JP7455506B2 - Magnetic detection device and moving object detection device - Google Patents

Magnetic detection device and moving object detection device Download PDF

Info

Publication number
JP7455506B2
JP7455506B2 JP2018217790A JP2018217790A JP7455506B2 JP 7455506 B2 JP7455506 B2 JP 7455506B2 JP 2018217790 A JP2018217790 A JP 2018217790A JP 2018217790 A JP2018217790 A JP 2018217790A JP 7455506 B2 JP7455506 B2 JP 7455506B2
Authority
JP
Japan
Prior art keywords
detection device
magnetic
magnetic field
voltage
magnetic detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018217790A
Other languages
Japanese (ja)
Other versions
JP2020085573A (en
Inventor
圭 田邊
晶裕 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018217790A priority Critical patent/JP7455506B2/en
Publication of JP2020085573A publication Critical patent/JP2020085573A/en
Application granted granted Critical
Publication of JP7455506B2 publication Critical patent/JP7455506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、移動体の相対移動による磁界変化を検出する磁気検出装置及びそれを備える移動体検出装置に関する。 The present invention relates to a magnetic detection device that detects magnetic field changes due to relative movement of a moving object, and a moving object detection device equipped with the same.

従来より、軟磁性体歯車等の移動体の位置検出(回転検出)に、磁気検出装置が用いられている。下記特許文献1の磁気検出装置は、移動体に交番磁界を印加し、移動体の相対移動による磁界変化を磁気センサで検出する構成である。これによれば、移動体が銅やアルミ等の非磁性体であっても移動検出が可能である。 2. Description of the Related Art Conventionally, magnetic detection devices have been used to detect the position (rotation detection) of moving bodies such as soft magnetic gears. The magnetic detection device disclosed in Patent Document 1 below applies an alternating magnetic field to a moving body and uses a magnetic sensor to detect changes in the magnetic field due to relative movement of the moving body. According to this, movement detection is possible even if the moving body is a non-magnetic material such as copper or aluminum.

再公表特許WO2017/073280号公報Re-published patent WO2017/073280 publication

特許文献1の磁気検出装置は、磁気センサの出力信号を同期検波する同期検波部を有する。同期検波では、一般に、検波用の信号と検波対象信号とを乗算器で乗算し、ローパスフィルタで高周波成分を除去する。乗算器は回路規模が大きいため、磁気検出装置の小型化や低コスト化が困難であった。 The magnetic detection device of Patent Document 1 includes a synchronous detection section that synchronously detects output signals of the magnetic sensor. In synchronous detection, generally, a signal for detection and a signal to be detected are multiplied by a multiplier, and high-frequency components are removed by a low-pass filter. Since the multiplier has a large circuit scale, it has been difficult to reduce the size and cost of the magnetic detection device.

本発明はこうした状況を認識してなされたものであり、その目的は、従来と比較して小型化、低コスト化が可能な磁気検出装置及び移動体検出装置を提供することにある。 The present invention has been made in recognition of this situation, and an object of the present invention is to provide a magnetic detection device and a moving object detection device that can be made smaller and lower in cost than conventional devices.

本発明のある態様は、磁気検出装置である。この磁気検出装置は、
移動体の相対移動による磁界変化を検出する磁気検出装置であって、
磁界発生導体と、
前記磁界発生導体に移動体への印加用の交番磁界を発生させるための交番電圧を印加する電圧印加部と、
前記磁界発生導体の発生する磁界であって移動体の相対移動により変化する磁界が印加される少なくとも1つの磁気抵抗効果素子を含むブリッジ回路を有する磁気センサと、を備え、
前記電圧印加部の出力する交番電圧を前記ブリッジ回路に印加する。
An embodiment of the present invention is a magnetic detection device. This magnetic detection device is
A magnetic detection device that detects magnetic field changes due to relative movement of a moving object,
a magnetic field generating conductor;
a voltage application unit that applies an alternating voltage to the magnetic field generating conductor to generate an alternating magnetic field for application to a moving body;
a magnetic sensor having a bridge circuit including at least one magnetoresistive element to which a magnetic field generated by the magnetic field generating conductor and which changes due to relative movement of the moving object is applied;
An alternating voltage output from the voltage application section is applied to the bridge circuit .

前記磁気センサの出力信号を通すローパスフィルタを備えてもよい。 The magnetic sensor may include a low-pass filter that passes the output signal of the magnetic sensor.

前記磁気センサの出力電圧が入力される差動増幅器と、
前記差動増幅器から電流を供給され、前記磁気センサを磁気平衡状態にする負帰還磁界を発生する負帰還用磁界発生導体と、
前記差動増幅器から前記負帰還用磁界発生導体に供給される電流を電圧に変換して前記ローパスフィルタに出力する電流電圧変換手段と、を備えてもよい。
a differential amplifier into which the output voltage of the magnetic sensor is input;
a negative feedback magnetic field generating conductor that is supplied with current from the differential amplifier and generates a negative feedback magnetic field that brings the magnetic sensor into a magnetically balanced state;
The device may further include current-voltage converting means for converting the current supplied from the differential amplifier to the negative feedback magnetic field generating conductor into a voltage and outputting the voltage to the low-pass filter.

本発明のもう1つの態様は、移動体検出装置である。この移動体検出装置は、
磁気検出装置と、
前記磁気検出装置に対して相対移動する移動体と、を備え、
前記磁気検出装置は、
磁界発生導体と、
前記磁界発生導体に前記移動体への印加用の交番磁界を発生させるための交番電圧を印加する電圧印加部と、
前記磁界発生導体の発生する磁界であって前記移動体の相対移動により変化する磁界が印加される少なくとも1つの磁気抵抗効果素子を含むブリッジ回路を有する磁気センサと、を備え、
前記電圧印加部の出力する交番電圧を前記ブリッジ回路に印加する。
Another aspect of the present invention is a moving object detection device. This moving object detection device is
a magnetic detection device;
A moving body that moves relative to the magnetic detection device,
The magnetic detection device includes:
a magnetic field generating conductor;
a voltage application unit that applies an alternating voltage to the magnetic field generating conductor to generate an alternating magnetic field to be applied to the moving object;
a magnetic sensor having a bridge circuit including at least one magnetoresistive element to which a magnetic field generated by the magnetic field generating conductor and which changes due to relative movement of the moving body is applied;
An alternating voltage output from the voltage application section is applied to the bridge circuit .

前記磁気検出装置は、前記磁気センサの出力信号を通すローパスフィルタを備え、
前記移動体は、相互に導電率もしくは透磁率が異なる第1及び第2の部分、又は、少なくとも1つの凸部もしくは凹部を有し、
前記電圧印加部の出力する交番電圧の周波数は、前記移動体の前記磁気検出装置と対面する部分の導電率又は透磁率の変動周波数以上の周波数、又は、前記移動体と前記磁気検出装置との対向距離の変動周波数以上の周波数であってもよい。
The magnetic detection device includes a low-pass filter that passes the output signal of the magnetic sensor,
The moving body has first and second portions having mutually different electrical conductivity or magnetic permeability, or at least one convex portion or concave portion,
The frequency of the alternating voltage outputted by the voltage application section is a frequency equal to or higher than the fluctuation frequency of the electrical conductivity or magnetic permeability of the portion of the moving body that faces the magnetic detection device, or the frequency of the variation between the moving body and the magnetic detection device. The frequency may be higher than the variation frequency of the facing distance.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 Note that arbitrary combinations of the above components and expressions of the present invention converted between methods, systems, etc. are also effective as aspects of the present invention.

本発明によれば、従来と比較して小型化、低コスト化が可能な磁気検出装置及び移動体検出装置を提供することができる。 According to the present invention, it is possible to provide a magnetic detection device and a moving object detection device that are smaller in size and lower in cost than conventional devices.

本発明の実施の形態1に係る移動体検出装置1の概略斜視図。1 is a schematic perspective view of a moving object detection device 1 according to Embodiment 1 of the present invention. 図1の磁気検出装置10の正断面図。FIG. 2 is a front cross-sectional view of the magnetic detection device 10 of FIG. 1. FIG. 磁気検出装置10の平面図。FIG. 2 is a plan view of the magnetic detection device 10. 検出対象の回転体20が導電性を有する場合の、移動体検出装置1における検出原理説明図(その1)。FIG. 2 is a diagram (part 1) explaining the detection principle in the moving body detection device 1 when the rotating body 20 to be detected has conductivity. 同検出原理説明図(その2)。Diagram explaining the detection principle (Part 2). 磁気検出装置10の回路図。A circuit diagram of the magnetic detection device 10. 図6のGMR素子ブリッジ回路に印加される磁界Hとセンサ出力電圧Voutの波形図。FIG. 7 is a waveform diagram of the magnetic field H applied to the GMR element bridge circuit of FIG. 6 and the sensor output voltage Vout. 比較例1に係る磁気検出装置の回路図。3 is a circuit diagram of a magnetic detection device according to Comparative Example 1. FIG. 図8のGMR素子ブリッジ回路に印加される磁界Hとセンサ出力電圧Voutの波形図。FIG. 9 is a waveform diagram of the magnetic field H applied to the GMR element bridge circuit of FIG. 8 and the sensor output voltage Vout. 本発明の実施の形態2に係る移動体検出装置2の概略斜視図。FIG. 2 is a schematic perspective view of a moving object detection device 2 according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る移動体検出装置3の概略斜視図。FIG. 3 is a schematic perspective view of a moving object detection device 3 according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る移動体検出装置4の概略斜視図。FIG. 4 is a schematic perspective view of a moving object detection device 4 according to Embodiment 4 of the present invention. 本発明の実施の形態5に係る移動体検出装置5の概略斜視図。FIG. 5 is a schematic perspective view of a moving object detection device 5 according to Embodiment 5 of the present invention. 本発明の実施の形態6に係る移動体検出装置6の概略斜視図。FIG. 6 is a schematic perspective view of a moving object detection device 6 according to a sixth embodiment of the present invention. 本発明の実施の形態7に係る移動体検出装置7の概略斜視図。FIG. 7 is a schematic perspective view of a moving object detection device 7 according to Embodiment 7 of the present invention. 本発明の実施の形態8における磁気検出装置10Aの回路図。The circuit diagram of magnetic detection device 10A in Embodiment 8 of the present invention. 比較例2に係る磁気検出装置の回路図。FIG. 3 is a circuit diagram of a magnetic detection device according to Comparative Example 2.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or equivalent components, members, etc. shown in each drawing are given the same reference numerals, and redundant explanations will be omitted as appropriate. Furthermore, the embodiments are merely illustrative rather than limiting the invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(実施の形態1)
図1~図7を参照し、本発明の実施の形態1を説明する。図2~図5により、直交三軸であるXYZ軸を定義する。図1に示すように、本実施の形態の移動体検出装置1は、磁気検出装置10と、移動体としての回転体20と、を備える。磁気検出装置10は、回転体20の径方向外側において回転体20の外周面(外周部)と対向する位置に設けられ、回転体20の回転による磁界変化を検出する。回転体20は、歯車形状であって、外周面(外周部)に第1の部分としての凸部21及び第2の部分としての凹部22を有する。本実施の形態の例では、凸部21及び凹部22は、回転体20の外周面に交互に同じピッチで全周に渡って設けられる。回転体20は、軟磁性体である場合と、導電性を有する場合(好ましくは金属製ないし導体である場合)がある。各々の場合の検出原理は後述する。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 7. The XYZ axes, which are orthogonal three axes, are defined by FIGS. 2 to 5. As shown in FIG. 1, the moving body detection device 1 of this embodiment includes a magnetic detection device 10 and a rotating body 20 as a moving body. The magnetic detection device 10 is provided at a position facing the outer peripheral surface (outer peripheral portion) of the rotating body 20 on the radially outer side of the rotating body 20, and detects changes in the magnetic field due to rotation of the rotating body 20. The rotating body 20 has a gear shape and has a convex portion 21 as a first portion and a recess portion 22 as a second portion on the outer peripheral surface (outer peripheral portion). In the example of this embodiment, the convex portions 21 and the concave portions 22 are provided on the outer peripheral surface of the rotating body 20 alternately at the same pitch over the entire circumference. The rotating body 20 may be a soft magnetic material or may be electrically conductive (preferably made of metal or a conductor). The detection principle in each case will be described later.

図2及び図3に示すように、磁気検出装置10は、基板11と、磁界発生導体としてのコイル12と、磁気センサ13と、を有する。コイル12は、基板11上に設けられ(固定され)、磁気センサ13の周囲を螺旋状に周回する。コイル12の軸方向は、回転体20の軸方向と好ましくは垂直である。コイル12は、後述の信号生成部18b(図6)からの供給信号により、回転体20に向かう交番磁界を発生する。磁気センサ13には、コイル12の発生する磁界であって回転体20の回転に伴って変化する磁界が印加される。 As shown in FIGS. 2 and 3, the magnetic detection device 10 includes a substrate 11, a coil 12 as a magnetic field generating conductor, and a magnetic sensor 13. The coil 12 is provided (fixed) on the substrate 11 and spirals around the magnetic sensor 13 . The axial direction of the coil 12 is preferably perpendicular to the axial direction of the rotating body 20. The coil 12 generates an alternating magnetic field directed toward the rotating body 20 in response to a signal supplied from a signal generating section 18b (FIG. 6), which will be described later. A magnetic field that is generated by the coil 12 and changes as the rotating body 20 rotates is applied to the magnetic sensor 13 .

磁気センサ13は、磁気感応素子チップ14と、軟磁性体16と、を有する。磁気感応素子チップ14は基板11上に設けられ(固定され)、軟磁性体16は磁気感応素子チップ14上に設けられる(固定される)。磁気感応素子チップ14は、磁気感応素子としてのGMR素子15a~15d(GMR:Giant Magneto Resistive effect)を有する。図3に示すように、GMR素子15a~15dは、軟磁性体16(コイル12の中心軸)を挟んでX方向両側に2つずつ分けて配置される。図3において各GMR素子15a~15d内に示した矢印は、GMR素子15a~15dのピン層(固定層)の磁化方向であり、GMR素子15a~15dのピン層磁化方向はいずれも-X方向となっている。図6に示すように、GMR素子15a~15dはフルブリッジ接続される。軟磁性体16は、コイル12の中心軸部に位置し、GMR素子15a~15dの出力(抵抗変化)に寄与する方向(ここではGMR素子15a~15dの位置におけるXY方向)の磁界成分を強める役割を持つ。 The magnetic sensor 13 includes a magnetically sensitive element chip 14 and a soft magnetic body 16. The magnetically sensitive element chip 14 is provided (fixed) on the substrate 11, and the soft magnetic material 16 is provided (fixed) on the magnetically sensitive element chip 14. The magnetically sensitive element chip 14 has GMR elements 15a to 15d (GMR: Giant Magneto Resistive effect) as magnetically sensitive elements. As shown in FIG. 3, the GMR elements 15a to 15d are arranged in pairs on both sides in the X direction with the soft magnetic body 16 (the central axis of the coil 12) in between. In FIG. 3, the arrows shown inside each GMR element 15a to 15d are the magnetization directions of the pinned layers (fixed layers) of the GMR elements 15a to 15d, and the pinned layer magnetization directions of the GMR elements 15a to 15d are all in the -X direction. It becomes. As shown in FIG. 6, GMR elements 15a to 15d are full bridge connected. The soft magnetic material 16 is located at the central axis of the coil 12, and strengthens magnetic field components in directions (here, the XY directions at the positions of the GMR elements 15a to 15d) that contribute to the output (resistance change) of the GMR elements 15a to 15d. have a role.

図4及び図5に示すように、回転体20は、磁気検出装置10との対向距離が自身の相対移動によって変化する。すなわち、図4に示すように回転体20の凸部21が磁気検出装置10と対向するときは回転体20と磁気検出装置10との対向距離が小さくなり(近くなり)、図5に示すように回転体20の凹部22が磁気検出装置10と対向するときは回転体20と磁気検出装置10との対向距離が大きくなる(遠くなる)。 As shown in FIGS. 4 and 5, the distance between the rotating body 20 and the magnetic detection device 10 changes depending on its relative movement. That is, when the convex portion 21 of the rotating body 20 faces the magnetic detection device 10 as shown in FIG. 4, the facing distance between the rotating body 20 and the magnetic detection device 10 becomes smaller (nearer), and When the concave portion 22 of the rotating body 20 faces the magnetic detection device 10, the facing distance between the rotating body 20 and the magnetic detection device 10 increases (becomes far).

図4及び図5は、回転体20が導電性を有する場合の検出原理を示している。図4に示すように回転体20の凸部21が磁気検出装置10と対向するときは、磁気検出装置10の正面に位置する凸部21に相対的な大きな渦電流が発生し、相対的な大きな反磁界が磁気検出装置10のGMR素子15a~15dにフィードバックされ、後述の同期検波によって得られるセンサ出力は相対的に小さくなる。一方、図5に示すように回転体20の凹部22が磁気検出装置10と対向するときは、磁気検出装置10の正面に位置する凹部22に相対的な小さな渦電流が発生し、相対的な小さな反磁界が磁気検出装置10のGMR素子15a~15dにフィードバックされ、後述の同期検波によって得られるセンサ出力は相対的に大きくなる。 4 and 5 show the detection principle when the rotating body 20 has conductivity. As shown in FIG. 4, when the convex portion 21 of the rotating body 20 faces the magnetic detection device 10, a relatively large eddy current is generated in the convex portion 21 located in front of the magnetic detection device 10, and the relative A large demagnetizing field is fed back to the GMR elements 15a to 15d of the magnetic detection device 10, and the sensor output obtained by synchronous detection, which will be described later, becomes relatively small. On the other hand, as shown in FIG. 5, when the recess 22 of the rotating body 20 faces the magnetic detection device 10, a relatively small eddy current is generated in the recess 22 located in front of the magnetic detection device 10. The small demagnetizing field is fed back to the GMR elements 15a to 15d of the magnetic detection device 10, and the sensor output obtained by synchronous detection, which will be described later, becomes relatively large.

図示は省略したが、回転体20が軟磁性体である場合、回転体20の凸部21が磁気検出装置10と対向するときは、凹部22が磁気検出装置10と対向する場合と比較して、コイル12の発生する磁界が強められ(GMR素子15a~15dに印加される磁界が強められ)、センサ出力が大きくなる。回転体20が軟磁性体である場合と導電性を有する場合のいずれにおいても、磁気検出装置10が回転体20の凸部21と対向しているか凹部22と対向しているかによって異なるレベルのセンサ出力が得られ、回転体20の回転数等の回転状態を検出することができる。回転体20が軟磁性体であって導電性も有する場合、軟磁性体である凸部21がGMR素子15a~15dへの印加磁界を強めることによりセンサ出力を相対的に大きくする影響と、導電性を有する凸部21が反磁界によりセンサ出力を相対的に小さくする影響とが併存し、より大きい方の影響がセンサ出力の相対的な大小に強く表れることになる。 Although not shown, when the rotating body 20 is a soft magnetic material, when the convex part 21 of the rotating body 20 faces the magnetic detection device 10, the case where the concave part 22 faces the magnetic detection device 10 is compared to the case where the concave part 22 faces the magnetic detection device 10. , the magnetic field generated by the coil 12 is strengthened (the magnetic field applied to the GMR elements 15a to 15d is strengthened), and the sensor output increases. Regardless of whether the rotating body 20 is a soft magnetic material or conductive, the sensor level differs depending on whether the magnetic detection device 10 is facing the convex portion 21 or the concave portion 22 of the rotating body 20. An output is obtained, and the rotational state such as the rotational speed of the rotating body 20 can be detected. When the rotating body 20 is a soft magnetic material and also has electrical conductivity, the convex portion 21, which is a soft magnetic material, has the effect of relatively increasing the sensor output by strengthening the magnetic field applied to the GMR elements 15a to 15d, and the electrical conductivity. The influence of the convex portion 21 having a magnetic field that relatively reduces the sensor output due to the demagnetizing field coexists, and the larger influence appears strongly in the relative magnitude of the sensor output.

図6は、磁気検出装置10の回路図である。GMR素子15a~15dは、フルブリッジ接続されて、GMR素子ブリッジ回路を構成する。GMR素子15a、15bの相互接続点は、電圧印加部としての信号生成部18bの出力端子に接続される。GMR素子15a、15cの相互接続点は、オペアンプ等の差動増幅器17の反転入力端子に接続される。GMR素子15b、15dの相互接続点は、差動増幅器17の非反転入力端子に接続される。GMR素子15c、15dの相互接続点は、固定電圧端子としてのグランドに接続される。 FIG. 6 is a circuit diagram of the magnetic detection device 10. GMR elements 15a to 15d are connected in a full bridge manner to form a GMR element bridge circuit. An interconnection point between the GMR elements 15a and 15b is connected to an output terminal of a signal generation section 18b serving as a voltage application section. An interconnection point between the GMR elements 15a and 15c is connected to an inverting input terminal of a differential amplifier 17 such as an operational amplifier. An interconnection point between GMR elements 15b and 15d is connected to a non-inverting input terminal of differential amplifier 17. An interconnection point between the GMR elements 15c and 15d is connected to ground as a fixed voltage terminal.

差動増幅器17は、電源電圧Vcc、-Vccの供給を受けて動作する。差動増幅器17の出力端子は、ローパスフィルタ18aの入力端子に接続される。差動増幅器17の出力端子とグランドとの間に、抵抗19が接続される。抵抗19は、グランドに対する差動増幅器17の出力端子の電圧を確実に決めるために設けられるが、不要であれば省略してもよい。 The differential amplifier 17 operates in response to power supply voltages Vcc and -Vcc. An output terminal of differential amplifier 17 is connected to an input terminal of low-pass filter 18a. A resistor 19 is connected between the output terminal of the differential amplifier 17 and ground. The resistor 19 is provided to reliably determine the voltage of the output terminal of the differential amplifier 17 with respect to the ground, but may be omitted if unnecessary.

信号生成部18bの出力端子とグランドとの間に、コイル12が接続される。コイル12は、GMR素子ブリッジ回路と並列に設けられる。信号生成部18bは、コイル12に交番磁界を発生させるための交番電圧を印加すると共に、当該交番電圧をGMR素子15a~15dからなるGMR素子ブリッジ回路に入力する(動作電圧として供給する)。図示は省略したが、信号生成部18bの出力する交番電圧の位相を調整してGMR素子ブリッジ回路に入力する位相調整手段を設け、信号生成部18bからの交番電圧によってコイル12に発生する交番磁界の位相(すなわちGMR素子15a~15dの抵抗値変化の位相)と、GMR素子ブリッジ回路に印加される電圧の位相と、を合わせるようにしてもよい。コイル12は、GMR素子ブリッジ回路と直列に設けられてもよい。この場合、前述の位相調整手段を設けなくても、コイル12に流れる電流の位相(コイル12の発生する交番磁界の位相)と、GMR素子ブリッジ回路に印加される電圧及びGMR素子ブリッジ回路に流れる電流の位相と、が一致するため、回路構成を簡略化できるというメリットがある。 A coil 12 is connected between the output terminal of the signal generating section 18b and the ground. Coil 12 is provided in parallel with the GMR element bridge circuit. The signal generation unit 18b applies an alternating voltage to the coil 12 to generate an alternating magnetic field, and inputs the alternating voltage to the GMR element bridge circuit composed of the GMR elements 15a to 15d (supplies it as an operating voltage). Although not shown, a phase adjusting means is provided to adjust the phase of the alternating voltage output from the signal generating section 18b and inputting it to the GMR element bridge circuit, so that an alternating magnetic field is generated in the coil 12 by the alternating voltage from the signal generating section 18b. (that is, the phase of the resistance value change of the GMR elements 15a to 15d) may be made to match the phase of the voltage applied to the GMR element bridge circuit. The coil 12 may be provided in series with the GMR element bridge circuit. In this case, even without providing the above-mentioned phase adjustment means, the phase of the current flowing through the coil 12 (the phase of the alternating magnetic field generated by the coil 12), the voltage applied to the GMR element bridge circuit, and the voltage flowing through the GMR element bridge circuit can be adjusted. Since the phases of the currents match, there is an advantage that the circuit configuration can be simplified.

GMR素子15a~15dの出力電圧は、差動増幅器17によって増幅され、ローパスフィルタ18aに入力される。ローパスフィルタ18aは、差動増幅器17の出力信号の高周波成分を除去する。ローパスフィルタ18aの出力端子の電圧が、センサ出力電圧Voutとなる。センサ出力電圧Voutは、後述のように、GMR素子ブリッジ回路に印加される磁界信号を同期検波したものとなる。センサ出力電圧Voutを2値に変換する増幅器を設けてもよい。 The output voltages of the GMR elements 15a to 15d are amplified by the differential amplifier 17 and input to the low pass filter 18a. The low-pass filter 18a removes high frequency components of the output signal of the differential amplifier 17. The voltage at the output terminal of the low-pass filter 18a becomes the sensor output voltage Vout. As will be described later, the sensor output voltage Vout is obtained by synchronously detecting the magnetic field signal applied to the GMR element bridge circuit. An amplifier may be provided to convert the sensor output voltage Vout into a binary value.

信号生成部18bの出力する交番電圧の周波数Fsは、回転体20の回転速度と回転体20の凸部21又は凹部22の配置ピッチとから決まる、回転体20と磁気検出装置10との対向距離の変動周波数Fc[Hz]以上の周波数とする(Fs≧Fc)。好ましくはFs≧2×Fcである。Fsは、磁気検出装置10の各素子の特性上許容される範囲で高いほど検出精度の向上に寄与する。Fcは、回転体20の回転速度をFt[Hz]、回転体20の1周当たりの凸部21又は凹部22の数をK[個]としたとき、Fc≧Ft×Kと表される。 The frequency Fs of the alternating voltage output by the signal generation section 18b is determined by the rotational speed of the rotating body 20 and the arrangement pitch of the convex portions 21 or concave portions 22 of the rotating body 20, and the facing distance between the rotating body 20 and the magnetic detection device 10. (Fs≧Fc). Preferably Fs≧2×Fc. The higher Fs is within the range allowed by the characteristics of each element of the magnetic detection device 10, the more it contributes to improving the detection accuracy. Fc is expressed as Fc≧Ft×K, where the rotational speed of the rotating body 20 is Ft [Hz] and the number of convex portions 21 or concave portions 22 per revolution of the rotating body 20 is K [pieces].

図8は、比較例1に係る磁気検出装置の回路図である。図8の回路は、図6に示した実施の形態1のものと比較して、GMR素子ブリッジ回路への入力電圧が信号生成部18bの出力電圧VEXTから電源電圧Vccに替わった点と、差動増幅器17の出力端子とローパスフィルタ18aの入力端子との間に乗算器18cが追加された点と、信号生成部18bの出力電圧VEXTが乗算器18cにも入力される点で相違し、その他の点で一致する。ローパスフィルタ18a、信号生成部18b及び乗算器18cは、GMR素子ブリッジ回路に印加される磁界信号を同期検波する同期検波部を構成する。 FIG. 8 is a circuit diagram of a magnetic detection device according to Comparative Example 1. The circuit of FIG. 8 is different from the first embodiment shown in FIG. 6 in that the input voltage to the GMR element bridge circuit is changed from the output voltage V EXT of the signal generation section 18b to the power supply voltage Vcc. The difference is that a multiplier 18c is added between the output terminal of the differential amplifier 17 and the input terminal of the low-pass filter 18a, and that the output voltage V EXT of the signal generation section 18b is also input to the multiplier 18c. , otherwise identical. The low-pass filter 18a, the signal generation section 18b, and the multiplier 18c constitute a synchronous detection section that synchronously detects the magnetic field signal applied to the GMR element bridge circuit.

以下、図6及び図8の各回路において、GMR素子15a、15dの抵抗値をRMR+、GMR素子15b、15cの抵抗値をRMR-、差動増幅器17の反転入力端子の電圧をVa、非反転入力端子の電圧をVb、差動増幅器17の出力端子の電圧をVdiff、信号生成部18bの出力電圧をVEXT、コイル12に流れる電流をIEXT、乗算器18cの出力電圧をVMULTI(図8のみ)、ローパスフィルタ18aの出力電圧をVoutとする。 Hereinafter, in each circuit of FIGS. 6 and 8, the resistance values of the GMR elements 15a and 15d are R MR+ , the resistance values of the GMR elements 15b and 15c are R MR- , the voltage of the inverting input terminal of the differential amplifier 17 is Va, The voltage of the non-inverting input terminal is Vb, the voltage of the output terminal of the differential amplifier 17 is Vdiff, the output voltage of the signal generation section 18b is V EXT , the current flowing through the coil 12 is I EXT , and the output voltage of the multiplier 18c is V MULTI (FIG. 8 only), the output voltage of the low-pass filter 18a is set to Vout.

図6に示す実施の形態1の回路では、図8に示す比較例1の回路における乗算器18cが存在しない。しかし、図6に示す実施の形態の回路における差動増幅器17の出力電圧Vdiffは、VEXT×IEXTに比例する演算結果、すなわち図8に示す比較例1の回路における乗算器18cの出力電圧と同等の電圧信号(同期検波の過程における乗算済みの電圧信号)となる。これは、GMR素子ブリッジ回路への入力電圧を、信号生成部18bの出力電圧VEXTとしたことによる。この点について以下に説明する。 In the circuit of Embodiment 1 shown in FIG. 6, the multiplier 18c in the circuit of Comparative Example 1 shown in FIG. 8 is not present. However, the output voltage Vdiff of the differential amplifier 17 in the circuit of the embodiment shown in FIG . It becomes a voltage signal equivalent to (a voltage signal that has been multiplied in the process of synchronous detection). This is because the input voltage to the GMR element bridge circuit is set to the output voltage V EXT of the signal generating section 18b. This point will be explained below.

GMR素子15a~15dの無磁界時の抵抗値をR0、磁界による抵抗値の変化量をΔrとすると、
MR+=R0+Δr 式1
MR-=R0-Δr 式2
と表される。Δrは、GMR素子15a~15dに印加される磁界Hによって変化し、
Δr=αH 式3
と表される。αは、GMR素子15a~15dの抵抗変化率によって決まる定数である。また、磁界Hは、
H=βIEXT 式4
と表される。βは、コイル12の構成(巻き数、径)、コイル12とGMR素子15a~15dとの距離や位置関係、及び磁気検出装置10に対する回転体20の相対位置によって決まる係数である。βは、磁気検出装置10に対する回転体20の相対位置が一定であれば不変の定数であるが、前記相対位置が変化すれば(すなわち回転体20が回転すれば)、変化する。回転体20が非磁性体で導電性を有する場合、βは、磁気検出装置10が回転体20の凸部21と対向するときは小さくなり、凹部22と対抗するときは大きくなる。すなわち、回転体20が回転すると、βは、回転体20と磁気検出装置10との対向距離の変動周波数Fc[Hz]で変動する。式3、式4より、
Δr=αβIEXT 式5
となる。
If the resistance value of the GMR elements 15a to 15d in the absence of a magnetic field is R 0 and the amount of change in resistance value due to the magnetic field is Δr, then
R MR+ = R 0 + Δr Formula 1
R MR- = R 0 - Δr Formula 2
It is expressed as Δr changes depending on the magnetic field H applied to the GMR elements 15a to 15d,
Δr=αH Equation 3
It is expressed as α is a constant determined by the rate of change in resistance of the GMR elements 15a to 15d. In addition, the magnetic field H is
H=βI EXT formula 4
It is expressed as β is a coefficient determined by the configuration (number of turns, diameter) of the coil 12, the distance and positional relationship between the coil 12 and the GMR elements 15a to 15d, and the relative position of the rotating body 20 with respect to the magnetic detection device 10. β is an unchanging constant if the relative position of the rotating body 20 with respect to the magnetic detection device 10 is constant, but changes if the relative position changes (that is, if the rotating body 20 rotates). When the rotating body 20 is non-magnetic and conductive, β becomes small when the magnetic detection device 10 faces the convex portion 21 of the rotating body 20, and becomes large when the magnetic detection device 10 faces the concave portion 22. That is, when the rotating body 20 rotates, β changes at the variation frequency Fc [Hz] of the facing distance between the rotating body 20 and the magnetic detection device 10. From equations 3 and 4,
Δr=αβI EXT formula 5
becomes.

図8に示す比較例1の回路では、差動増幅器17の反転入力端子の電圧Va、非反転入力端子の電圧Vbは、

Figure 0007455506000001
Figure 0007455506000002
となる。差動増幅器17の出力電圧Vdiffは、
Vdiff=Adiff(Va-Vb) 式8
と表される。Adiffは、差動増幅器17のゲイン(定数)である。式6~式8より、
Figure 0007455506000003
となる。乗算器18cの出力電圧VMULTIは、
MULTI=Vdiff×VEXT 式10
で表される。式9より、
Figure 0007455506000004
となる。さらに、式5より、
Figure 0007455506000005
となる。 In the circuit of Comparative Example 1 shown in FIG. 8, the voltage Va at the inverting input terminal and the voltage Vb at the non-inverting input terminal of the differential amplifier 17 are as follows.
Figure 0007455506000001
Figure 0007455506000002
becomes. The output voltage Vdiff of the differential amplifier 17 is
Vdiff=Adiff(Va-Vb) Equation 8
It is expressed as Adiff is the gain (constant) of the differential amplifier 17. From equations 6 to 8,
Figure 0007455506000003
becomes. The output voltage V MULTI of the multiplier 18c is
V MULTI = Vdiff×V EXT formula 10
It is expressed as From equation 9,
Figure 0007455506000004
becomes. Furthermore, from equation 5,
Figure 0007455506000005
becomes.

図6に示す実施の形態1の回路では、差動増幅器17の反転入力端子の電圧Va、非反転入力端子の電圧Vbは、

Figure 0007455506000006
Figure 0007455506000007
となる。差動増幅器17の出力電圧Vdiffは、式8、式13、式14より、
Figure 0007455506000008
となる。さらに、式5より、
Figure 0007455506000009
となる。 In the circuit of the first embodiment shown in FIG. 6, the voltage Va at the inverting input terminal and the voltage Vb at the non-inverting input terminal of the differential amplifier 17 are as follows.
Figure 0007455506000006
Figure 0007455506000007
becomes. From equations 8, 13, and 14, the output voltage Vdiff of the differential amplifier 17 is
Figure 0007455506000008
becomes. Furthermore, from equation 5,
Figure 0007455506000009
becomes.

このように、図6に示す実施の形態1の回路における差動増幅器17の出力電圧Vdiff(式16)は、図8に示す比較例1の回路における乗算器18cの出力電圧VMULTI(式12)と比例する。よって、図6に示す実施の形態1の回路では、差動増幅器17の出力電圧Vdiffをローパスフィルタ18aに通した後の信号(センサ出力電圧Vout)は、GMR素子ブリッジ回路に印加される磁界信号を同期検波した結果の信号となる。すなわち、図6に示す実施の形態1の回路は、図8に示す比較例1と異なり乗算器18cを有さないにもかかわらず、差動増幅器17の出力電圧Vdiffとして乗算済みの信号が得られることから、乗算器18cを有さずに同期検波が可能である。 In this way, the output voltage Vdiff (Equation 16) of the differential amplifier 17 in the circuit of the first embodiment shown in FIG. ) is proportional to Therefore, in the circuit of the first embodiment shown in FIG. 6, the signal after passing the output voltage Vdiff of the differential amplifier 17 through the low-pass filter 18a (sensor output voltage Vout) is the magnetic field signal applied to the GMR element bridge circuit. The signal is the result of synchronous detection of That is, although the circuit of the first embodiment shown in FIG. 6 does not have the multiplier 18c unlike the first comparative example shown in FIG. 8, the multiplied signal is obtained as the output voltage Vdiff of the differential amplifier 17. Therefore, synchronous detection is possible without the multiplier 18c.

図7は、図6に示す実施の形態1の回路における、GMR素子ブリッジ回路に印加される磁界H及びセンサ出力電圧Voutのシミュレーションによる波形図である。図9は、図8に示す比較例1に回路における、GMR素子ブリッジ回路に印加される磁界H及びセンサ出力電圧Voutのシミュレーションによる波形図である。図7及び図9の対比より、シミュレーション結果においても、GMR素子ブリッジ回路に印加される磁界Hが同じであれば、図6に示す実施の形態1の回路のセンサ出力電圧Voutと、図8に示す比較例1の回路におけるセンサ出力電圧Voutと、が比例関係になることが確認できた。 FIG. 7 is a simulated waveform diagram of the magnetic field H applied to the GMR element bridge circuit and the sensor output voltage Vout in the circuit of the first embodiment shown in FIG. FIG. 9 is a simulated waveform diagram of the magnetic field H applied to the GMR element bridge circuit and the sensor output voltage Vout in the circuit of Comparative Example 1 shown in FIG. From the comparison between FIGS. 7 and 9, the simulation results show that if the magnetic field H applied to the GMR element bridge circuit is the same, the sensor output voltage Vout of the circuit of the first embodiment shown in FIG. It was confirmed that the sensor output voltage Vout in the circuit of Comparative Example 1 shown in FIG.

本実施の形態によれば、コイル12に交番磁界を発生させるための信号である信号生成部18bの出力電圧VEXTをGMR素子ブリッジ回路に動作電圧として供給するため、GMR素子ブリッジ回路の出力電圧(Va-Vb)は乗算済みの信号(IEXT×VEXTに比例する電圧)となる。このため、乗算のための専用回路(例えば図8に示す比較例1の回路の乗算器18c)を設けずに、GMR素子ブリッジ回路に印加される磁界信号の同期検波が可能となる。よって、本実施の形態の移動体検出装置1及び磁気検出装置10は、乗算のための専用回路が不要な分、小型かつ低コストなものとなる。 According to the present embodiment, in order to supply the output voltage VEXT of the signal generation section 18b, which is a signal for generating an alternating magnetic field in the coil 12, to the GMR element bridge circuit as an operating voltage, the output voltage of the GMR element bridge circuit ( Va-Vb) becomes a multiplied signal (voltage proportional to IEXT×VEXT). Therefore, synchronous detection of the magnetic field signal applied to the GMR element bridge circuit is possible without providing a dedicated circuit for multiplication (for example, the multiplier 18c of the circuit of Comparative Example 1 shown in FIG. 8). Therefore, the moving object detection device 1 and the magnetic detection device 10 of this embodiment do not require a dedicated circuit for multiplication, so they are small and low in cost.

(実施の形態2)
図10を参照し、本発明の実施の形態2を説明する。本実施の形態の移動体検出装置2は、実施の形態1のものと比較して、回転体20が回転体30に変わった点で相違し、その他の点で一致する。回転体30は、円板形状ないし正多角板形状であって、外周面(外周部)に第1の部分としての高導電率又は高透磁率部分31及び第2の部分としての低導電率又は低透磁率部分32を有する。本実施の形態の例では、高導電率又は高透磁率部分31及び低導電率又は低透磁率部分32は、回転体30の外周面に交互に同じピッチで全周に渡って設けられる。回転体30の構成例としては、プラスチック製の歯車の凹部を銅やアルミ等の金属のメッキ等で埋めたもの(プラスチック部が低導電率部分、金属部が高導電率部分)や、プラスチックやアルミ等の非磁性体からなる歯車の凹部をパーマロイのメッキやフェライト粉のプリントによって軟磁性体で埋めたもの(非磁性体部が低透磁率部分、軟磁性体部分が高透磁率部分)が挙げられる。
(Embodiment 2)
Embodiment 2 of the present invention will be described with reference to FIG. The moving object detection device 2 of this embodiment is different from that of the first embodiment in that the rotating body 20 is replaced with a rotating body 30, and is the same in other respects. The rotating body 30 has a disk shape or a regular polygonal plate shape, and has a high conductivity or high permeability part 31 as a first part and a low conductivity or high permeability part 31 as a second part on the outer peripheral surface (outer peripheral part). It has a low magnetic permeability portion 32. In the example of this embodiment, the high conductivity or high magnetic permeability portions 31 and the low conductivity or low magnetic permeability portions 32 are provided on the outer peripheral surface of the rotating body 30 alternately at the same pitch over the entire circumference. Examples of the structure of the rotating body 30 include a plastic gear in which the concave part is filled with metal plating such as copper or aluminum (the plastic part is a low conductivity part and the metal part is a high conductivity part), The concave part of a gear made of non-magnetic material such as aluminum is filled with soft magnetic material by plating with permalloy or printing with ferrite powder (the non-magnetic material part has low magnetic permeability, and the soft magnetic material part has high magnetic permeability). Can be mentioned.

本実施の形態における回転体30の回転検出の原理は実施の形態1と同様である。具体的には、回転体30の高導電率又は高透磁率部分31が磁気検出装置10と対向するときは、実施の形態1において回転体20の凸部21が磁気検出装置10と対向するときに対応する。回転体30の低導電率又は低透磁率部分32が磁気検出装置10と対向するときは、実施の形態1において回転体20の凹部22が磁気検出装置10と対向するときに対応する。本実施の形態も、実施の形態1と同様の効果を奏することができる。また、本実施の形態によれば、回転体30は、高導電率又は高透磁率部分31以外の部分(本体部)をプラスチック等の非磁性体かつ絶縁体で構成することもできる。 The principle of rotation detection of the rotating body 30 in this embodiment is the same as that in the first embodiment. Specifically, when the high conductivity or high permeability portion 31 of the rotating body 30 faces the magnetic detection device 10, when the convex portion 21 of the rotating body 20 faces the magnetic detection device 10 in the first embodiment, corresponds to When the low conductivity or low magnetic permeability portion 32 of the rotating body 30 faces the magnetic detection device 10, this corresponds to when the recess 22 of the rotating body 20 faces the magnetic detection device 10 in the first embodiment. This embodiment can also produce the same effects as the first embodiment. Further, according to the present embodiment, the rotating body 30 may have a portion (body portion) other than the high conductivity or high permeability portion 31 made of a non-magnetic material such as plastic and an insulating material.

(実施の形態3)
図11を参照し、本発明の実施の形態3を説明する。本実施の形態の移動体検出装置3は、実施の形態2のものと異なり、磁気検出装置10が回転体40の軸方向一方側において回転体40の非中心部、好ましくは外周縁近傍部(外周部)と対向する位置に設けられている。コイル12の軸方向は、回転体40の軸方向と好ましくは平行である。また、回転体40は、軸方向一方側の面の、自身の回転によって磁気検出装置10と対向し得る位置に、第1の部分としての高導電率又は高透磁率部分41及び第2の部分としての低導電率又は低透磁率部分42を有する。高導電率又は高透磁率部分41及び低導電率又は低透磁率部分42は、回転体40の軸回りを一周するように交互に同じピッチで全周に渡って設けられる。なお、高導電率又は高透磁率部分41は、低導電率又は低透磁率部分42と比較して磁気検出装置10側に突出するように設けられているが、低導電率又は低透磁率部分42と面一であってもよい。本実施の形態のその他の点は実施の形態2と同様である。本実施の形態も、実施の形態2と同様の効果を奏することができる。
(Embodiment 3)
Embodiment 3 of the present invention will be described with reference to FIG. The moving body detection device 3 of this embodiment differs from that of the second embodiment in that the magnetic detection device 10 is located at a non-center portion of the rotor 40 on one side in the axial direction of the rotor 40, preferably at a portion near the outer peripheral edge ( It is provided at a position facing the outer peripheral part). The axial direction of the coil 12 is preferably parallel to the axial direction of the rotating body 40. Further, the rotary body 40 has a high conductivity or high permeability portion 41 as a first portion and a second portion on one surface in the axial direction at a position where it can face the magnetic detection device 10 due to its rotation. It has a low conductivity or low permeability portion 42 as shown in FIG. The high conductivity or high magnetic permeability portions 41 and the low conductivity or low magnetic permeability portions 42 are provided alternately over the entire circumference at the same pitch so as to go around the axis of the rotating body 40 . Note that the high conductivity or high magnetic permeability portion 41 is provided so as to protrude toward the magnetic detection device 10 side compared to the low conductivity or low magnetic permeability portion 42, but the low conductivity or low magnetic permeability portion It may be flush with 42. Other points of this embodiment are the same as those of the second embodiment. This embodiment can also produce the same effects as the second embodiment.

(実施の形態4)
図12を参照し、本発明の実施の形態4を説明する。本実施の形態の移動体検出装置4は、実施の形態1のものと異なり、磁気検出装置10が回転体50の軸方向一方側において回転体50の非中心部、好ましくは外周縁近傍部(外周部)と対向する位置に設けられている。コイル12の軸方向は、回転体50の軸方向と好ましくは平行である。また、回転体50は、軸方向一方側の面の、自身の回転によって磁気検出装置10と対向し得る位置に、第1の部分としての凸部51及び第2の部分としての凹部52を有する。凸部51及び凹部52は、回転体50の軸回りを一周するように交互に同じピッチで全周に渡って設けられる。本実施の形態のその他の点は実施の形態1と同様である。本実施の形態も、実施の形態1と同様の効果を奏することができる。
(Embodiment 4)
Embodiment 4 of the present invention will be described with reference to FIG. The moving object detection device 4 of the present embodiment differs from that of the first embodiment in that the magnetic detection device 10 is located at a non-center portion of the rotating body 50 on one side in the axial direction of the rotating body 50, preferably at a portion near the outer peripheral edge ( It is provided at a position facing the outer peripheral part). The axial direction of the coil 12 is preferably parallel to the axial direction of the rotating body 50. Further, the rotating body 50 has a convex portion 51 as a first portion and a recessed portion 52 as a second portion on one surface in the axial direction at a position where it can face the magnetic detection device 10 due to its rotation. . The convex portions 51 and the concave portions 52 are provided alternately over the entire circumference at the same pitch so as to go around the axis of the rotating body 50. Other points of this embodiment are the same as those of the first embodiment. This embodiment can also produce the same effects as the first embodiment.

(実施の形態5)
図13を参照し、本発明の実施の形態5を説明する。本実施の形態の移動体検出装置5は、実施の形態4の凹部52が貫通孔62に替わり、凸部51が境界部61に替わった点で相違し、その他の点で一致する。すなわち、回転体60は、軸方向一方側の面の、自身の回転によって磁気検出装置10と対向し得る位置に、第2の部分としての貫通孔62を有する。貫通孔62は、回転体60の軸回りを一周するように同じピッチで全周に渡って設けられる。隣り合う貫通孔62の間の境界部61が第1の部分に対応する。本実施の形態における回転体60の回転検出の原理は実施の形態1と同様である。具体的には、回転体60の境界部61が磁気検出装置10と対向するときは、実施の形態1において回転体20の凸部21が磁気検出装置10と対向するときに対応する。回転体60の貫通孔62が磁気検出装置10と対向するときは、実施の形態1において回転体20の凹部22が磁気検出装置10と対向するときに対応する。本実施の形態も、実施の形態4と同様の効果を奏することができる。
(Embodiment 5)
Embodiment 5 of the present invention will be described with reference to FIG. The moving object detection device 5 of this embodiment differs from Embodiment 4 in that the recess 52 is replaced with a through hole 62 and the protrusion 51 is replaced with a boundary 61, and is the same in other respects. That is, the rotary body 60 has a through hole 62 as a second portion on one surface in the axial direction at a position where it can face the magnetic detection device 10 due to its rotation. The through holes 62 are provided at the same pitch all the way around the axis of the rotating body 60 . A boundary portion 61 between adjacent through holes 62 corresponds to a first portion. The principle of rotation detection of the rotating body 60 in this embodiment is the same as that in the first embodiment. Specifically, when the boundary portion 61 of the rotating body 60 faces the magnetic detection device 10, this corresponds to when the convex portion 21 of the rotating body 20 faces the magnetic detection device 10 in the first embodiment. When the through hole 62 of the rotating body 60 faces the magnetic detection device 10, this corresponds to when the recess 22 of the rotating body 20 faces the magnetic detection device 10 in the first embodiment. This embodiment can also produce the same effects as the fourth embodiment.

(実施の形態6)
図14は、本発明の実施の形態6に係る移動体検出装置6の概略斜視図である。本実施の形態の移動体検出装置6は、図10に示した実施の形態2の回転体30を直線移動体70に替えたものであり、磁気検出装置10の構成は実施の形態2と同様である。直線移動体70は、平面形状であって、磁気検出装置10と対向する側の面(以下「対向面」とも表記)に第1の部分としての高導電率又は高透磁率部分71及び第2の部分としての低導電率又は低透磁率部分72を有する。本実施の形態の例では、高導電率又は高透磁率部分71及び低導電率又は低透磁率部分72は、直線移動体70の対向面に、直線移動体70の移動方向に沿って交互に同じピッチで設けられる。直線移動体70の構成例としては、プラスチック製の平板の凹部を銅やアルミ等の金属のメッキ等で埋めたもの(プラスチック部が低導電率部分、金属部が高導電率部分)や、プラスチックやアルミ等の非磁性体からなる平板の凹部をパーマロイのメッキやフェライト粉のプリントによって軟磁性体で埋めたもの(非磁性体部が低透磁率部分、軟磁性体部分が高透磁率部分)が挙げられる。なお、高導電率又は高透磁率部分71と低導電率又は低透磁率部分72が凹凸関係になっていてもよい。本実施の形態における直線移動体70の移動検出の原理は、実施の形態2における回転検出の原理と同様である。本実施の形態も、実施の形態2と同様の効果を奏することができる。
(Embodiment 6)
FIG. 14 is a schematic perspective view of a moving object detection device 6 according to Embodiment 6 of the present invention. The moving body detection device 6 of this embodiment is obtained by replacing the rotating body 30 of the second embodiment shown in FIG. 10 with a linear moving body 70, and the configuration of the magnetic detection device 10 is the same as that of the second embodiment. It is. The linear moving body 70 has a planar shape, and has a high conductivity or high permeability part 71 as a first part and a second part on a surface facing the magnetic detection device 10 (hereinafter also referred to as "opposing surface"). It has a low conductivity or low magnetic permeability portion 72 as a portion. In the example of this embodiment, the high conductivity or high magnetic permeability portions 71 and the low conductivity or low magnetic permeability portions 72 are arranged alternately along the moving direction of the linear moving body 70 on the opposing surface of the linear moving body 70. provided at the same pitch. Examples of the configuration of the linear moving body 70 include a flat plate made of plastic whose recesses are filled with metal plating such as copper or aluminum (the plastic part is a low conductivity part, and the metal part is a high conductivity part); The concave part of a flat plate made of non-magnetic material such as aluminum or aluminum is filled with soft magnetic material by plating with permalloy or printing with ferrite powder (the non-magnetic material part is the low magnetic permeability part, and the soft magnetic material part is the high magnetic permeability part). can be mentioned. Note that the high conductivity or high magnetic permeability portion 71 and the low conductivity or low magnetic permeability portion 72 may have an uneven relationship. The principle of detecting the movement of the linear moving body 70 in this embodiment is the same as the principle of detecting rotation in the second embodiment. This embodiment can also produce the same effects as the second embodiment.

(実施の形態7)
図15は、本発明の実施の形態7に係る移動体検出装置7の概略斜視図である。本実施の形態の移動体検出装置7は、図13に示した実施の形態5の回転体60を直線移動体80に替えたものであり、磁気検出装置10の構成は実施の形態5と同様である。直線移動体80は、自身の移動によって磁気検出装置10と対向し得る位置に、第2の部分としての貫通孔82を有する。貫通孔82は、直線移動体80の移動方向に沿って同じピッチで設けられる。隣り合う貫通孔82の間の境界部81が第1の部分に対応する。本実施の形態における直線移動体80の移動検出の原理は、実施の形態5における回転検出の原理と同様である。本実施の形態も、実施の形態5と同様の効果を奏することができる。なお、貫通孔82に替えて、磁気検出装置10側に臨む凹部(非貫通孔)を設けても、同様の効果を奏することができる。
(Embodiment 7)
FIG. 15 is a schematic perspective view of a moving object detection device 7 according to Embodiment 7 of the present invention. The moving body detection device 7 of this embodiment is obtained by replacing the rotating body 60 of the fifth embodiment shown in FIG. 13 with a linear moving body 80, and the configuration of the magnetic detection device 10 is the same as that of the fifth embodiment. It is. The linear moving body 80 has a through hole 82 as a second portion at a position where it can face the magnetic detection device 10 by moving itself. The through holes 82 are provided at the same pitch along the moving direction of the linear moving body 80. A boundary portion 81 between adjacent through holes 82 corresponds to a first portion. The principle of movement detection of the linear moving body 80 in this embodiment is the same as the principle of rotation detection in the fifth embodiment. This embodiment can also produce the same effects as the fifth embodiment. Note that the same effect can be achieved by providing a recess (non-through hole) facing the magnetic detection device 10 side instead of the through hole 82.

(実施の形態8)
図16は、本発明の実施の形態8における磁気検出装置10Aの回路図である。以下、図6に示した実施の形態1の磁気検出装置10との相違点を中心に説明する。磁気検出装置10Aは、差動増幅器17の出力端子とローパスフィルタ18aの入力端子との間に、負帰還用磁界発生導体としての負帰還用コイル12aを有する。負帰還用コイル12aの一端は、差動増幅器17の出力端子に接続される。負帰還用コイル12の他端は、ローパスフィルタ18aの入力端子に接続される。
(Embodiment 8)
Fig. 16 is a circuit diagram of a magnetic detection device 10A according to embodiment 8 of the present invention. The following mainly describes the differences from the magnetic detection device 10 according to embodiment 1 shown in Fig. 6. The magnetic detection device 10A has a negative feedback coil 12a as a negative feedback magnetic field generating conductor between the output terminal of a differential amplifier 17 and the input terminal of a low-pass filter 18a. One end of the negative feedback coil 12a is connected to the output terminal of the differential amplifier 17. The other end of the negative feedback coil 12a is connected to the input terminal of the low-pass filter 18a.

負帰還用コイル12aは、差動増幅器17の出力電流が流れることにより、磁気センサ13を磁気平衡状態にする負帰還磁界を発生する。磁気平衡状態は、GMR素子15a~15dの位置における磁界の感磁方向成分が所定値(例えばゼロ)の状態である。抵抗19は、本実施の形態では負帰還用コイル12aに流れる電流を電圧に変換する電流電圧変換手段であって、負帰還用コイル12aの他端とグランドとの間に設けられる。磁気検出装置10Aでは、磁気センサ13を磁気平衡状態とするために負帰還用コイル12aに流れる電流(負帰還電流IFB)を利用して、GMR素子ブリッジ回路に印加される磁界信号を検出する。すなわち、実施の形態1の磁気検出装置10では磁界信号の検出方式が磁気比例式であるのに対し、本実施の形態の磁気検出装置10Aでは磁界信号の検出方式が磁気平衡式である。 The negative feedback coil 12a generates a negative feedback magnetic field that brings the magnetic sensor 13 into a magnetically balanced state when the output current of the differential amplifier 17 flows therethrough. The magnetic equilibrium state is a state in which the magnetosensitive direction component of the magnetic field at the positions of the GMR elements 15a to 15d is a predetermined value (for example, zero). In this embodiment, the resistor 19 is a current-voltage conversion means that converts the current flowing through the negative feedback coil 12a into a voltage, and is provided between the other end of the negative feedback coil 12a and the ground. The magnetic detection device 10A detects the magnetic field signal applied to the GMR element bridge circuit by using the current flowing through the negative feedback coil 12a (negative feedback current I FB ) to bring the magnetic sensor 13 into a magnetically balanced state. . That is, in the magnetic detection device 10 of the first embodiment, the magnetic field signal detection method is a magnetic proportional type, whereas in the magnetic detection device 10A of the present embodiment, the magnetic field signal detection method is a magnetic equilibrium type.

磁気検出装置10Aにおいて、負帰還電流IFBは、コイル12に流れる電流をIEXT及びGMR素子ブリッジ回路への入力電圧VEXTの積と一対一でリニアに対応し、
FB=γ×IEXT×VEXT 式17
の関係が成り立つ。γは、差動増幅器17のゲイン、負帰還用コイル12aとGMR素子ブリッジ回路との磁気結合度、及び前述の式4のβによって決まる係数である。ローパスフィルタ18aへの入力電圧Vdiffは、抵抗19の抵抗値Rsを用いて、
Vdiff=Rs×IFB
=Rs×γ×IEXT×VEXT 式18
となり、実施の形態1の磁気検出装置10における上記式16と比例する値となる。
In the magnetic detection device 10A, the negative feedback current IFB has a one-to-one linear relationship with the product of the current IEXT flowing through the coil 12 and the input voltage VEXT to the GMR element bridge circuit,
IFB = γ × IEXT × VEXT Equation 17
The following relationship holds. γ is a coefficient determined by the gain of the differential amplifier 17, the degree of magnetic coupling between the negative feedback coil 12a and the GMR element bridge circuit, and β in the above-mentioned formula 4. The input voltage Vdiff to the low-pass filter 18a is expressed by using the resistance value Rs of the resistor 19 as follows:
Vdiff = Rs x IFB
= Rs × γ × I EXT × V EXT Equation 18
This is a value proportional to the above-mentioned formula 16 in the magnetic detection device 10 of the first embodiment.

図17は、比較例2に係る磁気検出装置の回路図である。図17の回路は、図16に示した実施の形態2のものと比較して、GMR素子ブリッジ回路への入力電圧が信号生成部18bの出力電圧VEXTから電源電圧Vccに替わった点と、負帰還用コイル12aの他端とローパスフィルタ18aの入力端子との間に乗算器18cが追加された点と、信号生成部18bの出力電圧VEXTが乗算器18cにも入力される点で相違し、その他の点で一致する。ローパスフィルタ18a、信号生成部18b及び乗算器18cは、GMR素子ブリッジ回路に印加される磁界信号を同期検波する同期検波部を構成する。 FIG. 17 is a circuit diagram of a magnetic detection device according to Comparative Example 2. The circuit of FIG. 17 differs from the second embodiment shown in FIG. 16 in that the input voltage to the GMR element bridge circuit is changed from the output voltage V EXT of the signal generating section 18b to the power supply voltage Vcc. The difference is that a multiplier 18c is added between the other end of the negative feedback coil 12a and the input terminal of the low-pass filter 18a, and that the output voltage V EXT of the signal generator 18b is also input to the multiplier 18c. and agree in all other respects. The low-pass filter 18a, the signal generation section 18b, and the multiplier 18c constitute a synchronous detection section that synchronously detects the magnetic field signal applied to the GMR element bridge circuit.

比較例2に係る磁気検出装置では、
FB=γ×IEXT×Vcc 式19
Vdiff=Rs×IFB
=Rs×γ×IEXT×Vcc 式20
MULTI=Vdiff×VEXT
=Rs×γ×IEXT×Vcc×VEXT 式21
である。
In the magnetic detection device according to Comparative Example 2,
I FB = γ × I EXT × Vcc Equation 19
Vdiff=Rs×I FB
= Rs × γ × I EXT × Vcc Equation 20
V MULTI = Vdiff×V EXT
=Rs×γ×I EXT ×Vcc×V EXT Formula 21
It is.

本実施の形態によれば、信号生成部18bの出力する交番電圧VEXTをGMR素子ブリッジ回路に動作電圧として供給するため、差動増幅器17の出力電圧Vdiff(式18)が、図17に示す比較例2の磁気検出装置における乗算器18cの出力電圧VMULTI(式21)と比例する。よって、図16に示す磁気検出装置10Aでは、差動増幅器17の出力電圧Vdiffをローパスフィルタ18aに通した後の信号(センサ出力電圧Vout)は、GMR素子ブリッジ回路に印加される磁界信号を同期検波した結果の信号となる。すなわち、図16に示す検波回路1Cは、図17に示す比較例2と異なり乗算器18cを有さないにもかかわらず、差動増幅器17の出力電圧Vdiffとして乗算済みの信号が得られることから、乗算器18cを有さずに同期検波が可能である。したがって、本実施の形態の磁気検出装置10A及びそれを用いた移動体検出装置は、乗算のための専用回路が不要な分、小型かつ低コストなものとなる。実施の形態2~7において、図6の磁気検出装置10を図16の磁気検出装置10Aに替えてもよい。 According to the present embodiment, since the alternating voltage V EXT outputted from the signal generating section 18b is supplied to the GMR element bridge circuit as an operating voltage, the output voltage Vdiff (Equation 18) of the differential amplifier 17 is as shown in FIG. It is proportional to the output voltage V MULTI (Equation 21) of the multiplier 18c in the magnetic detection device of Comparative Example 2. Therefore, in the magnetic detection device 10A shown in FIG. 16, the signal (sensor output voltage Vout) obtained by passing the output voltage Vdiff of the differential amplifier 17 through the low-pass filter 18a synchronizes the magnetic field signal applied to the GMR element bridge circuit. This is the signal that is the result of detection. That is, although the detection circuit 1C shown in FIG. 16 does not have the multiplier 18c unlike the comparative example 2 shown in FIG. 17, a multiplied signal is obtained as the output voltage Vdiff of the differential amplifier 17. , synchronous detection is possible without the multiplier 18c. Therefore, the magnetic detection device 10A of this embodiment and the moving object detection device using the same do not require a dedicated circuit for multiplication, and thus are small and low-cost. In the second to seventh embodiments, the magnetic detection device 10 in FIG. 6 may be replaced with the magnetic detection device 10A in FIG. 16.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 Although the present invention has been described above using the embodiments as examples, those skilled in the art will understand that various modifications can be made to each component and each processing process of the embodiments within the scope of the claims. By the way. Modifications will be discussed below.

実施の形態では磁気検出装置の位置が固定で移動体(回転体又は直線移動体)が移動(回転)する例を説明したが、移動体が固定で磁気検出装置が移動する構成であってもよい。すなわち、移動体の移動は、磁気検出装置に対する相対移動であり、自身の絶対位置が移動するかは問わない。実施の形態1~5における移動体は、例えばラック等の直線移動体であってもよい。 In the embodiment, an example was explained in which the position of the magnetic detection device is fixed and the movable body (rotating body or linearly movable body) moves (rotates), but even if the movable body is fixed and the magnetic detection device moves, good. That is, the movement of the moving object is relative movement with respect to the magnetic detection device, and it does not matter whether the moving object's absolute position moves. The moving body in Embodiments 1 to 5 may be a linear moving body such as a rack.

実施の形態では、磁気検出装置と移動体との対向距離、又は移動体のうち磁気検出装置10と対向する部分の導電率若しくは透磁率が、移動体の移動に伴い、相互に異なる2水準の値を交互に取る構成を説明したが、3水準以上の値を交互に取る構成であってもよい。また、移動体の移動に伴う各パラメータの変化は連続的であってもよい。例えば凹凸が正弦波状の移動体の場合、磁気検出装置との対向距離は、移動体の移動に伴い連続的に変化する。 In the embodiment, the facing distance between the magnetic detection device and the moving body, or the electrical conductivity or magnetic permeability of the portion of the moving body that faces the magnetic detection device 10 is set to two different levels as the moving body moves. Although a configuration has been described in which values are alternately taken, a configuration in which values of three or more levels are alternately taken is also possible. Furthermore, changes in each parameter may be continuous as the moving object moves. For example, in the case of a moving body having sinusoidal irregularities, the facing distance to the magnetic detection device changes continuously as the moving body moves.

実施の形態では4つのGMR素子15a~15dをフルブリッジ接続したが、2つのGMR素子をハーフブリッジ接続してもよいし、1つのGMR素子15と固定抵抗器をハーフブリッジ接続してもよい。磁気感応素子は、GMR素子等の磁気抵抗効果素子に限定されず、ホール素子等の他の種類のものであってもよい。なお、ホール素子の場合、コイル12の中心軸上に配置しても検出に必要なセンサ出力が得られる。 In the embodiment, four GMR elements 15a to 15d are connected in a full-bridge manner, but two GMR elements may be connected in a half-bridge manner, or one GMR element 15 and a fixed resistor may be connected in a half-bridge manner. The magnetically sensitive element is not limited to a magnetoresistive element such as a GMR element, but may be another type of element such as a Hall element. Note that in the case of a Hall element, the sensor output necessary for detection can be obtained even if it is placed on the central axis of the coil 12.

実施の形態ではセンサ出力を高めるために軟磁性体16を設けたが、必要な大きさのセンサ出力が得られるのであれば、軟磁性体16を省略してもよい。移動体の凹部、凸部、高導電率又は高透磁率部分、低導電率又は低透磁率部分は、少なくとも1つあれば足り、また複数設ける場合の配置ピッチは互いに異なってもよい。磁界発生導体は、コイルに限定されず、例えば直線状の電流路であってもよい。 In the embodiment, the soft magnetic material 16 is provided in order to increase the sensor output, but the soft magnetic material 16 may be omitted if a sensor output of the required magnitude can be obtained. At least one concave portion, convex portion, high conductivity or high magnetic permeability portion, or low conductivity or low magnetic permeability portion of the moving body is sufficient, and when a plurality of them are provided, the arrangement pitch may be different from each other. The magnetic field generating conductor is not limited to a coil, and may be, for example, a linear current path.

1~7 移動体検出装置
10 磁気検出装置 11 基板、12 コイル(磁界発生導体)、12a 負帰還用コイル(負帰還用磁界発生導体)、13 磁気センサ、14 磁気感応素子チップ、15a~15d GMR素子(磁気抵抗効果素子)、16 軟磁性体、17 差動増幅器、18a ローパスフィルタ、18b 信号生成部(電圧印加部)、18c 乗算器、19 抵抗、
20 回転体(移動体)、21 凸部(第1の部分)、22 凹部(第2の部分)、
30 回転体、31 高導電率又は高透磁率部分(第1の部分)、32 低導電率又は低透磁率部分(第2の部分)、
40 回転体、41 高導電率又は高透磁率部分(第1の部分)、42 低導電率又は低透磁率部分(第2の部分)
50 回転体(移動体)、51 凸部(第1の部分)、52 凹部(第2の部分)、
60 回転体(移動体)、61 境界部(第1の部分)、62 貫通孔(第2の部分)、
70 直線移動体、71 高導電率又は高透磁率部分(第1の部分)、72 低導電率又は低透磁率部分(第2の部分)、
80 直線移動体、81 境界部(第1の部分)、82 貫通孔(第2の部分)
1 to 7 Moving object detection device 10 Magnetic detection device 11 Substrate, 12 Coil (magnetic field generation conductor), 12a Negative feedback coil (negative feedback magnetic field generation conductor), 13 Magnetic sensor, 14 Magnetic sensing element chip, 15a to 15d GMR element (magnetoresistive effect element), 16 soft magnetic material, 17 differential amplifier, 18a low-pass filter, 18b signal generation section (voltage application section), 18c multiplier, 19 resistance,
20 rotating body (moving body), 21 convex part (first part), 22 concave part (second part),
30 rotating body, 31 high conductivity or high magnetic permeability part (first part), 32 low conductivity or low magnetic permeability part (second part),
40 Rotating body, 41 High conductivity or high magnetic permeability part (first part), 42 Low conductivity or low magnetic permeability part (second part)
50 rotating body (moving body), 51 convex part (first part), 52 concave part (second part),
60 rotating body (moving body), 61 boundary part (first part), 62 through hole (second part),
70 linear moving body, 71 high conductivity or high magnetic permeability part (first part), 72 low conductivity or low magnetic permeability part (second part),
80 linear moving body, 81 boundary (first part), 82 through hole (second part)

Claims (5)

移動体の相対移動による磁界変化を検出する磁気検出装置であって、
磁界発生導体と、
前記磁界発生導体に移動体への印加用の交番磁界を発生させるための交番電圧を印加する電圧印加部と、
前記磁界発生導体の発生する磁界であって移動体の相対移動により変化する磁界が印加される少なくとも1つの磁気抵抗効果素子を含むブリッジ回路を有する磁気センサと、を備え、
前記電圧印加部の出力する交番電圧を前記ブリッジ回路に印加する、磁気検出装置。
A magnetic detection device that detects magnetic field changes due to relative movement of a moving object,
a magnetic field generating conductor;
a voltage application unit that applies an alternating voltage to the magnetic field generating conductor to generate an alternating magnetic field for application to a moving body;
a magnetic sensor having a bridge circuit including at least one magnetoresistive element to which a magnetic field generated by the magnetic field generating conductor and which changes due to relative movement of the moving object is applied;
A magnetic detection device that applies an alternating voltage output from the voltage application section to the bridge circuit .
前記磁気センサの出力信号を通すローパスフィルタを備える、請求項1に記載の磁気検出装置。 The magnetic detection device according to claim 1, further comprising a low-pass filter that passes the output signal of the magnetic sensor. 前記磁気センサの出力電圧が入力される差動増幅器と、
前記差動増幅器から電流を供給され、前記磁気センサを磁気平衡状態にする負帰還磁界を発生する負帰還用磁界発生導体と、
前記差動増幅器から前記負帰還用磁界発生導体に供給される電流を電圧に変換して前記ローパスフィルタに出力する電流電圧変換手段と、を備える、請求項2に記載の磁気検出装置。
a differential amplifier into which the output voltage of the magnetic sensor is input;
a negative feedback magnetic field generating conductor that is supplied with current from the differential amplifier and generates a negative feedback magnetic field that brings the magnetic sensor into a magnetically balanced state;
3. The magnetic detection device according to claim 2, further comprising current-voltage converting means for converting the current supplied from the differential amplifier to the negative feedback magnetic field generating conductor into a voltage and outputting the voltage to the low-pass filter.
磁気検出装置と、
前記磁気検出装置に対して相対移動する移動体と、を備え、
前記磁気検出装置は、
磁界発生導体と、
前記磁界発生導体に前記移動体への印加用の交番磁界を発生させるための交番電圧を印加する電圧印加部と、
前記磁界発生導体の発生する磁界であって前記移動体の相対移動により変化する磁界が印加される少なくとも1つの磁気抵抗効果素子を含むブリッジ回路を有する磁気センサと、を備え、
前記電圧印加部の出力する交番電圧を前記ブリッジ回路に印加する、移動体検出装置。
a magnetic detection device;
A moving body that moves relative to the magnetic detection device,
The magnetic detection device includes:
a magnetic field generating conductor;
a voltage application unit that applies an alternating voltage to the magnetic field generating conductor to generate an alternating magnetic field to be applied to the moving object;
a magnetic sensor having a bridge circuit including at least one magnetoresistive element to which a magnetic field generated by the magnetic field generating conductor and which changes due to relative movement of the moving body is applied;
A moving object detection device that applies an alternating voltage output from the voltage application section to the bridge circuit .
前記磁気検出装置は、前記磁気センサの出力信号を通すローパスフィルタを備え、
前記移動体は、相互に導電率もしくは透磁率が異なる第1及び第2の部分、又は、少なくとも1つの凸部もしくは凹部を有し、
前記電圧印加部の出力する交番電圧の周波数は、前記移動体の前記磁気検出装置と対面する部分の導電率又は透磁率の変動周波数以上の周波数、又は、前記移動体と前記磁気検出装置との対向距離の変動周波数以上の周波数である、請求項4に記載の移動体検出装置。
The magnetic detection device includes a low-pass filter that passes the output signal of the magnetic sensor,
The moving body has first and second portions having mutually different electrical conductivity or magnetic permeability, or at least one convex portion or concave portion,
The frequency of the alternating voltage outputted by the voltage application section is a frequency equal to or higher than the fluctuation frequency of the electrical conductivity or magnetic permeability of the portion of the moving body that faces the magnetic detection device, or the frequency of the variation between the moving body and the magnetic detection device. The moving object detection device according to claim 4, wherein the frequency is higher than the frequency of variation in the facing distance.
JP2018217790A 2018-11-20 2018-11-20 Magnetic detection device and moving object detection device Active JP7455506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217790A JP7455506B2 (en) 2018-11-20 2018-11-20 Magnetic detection device and moving object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217790A JP7455506B2 (en) 2018-11-20 2018-11-20 Magnetic detection device and moving object detection device

Publications (2)

Publication Number Publication Date
JP2020085573A JP2020085573A (en) 2020-06-04
JP7455506B2 true JP7455506B2 (en) 2024-03-26

Family

ID=70907517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217790A Active JP7455506B2 (en) 2018-11-20 2018-11-20 Magnetic detection device and moving object detection device

Country Status (1)

Country Link
JP (1) JP7455506B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085574A (en) * 2018-11-20 2020-06-04 Tdk株式会社 Detection circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315094A (en) 2002-04-25 2003-11-06 Shinko Electric Co Ltd Encoder
WO2017073280A1 (en) 2015-10-29 2017-05-04 Tdk株式会社 Magnetism-detecting device and moving-body-detecting device
JP2018146303A (en) 2017-03-02 2018-09-20 Tdk株式会社 Magnetic sensor
JP7239247B2 (en) 2014-08-18 2023-03-14 エディ・カーレント・リミテッド・パートナーシップ Latching devices, vehicles and ziplines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239247A (en) * 1991-04-25 1995-09-12 Yaskawa Electric Corp Signal processor for magnetic encoder
JP2010266247A (en) * 2009-05-12 2010-11-25 Nagoya Univ Magnetic sensor and magnetic field measurement device
JP6891021B2 (en) * 2017-03-30 2021-06-18 株式会社東京精密 Eddy current displacement meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315094A (en) 2002-04-25 2003-11-06 Shinko Electric Co Ltd Encoder
JP7239247B2 (en) 2014-08-18 2023-03-14 エディ・カーレント・リミテッド・パートナーシップ Latching devices, vehicles and ziplines
WO2017073280A1 (en) 2015-10-29 2017-05-04 Tdk株式会社 Magnetism-detecting device and moving-body-detecting device
JP2018146303A (en) 2017-03-02 2018-09-20 Tdk株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JP2020085573A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US11294003B2 (en) Magnetic field detector
US7049924B2 (en) Electromagnetic induction type position sensor
US6246233B1 (en) Magnetoresistive sensor with reduced output signal jitter and temperature compensation
CN110662943B (en) Target for coil-excited position sensor
JP5500785B2 (en) Magnetic sensor
US8564283B2 (en) Rotation-angle-detecting apparatus, rotating machine and rotation-angle-detecting method
JP5409088B2 (en) Measuring method of gear rotation speed and gear rotation speed detector
CN109917309B (en) Magnetoresistive sensor with stray field cancellation and system incorporating such a sensor
CN109212439B (en) Magnetic field sensor
JP6969142B2 (en) Magnetic sensor
US20090021249A1 (en) Core-less current sensor
US9200884B2 (en) Magnetic sensor system including three detection circuits
WO2011024923A1 (en) Magnetic field sensor, as well as magnetic field measurement method, power measurement device, and power measurement method using the same
US9297635B2 (en) Magnetic sensor system including two detection circuits
WO2017073280A1 (en) Magnetism-detecting device and moving-body-detecting device
Brasseur A robust capacitive angular position sensor
JP7455506B2 (en) Magnetic detection device and moving object detection device
JP7230470B2 (en) Magnetic detection device and moving body detection device
US11073577B2 (en) TMR magnetic sensor
JP4211278B2 (en) Encoder
JP2016115240A (en) Multiplication circuit and power sensor including the same
JP7225694B2 (en) magnetic sensor
US12025683B2 (en) Length detector with magnetoresitive elements
JP7255196B2 (en) Mobile object detection device
JP2019138710A (en) Signal processing circuit and magnetism detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240313

R150 Certificate of patent or registration of utility model

Ref document number: 7455506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150