JP2009126810A - Anthocyanin dye derived from camellia japonica, method for producing the same and use thereof, and method for identifying variety of camellia japonica - Google Patents

Anthocyanin dye derived from camellia japonica, method for producing the same and use thereof, and method for identifying variety of camellia japonica Download PDF

Info

Publication number
JP2009126810A
JP2009126810A JP2007302353A JP2007302353A JP2009126810A JP 2009126810 A JP2009126810 A JP 2009126810A JP 2007302353 A JP2007302353 A JP 2007302353A JP 2007302353 A JP2007302353 A JP 2007302353A JP 2009126810 A JP2009126810 A JP 2009126810A
Authority
JP
Japan
Prior art keywords
camellia
cyanidin
dye
anthocyanin
glucopyranoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007302353A
Other languages
Japanese (ja)
Other versions
JP5190926B2 (en
Inventor
Fumio Hashimoto
文雄 橋本
Jian-Bin Li
建賓 李
Yusuke Sakata
祐介 坂田
Norioki Ko
徳興 侯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2007302353A priority Critical patent/JP5190926B2/en
Publication of JP2009126810A publication Critical patent/JP2009126810A/en
Application granted granted Critical
Publication of JP5190926B2 publication Critical patent/JP5190926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating an anthocyanin dye developing red color from an extract of a flower or a petal of Camellia japonica, and to provide a method for knowing a difference in dye distribution among varieties of the Camellia japonica by knowing a chemical structure of the separated dye. <P>SOLUTION: The method for obtaining various anthocyanin dyes containing a new anthocyanin dye from the extract of the flower or the petal of the Camellia japonica is provided. Furthermore, the method for classifying the Camellia japonica by carrying out a high-performance liquid chromatographic analysis using the resultant anthocyanin dyes as specimens is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アントシアニン色素、その製造方法及び用途、並びにツバキの品種識別方法に関する。   The present invention relates to an anthocyanin pigment, its production method and use, and a camellia variety identification method.

ツバキは、観賞用花木として世界的に親しまれているのみならず、種子を椿油の原料として用い、また、花は開花直前に採集して日干ししたものを、腸出血の救急薬や、滋養・強壮のため煎じて服用され、常用すれば美容上にも好ましいなど、民間薬として用いられている(非特許文献1)。   Camellia is not only popular around the world as an ornamental flowering tree, but also uses seeds as a raw material for camellia oil, and the flowers are collected just before flowering and sun-dried to provide emergency medicines for intestinal bleeding, It is used as a folk remedy because it is decocted for tonic and is regularly used for beauty reasons (Non-patent Document 1).

紅色ツバキにはその花色を発現する色素として、アントシアニン色素が含まれていることが報告されている。1953年に林らは紅色ツバキより初めてアントシアニン色素を単離し、その化学構造をcyanidin 3−O−β−glucopyranoside(6)であることを明らかにした(非特許文献2)。また、斉藤らはカンツバキ、ヤブツバキ、山茶花の紅花からcyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)を単離し(非特許文献3)、寺原らは、紅花茶の葉からcyanidin 3−O−β−galactopyranoside(15)、delphinidin 3−O−β−galactopyranoside、delphinidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranosideを単離した報告がある(非特許文献4)。   It has been reported that red camellia contains an anthocyanin pigment as a pigment that expresses its flower color. In 1953, Hayashi et al. Isolated the anthocyanin pigment for the first time from red camellia, and revealed that its chemical structure was cyanidin 3-O-β-glucopyranoside (6) (Non-patent Document 2). Saito et al. Isolated cyanidin 3-O- (6-O- (E) -p-coumaroyl) -β-glucopyranoside (8) from red flowers of Japanese camellia, Japanese camellia and wild tea (Non-Patent Document 3), Terahara et al. Can be obtained from cyanidin 3-O-β-galactopyranoside (15), delphindin 3-O-β-galactopyranoside, delphindin 3-O- (6-O- (E) -p-cumaroylyl) -β-galactopyranoside from safflower tea leaves. Has been reported (Non-patent Document 4).

本発明者の一人である坂田は、1988年その学位論文の中で薄層クロマトグラフによりツバキ花弁中に15種類のアントシアニン色素が存在することを明らかにしている(非特許文献5)。また、著書の中では、紅色ツバキの花弁には、cyanidin 3−O−β−sophoroside、cyanidin 3、5−di−O−β−glucosideが存在するとの記載がある(非特許文献6)。更に、ヤブツバキ系の品種では、cyanidin 3−O−β−glucosideの花弁中の含量が増せばより赤色になることや、トウツバキ系品種では、cyanidin 3−O−β−sophorosideの花弁中の含量が増せばより赤色に変化することの記載がある。   Sakata, one of the inventors of the present invention, revealed in the 1988 dissertation that 15 types of anthocyanin pigments were present in camellia petals by thin-layer chromatography (Non-patent Document 5). In addition, in the book, there is a description that cyanidin 3-O-β-sophoroside, cyanidin 3, 5-di-O-β-glucoside exists in the petals of red camellia (Non-patent Document 6). Furthermore, in the varieties of Azalea camellia, the content in the petals of cyanidin 3-O-β-glucoside becomes red, and in the camellia cultivars, the content in the petals of cyanidin 3-O-β-sophoroside There is a description that the color changes to red if it increases.

従来において、ツバキの花や植物体には以下のような活性又は利用方法があることが開示されている。   Conventionally, it has been disclosed that camellia flowers and plants have the following activities or utilization methods.

特許文献1には、ツバキ科ツバキ属植物、特に、ツバキ(Camellia japonica)、サザンカ(Camellia sasanqua)の抽出物がヒアルロニダーゼの活性阻害剤作用を有することが開示されている。   Patent Document 1 discloses that extracts of camellia belonging to the family Camellia, particularly camellia (Camellia japonica) and sasanqua (Camellia sasanqua), have a hyaluronidase activity inhibitory action.

特許文献2には、ツバキ科植物の根と茎を除く、該植物由来の、水及び有機溶媒にともに溶解性を示す抽出物がセラミド産生を促進することが開示されている。   Patent Document 2 discloses that an extract that is soluble in water and an organic solvent, excluding the roots and stems of camellia plants, promotes ceramide production.

特許文献3には、ツバキの花から抽出されたフラボノイド成分を経口又は静注することによって、心臓病又は脳血管症の治療を可能とすることが開示されている。   Patent Document 3 discloses that treatment of heart disease or cerebrovascular disease is possible by oral or intravenous injection of a flavonoid component extracted from camellia flowers.

特許文献4には、ツバキの花など10種類の漢薬を配合した外用製剤が神経痛、頭痛などに有効であることが開示されている。   Patent Document 4 discloses that an external preparation containing 10 kinds of Chinese medicines such as camellia flowers is effective for neuralgia, headache and the like.

特許文献5には、山茶花の抽出物などが美白効果と皮膚のメラニン色素合成を抑制することが開示されている。   Patent Document 5 discloses that an extract of a mountain tea flower or the like suppresses a whitening effect and melanin pigment synthesis in the skin.

特許文献6には、クエン酸やリンゴ酸を添加することによって、ツバキの花から効率よく色素を抽出する方法が開示されている。   Patent Document 6 discloses a method for efficiently extracting pigment from camellia flowers by adding citric acid or malic acid.

特許文献7には、ツバキの花をローストすることによって、カカオ豆と同じ香り、色、味を出すことのできる粉末を製造する方法が開示されている。   Patent Document 7 discloses a method for producing a powder capable of producing the same aroma, color and taste as cacao beans by roasting camellia flowers.

特許文献8には、ツバキの花を漬物として保存する製造方法が開示されている。
特許文献9には、ツバキの花を発酵させることによってツバキ茶を製造する方法が開示されている。
Patent Document 8 discloses a production method for storing camellia flowers as pickles.
Patent Document 9 discloses a method for producing camellia tea by fermenting camellia flowers.

特開2003−012489号公報JP 2003-012489 A 特開2004−189683号公報JP 2004-189683 A CN1775249号公報CN1775249 CN1279091号公報CN1277901 publication 特開2000−302634号公報JP 2000-302634 A 特開昭55−123655号公報JP 55-123655 A 特開昭55−111758号公報Japanese Patent Laid-Open No. 55-111758 特開昭55−111751号公報JP 55-111751 A 特開昭55−099180号公報JP-A-55-099180 主婦の友社、主婦の友生活シリーズ、「身近にあり、効きめの確かな「薬草カラー図鑑」」、1985年、p.29−30Shufu no Tomosha, Shufu no Tomo Life Series, “Natural and effective“ medicinal herb color book ””, 1985, p. 29-30 Hayashi、K.とAbe、Y.「Studien uber Anthocyane、XXIII」、資源科学研究所彙報(Misc.Rep.Res.Inst.Natur.Resources)、1953年、第29巻、p.1−8Hayashi, K .; And Abe, Y. et al. “Student hub Anthocyane, XXIII”, Resource Science Institute Institute (Misc. Rep. Res. Inst. Nature. Resources), 1953, Vol. 29, p. 1-8 Saito、N.、Yokoi、M.、Yamaji、M. and Honda、T.「Cyanidin 3−p−coumaroylglucoside in Camellia species and cultivars」、Phytochemistry、1987年、第26巻(10号)、p.2761−2762Saito, N .; Yokoi, M .; Yamaji, M .; and Honda, T .; “Cyanidin 3-p-comaroylglucide in Camellia specifications and cultures”, Phytochemistry, 1987, Vol. 26 (No. 10), p. 2761-2762 Terahara、N.、Takeda、Y.、Nesumi、A. and Honda、T.「Anthocyanins from red flower tea (Benibana−cha)、Camellia sinensis」、Phytochemistry、2001年、第56巻、p.359−361Terahara, N .; Takeda, Y .; Nesumi, A .; and Honda, T .; “Anthocyanins from red flow tea (Benibana-cha), Camellia sinensis”, Phytochemistry, 2001, vol. 56, p. 359-361 坂田祐介、学位論文「ツバキ属植物の花色素に関する研究」、1988年、p.10−12Yusuke Sakata, dissertation "Research on flower pigments of Camellia plants", 1988, p. 10-12 坂田祐介、植物色素研究会編、大阪公立大学共同出版会、植物色素研究法「ツバキの花色素と花色育種」、2004年、p.191−206Yusuke Sakata, edited by Plant Pigment Research Association, Osaka Public University Joint Publication, Plant Pigment Research Method “Flower Pigment and Flower Color Breeding”, 2004, p. 191-206

前述したように、従来ではツバキの花又は花弁の抽出物の生物学的活性が明らかにされ、また、その利用方法が発明されたものの、ツバキの花又は花弁の抽出物に含まれる、赤色を発現するアントシアニン色素については不明な点が多く、それらの詳細な分離法、色素の詳細な化学構造、色素の品種間での分布の違いについては知られていなかった。これらの分離法が確立できれば、ツバキの花又は花弁の抽出物を更に有効に使用できるものと考えられる。   As described above, the biological activity of the camellia flower or petal extract has been clarified in the past, and the method of using the same has been invented. However, the red color contained in the camellia flower or petal extract has been invented. There are many unclear points about the expressed anthocyanin pigments, and the detailed separation method, the detailed chemical structure of the pigments, and the difference in distribution among pigment varieties were not known. If these separation methods can be established, it is considered that the camellia flower or petal extract can be used more effectively.

そこで、本発明は、ツバキの花又は花弁の抽出物から、赤色を発現するアントシアニン色素を分離する方法、また、分離された色素の化学構造を知ることによって、ツバキ品種間での色素分布の違いを知る方法を提供することを目的とする。   Therefore, the present invention provides a method for separating red anthocyanin pigments from camellia flower or petal extracts, and knows the chemical structure of the separated pigments, thereby differentiating pigment distribution among camellia varieties. The purpose is to provide a way to know.

本発明者らは、前記課題を解決するため鋭意研究を行った結果、ツバキ花弁の抽出物から25種類のアントシアニン色素、特に、8種類の新規アントシアニン色素を得ることに成功し、更に、得られたアントシアニンを標品として、高速液体クロマトグラフィー分析を行うことによって、各色素組成を元にツバキを種類分けすることが可能となり、ツバキ花弁由来のアントシアニンエキスを利用するために、明確に種類分けできることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors succeeded in obtaining 25 types of anthocyanin pigments, particularly 8 types of new anthocyanin pigments, from the camellia petal extract. It is possible to classify camellia based on each pigment composition by performing high performance liquid chromatography analysis using the anthocyanin as a standard, and to be able to classify clearly to use the anthocyanin extract derived from camellia petals As a result, the present invention has been completed.

本発明の要旨は以下のとおりである。
(1)次式(I)

Figure 2009126810
(式中、Rはアセチル基を表す。)
で示される化合物。 The gist of the present invention is as follows.
(1) The following formula (I)
Figure 2009126810
(In the formula, R represents an acetyl group.)
A compound represented by

(2)次式(II)

Figure 2009126810
(式中、Rは(Z)−p−クマロイル基、(E)−p−クマロイル基、(E)−カフェオイル基又はアセチル基を表す。)
で示される化合物。 (2) The following formula (II)
Figure 2009126810
(In the formula, R represents (Z) -p-coumaroyl group, (E) -p-coumaroyl group, (E) -caffeoyl group or acetyl group).
A compound represented by

(3)次式(III)

Figure 2009126810
(式中、Rは(Z)−p−クマロイル基、(E)−p−クマロイル基又は(E)−カフェオイル基を表す。)
で示される化合物。 (3) The following formula (III)
Figure 2009126810
(In the formula, R represents a (Z) -p-coumaroyl group, an (E) -p-coumaroyl group, or an (E) -caffeoyl group.)
A compound represented by

(4)ツバキの花又は花弁の抽出物から前記(1)〜(3)のいずれかに記載の化合物を単離及び精製することを特徴とするアントシアニン色素の製造方法。 (4) A method for producing an anthocyanin pigment, comprising isolating and purifying the compound according to any one of (1) to (3) from a camellia flower or petal extract.

(5)前記ツバキがトウツバキ(Camellia reticulata Lindl.)であり、アントシアニン色素がcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)又はcyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)である前記(4)に記載の製造方法。 (5) The camellia is Camellia reticulata Lindl. The anthocyanin dye is cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (Z) -p-comaroyl) -β-glucopyroxide (β). 2) cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-glucopyroxide (4) or cyanidin 3-O- (6-O- (Z) -p -Coumaroyl) -β-glucopyranoside (7), the production method according to (4) above.

(6)前記ツバキがホンコンツバキ(Camellia hongkongensis Seem.)であり、アントシアニン色素がcyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)又はdelphinidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(20)である前記(4)に記載の製造方法。 (6) The camellia is Camellia hongkongensis Seem. The anthocyanin dye is cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyroxide (7), cyanidin 3-O. -(6-O- (Z) -p-cumaroyl) -β-galactopyranoside (16), cyanidin 3-O- (6-O- (E) -p-cumaroylyl) -β-galactopyranoside (17), cyanidin 3 -O- (6-O- (E) -caffeoyl) -β-galactopyranoside (18) or delphidinin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucop The manufacturing method according to the above (4) is ranoside (20).

(7)前記ツバキがサルウィンツバキ(Camellia saluenensis Stapf ex Bean)であり、アントシアニン色素がcyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)又はcyanidin 3−O−(6−O−(Z)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(24)である前記(4)に記載の製造方法。 (7) The camellia is Salwin camellia (Camellia saluensis Stapf ex Bean), and the anthocyanin pigment is cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyroxide (7) or cyanidin 3- The production method according to (4) above, which is O- (6-O- (Z) -p-cumaroyl-β-glucopyranoside) -5-β-glucopyranoside (24).

(8)前記ツバキが園芸品種のツバキ:大理茶(Dalicha)であり、アントシアニン色素がcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)又はcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)である前記(4)に記載の製造方法。 (8) The camellia is a cultivar camellia: Dalicha, and the anthocyanin pigment is cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (Z) -p-comaaroyl) -β -Glucopyranoxide (2), cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (E) -caffeoyl)-[beta] -glucopyranoside (4), cyanidin 3-O- (2-O- [beta]- xylopyranosyl-6-O-acetyl) -β-glucopyranoside (5), cyanidin 3-O- (2-O-β-xylopylanosyl-6-O- (Z) -p-coumaroyl) -β-galactopyranoside (11) , Cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -p-cumaroyl) -β-galactopylanoside (12), cyanidin 3-O- (2-O-β-xypyranosyl-6 -O- (E) -cafeeoyl) -β-galactopylanoside (13) or cyanidin 3-O- (2-O-β-xylopyranosyl-6-O-acetyl) -β-galactopyranoside (14) The manufacturing method as described in.

(9)前記単離及び精製手段がカラムクロマトグラフィーである前記(4)〜(8)のいずれかに記載の製造方法。
(10)抽出溶媒が酢酸−メタノール混合溶媒である前記(4)〜(9)のいずれかに記載の製造方法。
(9) The production method according to any one of (4) to (8), wherein the isolation and purification means is column chromatography.
(10) The production method according to any one of (4) to (9), wherein the extraction solvent is an acetic acid-methanol mixed solvent.

(11)ツバキの花又は花弁の抽出物中に含まれるアントシアニン色素の組成を分析することを特徴とするツバキの品種識別方法。
(12)高速液体クロマトグラフィー法によりアントシアニン色素の組成を分析する前記(11)に記載のツバキの品種識別方法。
(11) A method for identifying varieties of camellia, comprising analyzing the composition of anthocyanin pigments contained in a camellia flower or petal extract.
(12) The camellia cultivar identification method according to (11), wherein the composition of the anthocyanin pigment is analyzed by high performance liquid chromatography.

(13)高速液体クロマトグラフィー法を、リン酸水溶液と、リン酸−ギ酸−アセトニトリル−テトラヒドロフラン−水混合溶媒とを用いてリニアーグラジエント溶出させることにより行う前記(12)に記載のツバキの品種識別方法。
(14)ツバキの花又は花弁の抽出物又はその精製物を含有する抗酸化剤。
(13) The camellia cultivar identification method according to (12), wherein the high performance liquid chromatography method is performed by linear gradient elution using a phosphoric acid aqueous solution and a phosphoric acid-formic acid-acetonitrile-tetrahydrofuran-water mixed solvent. .
(14) An antioxidant containing a camellia flower or petal extract or a purified product thereof.

(15)ツバキの花又は花弁の抽出物の精製物が単離・精製されたアントシアニン色素である前記(14)に記載の抗酸化剤。
(16)ツバキの花又は花弁の抽出物又はその精製物を含有する抗癌剤。
(17)ツバキの花又は花弁の抽出物の精製物が単離・精製されたアントシアニン色素である前記(16)に記載の抗癌剤。
(15) The antioxidant according to (14) above, wherein the purified product of camellia flower or petal extract is an anthocyanin pigment isolated and purified.
(16) An anticancer agent comprising a camellia flower or petal extract or a purified product thereof.
(17) The anticancer agent according to (16), wherein the purified product of camellia flower or petal extract is an anthocyanin pigment isolated and purified.

本発明によれば、ツバキ抽出物からアントシアニン色素を得ることができ、また、得られたアントシアニン色素を標品として、高速液体クロマトグラフィー分析を行うことによって、各色素組成を元にツバキ属を種類分けすることが可能となり、ツバキ花弁由来のアントシアニンエキスを利用するために、明確に種類分けできる。   According to the present invention, an anthocyanin pigment can be obtained from a camellia extract, and by performing high performance liquid chromatography analysis using the obtained anthocyanin pigment as a standard, a variety of camellia genus based on each pigment composition It can be divided and can be clearly classified to use the anthocyanin extract derived from camellia petals.

以下、本発明を詳細に説明する。
本発明に係るツバキの花又は花弁の抽出物(以下「ツバキ色素抽出物」という。)は、ツバキ、好ましくは紅花ツバキの花弁又は花を溶媒抽出に供することで得ることができる。例えば、ツバキの花弁を、酢酸と低級アルコール(例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、好ましくはメタノール)の1〜1.5対1、好ましくは1対1(容量比)で混合した溶媒を用いた抽出に供し、これを1回又は数回(例えば3回)繰り返すことでツバキ色素抽出物を得ることができる。
Hereinafter, the present invention will be described in detail.
The camellia flower or petal extract (hereinafter referred to as “camellia pigment extract”) according to the present invention can be obtained by subjecting camellia, preferably safflower camellia petals or flowers, to solvent extraction. For example, camellia petals are mixed with acetic acid and lower alcohol (eg methanol, ethanol, propanol, isopropanol, butanol, isobutanol, preferably methanol) 1 to 1.5 to 1, preferably 1 to 1 (volume ratio). The camellia pigment extract can be obtained by subjecting it to extraction using the obtained solvent and repeating this once or several times (for example, 3 times).

通常、ツバキの花弁1kg当り抽出溶媒3〜4Lを使用する。抽出温度は、通常、溶媒の融点ないし溶媒の沸点の範囲内であり、好ましくは15〜30℃、更に好ましくは20〜25℃である。また、抽出は、通常常圧下で行うが、加圧下又は減圧下で行ってもよい。抽出時間は、抽出温度等により異なり、通常室温で1日〜2日間である。なお、本発明においては、ツバキ色素抽出物とは、前記抽出方法で得られた抽出液もしくは各種溶媒抽出液、その希釈液、その濃縮液又はその乾燥粉末を意味する。   Usually, 3-4 L of extraction solvent is used per 1 kg of camellia petals. The extraction temperature is usually within the range of the melting point of the solvent to the boiling point of the solvent, preferably 15 to 30 ° C, more preferably 20 to 25 ° C. The extraction is usually performed under normal pressure, but may be performed under pressure or under reduced pressure. The extraction time varies depending on the extraction temperature and the like, and is usually 1 day to 2 days at room temperature. In the present invention, the camellia pigment extract means the extract obtained by the extraction method or various solvent extracts, a diluted solution thereof, a concentrated solution thereof or a dried powder thereof.

また、本発明においては、前述したツバキ色素抽出物を濾過、遠心分離又は精製処理等の精製手段に供することで、当該抽出物から夾雑物を除去した精製物を用いることができる。精製手段としては、例えば、カラムクロマトグラフィー、順相又は逆相クロマトグラフィー、イオン交換クロマトグラフィー及びゲル濾過が挙げられるが、カラムクロマトグラフィーが特に好ましい。   In the present invention, a purified product obtained by removing impurities from the extract can be used by subjecting the aforementioned camellia pigment extract to purification means such as filtration, centrifugation or purification treatment. Examples of the purification means include column chromatography, normal phase or reverse phase chromatography, ion exchange chromatography, and gel filtration, and column chromatography is particularly preferable.

例えば、ツバキ色素の酢酸と低級アルコール抽出溶液を減圧蒸留装置でアルコールを蒸留除去後、濃縮された溶液を直接、逆相用のゲル(例えば、MCI gel CHP−20P(三菱化学)など)のオープンカラムクロマトグラフィーに付す。移動相にA液として5%酢酸水溶液、B液として5%酢酸のメタノール溶液を用い、A液とB液との比率を100:0から順次B液の含量を増加させ、例えば、70:30、30:70、0:100と変えて、クロマトグラフィーを行う。最後にC液として5%酢酸を含むアセトンを用い、A液とC液との比率を50:50にしてクロマトグラフィーを行う。A液とB液との比率が20:80で溶出する粗製分画物、並びにA液とB液との比率が40:60で溶出する粗製分画物並びにA液とB液との比率が70:30で溶出する粗製分画物には、本発明のアントシアニン色素が含有される。従って、これら粗製分画物は、ツバキ色素の粗精製物として好適に使用することができる。   For example, the acetic acid and lower alcohol extraction solution of camellia pigment is distilled off with a vacuum distillation apparatus, and then the concentrated solution is directly opened to a gel for reverse phase (for example, MCI gel CHP-20P (Mitsubishi Chemical)). Subject to column chromatography. Using 5% acetic acid aqueous solution as liquid A and 5% acetic acid methanol solution as liquid B in the mobile phase, the ratio of liquid A and liquid B is increased sequentially from 100: 0, for example, 70:30 , 30:70, 0: 100, and chromatography. Finally, chromatography is performed using acetone containing 5% acetic acid as the C liquid, and the ratio of the A liquid and the C liquid is 50:50. The crude fraction eluted at a ratio of A to B of 20:80, the crude fraction eluted at the ratio of A to B of 40:60, and the ratio of A to B The crude fraction eluted at 70:30 contains the anthocyanin dye of the present invention. Therefore, these crude fractions can be suitably used as a crudely purified product of camellia pigment.

また、得られた前記ツバキ色素の粗精製物を更に逆相用のゲル(例えば、Sephadex LH−20(GE Healthcare Biosciences AB)など)のオープンカラムクロマトグラフィーに付す。移動相にA液として5%酢酸水溶液、B液として5%酢酸のメタノール溶液を用い、A液とB液との比率を100:0から順次B液の含量を増加させ、例えば、70:30、30:70、0:100と変えて、クロマトグラフィーを行う。最後にC液として5%酢酸を含むアセトンを用い、A液とC液との比率を50:50にしてクロマトグラフィーを行う。A液とB液との比率が100:0で溶出する粗製分画物並びにA液とB液との比率が50:50で溶出する粗製分画物には、本発明であるアントシアニン色素が含有される。従って、これら粗製分画物は、ツバキ色素の粗精製物として好適に使用することができる。   Moreover, the obtained crudely purified product of the camellia dye is further subjected to open column chromatography on a gel for reverse phase (for example, Sephadex LH-20 (GE Healthcare Biosciences AB)). Using 5% acetic acid aqueous solution as liquid A and 5% acetic acid methanol solution as liquid B in the mobile phase, the ratio of liquid A and liquid B is increased sequentially from 100: 0, for example, 70:30 , 30:70, 0: 100, and chromatography. Finally, chromatography is performed using acetone containing 5% acetic acid as the C liquid, and the ratio of the A liquid and the C liquid is 50:50. The crude fraction eluted at a ratio of A to B of 100: 0 and the crude fraction eluted at a ratio of A to B of 50:50 contain the anthocyanin dye of the present invention. Is done. Therefore, these crude fractions can be suitably used as a crudely purified product of camellia pigment.

更にまた、得られた前記ツバキ色素の粗精製物を逆相用のゲル(例えば、Chromatorex ODS(Fuji Silysia Chemical LTD)など)のオープンカラムクロマトグラフィーに付す。移動相にA液として5%酢酸水溶液、B液として5%酢酸のメタノール溶液を用い、A液とB液との比率を100:0から順次B液の含量を増加させ、例えば、100:0、90:10、80:20、70:30、60:40、50:50、40:60、30:70、0:100と変えて、クロマトグラフィーを行う。最後にC液として5%酢酸を含むアセトンを用い、A液とC液との比率を50:50にしてクロマトグラフィーを行う。この操作を繰り返し行うことによって、本発明であるアントシアニン色素を単離することができる。   Furthermore, the obtained crude product of the camellia dye is subjected to open column chromatography on a gel for reverse phase (for example, Chromatorex ODS (Fuji Silysia Chemical LTD)). Using 5% acetic acid aqueous solution as liquid A and 5% acetic acid methanol solution as liquid B in the mobile phase, the ratio of liquid A and liquid B is increased sequentially from 100: 0, for example, 100: 0 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, and 0: 100. Finally, chromatography is performed using acetone containing 5% acetic acid as the C liquid, and the ratio of the A liquid and the C liquid is 50:50. By repeating this operation, the anthocyanin dye of the present invention can be isolated.

また、単離されたアントシアニン色素の純度を上げるために、例えば、Sephadex LH−20(GE Healthcare Biosciences AB)など)のオープンカラムクロマトグラフィーに付す。移動相にA液として5%酢酸水溶液、C液として5%酢酸を含むアセトンを用い、A液とC液との比率を0:100から順次A液の濃度を2%ずつ上げて、25:75までクロマトグラフィーを行う。この操作を行うことによって、本発明のアントシアニン色素の純度を上げることができる。   Moreover, in order to raise the purity of the isolated anthocyanin pigment | dye, it attach | subjects to the open column chromatography of Sephadex LH-20 (GE Healthcare Biosciences AB) etc., for example. Using 5% acetic acid aqueous solution as liquid A and acetone containing 5% acetic acid as liquid C in the mobile phase, the ratio of liquid A and liquid C was increased from 0: 100 sequentially by 2%, and 25: Chromatography to 75. By performing this operation, the purity of the anthocyanin dye of the present invention can be increased.

前記単離されたアントシアニン色素及びツバキ色素の粗精製物に含まれるアントシアニン色素を簡単に分析する方法を以下に例示する。   A method for simply analyzing the anthocyanin dye contained in the crudely purified product of the isolated anthocyanin dye and camellia dye will be exemplified below.

例えば、高速液体クロマトグラフィー法(HPLC;High Performance Liquid Chromatography)を用いることでアントシアニン色素を確認できる。HPLCの溶出溶媒としては、A液としてリン酸水溶液と、B液としてリン酸−ギ酸−アセトニトリル−テトラヒドロフラン−水混合溶媒を用い、リニアーグラジエント溶出(例えば、流速を1分間に0.8ml、カラムの温度を40℃に保ち、検出波長を525nmに設定し、A液とB液との比率を82:18から30:70の比率で35分かけて溶出)させることで、本発明のアントシアニン類をよく検出することができる。   For example, an anthocyanin dye can be confirmed by using a high performance liquid chromatography method (HPLC; High Performance Liquid Chromatography). As an elution solvent for HPLC, an aqueous solution of phosphoric acid as liquid A and a mixed solvent of phosphoric acid-formic acid-acetonitrile-tetrahydrofuran-water as liquid B, linear gradient elution (for example, 0.8 ml per minute, The temperature is kept at 40 ° C., the detection wavelength is set to 525 nm, and the ratio of the liquid A and the liquid B is eluted at a ratio of 82:18 to 30:70 over 35 minutes). Can be detected well.

また、例えば、薄層クロマトグラフィー(TLC;Thin Layer Chromatography)を用いることでアントシアニン色素を容易に確認できる。TLCの展開溶媒としては、例えば、A液としてベンゼン−ギ酸エチル−ギ酸の1:7:1の比率で混合した溶液と、B液としてギ酸エチル−ギ酸−水の3:1:1の比率で混合した溶液を用い、A液とB液との比率を4:1から1:1程度の比率で混合し、TLCを展開すると、本発明のアントシアニン類はよく検出することができる。   Moreover, an anthocyanin pigment | dye can be easily confirmed by using thin layer chromatography (TLC; Thin Layer Chromatography), for example. As a developing solvent for TLC, for example, a solution prepared by mixing benzene-ethyl formate-formic acid in a ratio of 1: 7: 1 as liquid A and ethyl formate-formic acid-water in a ratio of 3: 1: 1 as liquid B The anthocyanins of the present invention can be well detected by using a mixed solution, mixing the ratio of A liquid and B liquid at a ratio of about 4: 1 to 1: 1 and developing TLC.

以上のように説明したツバキ色素抽出物又は精製物、又は、これらより単離されたアントシアニン色素を分析できる。この結果、25種類のアントシアニン色素を検出することができる。これらのアントシアニン色素は、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−glucopyranoside(1)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−glucopyranoside(3)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(9)、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−galactopyranoside(10)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)、cyanidin 3−O−β−galactopyranoside(15)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)、delphinidin 3−O−β−glucopyranoside(19)、delphinidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(20)、delphinidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(21)、delphinidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(22)、cyanidin 3,5−di−O−β−glucopyranoside(23)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(24)、cyanidin 3−O−(6−O−(E)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(25)である。   The camellia pigment extract or purified product as described above, or the anthocyanin pigment isolated from these can be analyzed. As a result, 25 types of anthocyanin dyes can be detected. These anthocyanin dyes are cyanidin 3-O- (2-O-β-xypyranosyl) -β-glucopyranoside (1), cyanidin 3-O- (2-O-β-xylopynosyl-6-O- (Z)- p-comaaroyl) -β-glucopyranoside (2), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -p-comaaroyl) -β-glucopyroxide (3), cyanidin 3-O -(2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-glucopyroxide (4), cyanidin 3-O- (2-O-β-xypyranosyl-6-O-acet yl) -β-glucopyranoside (5), cyanidin 3-O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-cumaroyl) -β-glucopyranoside (7), cyanidin 3 -O- (6-O- (E) -p-cumaroyl) -β-glucopyranoside (8), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-glucopyranoside (9), cyanidin 3 -O- (2-O- [beta] -xypyranosyl)-[beta] -galactopyranoside (10), cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (Z) -p-cumaroyl)- β-galactopyranoside (11), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -p-cumaroyl) -β-galactopylanoside (12), cyanidin 3-O- (2-O -Β-xylopyranosyl-6-O- (E) -caffeoyl) -β-galactopylanoside (13), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O-acetyl) -β-galactopylanoside (14) , Cyanidin 3-O-β-galactopyranoside (15), cyanidin 3-O- (6-O- (Z) -p-cumaroyl) -β-galactopyranosi de (16), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-galactopyranoside (17), cyanidin 3-O- (6-O- (E) -caffeoyl) -β- galactopyranoside (18), delphindin 3-O-β-glucopyranoside (19), delphindin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyroxide (20), delphindin 3-O- (6) -O- (E) -p-comaroyl) -β-glucopyranoside (21), delphindin 3-O- (6-O- (E) -caffeoyl) -β-glucopyranoside (22), yanidin 3,5-di-O-β-glucopyranoside (23), cyanidin 3-O- (6-O- (Z) -p-comaroyl-β-glucopyranoside) -5-β-glucopyranoside (24), cyanidin 3 -O- (6-O- (E) -p-cumaroyl- [beta] -glucopyranoside) -5- [beta] -glucopyranoside (25).

前記のアントシアニン色素のうち、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)(前記式(I)においてRがアセチル基である化合物)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)(前記式(II)においてRが(Z)−p−クマロイル基である化合物)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)(前記式(II)においてRが(E)−p−クマロイル基である化合物、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)(前記式(II)においてRが(E)−カフェオイル基である化合物)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)(前記式(II)においてRがアセチル基である化合物)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)(前記式(III)においてRが(Z)−p−クマロイル基である化合物)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)(前記式(III)においてRが(E)−p−クマロイル基である化合物)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)(前記式(III)においてRが(E)−カフェオイル基である化合物)は新規化合物である。   Among the anthocyanin dyes, cyanidin 3-O- (2-O-β-xypyranosyl-6-O-acetyl) -β-glucopyranoside (5) (compound in which R is an acetyl group in the formula (I)), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (Z) -p-cumaroyl) -β-galactopyranoside (11) (in the formula (II), R is (Z) -p-coumaroyl group) Compound), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -p-cumaroyl) -β-galactopyranoside (12) (in the formula (II), R is (E) A compound which is a p-coumaroyl group, cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-galactopylanoside (13) (compound in which R is (E) -caffeoyl group in the formula (II)) , Cyanidin 3-O- (2-O-β-xypyranosyl-6-O-acetyl) -β-galactopylanoside (14) (compound in which R is an acetyl group in the above formula (II)), cyanidin 3-O- ( 6-O- (Z) -p-cumaroyl) -β-galactopyranoside (16) (a compound in which R is a (Z) -p-coumaroyl group in the above formula (III)), cyanidin 3-O- (6-O -(E) -p-comaaroyl) -β-galactopyranosi e (17) (a compound in which R is (E) -p-coumaroyl group in the formula (III)), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-galactopyranoside (18) ( The compound in which R is (E) -caffeoyl group in the formula (III) is a novel compound.

なお、本明細書において、アントシアニン色素の化合物名の末尾に付した番号は、後述する実施例及び図面に記載の化合物に付した番号に対応する。   In addition, in this specification, the number attached | subjected to the end of the compound name of the anthocyanin dye respond | corresponds to the number attached | subjected to the compound as described in the Example and drawing which are mentioned later.

前記ツバキとして、トウツバキ(Camellia reticulata Lindl.)を使用すれば、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−glucopyranoside(1)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−glucopyranoside(3)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(9)、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−galactopyranoside(10)、cyanidin 3−O−β−galactopyranoside(15)、のアントシアニン色素を分析及び製造できる。   If camellia (Camellia reticulata Lindl.) Is used as the camellia, cyanidin 3-O- (2-O-β-xypyranosyl) -β-glucopyranoside (1), cyanidin 3-O- (2-O-β- xylopyranosyl-6-O- (Z) -p-cumaroyl) -β-glucopyranoside (2), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -p-comaroyl) -β -Glucopyroxide (3), cyanidin 3-O- (2-O- [beta] -xypyranosyl-6-O- (E) -caffeoyl)-[beta] -glucopyranoside (4), cyanidin 3-O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-cumaroyl) -β-glucopyranoside (7), cyanidin 3-O- (6-O- (E) -P-comaroyl) -β-glucopyranoside (8), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-glucopyranoside (9), cyanidin 3-O- (2-O-β-xypyranosyl) ) -Β-galactopyranoside (10), cyanidin 3-O-β-galactopyranoside (15), can be analyzed and produced.

前記ツバキとして、ホンコンツバキ(Camellia hongkongensis Seem.)を使用すれば、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(9)、cyanidin 3−O−β−galactopyranoside(15)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)、delphinidin 3−O−β−glucopyranoside(19)、delphinidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(20)、delphinidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(21)、delphinidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(22)、のアントシアニン色素を分析及び製造できる。これらのうち、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)は新規化合物である。   When the camellia camellia camellia camellia is used as the camellia, cyanidin 3-O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-comaroyl) -β- glucopyranoside (7), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-glucopyranoside (8), cyanidin 3-O- (6-O- (E) -caffeoyl) -β- glucopyranoside (9), cyanidin 3-O-β-galactopyranoside (15), cyanidin 3-O- (6-O- (Z) -p-cumaroyl) -β-galactopyran side (16), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-galactopyranoside (17), cyanidin 3-O- (6-O- (E) -caffeoyl) -β- galactopyranoside (18), delphindin 3-O-β-glucopyranoside (19), delphindin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyroxide (20), delphindin 3-O- (6) -O- (E) -p-comaroyl) -β-glucopyranoside (21), delphindin 3-O- (6-O- (E) -caffeoyl) -β-glucopyroxide (22 ), Anthocyanin dyes can be analyzed and produced. Among these, cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-galactopyranoside (16), cyanidin 3-O- (6-O- (E) -p-comaaroyl) -β -Galactopyranoside (17), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-galactopyranoside (18) is a novel compound.

前記ツバキとして、サルウィンツバキ(Camellia saluenensis Stapf ex Bean)を使用すれば、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3,5−di−O−β−glucopyranoside(23)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(24)、cyanidin 3−O−(6−O−(E)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(25)、のアントシアニン色素を分析及び製造できる。   If the camellia camellia camellia (Camellia saluenensis Snapf ex Bean) is used, cyanidin 3-O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-comaroyl) -Glucopyranoside (7), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-glucopyranoside (8), cyanidin 3,5-di-O-β-glucopyroxide (23), cyanidin 3 -O- (6-O- (Z) -p-comuaroyl-β-glucopyranoside) -5-β-glucopyranoside (24), cyanidin 3-O- (6 O- (E) -p-coumaroyl-β-glucopyranoside) -5-β-glucopyranoside (25), can be analyzed for anthocyanin and manufacturing.

前記ツバキとして、園芸品種のツバキ:大理茶(Dalicha)を使用すれば、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−glucopyranoside(1)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−glucopyranoside(3)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−galactopyranoside(10)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)、のアントシアニン色素を分析及び製造できる。これらのうち、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)又はcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)は新規化合物である。   As the camellia, if the cultivar camellia: Dalicha is used, cyanidin 3-O- (2-O-β-xypyranosyl) -β-glucopyranoside (1), cyanidin 3-O- (2-O -Β-xypyranosyl-6-O- (Z) -p-cumaroyl) -β-glucopyranoside (2), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -p-cumaroyl ) -Β-glucopyranoside (3), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-glucopyranoside (4), cyanidin 3-O- (2-O) -Β- xylopyranosyl-6-O-acetyl) -β-glucopyranoside (5), cyanidin 3-O- (2-O-β-xylopyranosyl) -β-galactopyranoside (10), cyanidin 3-O- (2-O-β-) xylopyranosyl-6-O- (Z) -p-comaaroyl) -β-galactopyranoside (11), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -p-comaroyl) -β -Galactopylanoside (12), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -caffeoyl) -β-galactopylanoside (1 ), Cyanidin 3-O- (2-O-β-xylopyranosyl-6-O-acetyl) -β-galactopyranoside (14), it can be analyzed for anthocyanin and manufacturing. Among these, cyanidin 3-O- (2-O-β-xypyranosyl-6-O-acetyl) -β-glucopyranoside (5), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (Z) -p-comaaroyl) -β-galactopylanoside (11), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -p-comaaroyl) -β-galactopyranoside (12), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-galactopyranoside (13) or cyanidin 3-O- (2-O-β-xypyran osyl-6-O-acetyl) -β-galactopyranoside (14) is a novel compound.

以上のように説明したツバキ色素抽出物又は精製物、又は、これらより単離されたアントシアニン色素を有効成分として用いることで、飲食品、医薬品、化粧品などを製造するために利用することができる。ツバキ色素抽出物又は精製物は、例えば、抗酸化剤、抗癌剤の有効成分として用いることができる。   By using the camellia pigment extract or purified product as described above, or an anthocyanin pigment isolated from these as an active ingredient, it can be used to produce foods, drinks, pharmaceuticals, cosmetics and the like. The camellia pigment extract or purified product can be used, for example, as an active ingredient of antioxidants and anticancer agents.

本発明のツバキ色素抽出物又は精製物、又は、これらより単離されたアントシアニン色素の有効量を、錠剤、カプセル、顆粒、ドリンク、ペットボトルなどの任意の形態に添加又は封入するか、あるいは任意の飲食品に添加することも可能である。   An effective amount of the camellia pigment extract or purified product of the present invention or an anthocyanin pigment isolated therefrom is added to or encapsulated in any form such as tablets, capsules, granules, drinks, plastic bottles, etc. It is also possible to add to other foods and drinks.

飲食品には、例えば、菓子類、レトルト食品、ジュース類、お茶類、乳製品などが含まれるが、これらに限定されない。また、飲食品には、必要に応じて甘味剤、調味料、乳化剤、懸濁化剤、防腐剤などを添加してもよいし、あるいはビタミン類、栄養剤、免疫増強剤(例えば、プロポリスやきのこ抽出物など)などを添加してもよい。   Examples of the food and drink include, but are not limited to, confectionery, retort food, juices, teas, and dairy products. In addition, sweeteners, seasonings, emulsifiers, suspending agents, preservatives, etc. may be added to foods and drinks as necessary, or vitamins, nutrients, immune enhancers (for example, propolis or Mushroom extract etc.) may be added.

本発明に使用できるツバキ(Camellia属)野生種として、限定されるものではないが、好ましくは紅花ツバキ、例えば、セッコウベニバナユチャ(浙江紅花油茶、C.chekiangoleosa)、カンツバキ(C.hiemalis)、ホンコンツバキ(香港紅山茶、C.hongkongensis)、ヤブツバキ(紅山茶、C.japonica)、テマリツバキ(桜花短柱茶、C.maliflora)、ピタールツバキ(西南山茶、C.pitardii)、ピタールツバキピタール種(西南山茶西南種、C.pitardii var. pitardii)、ピタールツバキ雲南種(西南山茶雲南種、C.pitardii var. yunnanica)、マイレイツバキ(C.mairei)、ポリオドンタ(宛田紅花油茶、C.polyodonta)、トウツバキ(てん山茶、C.reticulata)、ロシフロラ(玖瑰連芯茶、C.rosiflora),ユキルバキ(雪椿、C.rusticana)、サルウィンツバキ(怒江山茶、C.saluenensis)、サザンカ(山茶花、C.sasanqua)、セミセラータ(南山茶、C.semiserrata)、ワビスケ(侘助、C.wabisuke)が挙げられる。   The wild camellia (genus Camellia) that can be used in the present invention is not limited, but is preferably a safflower camellia, for example, Gypsophila sanctuary (Zhejiang safflower oil tea, C. cheigeoleosa), C. himalis, Hong Kong. Camellia (Hong Kong tea, Hong Kong tea, C. japonica), Temari camellia (C. maliflora), Pital camellia (Nishiyama tea, C. pitardii), Pital camellia petal species ( Southwestern tea, Southwestern species, C. partardia var. Partardii), Pital camellia Yunnan species (Seinanzan tea, Yunnan species, C. partardii var. Yunnanica), Miley camellia (C. mairei), Poliodonta Ueda safflower oil tea, C. polydonta), Japanese camellia (Tenyama tea, C. reticulata), Rosiflora (C. rosiflora), Yukibaki (Yuki-an, C. salanensis), sasanqua (Yamacha flower, C. sasanqua), semiserata (Nanyama tea, C. semiserrata), and wabisuke (C. wabisuke).

本発明に使用できるツバキ(Camellia属)園芸品種として、限定されるものではないが、例えば、艶姿(えにし)、乙女(おとめ)、勘次郎(かんじろう)、皇玉(こうぎょく)、獅子頭(ししがしら)、昭和の栄(しょうわのさかえ)、緋乙女(ひおとめ)、日の出富士(ひのでふじ)、朝日鶴(あさひづる)、大空(おおぞら)、大錦(おおにしき)、桜月夜(さくらづくよ)、七福神(しちふくじん)、東雲(しののめ)、酒中花(しゅちゅうか)、大朱盃(たいしゅはい)、宝合(たからあわせ)、昼夜錦(ちゅうやにしき)、丁子車(ちょうじぐるま)、鳴海潟(なるみがた)、二重弁天(にじゅうべんてん)、肥後入日の海(ひごいりひのうみ)、三国紅(みくにこう)、和合神(わごうじん)、旭(あさひ)、梅ケ香(うめがか)、笑顔(えがお)、凱旋(がいせん)、鎌倉絞(かまくらしぼり)、古金襴(こきんらん)、佐保姫(さほひめ)、三段花(さんだんか)、蜀紅錦(しょっこうにしき)、飛竜(ひりゅう)、曙(あけぼの)、岩根絞(いわねしぼり)、有楽(うらく)、蝦夷錦(えぞにしき)、王冠(おうかん)、大阿蘇(おおあそ)、沖の浪(おきのなみ)、長楽(おさらく)、春日野(かすがの)、玉之浦(たまのうら)、太郎庵(たろうあん)、釣篝(つりかがり)、鶏の子(とりのこ)、白班孔雀(はくはんくじゃく)、羽衣(はごろも)、春の台(はるのうてな)、光源氏(ひかるげんじ)、アドルフ・オーデュソン(Adolph Audusson)、ベティー・シェフィールド・シュープリーム(Betty Sheffield Supreme)、カーターズ・サンバースト(Carter’s Sunburst)、C.M.ハヴィー(C.M.Hovey)、コンテッサ・ラヴィニア・マギ(Contessa Lavinia Maggi)、ドーンズ・アーリー・ライト(Dawn’s Early Light)、ドゥビュタント(Debutante)、ギリョ・ヌッチオ(Guilio Nuccio)、クレイマーズ・シュープリーム(Kramer’s Supreme)、マーガレット・デイヴィス・ピコティー(Margaret Davis Picotee)、マトティアナ(Mathotiana)、ミセス・D.W.デイヴィス(Mrs.D.W.Davis)、ミセス・D.W.デイヴィス・デスカンソ(Mrs.D.W.Davis Descanso)、アーチ・オブ・トライアンフ(Arch of Triumph)、仏陀(Buddha)、唐椿(Captain Rowes)、張家茶(Chang’s Camellia)、チャイナ・レディー(China Lady)、大瑪瑙(Cornelian)、菊弁(Chrysanthemum Petal)、大桃紅(Great Peach Bloom)、ハワード・アスパー(Haward Asper)、ラスカ・ビューティー(Lasca Beauty)、ロワ・シノー(Lois Shinault)、シャルレアン(Charlean)、ドネイション(Donation)、ドリーム・ボート(Dream Boat)、E.G.ウォーターハウス(E.G.Waterhouse)、エルジー・ジュアリー(Elsie Jury)、J.C.ウィリアムズ(J.C.Williams)、ジュリア・ハミター(Julia Hamiter)、ベイビー・ベアー(Baby Bear)、センティッド・ジェム(Scented Gem)、スニパト(Snippet)、タイニー・プリンセス(Tiny Princess)、ウァーリンガ・プリンセス(Wirlinga Princess)が挙げられる。   Although it is not limited as a camellia (Camellia genus) horticultural varieties which can be used for this invention, For example, glossy figure (enishi), maiden (otome), kanjiro (Kanjiro), imperial ball (kougiku), lion head ( Shishigashira, Showa no Sakae, Hiotome, Hinode Fuji, Asahizuru, Ozora, Onishi, Sakura Moonlit night, Shichifukujin, Shinonome, Shuchuka, Taishui, Takara, Day and night bronze Nishiki), clove car, Narumigata, double benten, Nihibento sea, Mikuni red, Mikuni God, Asahi, Umeke Incense Umega), smile (Egao), triumph (Gaisen), Kamakura squeeze, Kokinran, Saho Hime, Sandanka, Sandanka (Sandaka) Shikoku Nishiki, Hiryu, Akebono, Iwane Shibori, Yuraku, Enishiki, Crown, Oao So), Okinonami, Nagaraku, Kasugano, Tamanoura, Taroan, fishing rod, chicken chick Saw, Peacock, Hagoromo, Ueno Haruna, Genji Hikaru, Adolph Auduson, Betty Shefiel Supreme), Carter's Sunburst (Carter's Sunburst), C. M.M. C. M. Hovey, Contessa Lavinia Maggi, Dawn's Early Light, Debutante, Guillo Nuccio (Kramer's Supreme), Margaret Davis Picotee, Matothiana, Mrs. D. W. Mrs. DW Davis, Mrs. D. W. Mrs. DW Davis Descanso, Arch of Triumph, Buddha, Captain Rowes, Chang's Camellia, Chinah Dee Lady, Cornelian, Chrysanthhemum Petal, Great Peach Bloom, Howard Asper, Lasca Beauty, Lois Sino (Lois Sin) Charles, Donation, Dream Boat, E.E. G. Water House (E.G. Waterhouse), Elsie Jury, J.A. C. Williams (JC Williams), Julia Hamiter, Baby Bear, Scented Gem, Snippet, Tiny Princess, Waringa Princess Wiringa Prince).

なお、これらのツバキのアントシアニン色素を分析し、新規色素として、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)を単離及び精製することも、本発明に含まれる。   In addition, the anthocyanin pigment | dye of these camellias was analyzed, and cyanidin 3-O- (2-O-β-xypyranosyl-6-O-acetyl) -β-glucopyranoside (5), cyanidin 3-O- ( 2-O- [beta] -xylopyranosyl-6-O- (Z) -p-cumaroyl)-[beta] -galactopyranoside (11), cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (E)- p-comaroyl) -β-galactopyranoside (12), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -caffeoyl) -β-galactopyranoside (13), cya idin 3-O- (2-O-β-xypyranosyl-6-O-acetyl) -β-galactopyranoside (14), cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-galactopyranoside (16), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-galactopyranoside (17), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-galactopyranoside Isolating and purifying (18) is also included in the present invention.

以下、本発明を実施例により具体的に説明するが、本発明の技術的範囲はこれらの実施例に限定されないものとする。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the technical scope of the present invention is not limited to these examples.

〔実施例1〕トウツバキ(C.reticulata Lindl.)の分析
(1)花弁から色素の抽出と単離、精製の方法
トウツバキから花弁を採集した。採集した花弁は、褐変を防ぐため熱湯に3〜5秒間浸漬し、ポリフェノールオキシダーゼなどの酵素を死活させた。浸漬後、花弁を室温で乾燥させた。乾燥花弁2kgに、酢酸とメタノールを1対1で混合した溶液(50%酢酸−メタノール)12Lを加え、20〜25℃でアントシアニン色素を抽出した。抽出液を綿栓でろ過した後、溶媒を減圧下、ロータリーエバポレーターで留去した。抽出残渣を5%酢酸水溶液に溶解し、オープンカラムクロマトグラフィーに付した。オープンカラムクロマトグラフィーの条件は、固定相にエムシーアイゲルCHP−20P(MCI gel CHP−20P、三菱化学株式会社、Mitsubishi Chemical Corporation)、セファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)、クロマトレックスODS(Chromatorex ODS、富士シリシア化学株式会社、Fuji Silysia Chemical LTD.)を用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を10%ずつ増やすことによって、MCIgelのカラム(以下MCIカラム)−Sephadex LH−20カラム−ODSカラムの順番で各種クロマトグラフィーを行った。また、固定相にセファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)を用い、移動相にA液として5%酢酸水溶液、C液として5%酢酸−アセトン(アセトンに酢酸を5%量加えたもの)を用い、C液からA液の含量を2%ずつ増やすことによってクロマトグラフィーを行った。最後に、Sephadex LH−20カラムとODSカラムを用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を5%ずつ増やすことを繰り返した。
[Example 1] Analysis of C. reticulata Lindl. (1) Extraction, isolation and purification of pigment from petals Petals were collected from camellia. The collected petals were immersed in hot water for 3 to 5 seconds to prevent browning, and an enzyme such as polyphenol oxidase was activated. After soaking, the petals were dried at room temperature. To 2 kg of dried petals, 12 L of a mixed solution of acetic acid and methanol (1: 1) (50% acetic acid-methanol) was added, and the anthocyanin pigment was extracted at 20 to 25 ° C. After the extract was filtered through a cotton plug, the solvent was distilled off with a rotary evaporator under reduced pressure. The extraction residue was dissolved in 5% aqueous acetic acid and subjected to open column chromatography. The conditions for the open column chromatography were MC eye gel CHP-20P (MCI gel CHP-20P, Mitsubishi Chemical Corporation, Mitsubishi Chemical Corporation), Sephadex LH-20 (GE Healthex Biosciences A). Chromatorex ODS (Chromatorex ODS, Fuji Silysia Chemical Ltd., Fuji Silysia Chemical LTD.), Using 5% acetic acid aqueous solution as the A liquid for the mobile phase, 5% acetic acid-methanol as the B liquid, and from the A liquid to the B liquid By increasing the content of each by 10%, various chromas in the order of MCIgel column (hereinafter MCI column)-Sephadex LH-20 column-ODS column A tomography was performed. Moreover, Sephadex LH-20 (Sephadex LH-20, GE Healthcare Biosciences AB) was used for the stationary phase, 5% acetic acid aqueous solution as the liquid A for the mobile phase, and 5% acetic acid-acetone (5% acetic acid in acetone as the liquid C). Chromatography was performed by increasing the content of solution A by 2% from solution C. Finally, using Sephadex LH-20 column and ODS column, using 5% acetic acid aqueous solution as liquid A and 5% acetic acid-methanol as liquid B, increasing the content of liquid B from liquid A by 5%. Repeated.

これらのオープンカラムクロマトグラフィーを繰り返し行うことによって、アントシアニン色素として、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−glucopyranoside(1)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−glucopyranoside(3)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(9)、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−galactopyranoside(10)、cyanidin 3−O−β−galactopyranoside(15)を単離及び精製した(図1)。   By repeating these open column chromatography, cyanidin 3-O- (2-O-β-xypyranosyl) -β-glucopyranoside (1), cyanidin 3-O- (2-O-β-) is used as an anthocyanin dye. xylopyranosyl-6-O- (Z) -p-cumaroyl) -β-glucopyranoside (2), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -p-comaroyl) -β -Glucopyroxide (3), cyanidin 3-O- (2-O- [beta] -xypyranosyl-6-O- (E) -caffeoyl)-[beta] -glucopyranoside (4), cyanidin -O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-cumaroyl) -β-glucopyranoside (7), cyanidin 3-O- (6-O- (E)- p-comaroyl) -β-glucopyranoside (8), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-glucopyranoside (9), cyanidin 3-O- (2-O-β-xypyranosyl) -Β-galactopyranoside (10) and cyanidin 3-O-β-galactopyranoside (15) were isolated and purified (FIG. 1).

(2)色素の各種スペクトルデータ
単離・精製したアントシアニン色素のプロトン核磁気共鳴スペクトル(H-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表1及び表2に示す。表中の数値はデルタ(δ、ppm)で示す。また、二番目に表された数値は、カップリング定数(J値)を示している。表中の記号で、brは、broad、sはsinglet、dはdoublet、ddはdouble doublet、dddはdouble double doublet、tはtriplet、mはmultipletを示す。
(2) Various spectrum data of the dye The proton nuclear magnetic resonance spectrum ( 1 H-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Tables 1 and 2. The numerical values in the table are indicated by delta (δ, ppm). The second numerical value represents the coupling constant (J value). In the table, br is “broad”, “s” is a singlet, “d” is a doublet, “dd” is a double doublet, “dd” is a double doublet, “t” is a triplet, and “m” is a multiplet.

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

単離・精製したアントシアニン色素の炭素13核磁気共鳴スペクトル(13C-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表3に示す。表中の数値はデルタ(δ、ppm)で示す。また表中、C(Z)はパラクマル酸のZ型、C(E)はパラクマル酸のE型、Caf(E)はカフェー酸のシグナルであることを示す。 The carbon-13 nuclear magnetic resonance spectrum ( 13 C-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Table 3. The numerical values in the table are indicated by delta (δ, ppm). In the table, C (Z) indicates the Z-form of paracoumaric acid, C (E) indicates the E-form of paracoumaric acid, and Caf (E) indicates the signal of caffeic acid.

Figure 2009126810
Figure 2009126810

図1で示した(1)〜(4)、(6)〜(10)及び(15)のアントシアニン色素の紫外部吸収スペクトル(Ultra Violet spectrum)を測定した。測定には、島津製作所株式会社の分光機器(UV−visible recording spectrometer、UV−2100)を用いた。その結果は次の通りである。測定溶媒はメタノールである。shはshoulderを示す。
色素(1):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 282 (4.31), 379 (3.10), 538 (3.47); 0.01% HCl-MeOH: 282 (4.37), 332 (3.68), 530 (4.59); AlCl−MeOH: 289 (4.40), 312 (4.00), 411 (3.81), 564 (4.62)。
色素(2):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.51), 311sh (4.40), 553 (3.18); 0.01% HCl-MeOH: 284 (4.53), 314 (4.40), 530 (4.54); AlCl−MeOH: 289 (4.46), 313 (4.49), 570 (4.61)。
色素(3):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.58), 311sh (4.48), 553 (3.25); 0.01% HCl-MeOH: 284 (4.60), 314 (4.48), 530 (4.61); AlCl−MeOH: 289 (4.53), 313 (4.56), 570 (4.69)。
色素(4):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl-MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl−MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75)。
色素(6):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.04), 311sh(4.17), 538 (3.55); 0.01% HCl−MeOH: 283 (4.08), 332 (3.64), 530 (4.19); AlCl−MeOH: 288 (3.99), 313 (3.94), 571 (4.28)。
色素(7):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.30), 308sh (4.19), 531 (3.89); 0.01% HCl−MeOH: 284 (4.33), 311 (4.17), 375sh (3.58), 530 (4.35); AlCl−MeOH: 289 (4.26), 311 (4.27), 411 (3.70), 573 (4.44)。
色素(8):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.49), 311sh (4.39), 553 (3.17); 0.01% HCl−MeOH: 284 (4.51), 314 (4.39), 530 (4.52); AlCl−MeOH: 289 (4.45), 313 (4.47), 570 (4.60)。
色素(9):赤色無晶形粉末、 UV−vis λmax MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl−MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl−MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75)。
色素(10):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 282 (4.12), 333 (3.26), 530 (4.27); 0.01% HCl-MeOH: 282 (4.19), 332 (3.40), 530 (4.42); AlCl−MeOH: 287sh (4.00), 313 (3.82), 409 (3.57), 570 (4.50)。
色素(15):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 283 (4.00), 311sh (3.22), 530 (3.08); 0.01% HCl−MeOH: 282 (4.54), 331 (3.97), 529 (4.74); AlCl−MeOH: 272 (4.43), 312 (4.24), 571 (4.85)。
The ultraviolet absorption spectrum (Ultra Violet spectrum) of the anthocyanin dyes (1) to (4), (6) to (10) and (15) shown in FIG. 1 was measured. A spectroscopic instrument (UV-visible recording spectrometer, UV-2100) manufactured by Shimadzu Corporation was used for the measurement. The results are as follows. The measurement solvent is methanol. sh indicates a shoulder.
Dye (1): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 282 (4.31), 379 (3.10), 538 (3.47); 0.01% HCl -MeOH: 282 (4.37), 332 (3.68), 530 (4.59); AlCl 3 -MeOH: 289 (4.40), 312 (4.00), 411 (3.81), 564 (4.62).
Dye (2): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.51), 311sh (4.40), 553 (3.18); 0.01% HCl -MeOH: 284 (4.53), 314 (4.40), 530 (4.54); AlCl 3 -MeOH: 289 (4.46), 313 (4.49), 570 (4.61).
Dye (3): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.58), 311sh (4.48), 553 (3.25); 0.01% HCl -MeOH: 284 (4.60), 314 (4.48), 530 (4.61); AlCl 3 -MeOH: 289 (4.53), 313 (4.56), 570 (4.69).
Dye (4): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl -MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl 3 -MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75).
Dye (6): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.04), 311sh (4.17), 538 (3.55); 0.01% HCl -MeOH: 283 (4.08), 332 (3.64), 530 (4.19); AlCl 3 -MeOH: 288 (3.99), 313 (3.94), 571 (4.28).
Dye (7): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.30), 308sh (4.19), 531 (3.89); 0.01% HCl -MeOH: 284 (4.33), 311 (4.17), 375sh (3.58), 530 (4.35); AlCl 3 -MeOH: 289 (4.26), 311 (4.27), 411 (3.70), 573 (4.44).
Dye (8): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.49), 311sh (4.39), 553 (3.17); 0.01% HCl -MeOH: 284 (4.51), 314 (4.39), 530 (4.52); AlCl 3 -MeOH: 289 (4.45), 313 (4.47), 570 (4.60).
Dye (9): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl -MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl 3 -MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75).
Dye (10): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 282 (4.12), 333 (3.26), 530 (4.27); 0.01% HCl -MeOH: 282 (4.19), 332 (3.40), 530 (4.42); AlCl 3 -MeOH: 287sh (4.00), 313 (3.82), 409 (3.57), 570 (4.50).
Dye (15): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 283 (4.00), 311sh (3.22), 530 (3.08); 0.01% HCl -MeOH: 282 (4.54), 331 (3.97), 529 (4.74); AlCl 3 -MeOH: 272 (4.43), 312 (4.24), 571 (4.85).

質量分析計(positive-ion Electrospray Ionization-Mass Spectrometer;ESI−MS)を用いて、図1で示した(1)〜(4)、(6)〜(10)及び(15)のアントシアニン色素の質量を測定した。
色素(1):ESI−MS (m/z): 581.37 M (Calcd for C262915 581.41)。
色素(2):ESI−MS (m/z): 727.37 M (Calcd for C353517 727.53)。
色素(3):ESI−MS (m/z): 727.38 M (Calcd for C353517 727.53)。
色素(4):ESI−MS (m/z): 743.35 M (Calcd for C353518 743.53)。
色素(6):ESI−MS (m/z): 449.21 M (Calcd for C212111 449.31)。
色素(7):ESI−MS (m/z): 595.19 M (Calcd for C302713 595.44)。
色素(8):ESI−MS (m/z): 595.14 M (Calcd for C302713 595.44)。
色素(9):ESI−MS (m/z): 611.22 M (Calcd for C302714 611.44)。
色素(10):ESI−MS (m/z): 581.18 M (Calcd for C262915 581.41)。
色素(15):ESI−MS (m/z): 449.23 M (Calcd for C212111 449.31)。
以上の結果、理論値と測定値がよく一致した。
Masses of anthocyanin dyes of (1) to (4), (6) to (10) and (15) shown in FIG. 1 using a mass spectrometer (positive ion ionization-mass spectrometry; ESI-MS) Was measured.
Dye (1): ESI-MS (m / z): 581.37 M + (Calcd for C 26 H 29 O 15 581.41).
Dye (2): ESI-MS (m / z): 727.37 M + (Calcd for C 35 H 35 O 17 727.53).
Dye (3): ESI-MS (m / z): 727.38 M + (Calcd for C 35 H 35 O 17 727.53).
Dye (4): ESI-MS (m / z): 743.35 M + (Calcd for C 35 H 35 O 18 743.53).
Dye (6): ESI-MS (m / z): 449.21 M + (Calcd for C 21 H 21 O 11 449.31).
Dye (7): ESI-MS (m / z): 595.19 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (8): ESI-MS (m / z): 595.14 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (9): ESI-MS (m / z): 611.22 M + (Calcd for C 30 H 27 O 14 611.44).
Dye (10): ESI-MS (m / z): 581.18 M + (Calcd for C 26 H 29 O 15 581.41).
Dye (15): ESI-MS (m / z): 449.23 M + (Calcd for C 21 H 21 O 11 449.31).
As a result, the theoretical value and the measured value agreed well.

〔実施例2〕ホンコンツバキ(C.hongkongensis Seem.)の分析
(1)花弁から色素の抽出と単離、精製の方法
ホンコンツバキから花弁を採集した。採集した花弁10kgに直接、酢酸とメタノールを1対1で混合した溶液(50%酢酸−メタノール)20Lを加え、20〜25℃でアントシアニン色素を抽出した。抽出液を綿栓でろ過した後、溶媒を減圧下、ロータリーエバポレーターで留去した。抽出残渣を5%酢酸水溶液に溶解し、オープンカラムクロマトグラフィーに付した。オープンカラムクロマトグラフィーの条件は、固定相にエムシーアイゲルCHP−20P(MCI gel CHP−20P、三菱化学株式会社、Mitsubishi Chemical Corporation)、セファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)、クロマトレックスODS(Chromatorex ODS、富士シリシア化学株式会社、Fuji Silysia Chemical LTD.)を用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を10%ずつ増やすことによって、MCIgelのカラム(以下MCIカラム)−Sephadex LH−20カラム−ODSカラムの順番で各種クロマトグラフィーを行った。また、固定相にセファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)を用い、移動相にA液として5%酢酸水溶液、C液として5%酢酸−アセトン(アセトンに酢酸を5%量加えたもの)を用い、C液からA液の含量を2%ずつ増やすことによってクロマトグラフィーを行った。最後に、Sephadex LH−20カラムとODSカラムを用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を5%ずつ増やすことを繰り返した。これらのオープンカラムクロマトグラフィーを繰り返し行うことによって、アントシアニン色素として、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(9)、cyanidin 3−O−β−galactopyranoside(15)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside(16)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside(17)、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside(18)、delphinidin 3−O−β−glucopyranoside(19)、delphinidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(20)、delphinidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(21)、delphinidin 3−O−(6−O−(E)−caffeoyl)−β−glucopyranoside(22)を単離及び精製した(図2)。単離及び精製したアントシアニン色素のうち、(16)、(17)、(18)は新規な色素である(図2)。
[Example 2] Analysis of C. hongkongensis (1) Extraction, isolation and purification of pigment from petals Petals were collected from honkon camellia. 20 L of a mixed solution of 50% acetic acid and methanol (50% acetic acid-methanol) was directly added to 10 kg of the collected petals, and an anthocyanin pigment was extracted at 20 to 25 ° C. After the extract was filtered through a cotton plug, the solvent was distilled off with a rotary evaporator under reduced pressure. The extraction residue was dissolved in 5% aqueous acetic acid and subjected to open column chromatography. The conditions for the open column chromatography were MC eye gel CHP-20P (MCI gel CHP-20P, Mitsubishi Chemical Corporation, Mitsubishi Chemical Corporation), Sephadex LH-20 (GE Healthex Biosciences A). Chromatorex ODS (Chromatorex ODS, Fuji Silysia Chemical Ltd., Fuji Silysia Chemical LTD.), Using 5% acetic acid aqueous solution as the A liquid for the mobile phase, 5% acetic acid-methanol as the B liquid, and from the A liquid to the B liquid By increasing the content of each by 10%, various chromas in the order of MCIgel column (hereinafter MCI column)-Sephadex LH-20 column-ODS column A tomography was performed. Moreover, Sephadex LH-20 (Sephadex LH-20, GE Healthcare Biosciences AB) was used for the stationary phase, 5% acetic acid aqueous solution as the liquid A for the mobile phase, and 5% acetic acid-acetone (5% acetic acid in acetone as the liquid C). Chromatography was performed by increasing the content of solution A by 2% from solution C. Finally, using Sephadex LH-20 column and ODS column, using 5% acetic acid aqueous solution as liquid A and 5% acetic acid-methanol as liquid B, increasing the content of liquid B from liquid A by 5%. Repeated. By repeating these open column chromatography, cyanidin 3-O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyroxide is used as an anthocyanin dye. (7), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-glucopyranoside (8), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-glucopyroxide (9), cyanidin 3-O-β-galactopyranoside (15), cyanidin 3-O- (6-O- (Z) -p-cumaroyl) -β-galactopyranoside (1) ), Cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-galactopyranoside (17), cyanidin 3-O- (6-O- (E) -caffeoyl) -β-galactopyranoside (18) ), Delphindin 3-O-β-glucopyranoside (19), delphindin 3-O- (6-O- (Z) -p-cumaroyl) -β-glucopyranoside (20), delphindin 3-O- (6-O—) Isolation and purification of (E) -p-coumaroyl) -β-glucopyranoside (21), delphindin 3-O- (6-O- (E) -caffeoyl) -β-glucopyranoside (22) It was (Fig. 2). Of the isolated and purified anthocyanin dyes, (16), (17) and (18) are novel dyes (FIG. 2).

(2)色素の各種スペクトルデータ
単離・精製したアントシアニン色素のプロトン核磁気共鳴スペクトル(H-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表4〜表6に示す。表中の数値はデルタ(δ、ppm)で示す。また、二番目に表された数値は、カップリング定数(J値)を示している。表中の記号で、brは、broad、sはsinglet、dはdoublet、ddはdouble doublet、dddはdouble double doublet、tはtriplet、mはmultipletを示す。
(2) Various spectrum data of the dye The proton nuclear magnetic resonance spectrum ( 1 H-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Tables 4-6. The numerical values in the table are indicated by delta (δ, ppm). The second numerical value represents the coupling constant (J value). In the table, br is “broad”, “s” is a singlet, “d” is a doublet, “dd” is a double doublet, “dd” is a double doublet, “t” is a triplet, and “m” is a multiplet.

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

単離・精製したアントシアニン色素の炭素13核磁気共鳴スペクトル(13C-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表7〜表9に示す。表中の数値はデルタ(δ、ppm)で示す。また表中、C(Z)はパラクマル酸のZ型、C(E)はパラクマル酸のE型、Caf(E)はカフェー酸のシグナルであることを示す。shはshoulderである。 The carbon-13 nuclear magnetic resonance spectrum ( 13 C-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Tables 7-9. The numerical values in the table are indicated by delta (δ, ppm). In the table, C (Z) indicates the Z-form of paracoumaric acid, C (E) indicates the E-form of paracoumaric acid, and Caf (E) indicates the signal of caffeic acid. sh is a shoulder.

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

図2で示した(6)〜(9)及び(15)〜(22)のアントシアニン色素の紫外部吸収スペクトル(Ultra Violet spectrum)を測定した。測定には、島津製作所株式会社の分光機器(UV−visible recording spectrometer、UV−2100)を用いた。その結果は次の通りである。測定溶媒はメタノールである。
色素(6):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.04), 311sh (4.17), 538 (3.55); 0.01% HCl−MeOH: 283 (4.08), 332 (3.64), 530 (4.19); AlCl−MeOH: 288 (3.99), 313 (3.94), 571 (4.28)。
色素(7):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.30), 308sh (4.19), 531 (3.89); 0.01% HCl−MeOH: 284 (4.33), 311 (4.17), 375sh (3.58), 530 (4.35); AlCl−MeOH: 289 (4.26), 311 (4.27), 411 (3.70), 573 (4.44)。
色素(8):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.49), 311sh(4.39), 553 (3.17); 0.01% HCl−MeOH: 284 (4.51), 314 (4.39), 530 (4.52); AlCl−MeOH: 289 (4.45), 313 (4.47), 570 (4.60)。
色素(9):赤色無晶形粉末、 UV−vis λmax MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl−MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl−MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75)。
色素(15):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 283 (4.00), 311sh (3.22), 530 (3.08); 0.01% HCl−MeOH: 282 (4.54), 331 (3.97), 529 (4.74); AlCl−MeOH: 272 (4.43), 312 (4.24), 571 (4.85)。
色素(16):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.26), 309 (4.14), 531 (4.06); 0.01% HCl−MeOH: 284 (4.28), 310 (4.15), 530 (4.28); AlCl−MeOH: 289 (4.25), 313 (4.27), 405 (3.66), 571 (4.39)。
色素(17):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.29), 311sh (4.19), 531 (4.10); 0.01% HCl−MeOH: 284 (4.31), 312 (4.19), 530 (4.32); AlCl−MeOH: 289 (4.25), 313 (4.26), 401 (3.54), 558 (4.32)。
色素(18):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.27), 330 (4.14), 531 (4.00); 0.01% HCl−MeOH: 284 (4.30), 330 (4.18), 531 (4.29); AlCl−MeOH: 287 (4.13), 312 (4.13), 351 (4.16), 569 (4.38)。
色素(19):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 281 (3.96), 319sh (3.16), 544 (4.37); 0.01% HCl−MeOH: 278 (4.08), 333 (4.46), 542 (4.35); AlCl−MeOH: 277 (4.03), 318 (3.68), 580 (4.41)。
色素(20):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.32), 308 (3.84), 545 (3.04); 0.01% HCl−MeOH: 285 (4.32), 300 (4.25), 545 (4.16); AlCl−MeOH: 288 (4.32), 315 (4.27), 586 (4.25)。
色素(21):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.28), 307 (4.24), 544 (3.79); 0.01% HCl−MeOH: 283 (4.31), 299 (4.26), 542 (4.36); AlCl−MeOH: 288 (4.27), 315 (4.27), 584 (4.43)。
色素(22):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.05), 318sh (3.90), 329 (3.94), 548 (3.74); 0.01% HCl−MeOH: 282 (4.11), 317sh (3.94), 332 (3.98), 544 (4.20); AlCl−MeOH: 285 (4.00), 329sh (4.01), 350 (4.06), 587 (4.26)。
Ultraviolet absorption spectra (Ultra Violet spectrum) of the anthocyanin dyes (6) to (9) and (15) to (22) shown in FIG. 2 were measured. A spectroscopic instrument (UV-visible recording spectrometer, UV-2100) manufactured by Shimadzu Corporation was used for the measurement. The results are as follows. The measurement solvent is methanol.
Dye (6): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.04), 311sh (4.17), 538 (3.55); 0.01% HCl -MeOH: 283 (4.08), 332 (3.64), 530 (4.19); AlCl 3 -MeOH: 288 (3.99), 313 (3.94), 571 (4.28).
Dye (7): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.30), 308sh (4.19), 531 (3.89); 0.01% HCl -MeOH: 284 (4.33), 311 (4.17), 375sh (3.58), 530 (4.35); AlCl 3 -MeOH: 289 (4.26), 311 (4.27), 411 (3.70), 573 (4.44).
Dye (8): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.49), 311sh (4.39), 553 (3.17); 0.01% HCl -MeOH: 284 (4.51), 314 (4.39), 530 (4.52); AlCl 3 -MeOH: 289 (4.45), 313 (4.47), 570 (4.60).
Dye (9): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl -MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl 3 -MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75).
Dye (15): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 283 (4.00), 311sh (3.22), 530 (3.08); 0.01% HCl -MeOH: 282 (4.54), 331 (3.97), 529 (4.74); AlCl 3 -MeOH: 272 (4.43), 312 (4.24), 571 (4.85).
Dye (16): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.26), 309 (4.14), 531 (4.06); 0.01% HCl -MeOH: 284 (4.28), 310 (4.15), 530 (4.28); AlCl 3 -MeOH: 289 (4.25), 313 (4.27), 405 (3.66), 571 (4.39).
Dye (17): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.29), 311sh (4.19), 531 (4.10); 0.01% HCl -MeOH: 284 (4.31), 312 (4.19), 530 (4.32); AlCl 3 -MeOH: 289 (4.25), 313 (4.26), 401 (3.54), 558 (4.32).
Dye (18): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.27), 330 (4.14), 531 (4.00); 0.01% HCl -MeOH: 284 (4.30), 330 (4.18), 531 (4.29); AlCl 3 -MeOH: 287 (4.13), 312 (4.13), 351 (4.16), 569 (4.38).
Dye (19): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 281 (3.96), 319sh (3.16), 544 (4.37); 0.01% HCl -MeOH: 278 (4.08), 333 (4.46), 542 (4.35); AlCl 3 -MeOH: 277 (4.03), 318 (3.68), 580 (4.41).
Dye (20): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.32), 308 (3.84), 545 (3.04); 0.01% HCl -MeOH: 285 (4.32), 300 (4.25), 545 (4.16); AlCl 3 -MeOH: 288 (4.32), 315 (4.27), 586 (4.25).
Dye (21): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.28), 307 (4.24), 544 (3.79); 0.01% HCl -MeOH: 283 (4.31), 299 (4.26), 542 (4.36); AlCl 3 -MeOH: 288 (4.27), 315 (4.27), 584 (4.43).
Dye (22): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.05), 318sh (3.90), 329 (3.94), 548 (3.74) ); 0.01% HCl-MeOH: 282 (4.11), 317sh (3.94), 332 (3.98), 544 (4.20); AlCl 3 -MeOH: 285 (4.00), 329sh (4.01), 350 (4.06), 587 (4.26).

質量分析計(positive-ion Electrospray Ionization-Mass Spectrometer;ESI−MS)を用いて、図2で示した(6)〜(9)及び(15)〜(22)のアントシアニン色素の質量を測定した。
色素(6):ESI−MS (m/z): 449.21 M (Calcd for C212111 449.31)。
色素(7):ESI−MS (m/z): 595.19 M (Calcd for C302713 595.44)。
色素(8):ESI−MS (m/z): 595.14 M (Calcd for C302713 595.44)。
色素(9):ESI−MS (m/z): 611.22 M (Calcd for C302714 611.44)。
色素(15):ESI−MS (m/z): 449.23 M (Calcd for C212111 449.31)。
色素(16):ESI−MS (m/z): 595.19 M (Calcd for C302713 595.44)。
色素(17):ESI−MS (m/z): 595.17 M (Calcd for C302713 595.44)。
色素(18):ESI−MS (m/z): 611.39 M (Calcd for C302714 611.44)。
色素(19):ESI−MS (m/z): 465.23 M (Calcd for C212112 465.31)。
色素(20):ESI−MS (m/z): 611.35 M (Calcd for C302714 611.44)。
色素(21):ESI−MS (m/z): 611.22 M (Calcd for C302714 611.44)。
色素(22):ESI−MS (m/z): 627.37 M (Calcd for C302715 627.43)。
以上の結果、理論値と測定値がよく一致した。
The masses of the anthocyanin dyes (6) to (9) and (15) to (22) shown in FIG. 2 were measured using a mass spectrometer (positive ion ionization-mass spectrometer: ESI-MS).
Dye (6): ESI-MS (m / z): 449.21 M + (Calcd for C 21 H 21 O 11 449.31).
Dye (7): ESI-MS (m / z): 595.19 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (8): ESI-MS (m / z): 595.14 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (9): ESI-MS (m / z): 611.22 M + (Calcd for C 30 H 27 O 14 611.44).
Dye (15): ESI-MS (m / z): 449.23 M + (Calcd for C 21 H 21 O 11 449.31).
Dye (16): ESI-MS (m / z): 595.19 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (17): ESI-MS (m / z): 595.17 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (18): ESI-MS (m / z): 611.39 M + (Calcd for C 30 H 27 O 14 611.44).
Dye (19): ESI-MS (m / z): 465.23 M + (Calcd for C 21 H 21 O 12 465.31).
Dye (20): ESI-MS (m / z): 611.35 M + (Calcd for C 30 H 27 O 14 611.44).
Dye (21): ESI-MS (m / z): 611.22 M + (Calcd for C 30 H 27 O 14 611.44).
Dye (22): ESI-MS (m / z): 627.37 M + (Calcd for C 30 H 27 O 15 627.43).
As a result, the theoretical value and the measured value agreed well.

〔実施例3〕サルウィンツバキ(C.saluenensis Stapf ex Beam)の分析
(1)花弁から色素の抽出と単離、精製の方法
サルウィンツバキから花弁を採集した。採集した花弁は、褐変を防ぐため熱湯に3〜5秒間浸漬し、ポリフェノールオキシダーゼなどの酵素を死活させた。浸漬後、花弁を室温で乾燥させた。乾燥花弁3kgに、酢酸とメタノールを1対1で混合した溶液(50%酢酸−メタノール)13Lを加え、20〜25℃でアントシアニン色素を抽出した。抽出液を綿栓でろ過した後、溶媒を減圧下、ロータリーエバポレーターで留去した。抽出残渣を5%酢酸水溶液に溶解し、オープンカラムクロマトグラフィーに付した。オープンカラムクロマトグラフィーの条件は、固定相にエムシーアイゲルCHP−20P(MCI gel CHP−20P、三菱化学株式会社、Mitsubishi Chemical Corporation)、セファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)、クロマトレックスODS(Chromatorex ODS、富士シリシア化学株式会社、Fuji Silysia Chemical LTD.)を用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を10%ずつ増やすことによって、MCIgelのカラム(以下MCIカラム)−Sephadex LH−20カラム−ODS カラムの順番で各種クロマトグラフィーを行った。また、固定相にセファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)を用い、移動相にA液として5%酢酸水溶液、C液として5%酢酸−アセトン(アセトンに酢酸を5%量加えたもの)を用い、C液からA液の含量を2%ずつ増やすことによってクロマトグラフィーを行った。次いで、Sephadex LH−20カラムとODSカラムを用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を5%ずつ増やすことを繰り返した。これらのオープンカラムクロマトグラフィーを繰り返し行うことによって、アントシアニン色素として、cyanidin 3−O−β−glucopyranoside(6)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside(7)、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)、cyanidin 3,5−di−O−β−glucopyranoside(23)、cyanidin 3−O−(6−O−(Z)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(24)、cyanidin 3−O−(6−O−(E)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranoside(25)を単離及び精製した(図3)。
[Example 3] Analysis of C. saluenensis Snapf ex Beam (1) Extraction, isolation and purification of pigments from petals Petals were collected from Salwins. The collected petals were immersed in hot water for 3 to 5 seconds to prevent browning, and an enzyme such as polyphenol oxidase was activated. After soaking, the petals were dried at room temperature. 13 L of a mixed solution of acetic acid and methanol (50% acetic acid-methanol) was added to 3 kg of dried petals, and the anthocyanin pigment was extracted at 20 to 25 ° C. After the extract was filtered through a cotton plug, the solvent was distilled off with a rotary evaporator under reduced pressure. The extraction residue was dissolved in 5% aqueous acetic acid and subjected to open column chromatography. The conditions for the open column chromatography were MC eye gel CHP-20P (MCI gel CHP-20P, Mitsubishi Chemical Corporation, Mitsubishi Chemical Corporation), Sephadex LH-20 (GE Healthex Biosciences A). Chromatorex ODS (Chromatorex ODS, Fuji Silysia Chemical Ltd., Fuji Silysia Chemical LTD.), Using 5% acetic acid aqueous solution as the A liquid for the mobile phase, 5% acetic acid-methanol as the B liquid, and from the A liquid to the B liquid By increasing the content of 10% by 10%, various chromatophores were prepared in the order of MCIgel column (hereinafter referred to as MCI column) -Sephadex LH-20 column-ODS column. The door chromatography was carried out. Moreover, Sephadex LH-20 (Sephadex LH-20, GE Healthcare Biosciences AB) was used for the stationary phase, 5% acetic acid aqueous solution as the liquid A for the mobile phase, and 5% acetic acid-acetone (5% acetic acid in acetone as the liquid C). Chromatography was performed by increasing the content of solution A by 2% from solution C. Next, using Sephadex LH-20 column and ODS column, using 5% acetic acid aqueous solution as liquid A and 5% acetic acid-methanol as liquid B, and increasing the content of liquid B from liquid A by 5%. It was. By repeating these open column chromatography, cyanidin 3-O-β-glucopyranoside (6), cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyroxide is used as an anthocyanin dye. (7), cyanidin 3-O- (6-O- (E) -p-cumaroyl) -β-glucopyranoside (8), cyanidin 3,5-di-O-β-glucopyranoside (23), cyanidin 3-O -(6-O- (Z) -p-comuaroyl-β-glucopyranoside) -5-β-glucopyranoside (24), cyanidin 3-O- (6-O- (E) -p-coma oyl-β-glucopyranoside) -5-β-glucopyranoside (25) was isolated and purified (FIG. 3).

(2)色素の各種スペクトルデータ
単離・精製したアントシアニン色素のプロトン核磁気共鳴スペクトル(H-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表10及び表11に示す。表中の数値はデルタ(δ、ppm)で示す。また、二番目に表された数値は、カップリング定数(J値)を示している。表中の記号で、brは、broad、sはsinglet、dはdoublet、ddはdouble doublet、dddはdouble double doublet、tはtriplet、mはmultipletを示す。
(2) Various spectrum data of the dye The proton nuclear magnetic resonance spectrum ( 1 H-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Table 10 and Table 11. The numerical values in the table are indicated by delta (δ, ppm). The second numerical value represents the coupling constant (J value). In the table, br is “broad”, “s” is a singlet, “d” is a doublet, “dd” is a double doublet, “dd” is a double doublet, “t” is a triplet, and “m” is a multiplet.

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

単離・精製したアントシアニン色素の炭素13核磁気共鳴スペクトル(13C-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表12に示す。表中の数値はデルタ(δ、ppm)で示す。また表中、C(Z)はパラクマル酸のZ型、C(E)はパラクマル酸のE型、Caf(E)はカフェー酸のシグナルであることを示す。 The carbon-13 nuclear magnetic resonance spectrum ( 13 C-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Table 12. The numerical values in the table are indicated by delta (δ, ppm). In the table, C (Z) indicates the Z-form of paracoumaric acid, C (E) indicates the E-form of paracoumaric acid, and Caf (E) indicates the signal of caffeic acid.

Figure 2009126810
Figure 2009126810

図3で示した(6)〜(8)及び(23)〜(25)のアントシアニン色素の紫外部吸収スペクトル(Ultra Violet spectrum)を測定した。測定には、島津製作所株式会社の分光機器(UV−visible recording spectrometer、UV−2100)を用いた。その結果は次の通りである。測定溶媒はメタノールである。shはshoulderを示す。
色素(6):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.04), 311sh (4.17), 538 (3.55); 0.01% HCl−MeOH: 283 (4.08), 332 (3.64), 530 (4.19); AlCl−MeOH: 288 (3.99), 313 (3.94), 571 (4.28)。
色素(7):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.30), 308sh (4.19), 531 (3.89); 0.01% HCl−MeOH: 284 (4.33), 311 (4.17), 375sh (3.58), 530 (4.35); AlCl−MeOH: 289 (4.26), 311 (4.27), 411 (3.70), 573 (4.44)。
色素(8):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.49), 311sh (4.39), 553 (3.17); 0.01% HCl−MeOH: 284 (4.51), 314 (4.39), 530 (4.52); AlCl−MeOH: 289 (4.45), 313 (4.47), 570 (4.60)。
色素(23):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 282 (3.14), 311sh (1.89), 527 (2.71); 0.01% HCl−MeOH: 279 (3.14), 331 (2.49), 526 (3.43); AlCl−MeOH: 284sh (2.97), 313 (2.82), 452 (2.64), 570 (3.44)。
色素(24):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 286 (4.27), 317sh (4.09), 531 (2.58); 0.01% HCl−MeOH: 281 (4.25), 294 (4.22), 530 (4.34); AlCl−MeOH: 281 (4.19), 312 (4.21), 421 (3.68), 571 (4.37)。
色素(25):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.56), 311sh(4.46), 553 (3.23); 0.01% HCl−MeOH: 284 (4.58), 314 (4.46), 530 (4.59); AlCl−MeOH: 289 (4.51), 313 (4.54), 570 (4.67)。
The ultraviolet absorption spectrum (Ultra Violet spectrum) of the anthocyanin dyes (6) to (8) and (23) to (25) shown in FIG. 3 was measured. A spectroscopic instrument (UV-visible recording spectrometer, UV-2100) manufactured by Shimadzu Corporation was used for the measurement. The results are as follows. The measurement solvent is methanol. sh indicates a shoulder.
Dye (6): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.04), 311sh (4.17), 538 (3.55); 0.01% HCl -MeOH: 283 (4.08), 332 (3.64), 530 (4.19); AlCl 3 -MeOH: 288 (3.99), 313 (3.94), 571 (4.28).
Dye (7): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.30), 308sh (4.19), 531 (3.89); 0.01% HCl -MeOH: 284 (4.33), 311 (4.17), 375sh (3.58), 530 (4.35); AlCl 3 -MeOH: 289 (4.26), 311 (4.27), 411 (3.70), 573 (4.44).
Dye (8): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.49), 311sh (4.39), 553 (3.17); 0.01% HCl -MeOH: 284 (4.51), 314 (4.39), 530 (4.52); AlCl 3 -MeOH: 289 (4.45), 313 (4.47), 570 (4.60).
Dye (23): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 282 (3.14), 311sh (1.89), 527 (2.71); 0.01% HCl -MeOH: 279 (3.14), 331 (2.49), 526 (3.43); AlCl 3 -MeOH: 284sh (2.97), 313 (2.82), 452 (2.64), 570 (3.44).
Dye (24): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 286 (4.27), 317sh (4.09), 531 (2.58); 0.01% HCl -MeOH: 281 (4.25), 294 (4.22), 530 (4.34); AlCl 3 -MeOH: 281 (4.19), 312 (4.21), 421 (3.68), 571 (4.37).
Dye (25): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.56), 311sh (4.46), 553 (3.23); 0.01% HCl -MeOH: 284 (4.58), 314 (4.46), 530 (4.59); AlCl 3 -MeOH: 289 (4.51), 313 (4.54), 570 (4.67).

質量分析計(positive-ion Electrospray Ionization-Mass Spectrometer;ESI−MS)を用いて、図3で示した(6)〜(8)及び(23)〜(25)のアントシアニン色素の質量を測定した。
色素(6):ESI−MS (m/z): 449.21 M (Calcd for C212111 449.31)。
色素(7):ESI−MS (m/z): 595.19 M (Calcd for C302713 595.44)。
色素(8):ESI−MS (m/z): 595.14 M (Calcd for C302713 595.44)。
色素(23):ESI−MS (m/z): 611.39 M (Calcd for C273116 611.43)。
色素(24):ESI−MS (m/z): 757.44 M (Calcd for C363718 757.55)。
色素(25):ESI−MS (m/z): 757.44 M (Calcd for C363718 757.55)。
以上の結果、理論値と測定値がよく一致した。
The masses of anthocyanin dyes (6) to (8) and (23) to (25) shown in FIG. 3 were measured using a mass spectrometer (positive ion ionization-mass spectrometer; ESI-MS).
Dye (6): ESI-MS (m / z): 449.21 M + (Calcd for C 21 H 21 O 11 449.31).
Dye (7): ESI-MS (m / z): 595.19 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (8): ESI-MS (m / z): 595.14 M + (Calcd for C 30 H 27 O 13 595.44).
Dye (23): ESI-MS (m / z): 611.39 M + (Calcd for C 27 H 31 O 16 611.43).
Dye (24): ESI-MS (m / z): 757.44 M + (Calcd for C 36 H 37 O 18 757.55).
Dye (25): ESI-MS (m / z): 757.44 M + (Calcd for C 36 H 37 O 18 757.55).
As a result, the theoretical value and the measured value agreed well.

〔実施例4〕園芸品種ツバキ:大理茶(Dalicha)の分析
(1)花弁から色素の抽出と単離、精製の方法
園芸品種ツバキから花弁を採集した。採集した花弁は、褐変を防ぐため熱湯に3〜5秒間浸漬し、ポリフェノールオキシダーゼなどの酵素を死活させた。浸漬後、花弁を室温で乾燥させた。乾燥花弁2kgに、酢酸とメタノールを1対1で混合した溶液(50%酢酸−メタノール)11Lを加え、20〜25℃でアントシアニン色素を抽出した。抽出液を綿栓でろ過した後、溶媒を減圧下、ロータリーエバポレーターで留去した。抽出残渣を5%酢酸水溶液に溶解し、オープンカラムクロマトグラフィーに付した。オープンカラムクロマトグラフィーの条件は、固定相にエムシーアイゲルCHP−20P(MCI gel CHP−20P、三菱化学株式会社、Mitsubishi Chemical Corporation)、セファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)、クロマトレックスODS(Chromatorex ODS、富士シリシア化学株式会社、Fuji Silysia Chemical LTD.)を用い、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を10%ずつ増やすことによって、MCIgelのカラム(以下MCIカラム)−Sephadex LH−20カラム−ODSカラムの順番で各種クロマトグラフィーを行った。また、固定相にセファデックスLH−20(Sephadex LH−20、GE Healthcare Biosciences AB)を用い、移動相にA液として5%酢酸水溶液、C液として5%酢酸−アセトン(アセトンに酢酸を5%量加えたもの)を用い、C液からA液の含量を増やすことによってクロマトグラフィーを行った。これらのオープンカラムクロマトグラフィーを繰り返し行うことによって、アントシアニン色素として、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−glucopyranoside(1)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside(2)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−glucopyranoside(3)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside(4)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside(5)、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−galactopyranoside(10)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside(11)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside(13)、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranoside(14)を単離及び精製した(図4)。単離及び精製したアントシアニン色素のうち、(5)、(11)〜(14)は新規な色素である(図4)。
[Example 4] Horticultural variety camellia: Analysis of Dalicha (1) Extraction, isolation and purification of pigments from petals Petals were collected from the garden variety camellia. The collected petals were immersed in hot water for 3 to 5 seconds to prevent browning, and an enzyme such as polyphenol oxidase was activated. After soaking, the petals were dried at room temperature. To 2 kg of dried petals, 11 L of a mixed solution of acetic acid and methanol (1: 1) (50% acetic acid-methanol) was added, and the anthocyanin pigment was extracted at 20 to 25 ° C. After the extract was filtered through a cotton plug, the solvent was distilled off with a rotary evaporator under reduced pressure. The extraction residue was dissolved in 5% aqueous acetic acid and subjected to open column chromatography. The conditions for the open column chromatography were MC eye gel CHP-20P (MCI gel CHP-20P, Mitsubishi Chemical Corporation, Mitsubishi Chemical Corporation), Sephadex LH-20 (GE Healthex Biosciences A). Chromatorex ODS (Chromatorex ODS, Fuji Silysia Chemical Ltd., Fuji Silysia Chemical LTD.), Using 5% acetic acid aqueous solution as the A liquid for the mobile phase, 5% acetic acid-methanol as the B liquid, and from the A liquid to the B liquid By increasing the content of each by 10%, various chromas in the order of MCIgel column (hereinafter MCI column)-Sephadex LH-20 column-ODS column A tomography was performed. Moreover, Sephadex LH-20 (Sephadex LH-20, GE Healthcare Biosciences AB) was used for the stationary phase, 5% acetic acid aqueous solution as the liquid A for the mobile phase, and 5% acetic acid-acetone (5% acetic acid in acetone as the liquid C). Chromatography was performed by increasing the content of solution A from solution C. By repeating these open column chromatography, cyanidin 3-O- (2-O-β-xypyranosyl) -β-glucopyranoside (1), cyanidin 3-O- (2-O-β-) is used as an anthocyanin dye. xylopyranosyl-6-O- (Z) -p-cumaroyl) -β-glucopyranoside (2), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (E) -p-comaroyl) -β -Glucopyroxide (3), cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (E) -caffeoyl)-[beta] -glucopyranoside (4), cyanidin 3- -(2-O- [beta] -xylopyranosyl-6-O-acetyl)-[beta] -glucopyranoside (5), cyanidin 3-O- (2-O- [beta] -xylopyranosyl)-[beta] -galactopyranoside (10), cyanidin 3-O -(2-O- [beta] -xylopyranosyl-6-O- (Z) -p-cumaroyl)-[beta] -galactopyranoside (11), cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (E ) -P-cumaroyl) -β-galactopylanoside (12), cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-galactopyran side (13), cyanidin 3-O- (2-O-β-xylopyranosyl-6-O-acetyl) -β-galactopyranoside (14) was isolated and purified (FIG. 4). Of the anthocyanin dyes isolated and purified, (5) and (11) to (14) are novel dyes (FIG. 4).

(2)色素の各種スペクトルデータ
単離・精製したアントシアニン色素のプロトン核磁気共鳴スペクトル(H-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表13及び表14に示す。表中の数値はデルタ(δ、ppm)で示す。また、二番目に表された数値は、カップリング定数(J値)を示している。表中の記号で、brは、broad、sはsinglet、dはdoublet、ddはdouble doublet、dddはdouble double doublet、tはtriplet、mはmultipletを示す。
(2) Various spectrum data of the dye The proton nuclear magnetic resonance spectrum ( 1 H-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Tables 13 and 14. The numerical values in the table are indicated by delta (δ, ppm). The second numerical value represents the coupling constant (J value). In the table, br is “broad”, “s” is a singlet, “d” is a doublet, “dd” is a double doublet, “dd” is a double doublet, “t” is a triplet, and “m” is a multiplet.

Figure 2009126810
Figure 2009126810

Figure 2009126810
Figure 2009126810

単離・精製したアントシアニン色素の炭素13核磁気共鳴スペクトル(13C-Nuclear magnetic resonance [NMR] spectrum)を測定した。測定装置は、JNM-ECA600型核磁気共鳴装置(JEOL JNM-ECA600KS、日本電子データム株式会社、JEOL DATUM LTD.)を用いた。測定は、CDODとCFCOODの9対1混合溶液を用いて行った。その結果を表15に示す。表中の数値はデルタ(δ、ppm)で示す。また表中、C(Z)はパラクマル酸のZ型、C(E)はパラクマル酸のE型、Caf(E)はカフェー酸のシグナルであることを示す。 The carbon-13 nuclear magnetic resonance spectrum ( 13 C-Nuclear magnetic resonance [NMR] spectrum) of the isolated and purified anthocyanin dye was measured. As a measuring apparatus, a JNM-ECA600 type nuclear magnetic resonance apparatus (JEOL JNM-ECA600KS, JEOL Datum Co., Ltd., JEOL DATUM LTD.) Was used. The measurement was performed using a 9: 1 mixed solution of CD 3 OD and CF 3 COOD. The results are shown in Table 15. The numerical values in the table are indicated by delta (δ, ppm). In the table, C (Z) indicates the Z-form of paracoumaric acid, C (E) indicates the E-form of paracoumaric acid, and Caf (E) indicates the signal of caffeic acid.

Figure 2009126810
Figure 2009126810

図4で示した(1)〜(5)及び(10)〜(14)のアントシアニン色素の紫外部吸収スペクトル(Ultra Violet spectrum)を測定した。測定には、島津製作所株式会社の分光機器(UV−visible recording spectrometer、UV−2100)を用いた。その結果は次の通りである。測定溶媒はメタノールである。shはshoulderを示す。
色素(1):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 282 (4.31), 379 (3.10), 538 (3.47); 0.01% HCl-MeOH: 282 (4.37), 332 (3.68), 530 (4.59); AlCl−MeOH: 289 (4.40), 312 (4.00), 411 (3.81), 564 (4.62)。
色素(2):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.51), 311sh (4.40), 553 (3.18); 0.01% HCl-MeOH: 284 (4.53), 314 (4.40), 530 (4.54); AlCl−MeOH: 289 (4.46), 313 (4.49), 570 (4.61)。
色素(3):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 284 (4.58), 311sh (4.48), 553 (3.25); 0.01% HCl-MeOH: 284 (4.60), 314 (4.48), 530 (4.61); AlCl−MeOH: 289 (4.53), 313 (4.56), 570 (4.69)。
色素(4):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl-MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl−MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75)。
色素(5):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 283 (4.17), 340 (3.22), 361 (3.25), 531 (3.58); 0.01% HCl-MeOH: 283 (4.22), 336 (3.56)), 382 (3.65), 531 (4.45); AlCl−MeOH: 286 (4.09), 313 (3.89), 409 (3.71), 570 (4.52)。
色素(10):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 282 (4.12), 333 (3.26), 530 (4.27); 0.01% HCl-MeOH: 282 (4.19), 332 (3.40), 530 (4.42); AlCl−MeOH: 287sh (4.00), 313 (3.82), 409 (3.57), 570 (4.50)。
色素(11):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.39), 313sh(4.22), 534 (4.38); 0.01% HCl−MeOH: 284 (4.41), 311 (4.23), 534 (4.48); AlCl−MeOH: 289 (4.32), 311 (4.31), 405 (3.80), 574 (4.57)。
色素(12):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.22), 308sh (4.12), 535 (3.36); 0.01% HCl-MeOH: 284 (4.24), 312 (4.12), 531 (4.25); AlCl−MeOH: 290 (4.18), 313 (4.20), 407 (3.46), 571 (4.33)。
色素(13):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 285 (4.30), 330 (4.12), 532 (3.40); 0.01% HCl−MeOH: 284 (4.32), 331 (4.18), 531 (4.40); AlCl−MeOH: 289 (4.12), 315 (4.12), 355 (4.18), 567 (4.48)。
色素(14):赤色無晶形粉末、UV−vis λmax MeOH (nm) (log ε): 283 (4.10), 347 (3.29), 550 (2.99); 0.01% HCl−MeOH: 283 (4.14), 335 (3.55), 381 (3.56), 531 (4.36); AlCl−MeOH: 287 (3.97), 312 (3.79), 403 (3.63), 572 (4.43)。
The ultraviolet absorption spectra (Ultra Violet spectrum) of the anthocyanin dyes (1) to (5) and (10) to (14) shown in FIG. 4 were measured. A spectroscopic instrument (UV-visible recording spectrometer, UV-2100) manufactured by Shimadzu Corporation was used for the measurement. The results are as follows. The measurement solvent is methanol. sh indicates a shoulder.
Dye (1): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 282 (4.31), 379 (3.10), 538 (3.47); 0.01% HCl -MeOH: 282 (4.37), 332 (3.68), 530 (4.59); AlCl 3 -MeOH: 289 (4.40), 312 (4.00), 411 (3.81), 564 (4.62).
Dye (2): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.51), 311sh (4.40), 553 (3.18); 0.01% HCl -MeOH: 284 (4.53), 314 (4.40), 530 (4.54); AlCl 3 -MeOH: 289 (4.46), 313 (4.49), 570 (4.61).
Dye (3): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 284 (4.58), 311sh (4.48), 553 (3.25); 0.01% HCl -MeOH: 284 (4.60), 314 (4.48), 530 (4.61); AlCl 3 -MeOH: 289 (4.53), 313 (4.56), 570 (4.69).
Dye (4): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.61), 331 (4.46), 532 (4.53); 0.01% HCl -MeOH: 284 (4.65), 330 (4.50), 530 (4.69); AlCl 3 -MeOH: 289 (4.48), 314 (4.47), 349 (4.49), 571 (4.75).
Dye (5): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 283 (4.17), 340 (3.22), 361 (3.25), 531 (3.58) ); 0.01% HCl-MeOH: 283 (4.22), 336 (3.56)), 382 (3.65), 531 (4.45); AlCl 3 -MeOH: 286 (4.09) 313 (3.89), 409 (3.71), 570 (4.52).
Dye (10): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 282 (4.12), 333 (3.26), 530 (4.27); 0.01% HCl -MeOH: 282 (4.19), 332 (3.40), 530 (4.42); AlCl 3 -MeOH: 287sh (4.00), 313 (3.82), 409 (3.57), 570 (4.50).
Dye (11): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.39), 313sh (4.22), 534 (4.38); 0.01% HCl -MeOH: 284 (4.41), 311 (4.23), 534 (4.48); AlCl 3 -MeOH: 289 (4.32), 311 (4.31), 405 (3.80), 574 (4.57).
Dye (12): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.22), 308sh (4.12), 535 (3.36); 0.01% HCl -MeOH: 284 (4.24), 312 (4.12), 531 (4.25); AlCl 3 -MeOH: 290 (4.18), 313 (4.20), 407 (3.46), 571 (4.33).
Dye (13): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 285 (4.30), 330 (4.12), 532 (3.40); 0.01% HCl -MeOH: 284 (4.32), 331 (4.18), 531 (4.40); AlCl 3 -MeOH: 289 (4.12), 315 (4.12), 355 (4.18), 567 (4.48).
Dye (14): Red amorphous powder, UV-vis λ max MeOH (nm) (log ε): 283 (4.10), 347 (3.29), 550 (2.99); 0.01% HCl -MeOH: 283 (4.14), 335 (3.55), 381 (3.56), 531 (4.36); AlCl 3 -MeOH: 287 (3.97), 312 (3.79), 403 (3.63), 572 (4.43).

質量分析計(positive-ion Electrospray Ionization-Mass Spectrometer;ESI−MS)を用いて、図4で示した(1)〜(5)、(10)〜(14)のアントシアニン色素の質量を測定した。
色素(1):ESI−MS (m/z): 581.37 M (Calcd for C262915 581.41)。
色素(2):ESI−MS (m/z): 727.37 M (Calcd for C353517 727.53)。
色素(3):ESI−MS (m/z): 727.38 M (Calcd for C353517 727.53)。
色素(4):ESI−MS (m/z): 743.35 M (Calcd for C353518 743.53)。
色素(5):ESI−MS (m/z): 623.25 M (Calcd for C283116 623.44)。色素(10):ESI−MS (m/z): 582.22 [M+H] (Calcd for C262915 581.41)。
色素(11):ESI−MS (m/z): 727.37 M (Calcd for C353517 727.53)。
色素(12):ESI−MS (m/z): 727.32 M (Calcd for C353517 727.53)。
色素(13):ESI−MS (m/z): 743.48 M (Calcd for C353518 743.53)。
色素(14):ESI−MS (m/z): 623.38 M (Calcd for C283116 623.44)。
以上の結果、理論値と測定値がよく一致した。
The masses of anthocyanin dyes (1) to (5) and (10) to (14) shown in FIG. 4 were measured using a mass spectrometer (positive ion ionization-mass spectrometer; ESI-MS).
Dye (1): ESI-MS (m / z): 581.37 M + (Calcd for C 26 H 29 O 15 581.41).
Dye (2): ESI-MS (m / z): 727.37 M + (Calcd for C 35 H 35 O 17 727.53).
Dye (3): ESI-MS (m / z): 727.38 M + (Calcd for C 35 H 35 O 17 727.53).
Dye (4): ESI-MS (m / z): 743.35 M + (Calcd for C 35 H 35 O 18 743.53).
Dye (5): ESI-MS (m / z): 623.25 M + (Calcd for C 28 H 31 O 16 623.44). Dye (10): ESI-MS (m / z): 582.22 [M + H] + (Calcd for C 26 H 29 O 15 581.41).
Dye (11): ESI-MS (m / z): 727.37 M + (Calcd for C 35 H 35 O 17 727.53).
Dye (12): ESI-MS (m / z): 727.32 M + (Calcd for C 35 H 35 O 17 727.53).
Dye (13): ESI-MS (m / z): 743.48 M + (Calcd for C 35 H 35 O 18 743.53).
Dye (14): ESI-MS (m / z): 623.38 M + (Calcd for C 28 H 31 O 16 623.44).
As a result, the theoretical value and the measured value agreed well.

〔実施例5〕HPLCによる各種ツバキの花弁に含まれる色素の分析
(1)トウツバキ(C.reliculata Lindl.)の分析
トウツバキ(C.reliculata Lindl.)の花弁(花)0.5gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、下記のHPLC分析条件にて分析した。その結果を図5に示す。色素がよく分離していることが分かる。
(HPLC分析条件)
HPLCの溶出溶媒としては、A液として1.5%リン酸を含む水溶液と、B液としてリン酸−ギ酸−アセトニトリル−テトラヒドロフラン−水の1.4:19:23.8:5:50.8の比率で混合した溶液を用い、流速を1分間に0.8ml、カラムの温度を40℃に保ち、検出波長を525nmに設定し、A液とB液との比率を82:18から30:70の比率で35分かけてリニアーグラジエント溶出させた。
[Example 5] Analysis of pigments contained in various camellia petals by HPLC (1) Analysis of C. relicula Lindl. Collect 0.5 g of petals (flowers) of C. reliculata Lindl. The anthocyanin pigment was extracted at 20 ° C. with 10 ml of an extraction solvent prepared in advance. The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the following HPLC analysis conditions. The result is shown in FIG. It can be seen that the pigments are well separated.
(HPLC analysis conditions)
As an elution solvent for HPLC, 1.4: 19: 23.8: 5: 50.8 is an aqueous solution containing 1.5% phosphoric acid as solution A and phosphoric acid-formic acid-acetonitrile-tetrahydrofuran-water as solution B. The solution was mixed at the following ratio, the flow rate was 0.8 ml per minute, the column temperature was kept at 40 ° C., the detection wavelength was set at 525 nm, and the ratio of liquid A to liquid B was changed from 82:18 to 30: A linear gradient was eluted at a ratio of 70 over 35 minutes.

(2)ピタールツバキ雲南種(西南山茶雲南種、C.pitardii var. yunnanica)の分析
ピタールツバキ雲南種(西南山茶雲南種、C.pitardii var. yunnanica)の花弁(花)0.5gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、前記HPLC条件にて分析した。その結果を図6に示す。色素がよく分離していることが分かる。また、トウツバキ(C.reliculata Lindl.)の花弁(花)から得られたアントシニン色素組成と類似しているが、両者のHPLC分析のデータによる品種識別は可能であると考える。
(2) Analysis of Pital camellia Yunnan species (Seinanyama tea Yunnan species, C. partardii var. Yunnanica) Pital camellia Yunnan species (Seinanzan tea Yunnan species, C. pitardii var. Yunnanica) The anthocyanin dye was extracted at 20 ° C. with 10 ml of the prepared extraction solvent. The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the above HPLC conditions. The result is shown in FIG. It can be seen that the pigments are well separated. Moreover, although it is similar to the anthinine pigment composition obtained from the petals (flowers) of C. reliculata Lindl., It is considered that the cultivar identification can be performed based on both HPLC analysis data.

(3)ホンコンツバキ(C.hongkongensis Seem.)の分析
ホンコンツバキ(C.hongkongensis Seem.)の花弁(花)0.5gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、前記HPLC条件にて分析した。その結果を図7に示す。色素がよく分離していることが分かる。
(3) Analysis of Hong Kong camellia (C. hongkongensis Seem.) 0.5 g of petals (flowers) of Hong Kong camellia (C. hongkongensis Seem.) Was collected, and anthocyanin pigment was extracted at 20 ° C. with 10 ml of an extraction solvent prepared in advance. . The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the above HPLC conditions. The result is shown in FIG. It can be seen that the pigments are well separated.

(4)ヤブツバキ(C.japonica)の分析
ヤブツバキ(C.japonica)の花弁(花)0.5gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、前記HPLC条件にて分析した。その結果を図8に示す。色素がよく分離していることが分かる。また、ホンコンツバキ(C.hongkongensis)の花弁(花)から得られたアントシニン色素組成とは違い、デルフィニジン(delphinidin)系の配糖体が認められないことが分かる。
(4) Analysis of C. japonica 0.5 g of petals (flowers) of C. japonica were collected, and anthocyanin pigment was extracted at 20 ° C. with 10 ml of an extraction solvent prepared in advance. The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the above HPLC conditions. The result is shown in FIG. It can be seen that the pigments are well separated. It can also be seen that, unlike the anthinine pigment composition obtained from the petals (flowers) of C. hongkongensis, no delphinidin-based glycosides are observed.

(5)サルウィンツバキ(C.saluenensis Stapf ex Heam)の分析
サルウィンツバキ(C.saluenensis Stapf ex Heam)の花弁(花)25gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、前記HPLC条件にて分析した。その結果を図9に示す。色素がよく分離していることが分かる。
(5) Analysis of C. saluenensis staf ex Heam 25 g of petals (flowers) of C. saluensis staf ex Heam were collected, and anthocyanin pigment was extracted at 10 ° C. with 10 ml of a preliminarily prepared extraction solvent. . The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the above HPLC conditions. The result is shown in FIG. It can be seen that the pigments are well separated.

(6)ピタールツバキピタール種(西南山茶西南種、C.pitardii var. pitardii)の分析
ピタールツバキピタール種(西南山茶西南種、C.pitardii var. pitardii)の花弁(花)0.5gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、前記HPLC条件にて分析した。その結果を図10に示す。色素がよく分離していることが分かる。また、サルウィンツバキ(C.saluenensis Stapf ex Heam)の花弁(花)から得られたアントシニン色素組成と類似しているが、両者のHPLC分析データによる品種識別は可能であると考える。
(6) Analysis of Pital camellia pitari species (Seinanyama tea southwest species, C. partardii var. Partardii) Pital camellia pital species (Nishinanyama tea southwest species, C. pitaldi var. Pitaradii) Petals (flowers) 0. 5 g was collected, and the anthocyanin dye was extracted at 20 ° C. with 10 ml of an extraction solvent prepared in advance. The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the above HPLC conditions. The result is shown in FIG. It can be seen that the pigments are well separated. Moreover, although it is similar to the anthinine pigment composition obtained from the petals (flowers) of C. saluenensis Snapf ex Heam, it is considered that cultivar identification can be performed by HPLC analysis data of both.

(7)園芸品種ツバキ:大理茶(Dalicha)の分析
園芸品種ツバキ:大理茶(Dalicha)の花弁(花)0.25gを採集し、予め準備した抽出溶媒10mlで20℃でアントシアニン色素を抽出した。抽出溶媒の組成は、メタノール−ギ酸−トリフルオロ酢酸−水(MeOH−HCOOH−CFCOOH−HO)の70:2:1:27(v/v%)である。抽出液は、ミリポアフィルター(メッシュは0.45μM)で通導後、前記HPLC条件にて分析した。その結果を図11に示す。色素がよく分離していることが分かる。
(7) Analysis of Horticulture Variety Camellia: Dalicha Horticulture Variety Camellia: Dalicha Petal (flower) 0.25g was collected, and anthocyanin pigment was extracted at 20 ° C with 10 ml of extraction solvent prepared in advance. . The composition of the extraction solvent, methanol - formic acid - trifluoroacetic acid - water (MeOH-HCOOH-CF 3 COOH -H 2 O) of 70: 2: 1: 27 (v / v%). The extract was passed through a Millipore filter (mesh was 0.45 μM) and then analyzed under the above HPLC conditions. The result is shown in FIG. It can be seen that the pigments are well separated.

〔実施例6〕ツバキ花弁より抽出した抽出エキス、及び単離・精製したアントシアニン色素の生物活性試験
(1)アントシアニンサンプルの調製
実施例2と同様に、ホンコンツバキの花弁からアントシアニンを抽出した。採集した花弁8kgに直接、酢酸とメタノールを1対1で混合した溶液(50%酢酸−メタノール)20Lを加え、20−25℃でアントシアニン色素を抽出した。抽出液を綿栓でろ過した後、溶媒を減圧下、ロータリーエバポレーターで留去した。抽出残渣を5%酢酸水溶液に溶解し、オープンカラムクロマトグラフィーに付した。オープンカラムクロマトグラフィーの条件は、固定相にエムシーアイゲルCHP−20P(MCI gel CHP−20P、三菱化学株式会社、Mitsubishi Chemical Corporation)、移動相にA液として5%酢酸水溶液、B液として5%酢酸−メタノールを用い、A液からB液の含量を10%ずつ増やすことによって、MCIgelのカラム(以下MCIカラム)クロマトグラフィーを行い、6つの分画を得た。
[Example 6] Extraction extract extracted from camellia petals and biological activity test of isolated and purified anthocyanin pigment (1) Preparation of anthocyanin sample Anthocyanins were extracted from petals of Honkon camellia as in Example 2. 20 L of a mixed solution of 50% acetic acid and methanol (50% acetic acid-methanol) was directly added to 8 kg of the collected petals, and the anthocyanin pigment was extracted at 20-25 ° C. After the extract was filtered through a cotton plug, the solvent was distilled off with a rotary evaporator under reduced pressure. The extraction residue was dissolved in 5% aqueous acetic acid and subjected to open column chromatography. The conditions of the open column chromatography were as follows: MC Igel CHP-20P (MCI gel CHP-20P, Mitsubishi Chemical Corporation, Mitsubishi Chemical Corporation) as the stationary phase, 5% acetic acid aqueous solution as the liquid A, and 5% as the liquid B Using acetic acid-methanol, the content of liquid B from liquid A was increased by 10%, and MCIgel column (hereinafter referred to as MCI column) chromatography was performed to obtain six fractions.

DPPHラジカル消去能とヒト白血病細胞増殖抑制作用の実験に用いたサンプル名とサンプル量は以下の通りである。ツバキ花弁の抽出エキス(抽出溶媒を留去した原液)は855.7mg、分画1は0.84g、分画2は0.23g、分画3は0.20g、分画4は106.7mg、分画5は101.2mg、分画6は103.4mgであった。   The sample names and sample amounts used in the experiments for DPPH radical scavenging ability and human leukemia cell growth inhibitory action are as follows. Camellia petal extract (stock solution from which the extraction solvent was distilled off) was 855.7 mg, fraction 1 was 0.84 g, fraction 2 was 0.23 g, fraction 3 was 0.20 g, and fraction 4 was 106.7 mg. Fraction 5 was 101.2 mg and Fraction 6 was 103.4 mg.

また、これらの分画の他に、精製したアントシアニン類を実験に供試した。それらのアントシアニンの種類と供試量は以下の通りである。cyanidin 3−O−β−glucopyranoside(6)は21.3mg、cyanidin 3,5−di−O−β−glucopyranoside(23)は21.2mg、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−glucopyranoside(8)は22.7mg、cyanidin 3−O−(2−O−β−xylopyranosyl)−β−glucopyranoside(1)は20.2mg、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−glucopyranoside(3)は15.5mg、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside(12)は15.3mg、を供試した。   In addition to these fractions, purified anthocyanins were used for experiments. The types and test amounts of these anthocyanins are as follows. cyanidin 3-O-β-glucopyranoside (6) is 21.3 mg, cyanidin 3,5-di-O-β-glucopyranoside (23) is 21.2 mg, cyanidin 3-O- (6-O- (E)- p-comaroyl) -β-glucopyranoside (8) is 22.7 mg, cyanidin 3-O- (2-O-β-xypyranosyl) -β-glucopyranoside (1) is 20.2 mg, cyanidin 3-O- (2- O-β-xylopyranosyl-6-O- (E) -p-cumaroyl) -β-glucopyranoside (3) is 15.5 mg, cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (E ) -P-comaaroyl) -β-galactopyranoside (12) was used at 15.3 mg.

(2)DPPHラジカル消去能の実験方法
抗酸化作用の実験は、以下の文献に記載の方法を用いて行った(Harwat, K.S.M. et al, Free Radical Res., 36:177−187, 2002)。
(2) Experimental method for DPPH radical scavenging ability Antioxidant experiment was performed using the method described in the following literature (Harwat, KS et al, Free Radical Res., 36: 177-). 187, 2002).

サンプルは、前記(1)で得られた6つの粗製分画物と抽出エキス及び6種のアントシアニンをそれぞれ20から160μg/ml以下の濃度で調整したものを順次半等分に希釈して用いた。   Samples were prepared by sequentially diluting the six crude fractions obtained in (1) above, the extracted extract and the six types of anthocyanins into concentrations of 20 to 160 μg / ml or less in order. .

これらのサンプルを平底のプレート(96well)に加え、更にDPPH(1,1−diphenyl−2−picrylhydrazyl、マイクロモーラーの濃度で調整したもの)を190μl加え、10秒間混合した後、遮光して30分間放置した。この反応後、各ウエルの反応溶液を、490nmの波長の吸光度を用いてマイクロプレートリーダーで測定し、その吸光度の値からTroloxの吸光度標準曲線を用いてTrolox濃度を換算した。その換算値より、Troloxのラジカル消去能標準曲線からラジカル消去率を算出した。   Add these samples to a flat-bottom plate (96 well), add 190 μl of DPPH (1,1-diphenyl-2-picrylhydrazyl, adjusted to the concentration of micromolar), mix for 10 seconds, and then shield from light for 30 minutes. I left it alone. After this reaction, the reaction solution in each well was measured with a microplate reader using absorbance at a wavelength of 490 nm, and the Trolox concentration was converted from the absorbance value using a Trolox absorbance standard curve. From the converted value, the radical scavenging rate was calculated from the Trolox radical scavenging standard curve.

DPPHラジカル消去能の結果を表16に示した。アントシアニンでは、cyanidin 3−O−β−glucopyranoside(6)が最も強い抗酸化作用を示すことが分かる。続いて、cyanidin 3,5−di−O−β−glucopyranoside(23)が強い抗酸化作用を示した。   The results of DPPH radical scavenging ability are shown in Table 16. In anthocyanins, it can be seen that cyanidin 3-O-β-glucopyranoside (6) exhibits the strongest antioxidant effect. Subsequently, cyanidin 3,5-di-O-β-glucopyranoside (23) showed a strong antioxidant effect.

Figure 2009126810
Figure 2009126810

DPPHラジカル消去能の結果を表17に示した。分画では、分画3が最も強い抗酸化作用を示し、続いて、分画4,分画5の順で強い抗酸化活性を示した。このように、ツバキの抽出エキスのみならず、分画が強い活性を示したことから、ツバキ花弁のエキスが抗酸化作用に有効であることが分かった。   The results of DPPH radical scavenging ability are shown in Table 17. In the fractionation, fraction 3 showed the strongest antioxidant activity, followed by strong antioxidant activity in the order of fraction 4 and fraction 5. Thus, since not only the camellia extract, but also the fraction showed strong activity, it was found that the camellia petal extract was effective in the antioxidant action.

Figure 2009126810
Figure 2009126810

(3)ヒト急性前骨髄性白血病細胞(HL−60細胞)に対する抑制効果を見るための実験方法
HL−60細胞増殖抑制作用の実験は、特開2005−075790号公報に記載の方法を用いて行った。
(3) Experimental method for observing the inhibitory effect on human acute promyelocytic leukemia cells (HL-60 cells) The HL-60 cell proliferation inhibitory effect was tested using the method described in JP-A-2005-075790. went.

[ヒト急性前骨髄性白血病細胞(HL−60細胞)の調製]
RMPI1640(10%FBS+)培地の作成:
RMPI1640を2.04g秤取し、蒸留水にて全量を200mlとし、攪拌して溶解した後、溶液をオートクレーブで滅菌した(121℃、20分)。冷却後、これに、10%炭酸水素ナトリウム(NaHCO)を4ml、FBS(予め非動化したもの)を20ml、抗生物質溶液(ペニシリン・ストレプトマイシン)2mlを加え、4℃で保存した。
[Preparation of human acute promyelocytic leukemia cells (HL-60 cells)]
Preparation of RMPI 1640 (10% FBS +) medium:
After 2.04 g of RMPI 1640 was weighed and made up to 200 ml with distilled water and dissolved by stirring, the solution was sterilized with an autoclave (121 ° C., 20 minutes). After cooling, 4 ml of 10% sodium hydrogen carbonate (NaHCO 3 ), 20 ml of FBS (previously immobilized) and 2 ml of antibiotic solution (penicillin / streptomycin) were added and stored at 4 ° C.

HL−60細胞の融解と増殖:
−80℃で保管しておいたHL−60細胞を37℃で溶解し、予め37℃で保温したRMPI1640(10%FBS+)培地5mlに混入し、よく混合した。培地は、遠心分離(1200rpm、5分間)を行った後、上澄みを除去した。これにRMPI1640(10%FBS+)培地1mlを加え、軽く攪拌し、更にRMPI1640(10%FBS+)培地5mlを加え、混合した後、遠心分離(1200rpm、5分間)を行い、上澄みを除去した。これにRMPI1640(10%FBS+)培地1mlを加え、軽く攪拌し、更にRMPI1640(10%FBS+)培地5mlを加え、混合した後、シャーレ(6cm)に培地を入れ、5%二酸化炭素含有大気中37℃の条件で、インキュベーターでHL−60細胞を培養した。
Thawing and proliferation of HL-60 cells:
HL-60 cells stored at −80 ° C. were lysed at 37 ° C., mixed in 5 ml of RMPI 1640 (10% FBS +) medium previously incubated at 37 ° C., and mixed well. The culture medium was centrifuged (1200 rpm, 5 minutes), and then the supernatant was removed. To this, 1 ml of RMPI 1640 (10% FBS +) medium was added, stirred gently, and further 5 ml of RMPI 1640 (10% FBS +) medium was added and mixed, followed by centrifugation (1200 rpm, 5 minutes), and the supernatant was removed. To this, 1 ml of RMPI 1640 (10% FBS +) medium was added, stirred gently, 5 ml of RMPI 1640 (10% FBS +) medium was added and mixed, and then the medium was placed in a petri dish (6 cm) and 37% in an atmosphere containing 5% carbon dioxide. HL-60 cells were cultured in an incubator under the condition of ° C.

HL−60細胞の継代:
培養し、増殖されたHL−60細胞を15mlチューブで回収し、丁寧に攪拌した後、その少量を血球計算盤に採取し、細胞数をカウントした。15mlチューブで回収したHL−60細胞は、遠心分離(1200rpm、5分間)を行った後、上澄みを除去した。これに予め37℃で保温したRMPI1640(10%FBS+)培地1mlを加え、軽く攪拌し、先の細胞数を計算した値から、培地中の細胞の濃度が2x10cells/6mlとなるように、RMPI1640(10%FBS+)培地で濃度を調整した。調製した培地は、5%二酸化炭素含有大気中37℃の条件で、インキュベーターでHL−60細胞を継代した。
Passage of HL-60 cells:
Cultured and proliferated HL-60 cells were collected in a 15 ml tube and carefully stirred, and a small amount thereof was collected on a hemocytometer, and the number of cells was counted. HL-60 cells collected in a 15 ml tube were centrifuged (1200 rpm, 5 minutes), and then the supernatant was removed. To this, 1 ml of RMPI 1640 (10% FBS +) medium preliminarily kept at 37 ° C. was added, stirred gently, and based on the calculated number of cells, the concentration of cells in the medium was 2 × 10 6 cells / 6 ml. The concentration was adjusted with RMPI 1640 (10% FBS +) medium. The prepared medium was subcultured HL-60 cells in an incubator under conditions of 37 ° C. in an atmosphere containing 5% carbon dioxide.

HL−60細胞の保存:
継代されたHL−60細胞を15mlチューブで回収し、丁寧に攪拌した後、その少量を血球計算盤に採取し、細胞数をカウントした。15mlチューブで回収したHL−60細胞は、遠心分離(1200rpm、5分間)を行った後、上澄みを除去した。これに予め37℃で保温したRMPI1640(10%FBS+)培地1mlを加え、軽く攪拌し、先の細胞数を計算した値から、培地中の細胞の濃度が2x10cells/1mlとなるように、RMPI1640(10%FBS+)培地を80%、FBSを10%、ジメチルスルホキシド(DMSO)を10%の組成を有する培地で、濃度を調整した。これをセラムチューブに1mlずつ分注し、−20℃で一夜保存後、翌日より−80℃にて
保存した。
Storage of HL-60 cells:
The subcultured HL-60 cells were collected in a 15 ml tube and carefully stirred, and a small amount thereof was collected on a hemocytometer, and the number of cells was counted. HL-60 cells collected in a 15 ml tube were centrifuged (1200 rpm, 5 minutes), and then the supernatant was removed. To this, 1 ml of RMPI 1640 (10% FBS +) medium preliminarily kept at 37 ° C. was added, stirred gently, and from the value obtained by calculating the number of cells, the concentration of cells in the medium was 2 × 10 6 cells / 1 ml. The concentration was adjusted with a medium having a composition of 80% RMPI 1640 (10% FBS +), 10% FBS, and 10% dimethyl sulfoxide (DMSO). 1 ml of this was dispensed into a serum tube, stored overnight at -20 ° C, and then stored at -80 ° C from the next day.

[細胞増殖抑制実験(MTT assay);HL−60細胞の50%生存率の検定方法]
本法は、文献記載の方法を参考にした(Mosmann、T.:J.Immunol.Methods、65:55−63、1983)。2x10cells/mlのRMPI1640(10%FBS+)培地で継代したHL−60細胞を、平底の96 wellのプレート1 wellあたり2x10cells/100μlのHL−60細胞数になるように培地でRMPI1640(10%FBS+)培地で希釈し、2x10cells/100μlのHL−60細胞を各wellへ分注した。これを5%二酸化炭素含有大気中37℃の条件で、インキュベーターで24時間培養した。
[Cell growth inhibition experiment (MTT assay); assay method of 50% viability of HL-60 cells]
This method was based on a method described in the literature (Mosmann, T .: J. Immunol. Methods, 65: 55-63, 1983). HL-60 cells passaged in 2 × 10 6 cells / ml of RMPI 1640 (10% FBS +) medium are RMPI 1640 in the medium so that the number of HL-60 cells is 2 × 10 4 cells / 100 μl per well of 96-well plate with flat bottom. After dilution with (10% FBS +) medium, 2 × 10 4 cells / 100 μl of HL-60 cells were dispensed into each well. This was cultured in an incubator for 24 hours under conditions of 37 ° C. in an atmosphere containing 5% carbon dioxide.

培養後各wellに、各アントシアニン及び分画の濃度が0、50、100、200、400マイクログラム/mlの濃度になるように、また、各wellの培地量が全量で110μlとなるように添加した。添加後、プレート毎に規定した時間について、5%二酸化炭素含有大気中37℃の条件下、インキュベーターで48時間培養した。   Added to each well after culture so that the concentration of each anthocyanin and fractions is 0, 50, 100, 200, 400 micrograms / ml, and the total amount of each well is 110 μl. did. After the addition, the cells were cultured in an incubator for 48 hours under conditions of 37 ° C. in an atmosphere containing 5% carbon dioxide for the time specified for each plate.

培養後、各wellにMTT溶液(3−(4,5−ジメチルチアゾール−2−イル)−2,5−ジフェニル テトラゾリウム ブロミド;3−(4,5−dimethylthiazol−2−yl)−2,5−diphenyl tetrazolium bromide、MTT、の150mgをPBSの30mlに溶解したもの)を10μlずつ分注した。プレート毎に4時間、5%二酸化炭素含有大気中37℃の条件下、インキュベーターで培養した。培養終了後、各wellに0.04N HCl−イソプロパノール(isopropanol)溶液を100μlずつ分注した。室温で10分間放置した後、マイクロプレートリーダーのマルチラベルカウンター(595nm)で吸光度を測定した。細胞生存率(%)は、アントシアニン又は分画を添加していない(コントロール細胞の)吸光度から各アントシアニン又は分画の吸光度を引いたものを、コントロール細胞の吸光度で割った値に100を乗じて算出した。   After the culture, each well was added with MTT solution (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide; 3- (4,5-dimethylthiazol-2-yl) -2,5- 10 mg of diphenyl tetrazole bromide, MTT, dissolved in 30 ml of PBS) was dispensed. Each plate was cultured for 4 hours in an incubator at 37 ° C. in an atmosphere containing 5% carbon dioxide. After completion of the culture, 100 μl of 0.04N HCl-isopropanol solution was dispensed to each well. After standing at room temperature for 10 minutes, the absorbance was measured with a multi-label counter (595 nm) of a microplate reader. Cell viability (%) is obtained by subtracting the absorbance of each anthocyanin or fraction from the absorbance of no anthocyanin or fraction (control cells) divided by the absorbance of the control cells and multiplying by 100. Calculated.

ヒト急性前骨髄性白血病細胞(HL−60細胞)に対する抑制効果の結果を表18に示した。アントシアニンでは、cyanidin 3,5−di−O−β−glucopyranoside(23)が最も強いHL−60細胞の増殖抑制活性を示した。続いて、cyanidin 3−O−(2−O−βxylopyranosyl)−β−glucopyranoside(1)が強いHL−60細胞の増殖抑制活性を示した。このように、ツバキ花弁由来のアントシアニン色素がHL−60細胞の増殖抑制に有効であることが分かった。   The results of the inhibitory effect on human acute promyelocytic leukemia cells (HL-60 cells) are shown in Table 18. In anthocyanins, cyanidin 3,5-di-O-β-glucopyranoside (23) showed the strongest inhibitory activity on the growth of HL-60 cells. Subsequently, cyanidin 3-O- (2-O-βxylopyranosyl) -β-glucopyranoside (1) showed strong growth inhibitory activity of HL-60 cells. Thus, it was found that anthocyanin pigments derived from camellia petals are effective in suppressing the growth of HL-60 cells.

Figure 2009126810
Figure 2009126810

ヒト急性前骨髄性白血病細胞(HL−60細胞)に対する抑制効果の結果を表19に示した。分画では、分画5が最も強いHL−60細胞の増殖抑制活性を示し、続いて、分画3,分画2、分画4の順で強いHL−60細胞の増殖抑制活性を示した。このように、ツバキ花弁抽出エキスの分画が強い活性を示したことから、ツバキ花弁のエキスがHL−60細胞の増殖抑制に有効であることが分かった。   The results of the inhibitory effect on human acute promyelocytic leukemia cells (HL-60 cells) are shown in Table 19. In fractionation, fraction 5 showed the strongest HL-60 cell growth inhibitory activity, followed by strong HL-60 cell growth inhibitory activity in the order of fraction 3, fraction 2, and fraction 4. . Thus, since the fraction of the camellia petal extract showed strong activity, it was found that the camellia petal extract was effective in suppressing the growth of HL-60 cells.

Figure 2009126810
Figure 2009126810

本発明のアントシアニン色素は、飲食品、医薬品、化粧品の添加剤として有用である。本発明のツバキの色素による品種識別方法は、ツバキの品種を決定する方法として利用することができる。   The anthocyanin pigment of the present invention is useful as an additive for foods and drinks, pharmaceuticals, and cosmetics. The method for identifying a variety of camellia according to the present invention can be used as a method for determining a variety of camellia.

実施例1においてトウツバキ(C.reliculata Lindl.)の花弁より単離されたアントシアニン類の詳細な構造を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the detailed structure of the anthocyanins isolated from the petal of the camellia (C. reliculata Lindl.) In Example 1. 実施例2においてホンコンツバキ(C.hongkongensis Seem.)の花弁より単離されたアントシアニン類の詳細な構造を示す図である。It is a figure which shows the detailed structure of the anthocyanins isolated from the petal of Hong Kong camellia (C. hongkongensis Seem.) In Example 2. 実施例3においてサルウィンツバキ(C.saluenensis Stapf ex Heam)の花弁より単離されたアントシアニン類の詳細な構造を示す図である。It is a figure which shows the detailed structure of the anthocyanins isolated from the petal of C. saluenensis Stapf ex Heam in Example 3. 実施例4において園芸品種ツバキ:大理茶(Dalicha)の花弁より単離されたアントシアニン類の詳細な構造を示す図である。In Example 4, it is a figure which shows the detailed structure of the anthocyanins isolated from the petal of the garden cultivar camellia: Dalicha. 実施例5においてトウツバキ(C.reliculata Lindl.)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。It is a figure which shows the result of having investigated the anthocyanin pigment | dye in the crude extract extracted from the petal of the camellia (C. reliculata Lindl.) In Example 5. 実施例5においてピタールツバキ雲南種(西南山茶雲南種、C.pitardii var. yunnanica)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。It is a figure which shows the result of having investigated the anthocyanin pigment | dye in the crude extract extracted from the petal of Pital camellia Yunnan seed | species (Seinanzan tea Yunnan seed | species, C. partardii var. Yunnanica) in Example 5. FIG. 実施例5においてホンコンツバキ(C.hongkongensis Seem.)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。It is a figure which shows the result of having investigated the anthocyanin pigment | dye in the crude extract extracted from the petal of Hong Kong camellia (C. hongkongensis Seem.) In Example 5. 実施例5においてヤブツバキ(C.japonica)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。It is a figure which shows the result of having investigated the anthocyanin pigment in the crude extract extracted from the petal of C. japonica in Example 5. 実施例5においてサルウィンツバキ(C.saluenensis Stapf ex Heam)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。It is a figure which shows the result of having investigated the anthocyanin pigment | dye in the crude extract extracted from the petal of the Salwinen's camellia (C. salenensis Stapf ex Heam) in Example 5. 実施例5においてピタールツバキピタール種(西南山茶西南種、C.pitardii var. pitardii)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。It is a figure which shows the result of having investigated the anthocyanin pigment | dye in the crude extract extracted from the petal of Pital camellia pital seed | species (Seinanzan tea southwest seed | species, C. partardii var. Pitardii) in Example 5. 実施例5において園芸品種ツバキ:大理茶(Dalicha)の花弁より抽出された粗抽出物中のアントシアニン色素を調べた結果を示す図である。In Example 5, it is a figure which shows the result of having investigated the anthocyanin pigment | dye in the crude extract extracted from the petal of garden cultivar camellia: Daricha.

Claims (17)

次式(I)
Figure 2009126810
(式中、Rはアセチル基を表す。)
で示される化合物。
Formula (I)
Figure 2009126810
(In the formula, R represents an acetyl group.)
A compound represented by
次式(II)
Figure 2009126810
(式中、Rは(Z)−p−クマロイル基、(E)−p−クマロイル基、(E)−カフェオイル基又はアセチル基を表す。)
で示される化合物。
Formula (II)
Figure 2009126810
(In the formula, R represents (Z) -p-coumaroyl group, (E) -p-coumaroyl group, (E) -caffeoyl group or acetyl group).
A compound represented by
次式(III)
Figure 2009126810
(式中、Rは(Z)−p−クマロイル基、(E)−p−クマロイル基又は(E)−カフェオイル基を表す。)
で示される化合物。
Formula (III)
Figure 2009126810
(In the formula, R represents a (Z) -p-coumaroyl group, an (E) -p-coumaroyl group, or an (E) -caffeoyl group.)
A compound represented by
ツバキの花又は花弁の抽出物から請求項1〜3のいずれか1項に記載の化合物を単離及び精製することを特徴とするアントシアニン色素の製造方法。   A method for producing an anthocyanin pigment, comprising isolating and purifying the compound according to any one of claims 1 to 3 from a camellia flower or petal extract. 前記ツバキがトウツバキ(Camellia reticulata Lindl.)であり、アントシアニン色素がcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside又はcyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranosideである請求項4記載の製造方法。   The camellia is Camellia reticulata Lindl. The anthocyanin dye is cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (Z) -p-comaroylyl) -β-glucopyroxide, 3-cyanideside O- (2-O-β-xypyranosyl-6-O- (E) -caffeoyl) -β-glucopyroxide or cyanidin 3-O- (6-O- (Z) -p-comaroyl) -β-glucopyroxide. The manufacturing method of Claim 4. 前記ツバキがホンコンツバキ(Camellia hongkongensis Seem.)であり、アントシアニン色素がcyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside、cyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−galactopyranoside、cyanidin 3−O−(6−O−(E)−p−coumaroyl)−β−galactopyranoside、cyanidin 3−O−(6−O−(E)−caffeoyl)−β−galactopyranoside又はdelphinidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranosideである請求項4記載の製造方法。   The camellia is Camellia hongkongensis Seem. The anthocyanin dye is cyanidin 3-O- (6-O- (Z-p-coumaroyl) -β-glucopyranoside, cyanidin 3-O- (6-O- (Z) -p-comataroyl) -β-galactopyranoside, cyanidin 3-O- (6-O- (E) -p-comataroyl) -β-galactopyranoside, cyanidin 3-O- (6-O- (E)- 5. Caffeoyl) -β-galactopyranoside or delphidinin 3-O- (6-O- (Z) -p-cumaroyl) -β-glucopyranoside. Manufacturing method. 前記ツバキがサルウィンツバキ(Camellia saluenensis Stapf ex Bean)であり、アントシアニン色素がcyanidin 3−O−(6−O−(Z)−p−coumaroyl)−β−glucopyranoside又はcyanidin 3−O−(6−O−(Z)−p−coumaroyl−β−glucopyranoside)−5−β−glucopyranosideである請求項4記載の製造方法。   The camellia is Camellia saluenensis Snapf ex Bean, and the anthocyanin dye is cyanidin 3-O- (6-O- (Z) -p-comaaroyl) -β-glucopyranside or cyanidin 3-O- (6-O- The production method according to claim 4, which is-(Z) -p-comaroyl-β-glucopyranoside) -5-β-glucopyranoside. 前記ツバキが園芸品種のツバキ:大理茶(Dalicha)であり、アントシアニン色素がcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−glucopyranoside、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−glucopyranoside、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−glucopyranoside、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(Z)−p−coumaroyl)−β−galactopyranoside、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−p−coumaroyl)−β−galactopyranoside、cyanidin 3−O−(2−O−β−xylopyranosyl−6−O−(E)−caffeoyl)−β−galactopyranoside又はcyanidin 3−O−(2−O−β−xylopyranosyl−6−O−acetyl)−β−galactopyranosideである請求項4記載の製造方法。   The camellia is a cultivar camellia: Dalicha, and the anthocyanin pigment is cyanidin 3-O- (2-O-β-xypyranosyl-6-O- (Z) -p-comaaroyl) -β-glucopyroxide, cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (E) -caffeoyl)-[beta] -glucopyranide, cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O-acetyl)- β-glucopyroxide, cyanidin 3-O- (2-O-β-xylopyranosyl-6-O- (Z) -p-cumaroyl) -β-galactopyranoside, cyanidin 3-O- ( -O- [beta] -xylopyranosyl-6-O- (E) -p-cumaroyl)-[beta] -galactopyranoside, cyanidin 3-O- (2-O- [beta] -xylopyranosyl-6-O- (E) -caffeoyl)-[beta] The method according to claim 4, which is -galactopyranoside or cyanidin 3-O- (2-O-β-xypyranosyl-6-O-acetyl) -β-galactopyranoside. 前記単離及び精製手段がカラムクロマトグラフィーである請求項4〜8のいずれか1項に記載の製造方法。   The method according to any one of claims 4 to 8, wherein the isolation and purification means is column chromatography. 抽出溶媒が酢酸−メタノール混合溶媒である請求項4〜9のいずれか1項に記載の製造方法。   The production method according to any one of claims 4 to 9, wherein the extraction solvent is an acetic acid-methanol mixed solvent. ツバキの花又は花弁の抽出物中に含まれるアントシアニン色素の組成を分析することを特徴とするツバキの品種識別方法。   A method for identifying a camellia cultivar, comprising analyzing the composition of anthocyanin pigments contained in a camellia flower or petal extract. 高速液体クロマトグラフィー法によりアントシアニン色素の組成を分析する請求項11記載のツバキの品種識別方法。   The camellia cultivar identification method according to claim 11, wherein the composition of the anthocyanin pigment is analyzed by high performance liquid chromatography. 高速液体クロマトグラフィー法を、リン酸水溶液と、リン酸−ギ酸−アセトニトリル−テトラヒドロフラン−水混合溶媒とを用いてリニアーグラジエント溶出させることにより行う請求項12記載のツバキの品種識別方法。   The camellia cultivar identification method according to claim 12, wherein the high-performance liquid chromatography is performed by linear gradient elution using a phosphoric acid aqueous solution and a phosphoric acid-formic acid-acetonitrile-tetrahydrofuran-water mixed solvent. ツバキの花又は花弁の抽出物又はその精製物を含有する抗酸化剤。   An antioxidant containing a camellia flower or petal extract or a purified product thereof. ツバキの花又は花弁の抽出物の精製物が単離・精製されたアントシアニン色素である請求項14記載の抗酸化剤。   The antioxidant according to claim 14, wherein the purified product of camellia flower or petal extract is an anthocyanin pigment isolated and purified. ツバキの花又は花弁の抽出物又はその精製物を含有する抗癌剤。   An anticancer agent comprising a camellia flower or petal extract or a purified product thereof. ツバキの花又は花弁の抽出物の精製物が単離・精製されたアントシアニン色素である請求項16記載の抗癌剤。   The anticancer agent according to claim 16, wherein the purified product of camellia flower or petal extract is an isolated and purified anthocyanin pigment.
JP2007302353A 2007-11-22 2007-11-22 Camellia-derived anthocyanin pigment, its production method and use, and camellia variety identification method Expired - Fee Related JP5190926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302353A JP5190926B2 (en) 2007-11-22 2007-11-22 Camellia-derived anthocyanin pigment, its production method and use, and camellia variety identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302353A JP5190926B2 (en) 2007-11-22 2007-11-22 Camellia-derived anthocyanin pigment, its production method and use, and camellia variety identification method

Publications (2)

Publication Number Publication Date
JP2009126810A true JP2009126810A (en) 2009-06-11
JP5190926B2 JP5190926B2 (en) 2013-04-24

Family

ID=40818089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302353A Expired - Fee Related JP5190926B2 (en) 2007-11-22 2007-11-22 Camellia-derived anthocyanin pigment, its production method and use, and camellia variety identification method

Country Status (1)

Country Link
JP (1) JP5190926B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761596A (en) * 2015-02-01 2015-07-08 云南农业大学 Method for preparing anthocyanin standard substance
KR20180036354A (en) * 2016-09-30 2018-04-09 (주)아모레퍼시픽 Method for evaluating a quality of camellia seed oil using Gas Chromatography Ion Mobility Spectrometer(GC-IMS)
CN110713506A (en) * 2019-11-22 2020-01-21 长春中医药大学 Steady delphinidin-3-O-glucoside derivative and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041137A1 (en) * 1996-04-17 1997-11-06 Unifob Use of anthocyanidin and anthocyanidin derivatives
WO2005077176A1 (en) * 2004-02-11 2005-08-25 The Trustees Of Columbia University In The City Of New York Anthocyanin compounds and methods of use thereof
JP2007302577A (en) * 2006-05-09 2007-11-22 National Agriculture & Food Research Organization Tea leaf extract composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041137A1 (en) * 1996-04-17 1997-11-06 Unifob Use of anthocyanidin and anthocyanidin derivatives
WO2005077176A1 (en) * 2004-02-11 2005-08-25 The Trustees Of Columbia University In The City Of New York Anthocyanin compounds and methods of use thereof
JP2007302577A (en) * 2006-05-09 2007-11-22 National Agriculture & Food Research Organization Tea leaf extract composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012050731; Norio Saito et al.: Phytochemistry Vol.26(10), 1987, p.2761-2762 *
JPN6012050732; Norihiko Terahara et al.: Phytochemistry Vol.56, 2001, p.359-361 *
JPN6012050733; Jungmin Lee et al.: Journal of the Science of Food and Agriculture Vol.87, 2007, p.2665-2675 *
JPN6012050734; Jian-Bin Li et al.: Biosci. Biotechnol Biochem Vol.71(11), 2007, p.2833-2836 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761596A (en) * 2015-02-01 2015-07-08 云南农业大学 Method for preparing anthocyanin standard substance
KR20180036354A (en) * 2016-09-30 2018-04-09 (주)아모레퍼시픽 Method for evaluating a quality of camellia seed oil using Gas Chromatography Ion Mobility Spectrometer(GC-IMS)
KR102563502B1 (en) 2016-09-30 2023-08-07 (주)아모레퍼시픽 Method for evaluating a quality of camellia seed oil using Gas Chromatography Ion Mobility Spectrometer(GC-IMS)
CN110713506A (en) * 2019-11-22 2020-01-21 长春中医药大学 Steady delphinidin-3-O-glucoside derivative and preparation method thereof

Also Published As

Publication number Publication date
JP5190926B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
Abdel-Hameed et al. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA
Kumorkiewicz-Jamro et al. Multi-colored shades of betalains: Recent advances in betacyanin chemistry
Coy-Barrera Analysis of betalains (betacyanins and betaxanthins)
Liang et al. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in Lilium bulbs native to China
KR20110085758A (en) Extracts from young barley leaves including polyphenol compounds and their manufacturing method
JPWO2008026507A1 (en) Whitening agent
François-Haugrin et al. Antioxidant activity of an isomer of gossypitrin (gossypetin-3’-O-glucoside) isolated in the petals of Talipariti elatum Sw., and determination of total phenolic content of the total flower
JP5190926B2 (en) Camellia-derived anthocyanin pigment, its production method and use, and camellia variety identification method
Jordheim Isolation, identification and properties of pyranoanthocyanins and anthocyanin forms
KR20130093371A (en) Novel preparation method of mulberry leaf extract for anti-hypertensive, anti-diabetic, and anti-aging and the product of the same
KR102121915B1 (en) Composition for protecting neuronal cells comprising naphthopyrone derivatives derived from the sprout of Cassia obtusifolia L.
KR20140144429A (en) Composition for antioxidant from main component using extract of stem, leaf &amp; seed of rubus coreanus mique
KR100998573B1 (en) Compositions of health functional foods for prevention of cancer containing Aster koraiensis extracts, fractions, the isolated Gymnasterkoreaynes derivatives therefrom or the pharmaceutically acceptable salts as an active ingredient
Carrillo‐López et al. Betalains: Chemistry and biological functions
CN104892388B (en) Synthesis method and application of 3-(2,4-dihydroxy-phenyl)-1,5-bis-(2-hydroxy-phenyl)-pentane-1,5-dione
KR102140231B1 (en) Extracts of abies koreana, purification method thereof and secondary metabolites isolated by extracts
AU2004317862A1 (en) Process for isolation of imperatorin from aegle marmelos correa
JP5567499B2 (en) Novel substances isolated from orchidaceae plants, extracts containing them, antioxidants, antibacterial agents, anticancer agents and anti-inflammatory agents
JP6741965B2 (en) Dehydroretinol derivative exhibiting keratin increasing action
Riris et al. Isolation and Structure Elucidation of Bioactive Compounds Chemical as Inhibitors of the Enzyme A-Glucosidase Raru Bark Ethanol Extract (Vatica pauciflora Blume)
CN105188419B (en) The method for preparing muscat pomace extract
KR100966837B1 (en) Cumaroyl compounds having depigmenting and decolorizing activities
Sharma et al. A review on the pharmagnostic evaluation of meswak, Salvadora persica
JP7325149B1 (en) Aromatic compound glycoside, method for producing the glycoside, antioxidant composition containing the glycoside, composition for improving lipid metabolism, and composition for improving and preventing diabetes
KR101424130B1 (en) Antioxidant composition comprising anthocyanin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

R150 Certificate of patent or registration of utility model

Ref document number: 5190926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees