JPH07239247A - Signal processor for magnetic encoder - Google Patents

Signal processor for magnetic encoder

Info

Publication number
JPH07239247A
JPH07239247A JP12472791A JP12472791A JPH07239247A JP H07239247 A JPH07239247 A JP H07239247A JP 12472791 A JP12472791 A JP 12472791A JP 12472791 A JP12472791 A JP 12472791A JP H07239247 A JPH07239247 A JP H07239247A
Authority
JP
Japan
Prior art keywords
magnetic
encoder
signal
output
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12472791A
Other languages
Japanese (ja)
Inventor
Hidenori Hasegawa
秀法 長谷川
Koji Nakajima
耕二 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP12472791A priority Critical patent/JPH07239247A/en
Publication of JPH07239247A publication Critical patent/JPH07239247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enhance resolution by applying an AC voltage to magnetic sensors for A and B phases and subjecting the output from an encoder to amplitude modulation and then determining the displacement from the amplitude ratio of signals detected synchronously through AC coupling thereby eliminating the influence of fluctuation or offset of the encoder output while sustaining high response performance. CONSTITUTION:Magnetic sensors 10, 11 for phases A and B having phase difference of 90 deg. are connected in parallel and an AC voltage (sine wave signal) is applied from an oscillator 1 in order to amplitude modulate the encoder output. The outputs are subjected to AC coupling through AC couplings 12, 13 thus removing the offset component. The AC signal is subjected to synchronous detection with a (carrier) signal from a transmitter 1 by means of synchronous detectors 14, 15 to produce sine wave signals Va, Vb, which are then subjected to division 16 and a displacement is operated 17 based on the ratio Va/Vb. Since the magnetic sensors 10, 11 are disposed closely each other, fluctuation in the vibration of the rotary drum of encoder due to vibration of shaft has equal effect on the sensors 10, 11 and thereby has no effect on the detection of displacement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、位置、角度の検出を目
的とする磁気エンコーダの信号処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal processing device of a magnetic encoder for detecting position and angle.

【0002】[0002]

【従来の技術】図4は、センサ部の従来例を示す図であ
る。18は直流電圧源、2〜5はA相検出用MR素子、
6〜9はB相検出用MR素子、10はA相磁気センサ、
11は、B相磁気センサを表す。図5は信号処理装置の
従来例を示す図である。19は2相発振器、20、21
は乗算器、22は加算器、23は変位量演算回路をあら
わす。図6(a)は図4における磁気センサ出力波形、
図6(b)は図5における変位量演算回路の二つの入力
波形を表す図である。従来の磁気エンコーダでは、図4
に示すように磁気センサ10、11には直流電圧源18
が印加され、また図5に示すようにA相信号Vaout' =
sinθ、B相信号Vbout' =cosθにそれぞれ正弦
波信号、余弦波信号(以下これらをキャリアと呼ぶ)を
乗算し、それらを加算することにより得られる信号とキ
ャリアの一方、例えば余弦波信号との位相差をクロック
等を用いたカウンタ回路により計測し、変位量θを検出
していた。この時エンコーダ回転ドラムの軸ぶれや磁気
センサを構成するMR素子の抵抗値のアンバランス等に
よるインクリメンタル相(A相、B相)の振幅変動やオ
フセットが高分解能化を制限していた。また従来エンコ
ーダ出力はDC出力のため、これらの振幅変動やオフセ
ットの補償はCPUを用いて行うなどしていた。
2. Description of the Related Art FIG. 4 is a diagram showing a conventional example of a sensor section. 18 is a DC voltage source, 2 to 5 are MR elements for A phase detection,
6 to 9 are MR elements for detecting B phase, 10 is an A phase magnetic sensor,
Reference numeral 11 represents a B-phase magnetic sensor. FIG. 5 is a diagram showing a conventional example of a signal processing device. 19 is a two-phase oscillator, 20, 21
Is a multiplier, 22 is an adder, and 23 is a displacement amount calculation circuit. FIG. 6A shows an output waveform of the magnetic sensor in FIG.
FIG. 6B is a diagram showing two input waveforms of the displacement amount calculation circuit in FIG. In the conventional magnetic encoder, as shown in FIG.
As shown in FIG.
Is applied, and as shown in FIG. 5, the A-phase signal Vaout ′ =
sin θ, B-phase signal Vbout ′ = cos θ are multiplied by a sine wave signal and a cosine wave signal (hereinafter referred to as carriers), respectively, and one of the signal obtained by adding them and the carrier, for example, a cosine wave signal The phase difference is measured by a counter circuit using a clock or the like, and the displacement amount θ is detected. At this time, the amplitude fluctuations and offsets of the incremental phases (A phase, B phase) due to axial deviation of the encoder rotating drum, unbalance of resistance values of the MR elements constituting the magnetic sensor, etc., limit high resolution. In addition, since the encoder output is a DC output in the related art, the CPU is used to compensate for the amplitude variation and offset.

【0003】[0003]

【発明が解決しようとする課題】ところが従来方式で
は、CPUを用いるためA/Dコンバータ等周辺回路構
成が複雑であり、また処理時間もかかるため応答周波数
も制限される等の問題点があった。そこで本発明は簡単
な回路構成で高速応答性を維持したままエンコーダ出力
信号の振幅変動、オフセット、等に影響されず高分解能
化を実現する信号処理装置を提供することにある。
However, the conventional method has a problem in that the peripheral circuit configuration such as the A / D converter is complicated because the CPU is used, and the response frequency is limited due to the long processing time. . It is therefore an object of the present invention to provide a signal processing device that realizes high resolution without being affected by amplitude fluctuations, offsets, etc. of encoder output signals while maintaining high-speed response with a simple circuit configuration.

【0004】[0004]

【課題を解決しようとする手段】上記課題を解決するた
め、本発明はインクリメンタル相(A相、B相)検出の
磁気センサには従来図4のように直流電圧を印加してい
たものを発振器から交流電圧を印加することによりエン
コーダ出力信号を振幅変調し、ACカップリングするこ
とによりオフセット成分を除去し、前記交流電圧の周波
数により同期検波した信号振幅Va 、Vb の振幅比から
位置、角度の変位量θを式(1)のように求めるもので
ある。 θ=tan-1(Va /Vb ) (1)
In order to solve the above problems, the present invention uses an incremental phase (A phase, B phase) detection magnetic sensor to which a DC voltage is conventionally applied as shown in FIG. By applying an AC voltage from the encoder, the encoder output signal is amplitude-modulated, the AC coupling is performed to remove the offset component, and the position and the angle are calculated from the amplitude ratio of the signal amplitudes Va and Vb synchronously detected by the frequency of the AC voltage. The displacement amount θ is obtained by the equation (1). θ = tan −1 (Va / Vb) (1)

【0005】[0005]

【作用】上記手段により、簡単な回路構成で高速応答性
を維持したまま、エンコーダ回転ドラムの軸ぶれやMR
素子の抵抗値のアンバランス等に起因する振幅変動やオ
フセット等に影響されずに高分解能化を図ることができ
る。
With the above-mentioned means, while the high-speed response is maintained with a simple circuit structure, the shaft runout of the encoder rotary drum and the MR
High resolution can be achieved without being affected by amplitude fluctuations, offsets, etc. due to unbalanced resistance values of the elements.

【0006】[0006]

【実施例】図1は本発明のセンサ部の具体的実施例、ま
た図2は本発明の信号処理装置の具体的実施例である。
図1において、1は発振器である。また図2において、
12、13はACカップリング装置、14、15は同期
検波器、16は除算器、17は変位量演算回路である。
今、発振器1の出力信号をVc・ sin(ωt)とおく
とA相、B相出力信号Vaout ,Vboutはそれぞれ Vaout=Vc・ sin(ωt)・ k・ sinθ (2) Vbout=Vc・ sin(ωt)・ k・ cosθ (3) となりこれらは図3(a)に示すように振幅変調された
信号となる。仮にここでそれぞれの信号にオフセット成
分があったとしても図2のようにACカップリングする
ことによりこのオフセット成分は除去することができ
る。このAC信号を発振器(キャリア)信号と同期検波
することにより図3(b)のような互いに電気角で90
度位相の異なる正弦波信号Va、Vbを得ることができ
る。変位量の検出は図2中の変位量演算回路17により
式(1)に従い演算することにより行う。変位量の検出
すなわち位相検出は互いに電気角で90度位相の異なる
2つの信号の振幅比の計算から求めることができる。し
たがって、エンコーダ回転ドラムの軸ぶれによる振幅変
動があっても、この時の振幅変動は、A相磁気センサと
B相磁気センサは十分近い位置にあるため、同じ割合で
起こり、振幅比を取るこの方式においては変位量の検出
に影響を与えない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a specific embodiment of the sensor section of the present invention, and FIG. 2 shows a specific embodiment of the signal processing apparatus of the present invention.
In FIG. 1, 1 is an oscillator. Also in FIG.
Reference numerals 12 and 13 are AC coupling devices, 14 and 15 are synchronous detectors, 16 is a divider, and 17 is a displacement amount calculation circuit.
Assuming that the output signal of the oscillator 1 is Vc · sin (ωt), the A-phase and B-phase output signals Vaout and Vbout are Vaout = Vc · sin (ωt) · k · sin θ (2) Vbout = Vc · sin ( ωt) · k · cos θ (3), which are amplitude-modulated signals as shown in FIG. Even if there is an offset component in each signal, the offset component can be removed by AC coupling as shown in FIG. By synchronously detecting this AC signal with the oscillator (carrier) signal, 90 degrees in electrical angle with respect to each other as shown in FIG.
It is possible to obtain the sine wave signals Va and Vb having different degrees of phase. The displacement amount is detected by the displacement amount calculation circuit 17 shown in FIG. 2 according to the equation (1). The detection of the displacement amount, that is, the phase detection can be obtained by calculating the amplitude ratio of two signals whose phases differ by 90 degrees in electrical angle. Therefore, even if there is an amplitude variation due to shaft deviation of the encoder rotating drum, the amplitude variation at this time occurs at the same ratio because the A-phase magnetic sensor and the B-phase magnetic sensor are sufficiently close to each other, and the amplitude ratio is calculated. The method does not affect the detection of the displacement amount.

【0007】[0007]

【発明の効果】以上述べたように本発明によれば、エン
コーダ回転ドラムの軸ぶれやMR素子の抵抗値のアンバ
ランス等に起因するエンコーダ出力信号の振幅変動やオ
フセット等に影響されず簡単な回路構成で、電気的高分
解能化が図れるという効果がある。なお本発明は、回転
形磁気エンコーダとリニア形磁気エンコーダの両方につ
いて適用できる。すなわち回転形磁気エンコーダの場合
は角度、リニア形磁気エンコーダの場合は位置を検出で
きる。
As described above, according to the present invention, a simple operation is not affected by fluctuations in the amplitude of an encoder output signal or offsets caused by shaft runout of an encoder rotary drum, imbalance of resistance values of MR elements, and the like. The circuit configuration has the effect of achieving high electrical resolution. The present invention is applicable to both rotary magnetic encoders and linear magnetic encoders. That is, an angle can be detected in the case of a rotary magnetic encoder, and a position can be detected in the case of a linear magnetic encoder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセンサ部の実施例を説明する図であ
る。
FIG. 1 is a diagram illustrating an embodiment of a sensor unit according to the present invention.

【図2】本発明の信号処理装置の実施例を説明する図で
ある。
FIG. 2 is a diagram illustrating an embodiment of a signal processing device of the present invention.

【図3】図2の各部の信号波形を説明する図である。FIG. 3 is a diagram illustrating a signal waveform of each part of FIG.

【図4】センサ部の従来例を説明する図である。FIG. 4 is a diagram illustrating a conventional example of a sensor unit.

【図5】信号処理装置の従来例を説明する図である。FIG. 5 is a diagram illustrating a conventional example of a signal processing device.

【図6】図5の各部の信号波形を説明する図である。FIG. 6 is a diagram for explaining signal waveforms of respective parts of FIG.

【符号の説明】[Explanation of symbols]

1 発振器 2〜5 A相検出用MR素子 6〜9 B相検出用MR素子 10 A相磁気センサ 11 B相磁気センサ 12、13 ACカップリング装置 14、15 同期検波器 16 除算器 17 変位量演算回路 18 直流電圧源 19 2相発振器 20、21 乗算器 22 加算器 23 変位量演算回路 1 Oscillator 2-5 A phase detection MR element 6-9 B phase detection MR element 10 A phase magnetic sensor 11 B phase magnetic sensor 12, 13 AC coupling device 14, 15 Synchronous detector 16 Divider 17 Displacement amount calculation Circuit 18 DC voltage source 19 Two-phase oscillator 20, 21 Multiplier 22 Adder 23 Displacement amount calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同一ピッチでN極とS極を交互に繰り返し
着磁された磁気媒体と前記磁気媒体表面近傍の磁界を検
出する磁気センサからなる磁気エンコーダの信号処理装
置において、電気角で90度位相の異なる二つの信号を
それぞれ検出する磁気抵抗素子からなる二つの磁気セン
サを並列に接続し、前記二つの磁気センサに一定周波数
の正弦波信号を発生する発振器を並列接続し、前記二つ
の磁気センサの各出力信号から交流分のみをそれぞれ取
り出す二つのACカップリング装置と前記発振器の発振
周波数に同期し、前記二つのACカップリング装置の出
力信号を検波する二つの同期検波器と、前記二つの同期
検波器からの出力信号の振幅比を求める除算器と、前記
除算器出力から変位量を演算する変位量演算回路を備え
たことを特徴とする磁気エンコーダの信号処理装置。
1. A signal processing device of a magnetic encoder, comprising a magnetic medium magnetized by alternately repeating N poles and S poles at the same pitch and a magnetic sensor for detecting a magnetic field in the vicinity of the surface of the magnetic medium, in an electrical angle of 90. Two magnetic sensors each consisting of a magnetoresistive element for detecting two signals having different degrees of phase are connected in parallel, and an oscillator generating a sine wave signal of a constant frequency is connected in parallel to the two magnetic sensors, Two AC coupling devices that respectively take out only an AC component from each output signal of the magnetic sensor, and two synchronous detectors that detect the output signals of the two AC coupling devices in synchronization with the oscillation frequencies of the oscillators, It is characterized by comprising a divider for obtaining an amplitude ratio of output signals from two synchronous detectors, and a displacement amount calculation circuit for calculating a displacement amount from the output of the divider. The signal processing apparatus of the magnetic encoder.
JP12472791A 1991-04-25 1991-04-25 Signal processor for magnetic encoder Pending JPH07239247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12472791A JPH07239247A (en) 1991-04-25 1991-04-25 Signal processor for magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12472791A JPH07239247A (en) 1991-04-25 1991-04-25 Signal processor for magnetic encoder

Publications (1)

Publication Number Publication Date
JPH07239247A true JPH07239247A (en) 1995-09-12

Family

ID=14892615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12472791A Pending JPH07239247A (en) 1991-04-25 1991-04-25 Signal processor for magnetic encoder

Country Status (1)

Country Link
JP (1) JPH07239247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235307A (en) * 1999-03-15 2001-08-31 Tadatoshi Goto Rotary type position detecting apparatus
JP2008134215A (en) * 2006-10-30 2008-06-12 Hitachi Ltd Displacement sensor using gmr element, angle detecting sensor using gmr element, and semiconductor device used therefor
JP2020085573A (en) * 2018-11-20 2020-06-04 Tdk株式会社 Magnetism detector and mobile body detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235307A (en) * 1999-03-15 2001-08-31 Tadatoshi Goto Rotary type position detecting apparatus
JP2008134215A (en) * 2006-10-30 2008-06-12 Hitachi Ltd Displacement sensor using gmr element, angle detecting sensor using gmr element, and semiconductor device used therefor
JP2020085573A (en) * 2018-11-20 2020-06-04 Tdk株式会社 Magnetism detector and mobile body detector

Similar Documents

Publication Publication Date Title
US6788221B1 (en) Signal processing apparatus and method
US4772815A (en) Variable refluctance position transducer
US4991429A (en) Torque angle and peak current detector for synchronous motors
US6522097B2 (en) Position detecting apparatus and abnormality detecting apparatus
US4795954A (en) Resolver controlling method and apparatus
EP0458148A2 (en) Angle of rotation detector
JPH08334306A (en) Digital angle-detecting method
CN109923376A (en) Rotation angle detection apparatus and rotation angle detecting method
JPH07239247A (en) Signal processor for magnetic encoder
JP2018205166A (en) Digital conversion method of analog signal
KR20180114743A (en) Absolute encoder, method for generating look-up table of sinusoidal wave, and method for detecting absolute angle using the same
JPH1019602A (en) Magnetic encoder
KR0155878B1 (en) A position detecting method and apparatus of a linear stepping motor
JP3151733B2 (en) Position detection device
Sivappagari et al. High accuracy resolver to digital converter based on modified angle tracking observer method
JP3407413B2 (en) Encoder offset correction method
JP3100841B2 (en) Rotational position detecting device and method
JPH0230726Y2 (en)
JP2004053535A (en) Rotational speed of rotating body detecting system and method, rotation control system and image forming apparatus
US20220404174A1 (en) Position detection by an inductive position sensor
JP2018112450A (en) Rotational angle detection device
JP3683071B2 (en) Motor rotation speed control device
JPS61182579A (en) Resolver speed detection system
Giulianelli et al. Fiber-optic circuit for direct phase conversion with two outputs in quadrature
Benammar et al. An open-loop technique for angle determination from position encoders