JP7455184B1 - Silicon nitride thin plate and silicon nitride resin composite plate - Google Patents

Silicon nitride thin plate and silicon nitride resin composite plate Download PDF

Info

Publication number
JP7455184B1
JP7455184B1 JP2022206468A JP2022206468A JP7455184B1 JP 7455184 B1 JP7455184 B1 JP 7455184B1 JP 2022206468 A JP2022206468 A JP 2022206468A JP 2022206468 A JP2022206468 A JP 2022206468A JP 7455184 B1 JP7455184 B1 JP 7455184B1
Authority
JP
Japan
Prior art keywords
silicon nitride
thin plate
type silicon
nitride particles
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022206468A
Other languages
Japanese (ja)
Inventor
理 松本
光隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruwa Co Ltd
Original Assignee
Maruwa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruwa Co Ltd filed Critical Maruwa Co Ltd
Priority to JP2022206468A priority Critical patent/JP7455184B1/en
Application granted granted Critical
Publication of JP7455184B1 publication Critical patent/JP7455184B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】絶縁破壊電圧と熱伝導率を高めた窒化ケイ素薄板及び窒化ケイ素樹脂複合板を提供する。【解決手段】焼結されたβ型窒化ケイ素粒子を含有する板厚が160μm以下である薄板であって、前記β型窒化ケイ素粒子には、長軸及び短軸を有する六角柱状をなし、長軸長の前記板厚に対する比が0.7以上であり、前記薄板の表面の法線からの長軸の傾きが45度以下である、長形β型窒化ケイ素粒子が含まれる。窒化ケイ素樹脂複合板は、この薄板とその少なくとも一方の表面に密着している樹脂層とを含む。【選択図】図1[Problem] To provide a silicon nitride thin plate and a silicon nitride resin composite plate with improved breakdown voltage and thermal conductivity. [Solution] A thin plate containing sintered β-type silicon nitride particles and having a plate thickness of 160 μm or less, the β-type silicon nitride particles include elongated β-type silicon nitride particles having a hexagonal column shape with a long axis and a short axis, the ratio of the long axis length to the plate thickness being 0.7 or more, and the inclination of the long axis from the normal line to the surface of the thin plate being 45 degrees or less. A silicon nitride resin composite plate includes this thin plate and a resin layer adhered to at least one of its surfaces. [Selected Figure] Figure 1

Description

本発明は、窒化ケイ素薄板及び該窒化ケイ素薄板と樹脂層との複合板に関するものである。 The present invention relates to a silicon nitride thin plate and a composite plate of the silicon nitride thin plate and a resin layer.

電子機器や半導体デバイスに用いる絶縁回路基板としてとして注目されているのが窒化ケイ素(Si)材料である。窒化ケイ素焼結体は、アルミナや窒化ケイ素焼結体と比較して強度や破壊靭性が高いことから、絶縁回路基板へ直接厚銅を接合することが可能となり、モジュールの小型化に貢献する。そのため、機械的強度とともに熱伝導性能を改良した窒化ケイ素焼結体の開発が行われている。 Silicon nitride (Si 3 N 4 ) material is attracting attention as an insulating circuit board used in electronic equipment and semiconductor devices. Silicon nitride sintered bodies have higher strength and fracture toughness than alumina or silicon nitride sintered bodies, which makes it possible to bond thick copper directly to insulated circuit boards, contributing to the miniaturization of modules. Therefore, silicon nitride sintered bodies with improved mechanical strength and thermal conductivity are being developed.

例えば、特許文献1は、Al含有量が0.1重量%以下の窒化ケイ素粉末に、Mg,Ca,Sr,Ba,Y,La,Ce,Pr,Nd,Sm,Gd,Dy,Ho,Er,Ybのうちから選ばれる1種または2種以上の元素の焼結助剤を1重量%以上15重量%以下の範囲内で添加して成形した後、1気圧以上500気圧以下の窒素ガス圧下で、1700℃以上2300℃以下の温度で焼成することにより、機械的特性および熱伝導性能を改良した窒化ケイ素質焼結体基板を製造する方法を開示する。 For example, Patent Document 1 discloses that Mg, Ca, Sr, Ba, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er are added to silicon nitride powder with an Al content of 0.1% by weight or less. , Yb, in an amount of 1% to 15% by weight as a sintering aid, and then molded under a nitrogen gas pressure of 1 atm to 500 atm. Discloses a method for producing a silicon nitride sintered substrate with improved mechanical properties and thermal conductivity by firing at a temperature of 1700° C. or higher and 2300° C. or lower.

特許文献2は、7%以下のβ型窒化ケイ素(β-Si)を含む窒化ケイ素粉末を原料として用いるとともに、スラリーの粘度を13000cps以上に調整した上でシート成形体を形成した後、焼成することにより、β型窒化ケイ素粒子の配向度を制御して、熱伝導率および機械的強度を改良した窒化ケイ素質焼結体基板およびその製造方法を開示する。 Patent Document 2 discloses that silicon nitride powder containing 7% or less of β-type silicon nitride (β-Si 3 N 4 ) is used as a raw material, the viscosity of the slurry is adjusted to 13,000 cps or more, and then a sheet molded body is formed. Disclosed is a silicon nitride sintered substrate whose thermal conductivity and mechanical strength are improved by controlling the degree of orientation of β-type silicon nitride particles by firing, and a method for manufacturing the same.

特許文献3は、従来の窒化ケイ素基板に他部材を圧接する場合、基板表面の微視的な凹凸により基板表面と他部材との間に隙間が生じ、放熱性が悪くなり、圧接時に基板にクラックが発生しやすいという問題に対応するため、窒化ケイ素基板の表面に、ビッカース硬度200以下で厚さ20~100μmの樹脂表面層を形成して、前記隙間を生じにくし、放熱性を高め、前記クラックを発生しにくくした絶縁シートを開示する。 Patent Document 3 discloses that when another member is pressure-bonded to a conventional silicon nitride substrate, a gap is created between the substrate surface and the other member due to microscopic irregularities on the substrate surface, which deteriorates heat dissipation and causes damage to the substrate during pressure-welding. In order to deal with the problem of easy cracking, a resin surface layer with a Vickers hardness of 200 or less and a thickness of 20 to 100 μm is formed on the surface of the silicon nitride substrate to prevent the formation of the gaps and improve heat dissipation. An insulating sheet that is less susceptible to cracking is disclosed.

特許文献4は、従来のマトリックス樹脂中に無機粒子を混合した電気絶縁性熱伝導シートでは、無機粒子の配合量を増加させるとシートの柔軟性が失われるという問題に対応するため、互いに並置されている複数の板状セラミック部材(窒化ケイ素、その他)と、該板状セラミック部材を包埋している包埋樹脂とを有し、可撓性と、高い電気絶縁性及び熱伝導率を備えた電気絶縁性熱伝導シートを開示する。 Patent Document 4 discloses that in order to deal with the problem that in conventional electrically insulating heat conductive sheets in which inorganic particles are mixed in a matrix resin, the flexibility of the sheet is lost when the amount of inorganic particles is increased, the sheets are arranged side by side. It has a plurality of plate-shaped ceramic members (silicon nitride, etc.) and an embedding resin that embeds the plate-shaped ceramic members, and has flexibility, high electrical insulation, and thermal conductivity. An electrically insulating and thermally conductive sheet is disclosed.

特開平9-30866号公報Japanese Patent Application Publication No. 9-30866 特開2019-52072号公報JP 2019-52072 Publication 特開2015-092600号公報JP2015-092600A 特開2019-176060号公報JP2019-176060A

特許文献1及び特許文献2で製造される窒化ケイ素質焼結体基板は、絶縁破壊電圧と熱伝導率についてさらに改善の余地がある。 The silicon nitride sintered substrates manufactured in Patent Documents 1 and 2 have room for further improvement in dielectric breakdown voltage and thermal conductivity.

特許文献3は、樹脂が窒化ケイ素基板表面の微視的な凹凸に入り込むことにより放熱性を高めたものであり、窒化ケイ素粒子の微構造によって熱抵抗を低減させるという発想はない。 Patent Document 3 improves heat dissipation by allowing the resin to penetrate into microscopic irregularities on the surface of a silicon nitride substrate, and there is no idea of reducing thermal resistance by the microstructure of silicon nitride particles.

特許文献4は、複数の板状セラミック部材を樹脂に包埋することにより可撓性と熱伝導性を得るものであり、やはり窒化ケイ素粒子の微構造によって熱抵抗を低減させるという発想はない。 Patent Document 4 obtains flexibility and thermal conductivity by embedding a plurality of plate-shaped ceramic members in resin, and there is no idea of reducing thermal resistance by using the microstructure of silicon nitride particles.

そこで、本発明の目的は、絶縁破壊電圧と熱伝導率を高めた窒化ケイ素薄板及び窒化ケイ素樹脂複合板を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a silicon nitride thin plate and a silicon nitride resin composite plate with increased dielectric breakdown voltage and thermal conductivity.

[1]焼結されたβ型窒化ケイ素粒子を含有する、板厚が160μm以下である薄板であって、
前記β型窒化ケイ素粒子には、長軸及び短軸を有する六角柱状をなし、長軸方向の長さ(以下「長軸長」という。)の前記板厚に対する比が1.01以上であり、かつ、前記薄板の表面の法線からの長軸の傾きが45度以下である、長形β型窒化ケイ素粒子が含まれ、
前記長形β型窒化ケイ素粒子の端が、前記薄板の少なくとも一方の表面から突出していることを特徴とする窒化ケイ素薄板。
[1] A thin plate containing sintered β-type silicon nitride particles and having a thickness of 160 μm or less,
The β-type silicon nitride particles have a hexagonal column shape having a long axis and a short axis, and the ratio of the length in the long axis direction (hereinafter referred to as "long axis length") to the plate thickness is 1.01 or more. , and includes elongated β-type silicon nitride particles whose long axis has an inclination of 45 degrees or less from the normal to the surface of the thin plate,
A silicon nitride thin plate characterized in that an end of the long β-type silicon nitride particles protrudes from at least one surface of the thin plate.

[2]前記板厚が120μm以下である前記[1]記載の窒化ケイ素薄板。 [2] The silicon nitride thin plate according to [1] above, wherein the plate thickness is 120 μm or less.

[3]前記傾きが35度以下である前記[1]又は[2]記載の窒化ケイ素薄板。 [3] The silicon nitride thin plate according to [1] or [2], wherein the inclination is 35 degrees or less.

[4]前記長形β型窒化ケイ素粒子の長軸長/短軸長(アスペクト比)が4~40である前記[1]~[3]のいずれか一項に記載の窒化ケイ素薄板。 [4] The silicon nitride thin plate according to any one of [1] to [3] , wherein the long axis length/short axis length (aspect ratio) of the long β-type silicon nitride particles is 4 to 40 .

[5]前記長形β型窒化ケイ素粒子には、長軸長の前記板厚に対する比が1.01~1.34であるものが含まれる前記[1]~[4]のいずれか一項に記載の窒化ケイ素薄板。 [5] Any one of [1] to [4] above, wherein the elongated β-type silicon nitride particles include those in which the ratio of the long axis length to the plate thickness is 1.01 to 1.34. The silicon nitride thin plate described in .

[6]前記長形β型窒化ケイ素粒子の端が、前記薄板の両方の表面から突出している前記[5]記載の窒化ケイ素薄板。 [6] The silicon nitride thin plate according to [5], wherein the ends of the long β-type silicon nitride particles protrude from both surfaces of the thin plate.

[7]前記薄板の表面の粗さを示す算術平均高さ面粗さSaが0.7μm以上である前記[1]~[6]のいずれか一項に記載の窒化ケイ素薄板。 [7] The silicon nitride thin plate according to any one of [1] to [6] above, wherein the arithmetic mean height surface roughness Sa indicating the surface roughness of the thin plate is 0.7 μm or more.

[8]前記薄板の表面が焼結上がり面である前記[1]~[7]のいずれか一項に記載の窒化ケイ素薄板。 [8] The silicon nitride thin plate according to any one of [1] to [7], wherein the surface of the thin plate is a sintered surface.

[9]前記薄板の絶縁破壊電圧が45kV/mm以上である前記[1]~[8]のいずれか一項に請求項1記載の窒化ケイ素薄板。 [9] The silicon nitride thin plate according to any one of [1] to [8] above, wherein the thin plate has a dielectric breakdown voltage of 45 kV/mm or more.

[10]前記[1]~[9]のいずれか一項に記載の薄板と、該薄板の少なくとも一方の表面に密着している樹脂層とを含むことを特徴とする窒化ケイ素樹脂複合板。 [10] A silicon nitride resin composite board comprising the thin plate according to any one of [1] to [9] above, and a resin layer that is in close contact with at least one surface of the thin plate.

[11]前記[10]記載の窒化ケイ素樹脂複合板を用いた回路基板。 [11] A circuit board using the silicon nitride resin composite board according to [10] above.

[12]前記[10]記載の窒化ケイ素樹脂複合板を用いた放熱板。 [12] A heat sink using the silicon nitride resin composite plate described in [10] above.

[13]前記[10]記載の窒化ケイ素樹脂複合板を用いた絶縁板。 [13] An insulating board using the silicon nitride resin composite board according to [10] above.

本発明によれば、絶縁破壊電圧と熱伝導率を高めた窒化ケイ素薄板及び窒化ケイ素樹脂複合板を提供することができる。 According to the present invention, it is possible to provide a silicon nitride thin plate and a silicon nitride resin composite plate with increased dielectric breakdown voltage and thermal conductivity.

図1は実施例1の垂直切断断面の二次電子像である。FIG. 1 is a secondary electron image of a vertically cut cross section of Example 1. 図2は実施例2の垂直切断断面の二次電子像である。FIG. 2 is a secondary electron image of a vertical section of Example 2. 図3は実施例5の垂直切断断面の二次電子像である。FIG. 3 is a secondary electron image of a vertical section of Example 5. 図4は比較例1の垂直切断断面の二次電子像である。FIG. 4 is a secondary electron image of a vertically cut cross section of Comparative Example 1. 図5は窒化ケイ素樹脂複合板の側面図である。FIG. 5 is a side view of the silicon nitride resin composite board. 図6は窒化ケイ素薄板を焼成する際の積層を説明する概略図である。FIG. 6 is a schematic diagram illustrating lamination when firing a silicon nitride thin plate.

<1>窒化ケイ素薄板
焼結されたβ型窒化ケイ素粒子を含有する板厚が160μm以下である薄板であって、
前記β型窒化ケイ素粒子には、長軸及び短軸を有する六角柱状をなし、長軸長の前記板厚に対する比が0.7以上であり、かつ、前記薄板の表面の法線からの長軸の傾きが45度以下である、長形β型窒化ケイ素粒子が含まれることを特徴とする。
<1> Silicon nitride thin plate A thin plate containing sintered β-type silicon nitride particles and having a thickness of 160 μm or less,
The β-type silicon nitride particles have a hexagonal column shape with a long axis and a short axis, the ratio of the long axis length to the plate thickness is 0.7 or more, and the length from the normal to the surface of the thin plate is 0.7 or more. It is characterized by containing elongated β-type silicon nitride particles whose axial inclination is 45 degrees or less.

窒化ケイ素薄板の板厚が160μm以下であることにより、薄板に長形β型窒化ケイ素粒子が含まれやすい。板厚が例えば160μmのとき、長形β型窒化ケイ素粒子は長軸長が112μmで前記比が0.7となる。 When the thickness of the silicon nitride thin plate is 160 μm or less, long β-type silicon nitride particles are likely to be included in the thin plate. For example, when the plate thickness is 160 μm, the long axis length of the long β-type silicon nitride particles is 112 μm, and the ratio is 0.7.

窒化ケイ素薄板の板厚が120μm以下(さらに好ましくは120μm未満)であると、薄板に長形β型窒化ケイ素粒子がより含まれやすいため好ましい。板厚が例えば120μmのとき、長形β型窒化ケイ素粒子は長軸長が84μmで前記比が0.7となる。 It is preferable that the thickness of the silicon nitride thin plate is 120 μm or less (more preferably less than 120 μm) because the thin plate is more likely to contain long β-type silicon nitride particles. For example, when the plate thickness is 120 μm, the long axis length of the long β-type silicon nitride particles is 84 μm, and the ratio is 0.7.

長形β型窒化ケイ素粒子の長軸長/短軸長(アスペクト比)は、特に限定されないが、4~40を例示できる。 The long axis length/short axis length (aspect ratio) of the long β-type silicon nitride particles is not particularly limited, but may be 4 to 40, for example.

長形β型窒化ケイ素粒子は、長軸及び短軸を有する六角柱状をなし、長軸長の前記板厚に対する比が0.7以上であり、かつ、前記薄板の表面の法線からの長軸の傾きが45度以下(好ましくは35度以下)であることにより、薄板の一方の表面付近と他方の表面付近とを短く結ぶように配向しており、次の(ア)(イ)のようにして熱伝導率と絶縁破壊電圧を改善する。 The long β-type silicon nitride particles have a hexagonal columnar shape with a long axis and a short axis, the ratio of the long axis length to the plate thickness is 0.7 or more, and the length from the normal to the surface of the thin plate is 0.7 or more. By having an axis inclination of 45 degrees or less (preferably 35 degrees or less), the thin plate is oriented so that the vicinity of one surface and the vicinity of the other surface are connected briefly, and the following (a) and (b) are achieved. In this way, thermal conductivity and breakdown voltage are improved.

(ア)前記配向の長形β型窒化ケイ素粒子が、熱を両表面付近間で効率良く伝えるため、薄板の板厚方向の熱伝導率が高くなり、絶縁基板として用いたときの放熱性が向上する。
(イ)一般に窒化ケイ素粒子と粒界相が接する界面は、結晶の不規則性が乱れ、イオンの拡散が早くなると考えられるため、電界の印加方向に対して絶縁破壊が生じやすい。これに対し本発明では、前記配向の長形β型窒化ケイ素粒子が、板厚方向でみた窒化ケイ素粒子と粒界相の界面の数を少なくすることで、絶縁破壊電圧を改善する。
(a) The oriented long β-type silicon nitride particles efficiently transfer heat between the two surfaces, increasing the thermal conductivity in the thickness direction of the thin plate and improving heat dissipation when used as an insulating substrate. improves.
(a) In general, it is thought that at the interface where silicon nitride particles and the grain boundary phase are in contact, the irregularity of the crystal is disturbed and ion diffusion is accelerated, so that dielectric breakdown is likely to occur in the direction of application of the electric field. In contrast, in the present invention, the oriented elongated β-type silicon nitride particles reduce the number of interfaces between the silicon nitride particles and the grain boundary phase in the thickness direction, thereby improving the dielectric breakdown voltage.

長形β型窒化ケイ素粒子の端が、薄板の少なくとも一方の表面から露出又は突出していることが好ましい。該表面に形成する放熱グリスや樹脂層との密着性が高まり、熱伝導率がさらに高くなるからである。 Preferably, the ends of the elongated β-type silicon nitride particles are exposed or protrude from at least one surface of the thin plate. This is because the adhesion with the heat dissipating grease or resin layer formed on the surface is increased, and the thermal conductivity is further increased.

長形β型窒化ケイ素粒子には、長軸長の前記板厚に対する比が1以上であるものが含まれることが好ましい。前述した熱伝導率と絶縁破壊電圧を改善する作用が高くなるからである。 Preferably, the long β-type silicon nitride particles include particles in which the ratio of the long axis length to the plate thickness is 1 or more. This is because the effect of improving the thermal conductivity and dielectric breakdown voltage described above is enhanced.

長形β型窒化ケイ素粒子の端が、前記薄板の両方の表面から露出又は突出していることが好ましい。該両方の表面に形成する放熱グリスや樹脂層との密着性が高まり、熱伝導率がさらに高くなるからである。 Preferably, the ends of the elongated β-type silicon nitride particles are exposed or protrude from both surfaces of the thin plate. This is because the adhesion to the heat dissipating grease or resin layer formed on both surfaces is increased, and the thermal conductivity is further increased.

薄板の表面の粗さを示す算術平均高さSaが0.7μm以上であることが好ましい。このことは、上記のように長形窒化ケイ素粒子の端が薄板の表面に露出又は突出していることを示しているからである。 It is preferable that the arithmetic mean height Sa, which indicates the surface roughness of the thin plate, is 0.7 μm or more. This is because, as described above, the ends of the elongated silicon nitride particles are exposed or protrude from the surface of the thin plate.

薄板の表面が焼結上がり面であることが好ましい。上記のように薄板の表面に露出又は突出している長形窒化ケイ素粒子の端を(研磨やホーニング等の加工で除去することなく)残した方が好ましいからである。 It is preferable that the surface of the thin plate is a sintered surface. This is because it is preferable to leave the edges of the elongated silicon nitride particles exposed or protruding from the surface of the thin plate (without removing them by processing such as polishing or honing) as described above.

薄板の絶縁破壊電圧が45kV/mm以上であることが好ましい。 It is preferable that the dielectric breakdown voltage of the thin plate is 45 kV/mm or more.

<2>窒化ケイ素樹脂複合板
上記<1>の薄板と、該薄板の少なくとも一方の表面に接触している樹脂層とを含むことを特徴とする。
<2> Silicon Nitride Resin Composite Board This board is characterized by comprising the thin plate of <1> above and a resin layer in contact with at least one surface of the thin plate.

薄板に含まれる長形β型窒化ケイ素粒子の端は、薄板の表面の近傍にある確率が高く樹脂層に近接するため、熱伝導率が高くなる。特に、長形β型窒化ケイ素粒子の端が、薄板の少なくとも一方の表面から露出又は突出している場合には、該表面に形成する放熱グリスや樹脂層との密着性が高まり、熱伝導率がさらに高くなる。 The ends of the long β-type silicon nitride particles included in the thin plate are likely to be near the surface of the thin plate and close to the resin layer, so that the thermal conductivity is high. In particular, when the ends of the long β-type silicon nitride particles are exposed or protrude from at least one surface of the thin plate, the adhesion with the thermal paste or resin layer formed on the surface increases, and the thermal conductivity increases. It gets even higher.

樹脂層としては、次のものを例示できる。
(カ)液体状又はゲル状の樹脂が薄板の表面に接触して固化してなる樹脂層
液体状又はゲル状の樹脂は、薄板の表面及び露出又は突出している長形窒化ケイ素粒子の端に隙間なく密着するため好ましい。この樹脂としては、特に限定されないが、熱硬化性樹脂、反応硬化性樹脂、光硬化性樹脂等を例示でき、具体的にはシリコーン樹脂、エポキシ樹脂等を例示できる。
(キ)薄板の表面に接触する前から固体状である樹脂層
この樹脂層としては、特に限定されないが、柔軟な熱伝導性樹脂シートを例示できる。この樹脂としては、特に限定されないが、シリコーン樹脂、アクリル樹脂等を例示できる。
Examples of the resin layer include the following.
(f) A resin layer formed by a liquid or gel-like resin that comes into contact with the surface of the thin plate and solidifies.The liquid or gel-like resin is applied to the surface of the thin plate and the exposed or protruding edges of the elongated silicon nitride particles. It is preferable because it adheres closely without any gaps. Examples of this resin include, but are not limited to, thermosetting resins, reaction-curing resins, photo-curing resins, etc., and specific examples include silicone resins, epoxy resins, etc.
(g) A resin layer that is solid before it comes into contact with the surface of the thin plate. This resin layer is not particularly limited, but a flexible thermally conductive resin sheet can be exemplified. This resin is not particularly limited, but examples include silicone resin and acrylic resin.

樹脂層は、樹脂に金属粉末やセラミックス粉末等の高熱伝導性のフィラーが添加されて、熱伝導率が高められたものが好ましい。金属粉末としては、Cu粉末、Al粉末等を例示できる。セラミックス粉末としては、窒化アルミニウム粉末、窒化ケイ素粉末、アルミナ粉末、シリカ粉末等を例示できる。 The resin layer preferably has high thermal conductivity filler such as metal powder or ceramic powder added to the resin to increase thermal conductivity. Examples of the metal powder include Cu powder and Al powder. Examples of the ceramic powder include aluminum nitride powder, silicon nitride powder, alumina powder, and silica powder.

樹脂層の厚さは、特に限定されないが、好ましくは5~200μmであり、さらに好ましくは5~100μmμmである。 The thickness of the resin layer is not particularly limited, but is preferably 5 to 200 μm, more preferably 5 to 100 μm.

薄板単体の板厚方向の熱伝導率をフラッシュ法で測定することができない(薄板の板厚が同法の測定下限値を下回っている)ため、本願では後述するように窒化ケイ素樹脂複合板の板厚方向の熱伝導率を実施例と比較例とで比較評価した。 Since it is not possible to measure the thermal conductivity in the thickness direction of a single thin plate using the flash method (the thickness of the thin plate is below the lower measurement limit of the same method), in this application, we will measure the thermal conductivity of a silicon nitride resin composite plate as described later. Thermal conductivity in the plate thickness direction was compared and evaluated between Examples and Comparative Examples.

<3>用途
本発明の窒化ケイ素薄板及び窒化ケイ素樹脂複合板の用途としては、特に限定されないが、例えば半導体モジュール、LEDパッケージ、ペルチェモジュール、プリンタ、複合機、半導体レーザー、光通信、高周波などで使用される、回路基板、放熱板、絶縁板、高周波窓等を例示できる。
<3> Applications Applications of the silicon nitride thin plate and silicon nitride resin composite board of the present invention are not particularly limited, but include, for example, semiconductor modules, LED packages, Peltier modules, printers, multifunction devices, semiconductor lasers, optical communications, high frequencies, etc. Examples of the circuit boards, heat sinks, insulating plates, high frequency windows, etc. that are used include.

<4>窒化ケイ素薄板の製造方法
上記<1>の窒化ケイ素薄板を製造する方法について説明する。窒化ケイ素薄板の製造方法は、窒化ケイ素粉末を出発原料として用いるのではなく、シリコン粉末を出発原料とし、成形したシリコン粉末を窒素雰囲気中で加熱し、窒化と緻密化とを同時に行う反応焼結法による。一般的に、反応焼結法は、原料純度が高いため、焼結体の熱伝導率が向上するが、緻密化させるための原料調整や焼成条件が難しいと言われている。また、一般的な反応焼結法では、シリコン粉末から棒状のβ型窒化ケイ素粒子へ転換するため、その配向を板厚方向に制御することは困難であり、配向がランダムとなり易いことが分かっている。
<4> Method for manufacturing silicon nitride thin plate The method for manufacturing the silicon nitride thin plate described in <1> above will be described. The manufacturing method for silicon nitride thin plates does not use silicon nitride powder as a starting material, but rather uses silicon powder as a starting material, and uses reaction sintering, in which the formed silicon powder is heated in a nitrogen atmosphere and nitrided and densified at the same time. By law. In general, the reaction sintering method improves the thermal conductivity of the sintered body due to high raw material purity, but it is said that it is difficult to adjust the raw materials and firing conditions for densification. In addition, in the general reaction sintering method, silicon powder is converted into rod-shaped β-type silicon nitride particles, so it is difficult to control the orientation in the thickness direction, and it is known that the orientation tends to be random. There is.

窒化ケイ素薄板の製造方法は、主に、シリコンが完全に窒化ケイ素に窒化した際の窒化ケイ素換算で85~95モル%、希土類酸化物1~3モル%および窒化ケイ素マグネシウム4~12モル%のモル比率で、シリコン原料粉末、希土類酸化物粉末および窒化ケイ素マグネシウム粉末を混合して混合粉末を作製する混合工程と、混合粉末をスラリー化し、シート状に成形して成形体を作製する成形工程と、成形体を窒素雰囲気中で第1の温度から第2の温度まで加熱する窒化工程と、窒素雰囲気中、第3の温度および所定の時間で成形体を焼成して窒化ケイ素薄板を得る緻密化工程と、を含むことを特徴とする。以下、各工程について、より具体的に説明する。 The method for manufacturing silicon nitride thin plates mainly consists of 85 to 95 mol% of silicon nitride equivalent when silicon is completely nitrided to silicon nitride, 1 to 3 mol% of rare earth oxides, and 4 to 12 mol% of magnesium silicon nitride. A mixing step in which a silicon raw material powder, a rare earth oxide powder, and a silicon magnesium nitride powder are mixed in a molar ratio to produce a mixed powder, and a forming step in which the mixed powder is made into a slurry and formed into a sheet shape to produce a compact. , a nitriding step in which the compact is heated from a first temperature to a second temperature in a nitrogen atmosphere, and a densification step in which the compact is fired at a third temperature and for a predetermined time in a nitrogen atmosphere to obtain a silicon nitride thin plate. It is characterized by including a process. Each step will be explained in more detail below.

出発原料としてシリコン粉末を準備する。シリコン粉末と有機溶剤と分散剤とをボールミルで粉砕し、シリコン粉末の比表面積が5.0m/g以上、D99.9径が8~9.5μmとなるように粒度調整を行う。ここで、横軸を粒子径(μm)、縦軸を頻度(%)とした粒子径分布曲線において、D50径(メディアン径)は、頻度が50%の粒子径であり、D99.9径は、頻度が99.9%の(分布の最頻値に対応する)粒子径である。シリコン粉末の比表面積が5.0m/g以上となるように粒度調整を行う理由は、シリコン粉末の比表面積が5.0m/g以上とならないとシリコン粉末が均一に窒化せず、焼成後の基板にうねりが生じてしまうためである。また、D99.9径が8~9.5μmとなるように粒度調整を行う理由は、D99.9径が9.5μmよりも大きいと、粗大なシリコン粉末の中心部まで十分に窒化が進まずに未窒化の部分が発生してしまうため、また、D99.9径が8μmよりも小さいと粉砕が進みすぎたことでシリコン粒子の酸素量が増加し、焼成後の基板の熱伝導率が低下してしまうためである。 Prepare silicon powder as a starting material. The silicon powder, organic solvent, and dispersant are ground in a ball mill, and the particle size is adjusted so that the silicon powder has a specific surface area of 5.0 m 2 /g or more and a D99.9 diameter of 8 to 9.5 μm. Here, in a particle size distribution curve with the horizontal axis as particle diameter (μm) and the vertical axis as frequency (%), the D50 diameter (median diameter) is the particle diameter with a frequency of 50%, and the D99.9 diameter is , is the particle size (corresponding to the mode of the distribution) with a frequency of 99.9%. The reason why the particle size is adjusted so that the specific surface area of the silicon powder is 5.0 m 2 /g or more is that unless the specific surface area of the silicon powder is 5.0 m 2 /g or more, the silicon powder will not be nitrided uniformly and This is because the subsequent substrate will be undulated. Also, the reason why the particle size is adjusted so that the D99.9 diameter is 8 to 9.5 μm is that if the D99.9 diameter is larger than 9.5 μm, nitriding will not progress sufficiently to the center of the coarse silicon powder. In addition, if the D99.9 diameter is smaller than 8 μm, the amount of oxygen in the silicon particles increases due to excessive pulverization, and the thermal conductivity of the substrate after firing decreases. This is because you end up doing it.

また、焼結助剤として、希土類酸化物粉末および窒化ケイ素マグネシウム粉末を混合して混合粉末を作製する。窒化ケイ素マグネシウム粉末の比表面積は、9.0m/g以上であることが好ましい。 Further, as a sintering aid, rare earth oxide powder and silicon magnesium nitride powder are mixed to prepare a mixed powder. The specific surface area of the silicon magnesium nitride powder is preferably 9.0 m 2 /g or more.

次に、モル比として、窒化ケイ素換算で85~95モル%のシリコン、1~3モル%の希土類酸化物および4~12モル%の窒化ケイ素マグネシウムが混合される。この混合粉末に対し、ボールミルで十分に混合を行い、その後、バインダー、可塑剤および有機溶剤を添加し、スラリーとする。 Next, 85 to 95 mol % silicon, 1 to 3 mol % rare earth oxide, and 4 to 12 mol % silicon magnesium nitride are mixed in a molar ratio. This mixed powder is sufficiently mixed in a ball mill, and then a binder, a plasticizer, and an organic solvent are added to form a slurry.

次に、スラリーを真空脱泡し、粘度調整を行う。脱泡後のスラリーに含まれる有機溶剤の割合を35wt%以下とし、スラリーの粘度は15000~25000cpsとする。そして、ドクターブレード等によって厚み160μm以下(好ましくは100μm以下)のシート状の成形体を作製する。 Next, the slurry is vacuum degassed and the viscosity is adjusted. The ratio of organic solvent contained in the degassed slurry is set to 35 wt % or less, and the viscosity of the slurry is set to 15,000 to 25,000 cps. Then, a sheet-like molded product with a thickness of 160 μm or less (preferably 100 μm or less) is produced using a doctor blade or the like.

成形体は、無機充填率が47%以上となるように作製される。成形体の無機充填率を47%以上とするには、シリコン粉末の比表面積が9.0m/g以下(つまり、5.0~9.0m/gの範囲内)となるように粉砕粒度を調整し、かつ、脱泡後の有機溶剤の割合を35wt%以下とすることが好ましい。シリコン粉末の比表面積が9.0m/gよりも大きくなると、微粒のシリコン粉末の割合が多くなり、凝集を生じやすくなるため、充填性が悪くなる。また、脱泡後のスラリーに含まれる有機溶剤の割合が35wt%を超えると、シート成形時に揮発する有機溶剤分が多くなるため、乾燥収縮が大きくなり、成形体内に細かい気泡が生じやすくなる。なお、無機充填率の測定方法は以下のとおりである。測定に用いるシート成形体は、残留する有機溶剤が0.1wt%以下のものを使用する。シート成形体の体積および重量を測定し、成形体のグリーン密度ρ(g/cm)を測定する。その後、測定に用いたシート成形体を500℃/3hの大気中で脱バインダー処理を行う。脱バインダー処理後の重量を測定することで有機分率Pi(%)を求め、下記の式によって無機充填率Fi(%)の計算を行う。
Fi=ρ×(1-Pi/100)/ρth×100
ここで、ρthはミル配合時の理論密度であり、原料無機分の重量比から計算した値である。
The molded body is produced so that the inorganic filling rate is 47% or more. In order to make the inorganic filling rate of the compact 47% or more, the silicon powder must be pulverized so that the specific surface area is 9.0 m 2 /g or less (that is, within the range of 5.0 to 9.0 m 2 /g). It is preferable to adjust the particle size and keep the proportion of the organic solvent after defoaming to 35 wt% or less. When the specific surface area of the silicon powder is larger than 9.0 m 2 /g, the proportion of fine silicon powder increases and agglomeration tends to occur, resulting in poor filling properties. Furthermore, if the proportion of the organic solvent contained in the slurry after defoaming exceeds 35 wt%, the amount of organic solvent that evaporates during sheet molding will increase, resulting in increased drying shrinkage and the formation of fine bubbles in the molded product. The method for measuring the inorganic filling rate is as follows. The sheet molded body used for the measurement has a residual organic solvent of 0.1 wt % or less. The volume and weight of the sheet molded body are measured, and the green density ρ g (g/cm 3 ) of the molded body is measured. Thereafter, the sheet molded body used for the measurement is subjected to a binder removal treatment in the atmosphere at 500° C. for 3 hours. The organic fraction Pi (%) is determined by measuring the weight after the binder removal treatment, and the inorganic filling rate Fi (%) is calculated using the following formula.
Fi=ρ g ×(1-Pi/100)/ρ th ×100
Here, ρ th is the theoretical density at the time of mill blending, and is a value calculated from the weight ratio of the inorganic components of the raw materials.

次いで、作製したシート状の成形体を約500~800℃の乾燥空気雰囲気で脱バインダーを行う。その後、炉内で約1000℃(第1の温度)まで真空中で加熱した後、窒素加圧雰囲気とし、約1000℃から約1350℃(第2の温度)まで昇温させる。この際、窒素加圧雰囲気中で、第1の温度から第2の温度まで徐々に(例えば1℃/分)昇温させることで、成形体の窒化を行うことができる。そして、炉内をより高圧の窒素加圧雰囲気とし、第2の温度から第3の温度として約1750~2000℃(好適には1900℃)まで昇温させる。昇温後、第3の温度で長時間(例えば約8時間)の温度保持を行うことで、窒化された成形体を焼成し、成形体の緻密化を十分に行って、窒化ケイ素薄板を作製することができる。 Next, the produced sheet-like molded body is subjected to debinding in a dry air atmosphere at about 500 to 800°C. After that, it is heated in a vacuum to about 1000° C. (first temperature) in a furnace, and then the temperature is raised from about 1000° C. to about 1350° C. (second temperature) in a nitrogen pressurized atmosphere. At this time, the molded body can be nitrided by gradually raising the temperature from the first temperature to the second temperature (for example, 1° C./min) in a nitrogen pressurized atmosphere. Then, the inside of the furnace is made into a higher pressure nitrogen atmosphere, and the temperature is raised from the second temperature to a third temperature of about 1750 to 2000°C (preferably 1900°C). After raising the temperature, the nitrided molded body is fired by holding the temperature at the third temperature for a long time (for example, about 8 hours), and the molded body is sufficiently densified to produce a silicon nitride thin plate. can do.

上記説明した工程を経ることによって、β型窒化ケイ素粒子が基板の厚み方向に優先的に配向した窒化ケイ素薄板を製造することが可能である。すなわち、製造方法において、窒化ケイ素マグネシウムの使用と、酸化イットリウムの添加量を極力少なくすること(すなわち、希土類酸化物を1~3モル%とする)で成形体内の酸素量を抑えることで、窒化工程および緻密化工程における還元性が高まっていると考察され得る。このように還元性が高まると、シリコン粉末表面のシリコン酸化膜が還元され、SiO(g)が板厚方向へ揮散する。さらに、SiO(g)+CO(g)→Si(g)+CO(g)の還元反応が促進し、発生したSi(g)は緻密化前の多孔質体内で3Si(g)+2N2(g)→β-Siの反応過程を得て、気孔内でβ-Siが板厚方向へ析出すると考えられる。更に、熱処理温度が増加すると、気孔内で板厚方向に析出したβ-Siを核として板厚方向にβ型窒化ケイ素粒子が優先配向した窒化ケイ素基板が得られる。そして、板厚方向へβ型窒化ケイ素粒子が伸長することで、熱伝導率が高くなり、絶縁基板としての放熱性が向上することが考えられる。 By going through the steps described above, it is possible to manufacture a silicon nitride thin plate in which β-type silicon nitride particles are preferentially oriented in the thickness direction of the substrate. In other words, in the manufacturing method, the amount of oxygen in the molded body is suppressed by using magnesium silicon nitride and by minimizing the amount of yttrium oxide added (in other words, the amount of rare earth oxide is 1 to 3 mol%). It can be considered that the reducibility in the process and densification step is increased. When the reducibility increases in this way, the silicon oxide film on the surface of the silicon powder is reduced, and SiO(g) is volatilized in the thickness direction. Furthermore, the reduction reaction of SiO (g) + CO (g) → Si (g) + CO 2 (g) is promoted, and the generated Si (g) becomes 3Si (g) + 2N2 (g) in the porous body before densification. → It is thought that a reaction process of β-Si 3 N 4 is obtained, and β-Si 3 N 4 is precipitated in the thickness direction within the pores. Furthermore, when the heat treatment temperature increases, a silicon nitride substrate is obtained in which β-type silicon nitride particles are preferentially oriented in the thickness direction using β-Si 3 N 4 precipitated in the thickness direction within the pores as nuclei. It is thought that the extension of the β-type silicon nitride particles in the thickness direction increases the thermal conductivity and improves the heat dissipation performance of the insulating substrate.

なお、上記説明した工程は、一例にすぎず、本発明を限定するものではない。例えば、スラリーの成形方法はドクターブレード法に限定されず、スラリーは押出成形法、鋳込成形法等などでシート成形体に加圧成形されてもよい。 Note that the steps described above are merely examples and do not limit the present invention. For example, the method for forming the slurry is not limited to the doctor blade method, and the slurry may be pressure-formed into a sheet molded body using an extrusion method, a casting method, or the like.

次に、本発明を具体化した実施例について比較例と比較して説明する。なお、実施例の各部の材料、数量及び条件は例示であり、発明の要旨から逸脱しない範囲で適宜変更できる。 Next, examples embodying the present invention will be described in comparison with comparative examples. Note that the materials, quantities, and conditions of each part in the embodiments are merely illustrative, and can be changed as appropriate without departing from the gist of the invention.

Figure 0007455184000002
Figure 0007455184000002

Figure 0007455184000003
Figure 0007455184000003

表1に示す実施例1~4及び比較例1,2の窒化ケイ素薄板(板厚約0.085mm)、表2に示す実施例5及び比較例3の窒化ケイ素薄板(板厚約0.115mm)を、以下の条件および手順によって作製した。表1,2中のシリコン配合比は前記のとおり窒化ケイ素換算である。 Silicon nitride thin plates (approximately 0.085 mm thick) of Examples 1 to 4 and Comparative Examples 1 and 2 shown in Table 1, and silicon nitride thin plates (approximately 0.115 mm thick) of Example 5 and Comparative Example 3 shown in Table 2. ) was produced under the following conditions and procedures. The silicon compounding ratios in Tables 1 and 2 are based on silicon nitride as described above.

[1]原料・混合
所定の粉末特性を有するシリコン粉末、および、焼結助剤粉末を準備した。適量のシリコン粉末を樹脂製のポットへ投入し、シリコン粉末と有機溶剤と分散剤を、窒化ケイ素製の粉砕メディアを使用し、シリコン粉末の比表面積およびD99.9径の値が所定値になるまでボールミルで粒度調整を行った。ここで、各試料における配合組成比、ならびに、シリコン粉末のD99.9径、D50径および比表面積の値は、表1及び表2のとおりである。シリコン粉末の粒度調整ができたら、所定量の焼結助剤を添加し、ボールミルで1時間の混合を行った。
[1] Raw Materials/Mixing Silicon powder having predetermined powder characteristics and sintering aid powder were prepared. Put an appropriate amount of silicon powder into a resin pot, and use silicon nitride grinding media to mix the silicon powder, organic solvent, and dispersant until the specific surface area and D99.9 diameter of the silicon powder reach the specified values. Particle size was adjusted using a ball mill. Here, the blending composition ratio and the values of the D99.9 diameter, D50 diameter, and specific surface area of the silicon powder in each sample are as shown in Tables 1 and 2. After the particle size of the silicon powder was adjusted, a predetermined amount of sintering aid was added and mixed in a ball mill for 1 hour.

[2]シート成形
その後、バインダー(ポリビニルブチラール)と可塑剤(アジピン酸ジオクチル)と有機溶剤(トルエンとエタノールの混合溶媒)とを添加してスラリーとした。得られたスラリーを真空脱泡して粘度調整を行った。真空脱泡後のスラリーに含まれる有機溶剤の割合を35wt%以下とし、スラリーの粘度は15000~25000cpsとした。スラリーの粘度は、東機産業株式会社製のTVC-7形粘度計によって測定された。具体的には、スピンドルをスラリー中で回転させ、その抵抗力から粘度が算出された。そして、成形速度を220mm/min以上としたドクターブレードによって、乾燥後の厚さが0.1mm、0.14mm、0.3mmの三種であるシート状の成形体を作製した。得られた各厚さのシートを140mm×140mmの大きさに切断して複数枚準備した。厚さ0.1mmと0.14mmのシートは試料を作成するためのものであり、厚さ0.3mmのシートは次の積層用である。
[2] Sheet Forming Thereafter, a binder (polyvinyl butyral), a plasticizer (dioctyl adipate), and an organic solvent (a mixed solvent of toluene and ethanol) were added to form a slurry. The obtained slurry was defoamed under vacuum to adjust its viscosity. The proportion of organic solvent contained in the slurry after vacuum defoaming was 35 wt% or less, and the viscosity of the slurry was 15,000 to 25,000 cps. The viscosity of the slurry was measured using a TVC-7 viscometer manufactured by Toki Sangyo Co., Ltd. Specifically, a spindle was rotated in the slurry, and the viscosity was calculated from the resistance force. Then, using a doctor blade at a molding speed of 220 mm/min or higher, sheet-like molded bodies having three types of thickness after drying: 0.1 mm, 0.14 mm, and 0.3 mm were produced. A plurality of sheets of each thickness were cut into a size of 140 mm x 140 mm. The 0.1 mm and 0.14 mm thick sheets are for making samples, and the 0.3 mm thick sheet is for the next lamination.

[2]シート積層
図6に示すように、先ず、厚さ0.3mmのシート両面に離型剤としてのBNをスプレーし、その上に厚さ0.1mmのシートを重ねて配置をした。さらにその上へ、両面にBNのスプレーを行った厚さ0.3mmのシートを重ねて配置をし、その上に0.1mmのシートを重ねて配置をする、というように、厚さが0.3mmと0.1mmのシートを交互に積層し、積層体の最上段に0.3mmのシートを配置することで、1ブロック21枚の積層体を準備した。
また、0.1mmのシートの代わりに0.14mmのシートを使用し、同様に厚さが0.3mmと0.14mmのシートを交互に積層し、積層体の最上段に0.3mmのシートを配置することで、1ブロック21枚の積層体も準備した。
[2] Sheet Lamination As shown in FIG. 6, first, BN as a mold release agent was sprayed on both sides of a 0.3 mm thick sheet, and a 0.1 mm thick sheet was stacked on top of it. Furthermore, a 0.3 mm thick sheet with BN sprayed on both sides is placed on top of that, and a 0.1 mm sheet is placed on top of that, and so on until the thickness is 0. A block of 21 laminates was prepared by alternately stacking sheets of .3 mm and 0.1 mm, and arranging the 0.3 mm sheet at the top of the laminate.
In addition, a 0.14 mm sheet was used instead of a 0.1 mm sheet, and sheets with a thickness of 0.3 mm and 0.14 mm were similarly laminated alternately, and the 0.3 mm sheet was placed on the top layer of the laminate. A laminate of 21 sheets per block was also prepared by arranging the laminates.

[3]加熱・焼成・分離・カット
積層体を乾燥空気中500℃で脱バインダーを行い、その後、炉に投入し、真空中で約1000℃まで加熱し、0.2MPaの窒素加圧雰囲気中で1350℃まで1℃/minで昇温させた。そして、0.9MPaの窒素加圧雰囲気とし、1350℃から1900℃まで昇温させ、1900℃で8時間かけて焼成を行った。焼成後の積層体を分離し、(前記厚さ0.1mmのシートに基づく)板厚約0.085mmの窒化ケイ素薄板と、(前記厚さ0.14mmのシートに基づく)板厚約0.115mmの窒化ケイ素薄板を得た。各窒化ケイ素薄板の外周をレーザーでカットし、110mm×110mmの試料とした。試料表面は焼結上がり面である。
[3] Heating, firing, separation, and cutting The laminate was debounded at 500°C in dry air, then placed in a furnace, heated to about 1000°C in vacuum, and heated in a nitrogen pressurized atmosphere of 0.2 MPa. The temperature was raised to 1350°C at a rate of 1°C/min. Then, in a nitrogen pressurized atmosphere of 0.9 MPa, the temperature was raised from 1350°C to 1900°C, and firing was performed at 1900°C for 8 hours. The fired laminate is separated to form a silicon nitride thin plate with a thickness of about 0.085 mm (based on the 0.1 mm thick sheet) and a thin silicon nitride plate with a thickness of about 0.1 mm (based on the 0.14 mm thick sheet). A 115 mm silicon nitride thin plate was obtained. The outer periphery of each silicon nitride thin plate was cut with a laser to obtain a sample of 110 mm x 110 mm. The sample surface is the sintered surface.

作製した実施例1~5および比較例1~3の各試料について、次の観察及び測定を行った。 The following observations and measurements were performed on the prepared samples of Examples 1 to 5 and Comparative Examples 1 to 3.

(i)垂直切断断面の観察及び測定
各試料を10mm×10mmにカットした薄板個片を使用し、薄板個片をエポキシ樹脂へ埋め込み、薄板の垂直断面の観察を行った。観察面は下記手順により作製した。#800のダイヤモンド研磨紙で平面出しを行い、各前工程で生じた研磨傷がなくなるまで、15μm、6μm、1μmの順にダイヤモンドスラリーで研磨を行い、50nmのアルミナスラリーで仕上げ研磨を行うことで鏡面を得た。鏡面加工後はCFのプラズマエッチングと金スパッタ膜の形成を行い、観察面とした。そして、日本電子株式会社製の走査電子顕微鏡JSM-IT700HRを用いて、800倍の倍率で無作為に選んだ視野の二次電子像を観察した。
図1は実施例1の二次電子像、図2は実施例2の二次電子像、図3は実施例5の二次電子像、図4は比較例1の二次電子像を、例示的に示す。図1~図3には、二次電子像から測定した試料の板厚tと最大のβ型窒化ケイ素粒子の長軸長Lを記入した。この測定結果及びL/tの算出結果を表1及び表2に示す。
(i) Observation and measurement of vertically cut cross sections Using thin plate pieces cut from each sample into 10 mm x 10 mm, the thin plate pieces were embedded in epoxy resin, and the vertical cross sections of the thin plates were observed. The observation surface was prepared by the following procedure. Flatten with #800 diamond abrasive paper, polish with diamond slurry in the order of 15 μm, 6 μm, and 1 μm until the polishing scratches caused in each previous step are removed, and finish polish with 50 nm alumina slurry to create a mirror surface. I got it. After mirror polishing, CF 4 plasma etching and gold sputtering film formation were performed to obtain an observation surface. Then, using a scanning electron microscope JSM-IT700HR manufactured by JEOL Ltd., a secondary electron image of a randomly selected field of view was observed at a magnification of 800 times.
1 is a secondary electron image of Example 1, FIG. 2 is a secondary electron image of Example 2, FIG. 3 is a secondary electron image of Example 5, and FIG. 4 is a secondary electron image of Comparative Example 1. to show. In FIGS. 1 to 3, the plate thickness t of the sample measured from the secondary electron image and the long axis length L of the largest β-type silicon nitride particle are shown. The measurement results and the L/t calculation results are shown in Tables 1 and 2.

(ii)算術平均高さSa
各試料の薄板表面(焼結上がり面)について、500μm×500μmの領域の表面粗さである算術平均高さSaを、株式会社キーエンス製のレーザー顕微鏡VKX-150を用いて測定した。測定条件は以下のとおりであり、測定結果を表1及び表2に示す。
対物レンズ倍率:×20
画像補正:面傾き自動補正
フィルター種別:ガウシアン
S-フィルター:2μm
F-オペレーション:なし
L-フィルター:0.2mm
終端効果の補正:あり
(ii) Arithmetic mean height Sa
For the thin plate surface (sintered surface) of each sample, the arithmetic mean height Sa, which is the surface roughness of a 500 μm x 500 μm area, was measured using a laser microscope VKX-150 manufactured by Keyence Corporation. The measurement conditions are as follows, and the measurement results are shown in Tables 1 and 2.
Objective lens magnification: ×20
Image correction: Automatic surface tilt correction Filter type: Gaussian S-filter: 2μm
F-Operation: None L-Filter: 0.2mm
Terminal effect correction: Yes

(iii)絶縁破壊電圧
各試料を20mm×20mmにカットした薄板個片を使用し、薄板個片の両面(焼結上がり面)に測定電極としてφ10.4mmの導電性銅箔粘着テープを貼り付け、株式会社フジクラ・ダイヤケーブル社製の部分放電測定器:型式「A006」を使用して、フッ素系不活性液体(スリーエムジャパン株式会社製、フロリナート FC-43)中で交流電圧(正弦波)を印加した。上下面の電極形状はφ11mm、交流電圧の昇圧速度は500V/sとして、3つのサンプルの測定における平均の絶縁破壊電圧を測定した。測定結果を表1及び表2に示す。
(iii) Dielectric breakdown voltage Each sample is cut into 20 mm x 20 mm thin plate pieces, and conductive copper foil adhesive tape with a diameter of 10.4 mm is pasted on both sides (sintered surface) of each thin plate piece as measurement electrodes. Using a partial discharge measuring device model "A006" manufactured by Fujikura Dia Cable Co., Ltd., an AC voltage (sine wave) was applied in a fluorinated inert liquid (Fluorinert FC-43, manufactured by 3M Japan Co., Ltd.). did. The shape of the electrodes on the upper and lower surfaces was 11 mm in diameter, the rate of increase of the AC voltage was 500 V/s, and the average dielectric breakdown voltage was measured for the three samples. The measurement results are shown in Tables 1 and 2.

(iv)窒化ケイ素樹脂複合板の作製と熱伝導率
各試料の片面に樹脂層としてカプトン粘着テープ(株式会社寺岡製作所、品番:650S#12)を貼り付け、図5に示すような窒化ケイ素薄板樹脂複合板を作製した。
そして、窒化ケイ素樹脂複合板のカプトンテープ接着面を上面(検出器側)になるように設置し、板厚方向の熱伝導率をフラッシュ法により測定した。測定には、NETZSCH Geratebau GmbH製の熱伝導率測定装置LFA467を使用した。各複合試料を10mm×10mmにカットした個片を使用し、フラッシュ光の透過を抑える目的で個片両面(焼結上がり面と樹脂面)に金のスパッタ膜を形成し、パルス光を均一に吸収させる目的で個片両面にグラフェンスプレーを使用し、黒化処理を行った。熱伝導率の算出時には、得られた窒化ケイ素基板の比熱として0.68J/(g・K)、カプトンの比熱として1.1J/(g・K)の値を用い、また、窒化ケイ素基板の比重として3.22g/cm、カプトンの比重として1.42g/cmの値を用い、窒化ケイ素基板とカプトンテープの体積比をもとに各複合試料の合成密度と比熱を算出し、下記式の関係から熱伝導率λを算出した。
λ=C×ρ×α
ここで、Cは複合試料の比熱、ρは複合試料の密度、αは複合試料の熱拡散率を表す。
測定結果を表1及び表2に示す。
(iv) Preparation and thermal conductivity of silicon nitride resin composite plate Kapton adhesive tape (Teraoka Seisakusho Co., Ltd., product number: 650S#12) was pasted as a resin layer on one side of each sample, and a silicon nitride thin plate as shown in Figure 5 was prepared. A resin composite board was produced.
Then, the silicon nitride resin composite board was placed so that the Kapton tape-adhesive surface was the upper surface (detector side), and the thermal conductivity in the board thickness direction was measured by the flash method. For the measurement, a thermal conductivity measuring device LFA467 manufactured by NETZSCH Geratebau GmbH was used. Each composite sample was cut into individual pieces of 10 mm x 10 mm, and a gold sputtered film was formed on both sides of each piece (the sintered surface and the resin surface) to suppress the transmission of flash light to uniformly distribute the pulsed light. For the purpose of absorption, graphene spray was used on both sides of each piece to blacken the surface. When calculating the thermal conductivity, the specific heat of the silicon nitride substrate obtained is 0.68 J/(g K), and the specific heat of Kapton is 1.1 J/(g K). Using the values of 3.22 g/cm 3 as the specific gravity and 1.42 g/cm 3 as the specific gravity of Kapton, the composite density and specific heat of each composite sample were calculated based on the volume ratio of the silicon nitride substrate and Kapton tape, and the following The thermal conductivity λ was calculated from the relationship of the formula.
λ=C p ×ρ×α
Here, C p represents the specific heat of the composite sample, ρ represents the density of the composite sample, and α represents the thermal diffusivity of the composite sample.
The measurement results are shown in Tables 1 and 2.

[評価]
実施例1~5の窒化ケイ素薄板は、無数に存在するβ型窒化ケイ素粒子のなかに、長軸及び短軸を有する六角柱状をなし、L/t比が0.7以上であり、かつ、薄板の表面の法線からの長軸の傾きが45度以下である、長形β型窒化ケイ素粒子が含まれていた。
また、実施例1~5の窒化ケイ素薄板は、長形β型窒化ケイ素粒子のなかに、薄板の少なくとも一方の表面から露出又は突出しているものが含まれていた。
さらに、実施例1の窒化ケイ素薄板は、長形β型窒化ケイ素粒子のなかに、L/t比が1以上であるものが含まれており、該長形β型窒化ケイ素粒子の端は薄板の両表面から突出していた。
これに対し、比較例1~3の窒化ケイ素薄板は、無数に存在するβ型窒化ケイ素粒子のなかに、長軸及び短軸を有する六角柱状をなすβ型窒化ケイ素粒子は含まれていたが、上記の長形β型窒化ケイ素粒子は含まれていなかった。
[evaluation]
The silicon nitride thin plates of Examples 1 to 5 have a hexagonal columnar shape having a long axis and a short axis among the countless β-type silicon nitride particles, and have an L/t ratio of 0.7 or more, and Contained were long β-type silicon nitride particles whose long axis had an inclination of 45 degrees or less from the normal to the surface of the thin plate.
Furthermore, the silicon nitride thin plates of Examples 1 to 5 contained some of the long β-type silicon nitride particles exposed or protruding from at least one surface of the thin plate.
Further, in the silicon nitride thin plate of Example 1, some of the long β-type silicon nitride particles have an L/t ratio of 1 or more, and the ends of the long β-type silicon nitride particles are attached to the thin plate. It protruded from both surfaces.
On the other hand, in the silicon nitride thin plates of Comparative Examples 1 to 3, β-type silicon nitride particles having a hexagonal column shape with a long axis and a short axis were included among the countless β-type silicon nitride particles. , the above-mentioned elongated β-type silicon nitride particles were not included.

そして、実施例1~4の窒化ケイ素薄板は比較例1,2の窒化ケイ素薄板よりも絶縁破壊電圧が高く、実施例5の窒化ケイ素薄板は比較例3の窒化ケイ素薄板よりも絶縁破壊電圧が高かった。
また、実施例1~4の窒化ケイ素樹脂複合板は比較例1の窒化ケイ素樹脂複合板よりも熱伝導率が高く、実施例5の窒化ケイ素樹脂複合板は比較例3の窒化ケイ素樹脂複合板よりも熱伝導率が高かった。特にL/t比が0.9以上の粒子を含む実施例1~4は、比較例1に対する熱伝導率の向上率が高かった。
The silicon nitride thin plates of Examples 1 to 4 have a higher dielectric breakdown voltage than the silicon nitride thin plates of Comparative Examples 1 and 2, and the silicon nitride thin plates of Example 5 have a higher dielectric breakdown voltage than the silicon nitride thin plates of Comparative Example 3. it was high.
Furthermore, the silicon nitride resin composite plates of Examples 1 to 4 have higher thermal conductivity than the silicon nitride resin composite plate of Comparative Example 1, and the silicon nitride resin composite plate of Example 5 has a higher thermal conductivity than the silicon nitride resin composite plate of Comparative Example 3. Thermal conductivity was higher than that of In particular, Examples 1 to 4 containing particles with an L/t ratio of 0.9 or more had a high improvement rate in thermal conductivity compared to Comparative Example 1.

なお、本発明は前記実施例に限定されるものではなく、発明の要旨から逸脱しない範囲で適宜変更して具体化することができる。 It should be noted that the present invention is not limited to the embodiments described above, and can be modified and embodied as appropriate without departing from the gist of the invention.

Claims (13)

焼結されたβ型窒化ケイ素粒子を含有する板厚が160μm以下である薄板であって、
前記β型窒化ケイ素粒子には、長軸及び短軸を有する六角柱状をなし、長軸長の前記板厚に対する比が1.01以上であり、前記薄板の表面の法線からの長軸の傾きが45度以下である、長形β型窒化ケイ素粒子が含まれ、
前記長形β型窒化ケイ素粒子の端が、前記薄板の少なくとも一方の表面から突出していることを特徴とする窒化ケイ素薄板。
A thin plate containing sintered β-type silicon nitride particles and having a thickness of 160 μm or less,
The β-type silicon nitride particles have a hexagonal columnar shape having a long axis and a short axis, the ratio of the long axis length to the plate thickness is 1.01 or more, and the long axis from the normal to the surface of the thin plate is Contains long β-type silicon nitride particles having an inclination of 45 degrees or less,
A silicon nitride thin plate characterized in that an end of the long β-type silicon nitride particles protrudes from at least one surface of the thin plate.
前記板厚が120μm以下である請求項1記載の窒化ケイ素薄板。 The silicon nitride thin plate according to claim 1, wherein said plate thickness is 120 μm or less. 前記傾きが35度以下である請求項1記載の窒化ケイ素薄板。 The silicon nitride thin plate according to claim 1, wherein the inclination is 35 degrees or less. 前記長形β型窒化ケイ素粒子の長軸長/短軸長(アスペクト比)が4~40である請求項1記載の窒化ケイ素薄板。 The silicon nitride thin plate according to claim 1, wherein the long axis length/short axis length (aspect ratio) of the long β-type silicon nitride particles is 4 to 40. 前記長形β型窒化ケイ素粒子には、長軸長の前記板厚に対する比が1.01~1.34であるものが含まれる請求項1記載の窒化ケイ素薄板。 2. The silicon nitride thin plate according to claim 1, wherein the long β-type silicon nitride particles have a ratio of major axis length to the plate thickness of 1.01 to 1.34 . 前記長形β型窒化ケイ素粒子の端が、前記薄板の両方の表面から突出している請求項5記載の窒化ケイ素薄板。 6. The silicon nitride thin sheet according to claim 5, wherein the ends of said elongated β-type silicon nitride particles protrude from both surfaces of said thin sheet. 前記薄板の表面の粗さを示す算術平均高さSaが0.7μm以上である請求項1記載の窒化ケイ素薄板。 The silicon nitride thin plate according to claim 1, wherein an arithmetic mean height Sa indicating surface roughness of the thin plate is 0.7 μm or more. 前記薄板の表面が焼結上がり面である請求項1記載の窒化ケイ素薄板。 The silicon nitride thin plate according to claim 1, wherein the surface of the thin plate is a sintered surface. 前記薄板の絶縁破壊電圧が45kV/mm以上である請求項1記載の窒化ケイ素薄板。 The silicon nitride thin plate according to claim 1, wherein the dielectric breakdown voltage of the thin plate is 45 kV/mm or more. 請求項1~9のいずれか一項に記載の薄板と、該薄板の少なくとも一方の表面に密着している樹脂層とを含むことを特徴とする窒化ケイ素樹脂複合板。 A silicon nitride resin composite plate comprising the thin plate according to any one of claims 1 to 9 and a resin layer in close contact with at least one surface of the thin plate. 請求項10記載の窒化ケイ素樹脂複合板を用いた回路基板。 A circuit board using the silicon nitride resin composite board according to claim 10. 請求項10記載の窒化ケイ素樹脂複合板を用いた放熱板。 A heat sink using the silicon nitride resin composite plate according to claim 10. 請求項10記載の窒化ケイ素樹脂複合板を用いた絶縁板。 An insulating board using the silicon nitride resin composite board according to claim 10.
JP2022206468A 2022-12-23 2022-12-23 Silicon nitride thin plate and silicon nitride resin composite plate Active JP7455184B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022206468A JP7455184B1 (en) 2022-12-23 2022-12-23 Silicon nitride thin plate and silicon nitride resin composite plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022206468A JP7455184B1 (en) 2022-12-23 2022-12-23 Silicon nitride thin plate and silicon nitride resin composite plate

Publications (1)

Publication Number Publication Date
JP7455184B1 true JP7455184B1 (en) 2024-03-25

Family

ID=90367078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022206468A Active JP7455184B1 (en) 2022-12-23 2022-12-23 Silicon nitride thin plate and silicon nitride resin composite plate

Country Status (1)

Country Link
JP (1) JP7455184B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121076A (en) 2000-10-10 2002-04-23 Kyocera Corp Method of producing ceramic and ceramic substrate produced by using the same
WO2006118003A1 (en) 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2012236743A (en) 2011-05-12 2012-12-06 Mitsubishi Materials Corp CERAMIC SINTERED PLATE CONTAINING UNIAXIALLY ORIENTED ACICULAR Si3N4 PARTICLE
JP2015063440A (en) 2013-08-27 2015-04-09 公益財団法人神奈川科学技術アカデミー Silicon nitride ceramic, method for producing the same, and semiconductor device
JP2015092600A (en) 2009-07-24 2015-05-14 株式会社東芝 Silicon nitride insulation sheet and semiconductor module structure using the same
JP2017214264A (en) 2016-06-02 2017-12-07 住友電気工業株式会社 Production method of nitride sintered compact
JP2019052072A (en) 2017-09-19 2019-04-04 株式会社Maruwa Silicon nitride sintered substrate, electronic apparatus, and method for manufacturing the silicon nitride sintered substrate
WO2022024707A1 (en) 2020-07-29 2022-02-03 日本ファインセラミックス株式会社 Silicon nitride substrate and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121076A (en) 2000-10-10 2002-04-23 Kyocera Corp Method of producing ceramic and ceramic substrate produced by using the same
WO2006118003A1 (en) 2005-04-28 2006-11-09 Hitachi Metals, Ltd. Silicon nitride substrate, process for producing the same, and silicon nitride wiring board and semiconductor module using the same
JP2015092600A (en) 2009-07-24 2015-05-14 株式会社東芝 Silicon nitride insulation sheet and semiconductor module structure using the same
JP2012236743A (en) 2011-05-12 2012-12-06 Mitsubishi Materials Corp CERAMIC SINTERED PLATE CONTAINING UNIAXIALLY ORIENTED ACICULAR Si3N4 PARTICLE
JP2015063440A (en) 2013-08-27 2015-04-09 公益財団法人神奈川科学技術アカデミー Silicon nitride ceramic, method for producing the same, and semiconductor device
JP2017214264A (en) 2016-06-02 2017-12-07 住友電気工業株式会社 Production method of nitride sintered compact
JP2019052072A (en) 2017-09-19 2019-04-04 株式会社Maruwa Silicon nitride sintered substrate, electronic apparatus, and method for manufacturing the silicon nitride sintered substrate
WO2022024707A1 (en) 2020-07-29 2022-02-03 日本ファインセラミックス株式会社 Silicon nitride substrate and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6591455B2 (en) High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
JP2018184333A (en) Method of manufacturing silicon nitride substrate and silicon nitride substrate
JP6529999B2 (en) Method of manufacturing silicon nitride substrate
WO2013054852A1 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
US9938444B2 (en) Method for producing silicon nitride substrate
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2020528861A (en) Slurry composition for tape casting for manufacturing silicon nitride sintered body
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
KR101693071B1 (en) Aluminium nitride substrate for circuit board and production method thereof
JP7455184B1 (en) Silicon nitride thin plate and silicon nitride resin composite plate
CN112912356B (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
KR101559243B1 (en) Ceramic composition, ceramic sinter and manufacturing method thereof
JP2807430B2 (en) Aluminum nitride sintered body and method for producing the same
JP7339980B2 (en) Manufacturing method of silicon nitride sintered body
WO2024084631A1 (en) Silicon nitride sintered body
JP7278325B2 (en) Silicon nitride sintered body
JP7278326B2 (en) Manufacturing method of silicon nitride sintered body
JP7339979B2 (en) Manufacturing method of silicon nitride sintered body
WO2023157784A1 (en) Silicon nitride sintered body, and manufacturing method of silicon nitride sintered body
JP7201734B2 (en) Silicon nitride sintered body
CN114787105B (en) Plate-like silicon nitride sintered body and method for producing same
WO2019059641A2 (en) Tape casting slurry composition for preparation of silicon nitride sintered body
JP2003020282A (en) Aluminum nitride sintered compact, production method therefor and its use
JP2003192445A (en) Silicon nitride substrate, method of producing the same and silicon nitride substrate having thin film obtained by using the substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240312

R150 Certificate of patent or registration of utility model

Ref document number: 7455184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150