 mg)。乾固して得られた赤色混合物は3.0 mLの50%MeOHに溶解し、125 μLずつHPLCで分取した。
以下にHPLC分取条件1を、図6に本条件で観測されたピークの様子を示す。
(HPLC分取条件1)
カラム:Develosil C30-UG-5 10Φ×250 mm
流速:3.0 mL/min
溶媒:30%CH3CN+0.1%TFA
検出:DAD(220~600 nm)
1-2 Purification of Compound 1 Among the filtrates obtained in 1-1, the CH 2 Cl 2 -MeOH (1:1) solution containing a large amount of compound 1 and the 100% MeOH solution were combined and concentrated to dryness under reduced pressure (14.5 g). The dried product was dissolved in 300 mL of EtOAc and 300 mL of distilled water, and the mixture was shaken in a 1 L separatory funnel to perform two-phase partitioning. As a result, most of the yellow pigment was partitioned into the aqueous phase. After that, the EtOAc phase and the aqueous phase were transferred from the separatory funnel to separate Erlenmeyer flasks, and the EtOAc phase was returned to the separatory funnel and 300 mL of water was added, and two-phase partitioning was performed again in the separatory funnel. The two aqueous phases obtained were combined and concentrated to dryness under reduced pressure (13.8 g).
The concentrated and dried aqueous layer was dissolved in 255 mL of distilled water, the pH of which was adjusted to about 4 by adding a few drops of hydrochloric acid, and passed through an HP20 column (50 mm x 130 mm) developed with water, and the yellow pigment was adsorbed by the column. After that, 255 mL of distilled water was passed through the column to completely remove (wash) unadsorbed substances, and then 765 mL (255 mL x 3) of 50% MeOH was passed through the column to elute the adsorbed substances. The eluate (red solution) was collected in one Erlenmeyer flask. Next, the eluate (orange solution) eluted with 765 mL of 100% MeOH was passed through, and finally the eluate (light yellow) eluted with 765 mL of 60% acetone was passed through, each of which was also collected in a single Erlenmeyer flask.
The three fractions obtained (50% MeOH elution fraction, 100% MeOH elution fraction, and 60% acetone elution fraction) were analyzed in 30 μL each under the above HPLC analysis conditions without concentration. As a result, it was found that a peak with a maximum absorption around 450 nm (referred to as compound 1) was detected at 12.5 minutes only in the 100% MeOH fraction (Figure 5).
The obtained 100% MeOH fraction was run under the HPLC separation condition 1 shown below in an attempt to separate compound 1. However, a peak that was not the target carotenoid was detected at a retention time of 47 minutes, and in order to efficiently repeat the separation by HPLC, it was necessary to remove the compound at the peak at 47 minutes (a substance with lower polarity than compound 1). Therefore, the concentrated and dried 100% MeOH fraction (1.1077 g) was completely dissolved once in 6 mL of CH 2 Cl 2 -MeOH (1:1), and 15 mL of CH 2 Cl 2 was added to this. Compound 1 dissolves in CH 2 Cl 2 -MeOH (1:1) but does not dissolve in the solvent resulting from the addition of CH 2 Cl 2 (CH 2 Cl 2 : MeOH = 6:1), so the resulting precipitate was collected to remove the less polar substance (this operation was performed twice because the supernatant also contained a small amount of compound 1). The two precipitates were combined and concentrated to dryness (914.9 mg). The red mixture obtained by drying was dissolved in 3.0 mL of 50% MeOH and separated by HPLC in 125 μL portions.
The HPLC separation conditions 1 are shown below, and the peaks observed under these conditions are shown in Figure 6.
(HPLC separation condition 1)
Column: Develosil C30-UG-5 10Φ×250 mm
Flow rate: 3.0 mL/min
Solvent: 30% CH3CN + 0.1% TFA
Detection: DAD (220-600 nm)

図6に示した長方形で囲ったピーク(保持時間 17.8分)を分取して濃縮乾固したところ、27.1 mgの純品の化合物1を得た。 When the peak (retention time 17.8 minutes) enclosed in a rectangle shown in Figure 6 was collected and concentrated to dryness, 27.1 mg of pure Compound 1 was obtained.

1-3 化合物2の精製
1-1で得られた濾過液のうち、80% MeOH 溶液と50% MeOH溶液を合一し、減圧下濃縮乾固した(12.1 g)。乾固物を300 mLのEtOAcと300 mLの蒸留水を用いて溶解して、1 L容分液漏斗中で振とうし、二相分配を行った。その結果、黄色色素のほとんどは水相に分配された。その後一度EtOAc相と水相を分液ロートからそれぞれ別の三角フラスコの移したのち、EtOAc相は分液漏斗に戻してさらに300 mLの水を加え、再び分液漏斗中で二相分配を行った。得られた2つの水相を合一し、減圧下濃縮乾固した(4.82 g)。
濃縮乾固した水層を、100 mLの蒸留水に溶解し、水で展開したHP20カラム(30 mm×130 mm)を通過させ、黄色色素はカラムに吸着された。その後、300 mLの蒸留水をカラム通過させて未吸着物質を完全に除去(洗浄)した後、まず300 mL(100 mL×3)の50% MeOHを流して吸着物を溶出した。溶出液は1つの三角フラスコに集めた。次に300 mLの100% MeOHを流して溶出された溶出液、最後に300 mLの60% acetoneを流して溶出された溶出液も、それぞれ1つの三角フラスコに集めた。
得られた3つの画分(50% MeOH溶出画分、100% MeOH溶出画分、60% acetone溶出画分)を濃縮せずに30 μLずつ、上記のHPLC分析条件で分析した。その結果、50% MeOH画分のみに化合物1と化合物2が存在することが判明した(図7)。
得られた50% MeOH画分を濃縮乾固し(753.3 mg)、以下に示したHPLC分取条件2で打ち、化合物2を分取した。14.0 mLの展開溶媒に溶解し、200 μLずつHPLCで分取した。
以下にHPLC分取条件2を、図8に本条件で観測されたピークの様子を示す。
(HPLC分取条件2)
カラム:Develosil C30-UG-5 10Φ×250 mm
流速:3.0 mL/min
溶媒:20% CH3CN+ 0.1% TFA
検出:DAD(220~600 nm)
1-3 Purification of compound 2 Among the filtrate obtained in 1-1, the 80% MeOH solution and the 50% MeOH solution were combined and concentrated to dryness under reduced pressure (12.1 g). The dried product was dissolved in 300 mL of EtOAc and 300 mL of distilled water, and the mixture was shaken in a 1 L separatory funnel to perform two-phase partitioning. As a result, most of the yellow pigment was partitioned into the aqueous phase. After that, the EtOAc phase and the aqueous phase were transferred from the separatory funnel to separate Erlenmeyer flasks, and the EtOAc phase was returned to the separatory funnel and 300 mL of water was added, and two-phase partitioning was performed again in the separatory funnel. The two aqueous phases obtained were combined and concentrated to dryness under reduced pressure (4.82 g).
The concentrated and dried aqueous layer was dissolved in 100 mL of distilled water and passed through a HP20 column (30 mm x 130 mm) developed with water, and the yellow pigment was adsorbed onto the column. After that, 300 mL of distilled water was passed through the column to completely remove (wash) unadsorbed substances, and then 300 mL (100 mL x 3) of 50% MeOH was passed through the column to elute the adsorbed substances. The eluate was collected in one Erlenmeyer flask. Next, the eluate eluted with 300 mL of 100% MeOH was passed through the column, and finally the eluate eluted with 300 mL of 60% acetone was also collected in one Erlenmeyer flask.
The three fractions obtained (50% MeOH elution fraction, 100% MeOH elution fraction, and 60% acetone elution fraction) were analyzed in 30 μL each under the above HPLC analysis conditions without concentration. As a result, it was found that compound 1 and compound 2 were present only in the 50% MeOH fraction (Figure 7).
The resulting 50% MeOH fraction was concentrated to dryness (753.3 mg) and subjected to HPLC separation under the following separation condition 2 to separate compound 2. The compound was dissolved in 14.0 mL of the developing solvent and separated by HPLC in 200 μL portions.
The HPLC separation conditions 2 are described below, and the peaks observed under these conditions are shown in Figure 8.
(HPLC separation conditions 2)
Column: Develosil C30-UG-5 10Φ×250 mm
Flow rate: 3.0 mL/min
Solvent: 20% CH3CN + 0.1% TFA
Detection: DAD (220-600 nm)

図8に示した長方形で囲ったピーク(保持時間 15.3分)を分取して濃縮乾固したところ、83.2 mgの純品の化合物2を得た。 When the peak surrounded by the rectangle shown in Figure 8 (retention time 15.3 minutes) was fractionated and concentrated to dryness, 83.2 mg of pure Compound 2 was obtained.

1-4 化合物1の構造決定
1-2で得られた純品の化合物1を0.1% mg/mLになるようにMeOHに溶解し、HRESI-MS (+)を測定した。その結果、(M+Na)イオンピークがm/z 837.31834に観測され、化合物1の分子式はC38H54O19と決定された{calcd for 837.31570 (C38H54NaO19、Δ3.16 ppm)}。
次に10 mgの化合物1をCD3OD 1 mLに溶解して各種NMRスペクトルを測定した。化合物1の1H NMRスペクトルを図9に、13C NMRスペクトルを図10に示す。次に化合物1の2D NMRスペクトル(1H-1H DQF COSY, HMQC, HMBC)を測定解析して化合物1の構造を解析した。
化合物1の1H-1H DQF COSYスペクトルを図11、HMQCスペクトルを図12、HMBCスペクトルを図13に示す。
その結果、化合物1の構造を式(1)に示すcrocetin neapolitanosyl esterと推定した。ここまでの解析では構成糖の種類、アグリコン構造中の幾何異性は判定できなかったため、これらの確認のため化合物1の酸加水分解を行い、構成糖とアグリコンをそれぞれEtOAc/水の二層分配で単離精製した(EtOAc層 アグリコン、水層 構成糖)。
具体的には、5.0 mgの1-2で得られた純品の化合物1を25 mLナスフラスコに分け取り、そこに2NのHClを5 mL加えた。そのサンプルを100℃以上に設定したオイルバスに浸し、消灯下で2時間リフラックスを行った。
引き上げたナスフラスコに5 mLのEtOAcを加え、超音波にかけよく溶解した後二相分配を行ったEtOAc層と水相をそれぞれ濃縮し、EtOAc相からはアグリコン(2.3 mg)、水相からは糖(2.0 mg)の純品をそれぞれ得た。
まず構成糖がD-glucoseであることを、D2O中の1H NMRスペクトルと水溶液の[α]Dの値(+68.3°)から確定した。またアグリコンは1H NMRスペクトル(図14)、13C NMRスペクトル(図15)による解析を行い、式(3)に示すcrocetin(化合物3)であると判定した。ここまでの分析結果により、化合物1はcrocetin neapolitanosyl esterと確定した。
サフランやクチナシを始めとした自然界の植物に含有されているという報告は無く、本発明のフリージアの黄花品種の花弁からの抽出が初めての報告である。黄花フリージアはcrocetin neapolitanosyl esterを主成分として生産する唯一の植物体材料であることを確認した。
1-4 Structure determination of compound 1 The pure compound 1 obtained in 1-2 was dissolved in MeOH to a concentration of 0.1% mg/mL, and HRESI-MS (+) was measured. As a result, a (M+Na) + ion peak was observed at m/z 837.31834, and the molecular formula of compound 1 was determined to be C 38 H 54 O 19 {calcd for 837.31570 (C 38 H 54 NaO 19 , Δ3.16 ppm) }.
Next, 10 mg of Compound 1 was dissolved in 1 mL of CD 3 OD, and various NMR spectra were measured. The 1 H NMR spectrum of Compound 1 is shown in FIG. 9, and the 13 C NMR spectrum is shown in FIG. 10. Next, the structure of Compound 1 was analyzed by measuring and analyzing the 2D NMR spectrum ( 1 H- 1 H DQF COSY, HMQC, HMBC) of Compound 1.
The 1 H- 1 H DQF COSY spectrum of Compound 1 is shown in FIG. 11, the HMQC spectrum in FIG. 12, and the HMBC spectrum in FIG. 13.
As a result, the structure of compound 1 was estimated to be crocetin neapolitanosyl ester shown in formula (1). Since the types of constituent sugars and geometric isomerism in the aglycone structure could not be determined in the analysis up to this point, we performed acid hydrolysis of compound 1 to confirm these, and separated the constituent sugars and aglycones by two-layer partitioning of EtOAc/water. Isolated and purified (EtOAc layer aglycone, aqueous layer constituent sugars).
Specifically, 5.0 mg of the pure compound 1 obtained in 1-2 was dispensed into a 25 mL eggplant flask, and 5 mL of 2N HCl was added thereto. The sample was immersed in an oil bath set at 100°C or higher and refluxed for 2 hours with the lights off.
Add 5 mL of EtOAc to the lifted eggplant flask, apply ultrasound to dissolve well, and perform two-phase partitioning. The EtOAc layer and aqueous phase are respectively concentrated. The aglycone (2.3 mg) is extracted from the EtOAc phase, and the sugar is extracted from the aqueous phase. (2.0 mg) of each pure product was obtained.
First, it was determined that the constituent sugar was D-glucose based on the 1 H NMR spectrum in D 2 O and the [α] D value (+68.3°) of the aqueous solution. Furthermore, the aglycon was analyzed by 1 H NMR spectrum (Figure 14) and 13 C NMR spectrum (Figure 15), and was determined to be crocetin (compound 3) shown in formula (3). Based on the analysis results thus far, Compound 1 was confirmed to be crocetin neapolitanosyl ester.
There are no reports that it is contained in natural plants such as saffron and gardenia, and this is the first report of its extraction from the petals of the yellow-flowered freesia variety of the present invention. It was confirmed that yellow-flowered freesia is the only plant material that produces crocetin neapolitanosyl ester as its main component.

1-5 化合物2の構造決定
1-3で得られた純品の化合物2を0.1 mg/mLになるようにMeOHに溶解し、HRESI-MS (-)を測定した。その結果、(M-H)-イオンピークがm/z 1299.47367に観測され、化合物2の分子式はC58H84O34と判定された{calcd for 1299.47367、Δ 2.90 ppm}。これは化合物1でフリーだったカルボキシ基にneapolitanosyl esterが結合すると一致する分子式であった。そこで、化合物2は対称構造を有するcrocetin di-neapolitanosyl ester(式(2a))ではないかとの推定のもと、13C NMRスペクトル(CD3OD中)を測定した。その結果得られた13C NMRスペクトル(図16)。で観測されたシグナルは、化合物1のC-8'~C-20', C-1''~C-6''、C-1'''~C-6'''、 C-1''''~C-6''''部分のシグナルと完全に一致したので、化合物2をcrocetin di-neapolitanosyl ester(式(2a))と同定した。
サフランやクチナシを始めとした自然界の植物に主成分として含有されているという報告は無く、本発明のフリージアの黄花品種の花弁からの抽出が初めての報告である。黄花フリージアはcrocetindi-neapolitanosyl esterを主成分として生産する唯一の植物体材料であることを確認した。
1-5 Structure determination of compound 2 The pure compound 2 obtained in 1-3 was dissolved in MeOH to a concentration of 0.1 mg/mL, and HRESI-MS (-) was measured. As a result, a (MH) -ion peak was observed at m/z 1299.47367, and the molecular formula of compound 2 was determined to be C 58 H 84 O 34 {calcd for 1299.47367, Δ 2.90 ppm}. This was a molecular formula consistent with the binding of neapolitanosyl ester to the free carboxy group in Compound 1. Therefore, 13 C NMR spectrum (in CD 3 OD) was measured based on the assumption that Compound 2 was crocetin di-neapolitanosyl ester (formula (2a)) having a symmetrical structure. The resulting 13 C NMR spectrum (Figure 16). The signals observed in compound 1 are C-8' to C-20', C-1'' to C-6'', C-1''' to C-6''', and C-1' Compound 2 was identified as crocetin di-neapolitanosyl ester (formula (2a)) because it completely matched the signal of the ''' to C-6'''' portion.
There are no reports that it is contained as a main component in natural plants such as saffron and gardenia, and this is the first report of its extraction from the petals of the yellow-flowered freesia variety of the present invention. It was confirmed that yellow-flowered freesia is the only plant material that mainly produces crocetindi-neapolitanosyl ester.

1-6 化合物1、3の一重項酸素消去活性
通常、大気に存在している酸素を三重項酸素と言い、最も安定しており反応性が低いが、三重項酸素がエネルギーを受け取ることで励起された酸素分子である一重項酸素を発生し、一重項酸素はシミやしわの原因となる。カロテノイド化合物には、優れた一重項酸素消去活性を有するものがあるので、化合物1、3の同活性を評価した。
用いた試験では、メチレンブルーが光増感剤の役割を果たし、一重項酸素を発生させた。発生した一重項酸素により、リノール酸が235 nmの光の吸収を持つ共役リノール酸となるため、235 nmの吸光度を測定することより生成された共役リノール酸量が明らかとなり、発生した一重項酸素量を明らかとすることができた。
1-6 Singlet oxygen scavenging activity of compounds 1 and 3 Normally, oxygen present in the atmosphere is called triplet oxygen, which is the most stable and least reactive, but when triplet oxygen receives energy, it generates singlet oxygen, which is an excited oxygen molecule, and singlet oxygen causes spots and wrinkles. Some carotenoid compounds have excellent singlet oxygen scavenging activity, so the activity of compounds 1 and 3 was evaluated.
In the test used, methylene blue acted as a photosensitizer to generate singlet oxygen. The generated singlet oxygen converts linoleic acid into conjugated linoleic acid, which has a light absorption of 235 nm. By measuring the absorbance at 235 nm, the amount of generated conjugated linoleic acid and thus the amount of generated singlet oxygen could be determined.

一重項酸素消去活性試験方法
ディスポカルチャーチューブに0.025 mMメチレンブルー溶液80 μL、0.24 Mリノール酸溶液100 μL(以上すべてEtOH溶液)、サンプル溶液40 μL(CH2Cl2溶液)、EtOH 180 μLを加えて(計400 μL)よく撹拌した。サンプル溶液の蒸発を抑えるためにビー玉をチューブに乗せた状態で、蛍光灯の下で3時間光照射を行った。なお光照射量が一定になるように実験は発泡スチロール箱中で行い、蛍光灯スタンドとサンプルの距離は17 cm程度となるように設定した。実験は3連で行い、その平均値をデータとして用いた。
3時間後、反応液120 μLを別のチューブに移し、ここに3,480 μLのEtOHを加え(=30倍希釈)、希釈液のλ235 nmの吸光度(Abs235)を測定した。
サンプルの一重項酸素消去率は、式 {100-(S-B2)/(C-B1)}×100を計算することによって求めた。
ここで、S (sample)は光照射・サンプル添加でのAbs 235を、C(Control)は光照射・サンプル無添加でのAbs 235を、B1 (Blank1)は光無照射・サンプル無添加でのAbs 235を、B2(Blank2)は光無照射・サンプル添加でのAbs 235を示す。Controlの吸光度は1.3、Blankの吸光度は0.4程度であった。
各化合物に対する評価はC, B1, B2はシングル、Sは各濃度3 連で行った。得られたデータ(Sについては得られた吸光度の平均値)を用いて、縦軸阻害%、横軸化合物濃度とする回帰直線を求め、ここからIC50 (一重項酸素によるリノール酸酸化を50%阻害する濃度)を求めた。
実験は、各サンプルのモル数をもとに調整した1 μM、10 μM、100 μM液(最終濃度)について3連で実施した。ポジティブコントロールには、自然界に広く分布するカロテノイドであるβ-caroteneを用いた。
Singlet oxygen quenching activity test method 80 μL of 0.025 mM methylene blue solution, 100 μL of 0.24 M linoleic acid solution (all EtOH solutions), 40 μL of sample solution (CH 2 Cl 2 solution), and 180 μL of EtOH were added to a disposable culture tube (total 400 μL) and stirred well. To prevent evaporation of the sample solution, a marble was placed on the tube and the tube was irradiated with light for 3 hours under a fluorescent lamp. The experiment was carried out in a polystyrene foam box so that the amount of light irradiation was constant, and the distance between the fluorescent lamp stand and the sample was set to about 17 cm. The experiment was carried out in triplicate, and the average value was used as data.
After 3 hours, 120 μL of the reaction solution was transferred to another tube, and 3,480 μL of EtOH was added thereto (= 30-fold dilution), and the absorbance at λ 235 nm (Abs 235 ) of the diluted solution was measured.
The singlet oxygen quenching rate of the sample was calculated by the formula {100-(S-B2)/(C-B1)}×100.
Here, S (sample) indicates Abs 235 when exposed to light and sample was added, C (Control) indicates Abs 235 when exposed to light and no sample was added, B1 (Blank1) indicates Abs 235 when not exposed to light and no sample was added, and B2 (Blank2) indicates Abs 235 when not exposed to light and sample was added. The absorbance of the control was 1.3, and that of the blank was about 0.4.
The evaluation of each compound was performed in single doses for C, B1, and B2, and in triplicate for each concentration for S. Using the obtained data (average absorbance obtained for S), a regression line was obtained with the ordinate representing inhibition percentage and the abscissa representing compound concentration, from which the IC50 (the concentration that inhibits 50% of linoleic acid oxidation by singlet oxygen) was calculated.
The experiment was carried out in triplicate for the final concentrations of 1 μM, 10 μM, and 100 μM, adjusted based on the molar number of each sample. As a positive control, β-carotene, a carotenoid widely distributed in nature, was used.

結果
実験により求められた化合物1及び化合物3のIC50値(一重項酸素50%消去濃度、μM)を表1に示した。いずれの化合物も一重項酸素消去活性を有することが確認された。
Results The IC 50 values (singlet oxygen 50% elimination concentration, μM) of Compound 1 and Compound 3 determined by experiment are shown in Table 1. It was confirmed that all the compounds had singlet oxygen scavenging activity.

化合物1及び化合物3の一重項酸素消去活性(IC50値) Singlet oxygen scavenging activity of compound 1 and compound 3 (IC 50 value)

Claims (4)

式(1)で表されるアポカロテノイドを黄花フリージアの花弁から抽出する工程を含む、アポカロテノイドの製造方法。
A method for producing an apocarotenoid, comprising a step of extracting an apocarotenoid represented by formula (1) from the petals of yellow freesia .
式(2a)で表されるアポカロテノイドを黄花フリージアの花弁から抽出する工程を含む、アポカロテノイドの製造方法。
(式中、Rは式(2b)で表される。)
A method for producing an apocarotenoid, comprising a step of extracting an apocarotenoid represented by formula (2a) from the petals of yellow freesia .
(In the formula, R is represented by formula (2b).)
前記抽出されたアポカロテノイドを分解して式(3)で表されるアポカロテノイドを得る工程を更に含む、請求項1又は2に記載のアポカロテノイドの製造方法。
The method for producing apocarotenoid according to claim 1 or 2, further comprising the step of decomposing the extracted apocarotenoid to obtain an apocarotenoid represented by formula (3).
前記黄花フリージア植物が、エアリーフローラまたはアラジンである請求項1乃至3に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the yellow-flowered Freesia plant is Airy Flora or Aladdin.
JP2020021146A 2020-02-12 2020-02-12 Method for producing apocarotenoids Active JP7458046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021146A JP7458046B2 (en) 2020-02-12 2020-02-12 Method for producing apocarotenoids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021146A JP7458046B2 (en) 2020-02-12 2020-02-12 Method for producing apocarotenoids

Publications (2)

Publication Number Publication Date
JP2021126053A JP2021126053A (en) 2021-09-02
JP7458046B2 true JP7458046B2 (en) 2024-03-29

Family

ID=77487128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021146A Active JP7458046B2 (en) 2020-02-12 2020-02-12 Method for producing apocarotenoids

Country Status (1)

Country Link
JP (1) JP7458046B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269663A (en) 2003-03-07 2004-09-30 Riken Vitamin Co Ltd Method for purifying crocetin
WO2010094745A1 (en) 2009-02-18 2010-08-26 Omnica Gmbh Hydrolysate of crocin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269663A (en) 2003-03-07 2004-09-30 Riken Vitamin Co Ltd Method for purifying crocetin
WO2010094745A1 (en) 2009-02-18 2010-08-26 Omnica Gmbh Hydrolysate of crocin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Enzyme and Microbial Technology,1999年,Vol.24,pp.453-462
Frontiers in Plant Science,2015年,Vol.6, No.971,pp.1-14
J. Agric. Food Chem.,1996年,Vol.44,pp.2612-2615

Also Published As

Publication number Publication date
JP2021126053A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Chorfa et al. An efficient method for high-purity anthocyanin isomers isolation from wild blueberries and their radical scavenging activity
Chen et al. Identification and evaluation of antioxidants defatted Camellia oleifera seeds by isopropanol salting-out pretreatment
Yingyuen et al. Isolation, separation and purification of rutin from Banana leaves (Musa balbisiana)
N’guessan et al. In vitro assays for bioactivity-guided isolation of antisalmonella and antioxidant compounds in Thonningia sanguinea flowers
Raziq et al. Correlation of the antioxidant capacity with the phenolic contents of Hypericum monogynum and Hypericum perforatum
Guinot et al. Serratula tinctoria, a source of natural dye: flavonoid pattern and histolocalization
González et al. Sample preparation of tropical and subtropical fruit biowastes to determine antioxidant phytochemicals
Hölzl et al. Chemical constituents of Hypericum ssp
JP7458046B2 (en) Method for producing apocarotenoids
JP2006265250A (en) Method for producing luteolin 6-c-glucoside
Patil Plant Secondary Metabolites: Isolation, Characterization & Biological Properties
JP5709148B2 (en) Dye compound, method for producing the same, and coloring agent
Yahayu et al. Cytotoxic and antimicrobial xanthones from Cratoxylum arborescens (Guttiferae)
JP5097983B2 (en) Method for producing composition having antioxidant activity
Prapalert et al. Two phenylethanoid glycosides, Parvifloroside A and B, isolated from Barleria strigosa
Gnanakani et al. Chemical composition, antioxidant, and cytotoxic potential of Nannochloropsis species extracts
Hichri et al. New antioxidant C-glycosyl flavone and flavonol derivatives from the Tunisian Achille acretica L.
JP2006265249A (en) New flavonoid compound and method for producing the same and antioxidant with the same as active ingredient
Siddiqi et al. Antioxidant Activity of the Extracts Derived from Terminalia catappa: Antioxidant Activity of Terminalia catappa
Kļaviņa Composition of mosses, their metabolites and environmental stress impacts
Khanam et al. A novel acylated flavonoidic glycoside from the wood of cultivated Acacia nilotica (L.) Willd. ex. Delile.
KR101005173B1 (en) Fraction from stem bark of Vietnamese medicinal plant Garcinia oblongifoliaClusiaceae and compounds isolated therefrom having antioxidant and cytotoxic activities
JP2009126810A (en) Anthocyanin dye derived from camellia japonica, method for producing the same and use thereof, and method for identifying variety of camellia japonica
Mabika et al. Analytical characterizations of anthocyanins of the hydro-alcoholic extract of fruits of Grewia coriacea Mast
Aicha et al. Isolation, structural characterization and evaluation of the in vitro antioxidant potential of four compounds isolated from the selective leaf extracts of Bauhinia monandra Kurz (Fabaceae)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240309

R150 Certificate of patent or registration of utility model

Ref document number: 7458046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150