JP7450347B2 - Resin composition, resin molded article, and method for producing resin composition - Google Patents

Resin composition, resin molded article, and method for producing resin composition Download PDF

Info

Publication number
JP7450347B2
JP7450347B2 JP2019126916A JP2019126916A JP7450347B2 JP 7450347 B2 JP7450347 B2 JP 7450347B2 JP 2019126916 A JP2019126916 A JP 2019126916A JP 2019126916 A JP2019126916 A JP 2019126916A JP 7450347 B2 JP7450347 B2 JP 7450347B2
Authority
JP
Japan
Prior art keywords
material particles
infrared
far
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019126916A
Other languages
Japanese (ja)
Other versions
JP2021011546A (en
Inventor
彰宏 丹藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Co Ltd
Original Assignee
Daiwabo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Co Ltd filed Critical Daiwabo Co Ltd
Priority to JP2019126916A priority Critical patent/JP7450347B2/en
Publication of JP2021011546A publication Critical patent/JP2021011546A/en
Application granted granted Critical
Publication of JP7450347B2 publication Critical patent/JP7450347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、特定の無機物粒子を混合した樹脂組成物、樹脂成形体、及び樹脂組成物の製造方法に関する。 The present invention relates to a resin composition mixed with specific inorganic particles, a resin molded article, and a method for producing the resin composition.

従来から、樹脂に無機物粒子を混合させた組成物は様々な方法が提案されている。近年、特に、保温効果や断熱効果の高い衣料、敷物などのプラスチック製品や繊維製品が広く用いられており、それらの機能を発現するために、赤外線(近赤外線や遠赤外線)が利用されている。また前記製品は、屋外の利用だけでなく、屋内利用にも使われるようになっている。例えば、特許文献1には、遠赤外線放射材料として0.1~10mmの比較的大きな粒径のSiO2,ZrO2などの無機物を使用することが提案されている。特許文献2~3には、遠赤外線放射材料として3μm以下の粒径のSiO2,ZrO2などの無機物を使用することが提案されている。特許文献4には、遠赤外線放射と近赤外吸収性マスターバッチ用樹脂組成物として、アンチモンドープ酸化スズ粒子を樹脂に混合することが提案されている。 Conventionally, various methods have been proposed for preparing compositions in which inorganic particles are mixed with resin. In recent years, plastic products and textile products such as clothing and rugs that have particularly high heat retention and insulation effects have been widely used, and infrared rays (near infrared and far infrared rays) are used to achieve these functions. . Moreover, the above-mentioned products are now being used not only for outdoor use but also for indoor use. For example, Patent Document 1 proposes the use of inorganic substances such as SiO 2 and ZrO 2 having relatively large particle sizes of 0.1 to 10 mm as far-infrared emitting materials. Patent Documents 2 and 3 propose the use of inorganic materials such as SiO 2 and ZrO 2 having a particle size of 3 μm or less as far-infrared emitting materials. Patent Document 4 proposes mixing antimony-doped tin oxide particles with a resin as a resin composition for a far-infrared radiation and near-infrared absorbing masterbatch.

特開平3-225787号公報Japanese Patent Application Publication No. 3-225787 特開平6-233830号公報Japanese Patent Application Publication No. 6-233830 実開平2-058458号公報Utility Model Publication No. 2-058458 特開2015-227435号公報JP2015-227435A

しかし、従来の方法は、特許文献1~特許文献3では、遠赤外線放射材料だけなので使用する用途が制限される、使用環境により多量の遠赤外線放射材料を必要とするなど、制限されることがあった。また、特許文献4では、遠赤外線放射と近赤外吸収性とを有する粒子を混合しており、蓄熱性は高いが断熱性に劣る。さらに、無機物微粒子を樹脂にコンパウンド(混合)する場合、粒子径が小さくなるほど凝集等が起こりやすく、均一に微分散することは困難であった。分散させるには、例えば、特許文献1では元々の粒子径を大きくすることを試みているが、それでは粒子の持つ十分な効果を引き出すことができない。また特許文献4では特殊な分散剤を用いることを試みているが、コストが高くなるか、用途が制限されるなどの問題があった。よって、成形体、フィルム、繊維等に加工することが難しいという問題があった。 However, in Patent Documents 1 to 3, the conventional methods have limitations such as limited use of far-infrared emitting materials because they only use far-infrared rays, and depending on the usage environment, a large amount of far-infrared radiating materials are required. there were. Further, in Patent Document 4, particles having far-infrared radiation and near-infrared absorption are mixed, and the heat storage property is high, but the heat insulation property is poor. Furthermore, when compounding (mixing) inorganic fine particles with a resin, the smaller the particle size, the more likely they are to aggregate, making it difficult to achieve uniform fine dispersion. In order to disperse the particles, for example, Patent Document 1 attempts to increase the original particle diameter, but this method cannot bring out the sufficient effect of the particles. Further, in Patent Document 4, an attempt is made to use a special dispersant, but there are problems such as increased cost or limited use. Therefore, there was a problem in that it was difficult to process it into molded bodies, films, fibers, etc.

本発明は、前記従来の問題を解決するため、無機物微粒子を樹脂中に微分散して混合することができ、そのまま成形体とするか、あるいはマスターバッチとして他の樹脂を加えて樹脂成形体とするのに好適な樹脂組成物及び樹脂組成物の製造方法、並びにその樹脂組成物を用いて成形した樹脂成形体を提供する。さらに、温感効果を有する樹脂組成物及び樹脂成形体を提供する。 In order to solve the above-mentioned conventional problems, the present invention allows inorganic fine particles to be finely dispersed and mixed in a resin, and can be made into a molded body as it is, or can be made into a resin molded body by adding another resin as a masterbatch. Provided are a resin composition and a method for producing the resin composition, and a resin molded article molded using the resin composition. Furthermore, a resin composition and a resin molded article having a warming effect are provided.

本発明の樹脂組成物は、熱可塑性樹脂に、遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有した樹脂組成物であって、
前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多く、
前記近赤外線反射物質無機粒子はB型シリカゲルであり、
前記遠赤外線放射物質粒子は酸化ジルコニウムであり、
前記遠赤外線放射物質粒子は微分散していることを特徴とする。
The resin composition of the present invention is a resin composition containing far-infrared emitting material particles and near-infrared reflecting material particles in a thermoplastic resin,
The amount of the near-infrared reflecting material particles is greater than the amount of the far-infrared emitting material particles,
The near-infrared reflective material inorganic particles are B-type silica gel,
The far-infrared emitting material particles are zirconium oxide,
The far-infrared emitting material particles are characterized in that they are finely dispersed.

本発明の第1番目の樹脂組成物の製造方法は、熱可塑性樹脂を準備し、
遠赤外線放射物質粒子及び近赤外線反射物質粒子を準備し、
前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多くなるように、熱可塑性樹脂中に混練させる工程を含み、
前記近赤外線反射物質無機粒子はB型シリカゲルであり、
前記遠赤外線放射物質粒子は酸化ジルコニウムであり、
前記遠赤外線放射物質粒子は微分散していることを特徴とする。
The first method for producing a resin composition of the present invention includes preparing a thermoplastic resin,
Prepare far-infrared emitting material particles and near-infrared reflecting material particles,
The method includes a step of kneading the near-infrared reflective material particles into the thermoplastic resin so that the amount of the near-infrared reflective material particles is greater than the amount of the far-infrared emitting material particles;
The near-infrared reflective substance inorganic particles are B-type silica gel ,
The far-infrared emitting material particles are zirconium oxide,
The far-infrared emitting material particles are characterized in that they are finely dispersed .

本発明の第2番目の樹脂組成物の製造方法は、熱可塑性樹脂を準備し、
遠赤外線放射物質粒子及び近赤外線反射物質粒子を準備し、
前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多くなるようにして、
樹脂溶融部と、減圧ラインを備えた混練分散部と、押し出し部を連続して接続し、
前記混練溶融部に、水分散液とした遠赤外線放射物質粒子と、加熱溶融させた樹脂とを供給し、
次に前記混練分散部に送り、溶融混練と同時に前記減圧ラインから水分を気体の状態で除去し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する一次混練工程と、
得られたペレットと近赤外線反射物質粒子をドライブレンドし、溶融混練し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する二次混練工程を含み、
前記近赤外線反射物質無機粒子はB型シリカゲルであり、
前記遠赤外線放射物質粒子は酸化ジルコニウムであり、
前記遠赤外線放射物質粒子は微分散していることを特徴とする。
The second method for producing a resin composition of the present invention includes preparing a thermoplastic resin,
Prepare far-infrared emitting material particles and near-infrared reflecting material particles,
The amount of the near-infrared reflecting material particles is greater than the amount of the far-infrared emitting material particles,
The resin melting section, the kneading dispersion section equipped with a vacuum line, and the extrusion section are connected continuously,
Supplying far-infrared emitting material particles made into an aqueous dispersion and a heated and melted resin to the kneading and melting section,
Next, a primary kneading step of sending the resin composition to the kneading and dispersing section, removing water in a gaseous state from the vacuum line at the same time as melting and kneading, extruding the resin composition from the extrusion section, cooling it, and pelletizing it;
A secondary kneading step of dry blending the obtained pellets and near-infrared reflective material particles, melt-kneading, extruding the resin composition from an extrusion section, cooling, and pelletizing,
The near-infrared reflective material inorganic particles are B-type silica gel ,
The far-infrared emitting material particles are zirconium oxide,
The far-infrared emitting material particles are characterized in that they are finely dispersed .

本発明は、熱可塑性樹脂に、遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有した樹脂組成物であって、前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多く、前記遠赤外線放射物質粒子は微分散していることにより、そのまま成形体とするか、あるいはマスターバッチとして他の樹脂を加えて成形体とするのに好適である。
また、熱可塑性樹脂に、遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有しているため、相乗効果により成形体の温感効果を高めることができる。
さらに、水分散液とした遠赤外線放射物質粒子と、加熱溶融させた樹脂とを供給し、溶融混練と同時に前記減圧ラインから水分を気体の状態で除去し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する一次混練工程と、得られたペレットと近赤外線反射物質粒子をドライブレンドし、溶融混練し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する二次混練工程を含むことにより、無機物微粒子を樹脂中に微分散して混合することができる。
The present invention provides a resin composition containing far-infrared emitting material particles and near-infrared reflecting material particles in a thermoplastic resin, wherein the amount of the near-infrared reflecting material particles is greater than the amount of the far-infrared emitting material particles. Since the far-infrared emitting material particles are often finely dispersed, they are suitable for forming into a molded object as is or by adding another resin as a masterbatch.
Further, since the thermoplastic resin contains far-infrared emitting material particles and near-infrared reflecting material particles, the thermal sensation effect of the molded article can be enhanced due to a synergistic effect.
Further, far-infrared emitting material particles in the form of an aqueous dispersion and a heated and melted resin are supplied, and at the same time as melting and kneading, water is removed in a gaseous state from the vacuum line, and the resin composition is extruded from the extrusion section. A primary kneading step of cooling and pelletizing, and a secondary kneading step of dry blending the obtained pellets and near-infrared reflective material particles, melt-kneading, extruding the resin composition from an extrusion section, cooling, and pelletizing. By including the inorganic fine particles, the inorganic fine particles can be finely dispersed and mixed into the resin.

図1は本発明の一実施態様で使用する押し出し機の模式的説明図である。FIG. 1 is a schematic illustration of an extruder used in one embodiment of the present invention. 図2は本発明の実施例及び比較例の近赤外線反射特性を測定したグラフである。FIG. 2 is a graph showing the near-infrared reflection characteristics of Examples and Comparative Examples of the present invention. 図3は本発明の実施例及び比較例の近赤外線反射率を測定したグラフである。FIG. 3 is a graph showing the near-infrared reflectance of Examples and Comparative Examples of the present invention. 図4Aは本発明の実施例1の発泡体樹脂のSEM観察100倍の写真及び図4Bは、同1000倍の観察写真である。FIG. 4A is a 100x SEM photograph of the foam resin of Example 1 of the present invention, and FIG. 4B is a 1000x photograph. 図5Aは本発明の実施例2の発泡体樹脂のSEM観察100倍の写真及び図5Bは、同1000倍の観察写真である。FIG. 5A is a 100x SEM photograph of the foam resin of Example 2 of the present invention, and FIG. 5B is a 1000x photograph. 図6Aは本発明の実施例3の発泡体樹脂のSEM観察100倍の写真及び図6Bは、同1000倍の観察写真である。FIG. 6A is a 100x SEM photograph of the foam resin of Example 3 of the present invention, and FIG. 6B is a 1000x photograph. 図7Aは比較例1の発泡体樹脂のSEM観察100倍の写真及び図7Bは、同1000倍の観察写真である。FIG. 7A is a 100x SEM photograph of the foam resin of Comparative Example 1, and FIG. 7B is a 1000x photograph.

本発明は、熱可塑性樹脂に、遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有した樹脂組成物である。遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有した樹脂組成物は、例えば、成形してフィルム、繊維シート、あるいは発泡体などにすると、人体やペットのシートとして温かく有用である。特にシートにしたとき、太陽光などが照射されると表面温度が高く、有用である。近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多く、遠赤外線放射物質粒子は微分散している。近赤外線反射物質粒子の平均粒子径は、遠赤外線放射物質粒子の平均粒子径より大きいほうが好ましい。 The present invention is a resin composition containing far-infrared emitting material particles and near-infrared reflecting material particles in a thermoplastic resin. A resin composition containing far-infrared emitting material particles and near-infrared reflecting material particles, when molded into a film, fiber sheet, or foam, is useful as a warm sheet for the human body or a pet. In particular, when made into a sheet, the surface temperature is high when exposed to sunlight, making it useful. The amount of the near-infrared reflecting material particles is greater than the amount of the far-infrared emitting material particles, and the far-infrared emitting material particles are finely dispersed. The average particle diameter of the near-infrared reflecting material particles is preferably larger than the average particle diameter of the far-infrared emitting material particles.

近赤外線反射物質粒子は、CoO,CrO,MnO2,Bi23,MoO3,NiO,V25,BaO,SiO2(シリカゲル等)などの粒子が使用できるが、好ましくはシリカゲルである。A型シリカゲルは細孔容積が小さく(0.46mL/g)、B型シリカゲルは大きい(0.75mL/g)。シリカゲル自体に近赤外線反射性能があるので、近赤外線反射と細孔による空洞による断熱効果に期待ができる。このことからB型シリカゲルが好ましい。シリカゲルのタイプ(A型、B型)はJIS Z 0701によって規定されている。近赤外線反射物質粒子の平均粒子径は1μm以上が好ましく、上限は100μm以下が好ましい。より好ましい平均粒子径は10~90μmである。粒子径は、篩分け法による400メッシュ通過粒子(目合いの大きさが37μm)、あるいはSEM写真などで確認ができる。篩分け法により求められる粒子径は、400メッシュ通過粒子(目合いの大きさが37μm)である、すなわち37μm以下であることが好ましい。熱可塑性樹脂100質量部に対し、近赤外線反射物質粒子の配合量は0.1~100質量部が好ましく、より好ましくは1~70質量部であり、さらに好ましくは5~50質量部である。近赤外線反射特性は、例えばレフランプ試験や近赤外線反射率測定により評価できる。 As the near-infrared reflective material particles, particles such as CoO, CrO, MnO 2 , Bi 2 O 3 , MoO 3 , NiO, V 2 O 5 , BaO, SiO 2 (silica gel, etc.) can be used, but silica gel is preferable. . Type A silica gel has a small pore volume (0.46 mL/g), and type B silica gel has a large pore volume (0.75 mL/g). Since silica gel itself has near-infrared reflective properties, it can be expected to have a heat insulating effect due to near-infrared reflection and cavities created by pores. For this reason, type B silica gel is preferred. The types of silica gel (type A, type B) are defined by JIS Z 0701. The average particle diameter of the near-infrared reflective material particles is preferably 1 μm or more, and the upper limit is preferably 100 μm or less. A more preferable average particle diameter is 10 to 90 μm. The particle size can be confirmed by using a 400 mesh sieving method (with a mesh size of 37 μm) or an SEM photograph. The particle diameter determined by the sieving method is preferably a particle that passes through 400 mesh (the mesh size is 37 μm), that is, it is 37 μm or less. The amount of near-infrared reflective material particles blended is preferably 0.1 to 100 parts by weight, more preferably 1 to 70 parts by weight, and even more preferably 5 to 50 parts by weight, based on 100 parts by weight of the thermoplastic resin. Near-infrared reflection characteristics can be evaluated by, for example, a reflex lamp test or near-infrared reflectance measurement.

遠赤外線放射物質粒子は、SiO2,Al23,TiO2,FeO2,CuO2,ZnO2,MnO2,MgOなどの粒子が使用できるが、好ましくは酸化ジルコニウムである。酸化ジルコニウムは遠赤外線放射特性が比較的高く、微粒子化でき、水分散液として樹脂に溶融混練できることから好ましい。遠赤外線放射物質粒子の平均粒子径は100nm以下が好ましく、下限は1nmである。より好ましい平均粒子径は1~90nmである。平均粒子径は、DLS(Dynamic light scattering:動的光散乱法)により測定できる。熱可塑性樹脂100質量部に対し、遠赤外線放射物質粒子の配合量は0.1~15質量部が好ましく、より好ましくは0.5~10質量部であり、さらに好ましくは1~5質量部である。遠赤外線放射特性は、例えばフーリエ変換赤外分光(FT-IR)試験により評価できる。 As far-infrared emitting material particles, particles of SiO 2 , Al 2 O 3 , TiO 2 , FeO 2 , CuO 2 , ZnO 2 , MnO 2 , MgO, etc. can be used, but zirconium oxide is preferable. Zirconium oxide is preferred because it has relatively high far-infrared radiation properties, can be made into fine particles, and can be melted and kneaded into a resin as an aqueous dispersion. The average particle diameter of the far-infrared emitting material particles is preferably 100 nm or less, and the lower limit is 1 nm. A more preferable average particle diameter is 1 to 90 nm. The average particle diameter can be measured by DLS (Dynamic light scattering). With respect to 100 parts by mass of the thermoplastic resin, the amount of the far-infrared emitting material particles is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 10 parts by mass, and even more preferably 1 to 5 parts by mass. be. The far-infrared radiation characteristics can be evaluated by, for example, a Fourier transform infrared spectroscopy (FT-IR) test.

遠赤外線放射物質粒子は、そのままの状態でも使用できるが、スラリーの状態で添加することが好ましい。スラリーの濃度は1~60質量%が好ましく、より好ましくは5~50質量%である。スラリーの濃度が上記範囲内にあると、遠赤外線放射物質の粒子、特に平均粒子径は100nm以下の微粒子を、樹脂中に略均一に分散することができる。後述する製造方法で、特には図1に示す押し出し機等を用いるとよい。 Although the far-infrared emitting material particles can be used as they are, it is preferable to add them in the form of a slurry. The concentration of the slurry is preferably 1 to 60% by weight, more preferably 5 to 50% by weight. When the concentration of the slurry is within the above range, particles of the far-infrared emitting substance, particularly fine particles having an average particle diameter of 100 nm or less, can be substantially uniformly dispersed in the resin. In the manufacturing method described below, it is particularly preferable to use an extruder shown in FIG. 1 or the like.

近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子100質量部に対して、1~1000質量部が好ましく、より好ましくは2~140質量部であり、さらに好ましくは5~50質量部である。各々の配合量において上記範囲を満たすことで、遠赤外線放射効果を活かしつつ、近赤外線反射効果を最大限に発揮することができる。 The blending amount of the near-infrared reflective material particles is preferably 1 to 1000 parts by mass, more preferably 2 to 140 parts by mass, and still more preferably 5 to 50 parts by mass, per 100 parts by mass of the far-infrared emitting material particles. be. By satisfying the above-mentioned range in each blending amount, it is possible to maximize the near-infrared reflection effect while taking advantage of the far-infrared radiation effect.

また。近赤外線反射物質粒子の平均粒子径は、遠赤外線放射物質粒子の平均粒子径よりも大きいことが好ましい。近赤外線反射物質粒子の平均粒子径は、遠赤外線放射物質粒子の平均粒子径の10倍以上がより好ましい。各々の平均粒子径において上記範囲を満たすことで、遠赤外線放射効果を活かしつつ、近赤外線反射効果を最大限に発揮することができる。 Also. The average particle diameter of the near-infrared reflecting material particles is preferably larger than the average particle diameter of the far-infrared emitting material particles. The average particle size of the near-infrared reflecting material particles is more preferably 10 times or more the average particle size of the far-infrared emitting material particles. By satisfying the above range for each average particle diameter, it is possible to maximize the near-infrared reflection effect while taking advantage of the far-infrared radiation effect.

樹脂組成物はそのまま成形体とするか、あるいはマスターバッチとして他の樹脂を加えて樹脂成形体とすることもできる。樹脂組成物としては、好ましくはペレット化等を行い、マスターバッチ用樹脂組成物とするのがよい。 The resin composition can be made into a molded article as it is, or can be made into a resin molded article by adding another resin as a masterbatch. The resin composition is preferably pelletized to obtain a masterbatch resin composition.

本発明の樹脂組成物の製造方法は、前記第1番目の方法と第2番目の方法があるが、遠赤外線放射物質粒子と近赤外線反射物質粒子の分散性が良いことから第2番目の方法が好ましい。理由としては、スラリーを添加した際、吸湿性を有する材料などスラリー化(水分散化)が困難な粒子(例えば、近赤外線反射物質粒子としてシリカゲルを用いた場合)を同時に練り込むと、スラリーの水分を含有したり、凝集したり、粒子の分散性が低下するため、一次混練工程でスラリーを溶融混練してペレットにし、二次混練工程で、得られたペレットと近赤外線反射物質粒子をドライブレンドするのがよい。 The method for producing the resin composition of the present invention includes the first method and the second method, but the second method is preferred because of the good dispersibility of far-infrared emitting material particles and near-infrared reflecting material particles. is preferred. The reason is that when adding slurry, if particles that are difficult to slurry (disperse in water) such as hygroscopic materials are mixed in at the same time (for example, when silica gel is used as near-infrared reflective material particles), the slurry becomes If the slurry contains water, aggregates, or the dispersibility of the particles decreases, the slurry is melt-kneaded into pellets in the primary kneading process, and the resulting pellets and near-infrared reflective material particles are dried in the secondary kneading process. Better to blend.

熱可塑性樹脂としては、例えばポリプロピレン、ポリエチレンなどのポリオレフィン、ポリオキシメチレン、ナイロンなどのポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、それらの共重合体、及び熱可塑性エラストマー等があり、これら樹脂を単独でまたは二種以上組み合わせて用いることができる。この中でもポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。 Examples of thermoplastic resins include polyolefins such as polypropylene and polyethylene, polyamides such as polyoxymethylene and nylon, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polyethylene terephthalate, Examples include polyesters such as polybutylene terephthalate, copolymers thereof, and thermoplastic elastomers, and these resins can be used alone or in combination of two or more. Among these, polyolefins such as polypropylene and polyethylene are preferred.

本発明の樹脂組成物は、成形加工した樹脂成形体とすることができる。樹脂成形体は前記の押し出し機を使用してそのまま押し出し成形しても良いし、一旦ペレット状にして、圧縮成形、真空成形、射出成形、トランスファ成形、押し出し成形、カレンダ成形等、あるいはこれらの成形法の組み合わせにより成形しても良い。樹脂成形体としては、繊維、フィラメント、不織布、シート、発泡体、フィルム、ブロック体、その他適宜形状に成形すると良い。 The resin composition of the present invention can be made into a molded resin article. The resin molded product may be extruded as is using the extruder described above, or it may be made into pellets and then subjected to compression molding, vacuum molding, injection molding, transfer molding, extrusion molding, calender molding, etc., or any of these molding methods. Molding may be performed by a combination of methods. The resin molded product may be molded into fibers, filaments, nonwoven fabrics, sheets, foams, films, blocks, or other appropriate shapes.

以下、図面を用いて説明する。図1は本発明の一実施態様で使用する押し出し機の模式的説明図である。この押し出し機1は、原料供給口2と、樹脂溶融部3と、混練分散部4と、減圧ライン5と、押し出し部6と、取り出し部7で構成されている。まず、樹脂溶融部3の原料供給口2からポリマーと、水に分散させた遠赤外線放射物質粒子を供給する。供給前に両者を混合しておいても良い。次に混練分散部4に送り、混練分散部4では複数枚の混練プレートが回転しており、ここでポリマーと水に分散させた遠赤外線放射物質粒子は均一に溶融混練される。次いで減圧ライン5から水分が水蒸気の状態で除去される。次いで押し出し部6から樹脂組成物が押し出され、冷却して取り出し部7から取り出される。冷却後カットすればペレット状の樹脂組成物となる。これが一次混練工程である。次に、一次混練工程で得られたペレット(場合によってはペレットを所望の大きさに粉砕してパウダー化して)と近赤外線反射物質粒子をドライブレンドし、溶融混練し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する。これが二次混練工程である。 This will be explained below using the drawings. FIG. 1 is a schematic illustration of an extruder used in one embodiment of the present invention. The extruder 1 includes a raw material supply port 2, a resin melting section 3, a kneading and dispersing section 4, a vacuum line 5, an extrusion section 6, and a take-out section 7. First, a polymer and far-infrared emitting material particles dispersed in water are supplied from the raw material supply port 2 of the resin melting section 3. Both may be mixed before supply. Next, it is sent to the kneading and dispersing section 4, where a plurality of kneading plates are rotating, and the far infrared emitting material particles dispersed in the polymer and water are uniformly melted and kneaded here. Moisture is then removed from the vacuum line 5 in the form of water vapor. Next, the resin composition is extruded from the extrusion section 6, cooled, and taken out from the extraction section 7. If it is cut after cooling, it becomes a pellet-shaped resin composition. This is the primary kneading step. Next, the pellets obtained in the primary kneading process (in some cases, the pellets are crushed into a desired size and powdered) and near-infrared reflective material particles are dry blended, melted and kneaded, and the resin composition is produced from the extrusion section. Extrude, cool, and pelletize. This is the secondary kneading step.

以下、実施例により本発明をさらに具体的に説明する。本発明は、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The present invention is not limited to the following examples.

(測定方法)
<近赤外線反射特性試験(1) 温度センサーによるレフランプ試験>
試験は人工気象室内(20℃、65%RH)で行った。試料(発泡体)をタテ15 cm、ヨコ15 cmに切り出して試料台の上に設置した。試料と試料台の間に温度センサー端子(4CH温度データロガー、TM-947SDJ;佐藤商事)を付けて固定した。試料の50cm上方にレフランプ(アイランプPRF500W;岩崎電気)を用意し、照射10分・消灯10分での温度変化を計測した。
<近赤外線反射特性試験(2) サーモカメラによるレフランプ試験>
試料(発泡体)を加熱プレス機で(150℃、10 MPa、1分)でフィルム状にし、5cm×5cmに切り、試料台の上に設置した。試料の50 cm上方にレフランプ(アイランプPRF500W ; 岩崎電気)を用意し、10分間照射した。照射後9分、照射後9分55秒での温度変化をサーモカメラ(FLIR C3 ; FLIR)で撮影した。
<近赤外線反射特性試験(3) 分光光度計による近赤外線反射率測定>
試料の測定は分光光度計(U-4100形分光光度計;日立)に60φ積分球付属装置(紫外可視近赤外域用;日立)を取り付けて行った。試料を4 cm×4 cmに切り、酸化アルミニウムの板と積分球の間に固定した後、1000 nm~1600 nmの近赤外線を照射して反射率を測定した。
<遠赤外線放射特性試験>
FT-IR法により、測定温度:40℃、試験装置:パーキンエルマー社製 FT-IR SpectrumOne Fronier Tを使用し、遠赤外線分光放射特性を測定した。
(Measuring method)
<Near infrared reflection characteristics test (1) Ref lamp test using temperature sensor>
The test was conducted in an artificial climate room (20°C, 65% RH). A sample (foam) was cut out to a length of 15 cm and width of 15 cm and placed on a sample stand. A temperature sensor terminal (4CH temperature data logger, TM-947SDJ; Sato Corporation) was attached and fixed between the sample and the sample stage. A reflex lamp (eye lamp PRF500W; Iwasaki Electric) was prepared 50 cm above the sample, and temperature changes were measured after 10 minutes of irradiation and 10 minutes of extinguishment.
<Near infrared reflection characteristics test (2) Ref lamp test using thermo camera>
The sample (foam) was formed into a film using a hot press (150°C, 10 MPa, 1 minute), cut into 5 cm x 5 cm, and placed on a sample stand. A reflex lamp (eye lamp PRF500W; Iwasaki Electric) was prepared 50 cm above the sample and irradiated for 10 minutes. The temperature change at 9 minutes and 9 minutes and 55 seconds after irradiation was photographed with a thermo camera (FLIR C3; FLIR).
<Near-infrared reflection characteristics test (3) Near-infrared reflectance measurement using a spectrophotometer>
The samples were measured using a spectrophotometer (U-4100 type spectrophotometer; Hitachi) equipped with a 60φ integrating sphere attachment (for ultraviolet-visible and near-infrared regions; Hitachi). The sample was cut to 4 cm x 4 cm, fixed between an aluminum oxide plate and an integrating sphere, and the reflectance was measured by irradiating it with near-infrared rays of 1000 nm to 1600 nm.
<Far-infrared radiation characteristics test>
The far-infrared spectral radiation characteristics were measured by the FT-IR method using a measurement temperature of 40° C. and a test device: FT-IR SpectrumOne Fronier T manufactured by PerkinElmer.

(実施例1)
ポリエチレン(LDPE)の約半分から全量を1mm以下に粉砕し、残りのペレットは(直径2mm、高さ2mmの円柱状)のままにする。その樹脂100質量部に対し、酸化ジルコニウムスラリー(製品名SZR-W、堺化学工業社製、酸化ジルコニウム濃度30質量%、粒子径D50:3nm,Dmax:30nm(Measured by Dynamic light scattering,メーカー値))10質量部(乾燥質量で3質量部)をブレンドした。ブレンドした樹脂と酸化ジルコニウムスラリーを押し出し機に投入した。樹脂溶融部、混練分散部で混錬を行い、押し出し部から吐出された樹脂組成物を冷却し、ペレタイザーを通してペレット化した。得られた樹脂組成物を再粉砕し、樹脂組成物100質量部に対し、粉体B型シリカゲル(製品名:トヨタシリカゲルB白400下、豊田化工社製、粉体、篩分け法による400メッシュ通過粒子:37μm以下,メーカー値)10質量部とドライブレンドし、同工程にて酸化ジルコニウムとB型シリカゲルを含有した樹脂組成物ペレットを得た。押し出し機内における加工温度は、150~160℃とした。
(Example 1)
Approximately half to the entire amount of polyethylene (LDPE) is ground to less than 1 mm, leaving the remaining pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm). For 100 parts by mass of the resin, zirconium oxide slurry (product name SZR-W, manufactured by Sakai Chemical Industry Co., Ltd., zirconium oxide concentration 30% by mass, particle size D 50 : 3 nm, D max : 30 nm (Measured by Dynamic light scattering, manufacturer) value)) 10 parts by weight (3 parts by weight dry weight) were blended. The blended resin and zirconium oxide slurry were charged into an extruder. Kneading was performed in a resin melting section and a kneading and dispersing section, and the resin composition discharged from an extrusion section was cooled and pelletized through a pelletizer. The obtained resin composition was re-pulverized, and 100 parts by mass of the resin composition was mixed with powder type B silica gel (product name: Toyota Silica Gel B White 400 Lower, manufactured by Toyota Kako Co., Ltd., powder, 400 mesh by sieving method). Passing particles: 37 μm or less, manufacturer's value) were dry blended with 10 parts by mass, and in the same process, resin composition pellets containing zirconium oxide and B-type silica gel were obtained. The processing temperature in the extruder was 150 to 160°C.

(実施例2)
ポリエチレン(LDPE)の約半分から全量を1mm以下に粉砕し、残りのペレットは(直径2mm、高さ2mmの円柱状)のままにする。その樹脂100質量部に対し、酸化ジルコニウムスラリー(製品名SZR-W、堺化学工業社製、酸化ジルコニウム濃度30質量%、粒子径D50:3nm,Dmax:30nm(Measured by Dynamic light scattering,メーカー値))10質量部(乾燥質量で3質量部)をブレンドした。ブレンドした樹脂と酸化ジルコニウムスラリーを押し出し機に投入した。樹脂溶融部、混練分散部で混錬を行い、押し出し部から吐出された樹脂組成物を冷却し、ペレタイザーを通してペレット化した。得られた樹脂組成物を再粉砕し、樹脂組成物100質量部に対し、粉体B型シリカゲル(製品名:トヨタシリカゲルB白400下、豊田化工社製、粉体、篩分け法による400メッシュ通過粒子:37μm以下,メーカー値)30質量部とドライブレンドし、同工程にて酸化ジルコニウムとB型シリカゲルを含有した樹脂組成物ペレットを得た。押し出し機内における加工温度は、150~160℃とした。
(Example 2)
Approximately half to the entire amount of polyethylene (LDPE) is ground to less than 1 mm, leaving the remaining pellets (cylindrical shape with a diameter of 2 mm and a height of 2 mm). For 100 parts by mass of the resin, zirconium oxide slurry (product name SZR-W, manufactured by Sakai Chemical Industry Co., Ltd., zirconium oxide concentration 30% by mass, particle size D 50 : 3 nm, D max : 30 nm (Measured by Dynamic light scattering, manufacturer) value)) 10 parts by weight (3 parts by weight dry weight) were blended. The blended resin and zirconium oxide slurry were charged into an extruder. Kneading was performed in a resin melting section and a kneading and dispersing section, and the resin composition discharged from an extrusion section was cooled and pelletized through a pelletizer. The obtained resin composition was re-pulverized, and 100 parts by mass of the resin composition was mixed with powder type B silica gel (product name: Toyota Silica Gel B White 400 Lower, manufactured by Toyota Kako Co., Ltd., powder, 400 mesh by sieving method). Passing particles: 37 μm or less, manufacturer's value) was dry blended with 30 parts by mass, and in the same process, resin composition pellets containing zirconium oxide and B-type silica gel were obtained. The processing temperature in the extruder was 150 to 160°C.

(実施例3)
実施例1で得られたマスターバッチ樹脂組成物ペレット10質量部と、LDPE樹脂100質量部を用いて、公知の方法でシート発泡成形して樹脂発泡シート(樹脂成形体)を得た。この樹脂発泡シートは厚さ約2mm(定規で目視して測定)、単位面積当たりの質量は80g/m2、みかけ密度は約0.04g/cm3であった。また、シリカゲル含量は0.91質量%、酸化ジルコニウム含量は0.27質量%であった。
図4Aは本発明の実施例1の発泡体樹脂のSEM観察100倍の写真及び図4Bは同1000倍の観察写真である。いずれも無機物の分散状態は良好である。
(Example 3)
Using 10 parts by mass of the masterbatch resin composition pellets obtained in Example 1 and 100 parts by mass of LDPE resin, sheet foam molding was performed by a known method to obtain a resin foam sheet (resin molded body). This resin foam sheet had a thickness of about 2 mm (measured visually with a ruler), a mass per unit area of 80 g/m 2 , and an apparent density of about 0.04 g/cm 3 . Further, the silica gel content was 0.91% by mass, and the zirconium oxide content was 0.27% by mass.
FIG. 4A is a 100x SEM photograph of the foam resin of Example 1 of the present invention, and FIG. 4B is a 1000x photograph. In both cases, the inorganic substances were well dispersed.

(実施例4)
実施例1で得られたマスターバッチ樹脂組成物ペレット30質量部と、LDPE樹脂100質量部を用いて、公知の方法でシート発泡成形して樹脂発泡シート(樹脂成形体)を得た。得られた樹脂発泡シートは厚さ約2mm、単位面積当たりの質量は80g/m2、みかけ密度は約0.04g/cm3であった。また、シリカゲル含量は2.3質量%、酸化ジルコニウム含量は0.69質量%であった。
図5Aは本発明の実施例1の発泡体樹脂のSEM観察100倍の写真及び図5Bは同1000倍の観察写真である。いずれも無機物の分散状態は良好である。
(Example 4)
Using 30 parts by mass of the masterbatch resin composition pellets obtained in Example 1 and 100 parts by mass of LDPE resin, sheet foam molding was performed by a known method to obtain a resin foam sheet (resin molded body). The resulting resin foam sheet had a thickness of about 2 mm, a mass per unit area of 80 g/m 2 , and an apparent density of about 0.04 g/cm 3 . Further, the silica gel content was 2.3% by mass, and the zirconium oxide content was 0.69% by mass.
FIG. 5A is a 100x SEM photograph of the foam resin of Example 1 of the present invention, and FIG. 5B is a 1000x photograph. In both cases, the inorganic substances were well dispersed.

(実施例5)
実施例2で得られたマスターバッチ樹脂組成物ペレット20質量部と、LDPE樹脂100質量部を用いて、公知の方法でシート発泡成形して樹脂発泡シート(樹脂成形体)を得た。この樹脂発泡シートは厚さ約2mm、単位面積当たりの質量は110g/m2、みかけ密度は約0.055g/cm3であった。また、シリカゲル含量は5.0質量%、酸化ジルコニウム含量は0.5質量%であった。
図6Aは本発明の実施例1の発泡体樹脂のSEM観察100倍の写真及び図6Bは同1000倍の観察写真である。いずれも無機物の分散状態は良好である。
(Example 5)
Using 20 parts by mass of the masterbatch resin composition pellets obtained in Example 2 and 100 parts by mass of LDPE resin, sheet foam molding was performed by a known method to obtain a resin foam sheet (resin molded body). This resin foam sheet had a thickness of about 2 mm, a mass per unit area of 110 g/m 2 , and an apparent density of about 0.055 g/cm 3 . Further, the silica gel content was 5.0% by mass, and the zirconium oxide content was 0.5% by mass.
FIG. 6A is a 100x SEM photograph of the foam resin of Example 1 of the present invention, and FIG. 6B is a 1000x photograph. In both cases, the inorganic substances were well dispersed.

(実施例6)
実施例1で得られたシート発泡成形体を、加熱プレス機で1分間(160℃、10MPa)プレスしてフィルム(樹脂成形体)を得た。このフィルムの厚みは70μm、単位面積当たりの質量は60g/m2であった。
(Example 6)
The sheet foam molded product obtained in Example 1 was pressed for 1 minute (160° C., 10 MPa) using a heating press to obtain a film (resin molded product). The thickness of this film was 70 μm, and the mass per unit area was 60 g/m 2 .

(実施例7)
実施例2で得られたシート発泡成形体を、加熱プレス機で1分間(160℃、10MPa)プレスしてフィルム(樹脂成形体)を得た。このフィルムの厚みは70μm、単位面積当たりの質量は60g/m2であった。
(Example 7)
The sheet foam molded product obtained in Example 2 was pressed for 1 minute (160° C., 10 MPa) using a heating press to obtain a film (resin molded product). The thickness of this film was 70 μm, and the mass per unit area was 60 g/m 2 .

(実施例8)
実施例3で得られたシート発泡成形体を、加熱プレス機で1分間(160℃、10MPa)プレスしてフィルム(樹脂成形体)を得た。このフィルムの厚みは70μm、単位面積当たりの質量は60g/m2であった。
(Example 8)
The sheet foam molded product obtained in Example 3 was pressed for 1 minute (160° C., 10 MPa) using a hot press machine to obtain a film (resin molded product). The thickness of this film was 70 μm, and the mass per unit area was 60 g/m 2 .

(比較例1)
マスターバッチ樹脂組成物ペレットは加えず、LDPE樹脂100質量部を用いて、公知の方法でシート発泡成形して樹脂発泡シートを得た。この樹脂発泡シートは厚さ約2mm、単位面積当たりの質量は80g/m2、みかけ密度は約0.04g/cm3であった。
図7Aは比較例1の発泡体樹脂のSEM観察100倍の写真及び図7Bは、同1000倍の観察写真である。
以上の実施例3~5及び比較例1の近赤外線反射特性(1) 温度センサーによるレフランプ試験で測定した温度を表1と図2にレフランプ照射時のその温度変化グラフを示す。
(Comparative example 1)
A resin foam sheet was obtained by sheet foam molding by a known method using 100 parts by mass of LDPE resin without adding masterbatch resin composition pellets. This resin foam sheet had a thickness of about 2 mm, a mass per unit area of 80 g/m 2 , and an apparent density of about 0.04 g/cm 3 .
FIG. 7A is a 100x SEM photograph of the foam resin of Comparative Example 1, and FIG. 7B is a 1000x photograph.
Near-infrared reflection characteristics of Examples 3 to 5 and Comparative Example 1 (1) The temperatures measured in a reflex lamp test using a temperature sensor are shown in Table 1 and a graph of temperature changes during reflex lamp irradiation is shown in FIG.

表1及び図2の結果から、温度の高い順に、比較例1、実施例3、実施例4、実施例5となっており、シリカゲルの濃度に比例して、試料と試料台の間に設置した温度センサーの温度が低くなっていた。この結果からレフランプにより照射された赤外線がシリカゲルにより透過及び/又は吸収されにくくなったものと推定される。 From the results in Table 1 and Figure 2, the order of temperature is Comparative Example 1, Example 3, Example 4, and Example 5. The temperature of the temperature sensor was getting low. From this result, it is presumed that the infrared rays irradiated by the reflex lamp were less likely to be transmitted and/or absorbed by the silica gel.

次に、近赤外線反射特性試験(2)のサーモカメラによるレフランプ試験結果を示す。レフランプ照射時の温度変化より、レフランプ照射後9分、照射後9分55秒において、温度の高い順に、実施例5、実施例4、実施例3、比較例1となっており、シリカゲルの濃度に比例して、試料の表面温度が高くなっていた。サーモカメラは、物質表面から放射されている赤外線エネルギーの強度を温度情報として検出・可視化して、温度分布などの画像表示を行う装置であり、この結果からレフランプによる照射された近赤外線がシリカゲルにより反射しているものと推定される。 Next, the near-infrared reflection characteristic test (2) reflex lamp test results using a thermo camera are shown. According to the temperature change during Ref lamp irradiation, 9 minutes after Ref lamp irradiation and 9 minutes 55 seconds after irradiation, in order of highest temperature, Example 5, Example 4, Example 3, and Comparative Example 1, and the concentration of silica gel The surface temperature of the sample increased in proportion to A thermo camera is a device that detects and visualizes the intensity of infrared energy emitted from the surface of a material as temperature information, and displays images such as temperature distribution.From this result, the near infrared rays irradiated by the reflex lamp are detected by silica gel. It is presumed that it is a reflection.

実施例6~8及び比較例1の近赤外線の反射率(近赤外線反射特性試験(3) 分光光度計による近赤外線反射率測定)を表2と図3に示す。 The near-infrared reflectance (near-infrared reflection characteristic test (3) near-infrared reflectance measurement using a spectrophotometer) of Examples 6 to 8 and Comparative Example 1 are shown in Table 2 and FIG.

表2と図3の結果の結果から、近赤外線反射性が確認できた。よって、近赤外線反射特性試験(1)~(3)の結果を総合すると、シリカゲルの濃度に比例して近赤外線反射性による断熱性が高く、試料表面の温度上昇と試料裏面の温度上昇抑制が確認できた。次に、遠赤外線分光放射特性を表3に示す。 From the results shown in Table 2 and FIG. 3, near-infrared reflectivity was confirmed. Therefore, combining the results of the near-infrared reflection characteristics tests (1) to (3), it can be seen that the near-infrared reflection property has high insulation properties in proportion to the concentration of silica gel, and the temperature rise on the surface of the sample and the temperature rise on the back side of the sample can be suppressed. It could be confirmed. Next, Table 3 shows far-infrared spectral radiation characteristics.

表3から、酸化ジルコニウムの濃度にほぼ比例して赤外線分光放射率が高くなることが確認できた。
以上の実施例、比較例から、熱可塑性樹脂に遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有させると、相乗効果により樹脂成形体の温感効果を高めることができる。
From Table 3, it was confirmed that the infrared spectral emissivity increased almost in proportion to the concentration of zirconium oxide.
From the above Examples and Comparative Examples, when the thermoplastic resin contains far-infrared emitting material particles and near-infrared reflective material particles, the thermal sensation effect of the resin molded article can be enhanced due to a synergistic effect.

本発明の樹脂組成物は、マスターバッチ用樹脂組成物として有用である。本発明の樹脂組成物は、繊維、フィラメント、不織布、シート、発泡体、フィルム、ブロック体、その他適宜形状に成形した成形体に用いることができる。得られた樹脂成形体は、衣類、寝具、敷物、カーテン、ブラインド、屋外部材、日よけ用シートなどに用いることができる。 The resin composition of the present invention is useful as a resin composition for masterbatches. The resin composition of the present invention can be used for fibers, filaments, nonwoven fabrics, sheets, foams, films, blocks, and other molded bodies shaped into appropriate shapes. The obtained resin molded product can be used for clothing, bedding, rugs, curtains, blinds, outdoor members, sunshade sheets, and the like.

1 押し出し機
2 原料供給口
3 樹脂溶融部
4 混練分散部
5 減圧ライン
6 押し出し部
7 取り出し部
1 Extruder 2 Raw material supply port 3 Resin melting section 4 Kneading and dispersing section 5 Decompression line 6 Extrusion section 7 Removal section

Claims (8)

熱可塑性樹脂に、遠赤外線放射物質粒子及び近赤外線反射物質粒子を含有した樹脂組成物であって、
前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多く、
前記近赤外線反射物質無機粒子はB型シリカゲルであり、
前記遠赤外線放射物質粒子は酸化ジルコニウムであり、
前記遠赤外線放射物質粒子は微分散していることを特徴とする樹脂組成物。
A resin composition containing far-infrared emitting material particles and near-infrared reflecting material particles in a thermoplastic resin,
The amount of the near-infrared reflecting material particles is greater than the amount of the far-infrared emitting material particles,
The near-infrared reflective material inorganic particles are B-type silica gel,
The far-infrared emitting material particles are zirconium oxide,
A resin composition characterized in that the far-infrared emitting substance particles are finely dispersed.
前記近赤外線反射物質粒子の平均粒子径は、遠赤外線放射物質粒子の平均粒子径より大きい、請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the average particle size of the near-infrared reflecting material particles is larger than the average particle size of the far-infrared emitting material particles. 前記近赤外線反射物質粒子の平均粒子径は1μm以上であり、前記遠赤外線放射物質粒子の平均粒子径は100nm以下である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2 , wherein the near-infrared reflecting material particles have an average particle diameter of 1 μm or more, and the far-infrared emitting material particles have an average particle diameter of 100 nm or less. 前記熱可塑性樹脂100質量部に対し、近赤外線反射物質粒子の配合量は0.1~100質量部であり、遠赤外線放射物質粒子の配合量は0.1~15質量部である請求項1~のいずれか1項に記載の樹脂組成物。 1. The amount of the near-infrared reflecting material particles is 0.1 to 100 parts by mass, and the amount of the far-infrared emitting material particles is 0.1 to 15 parts by mass relative to 100 parts by mass of the thermoplastic resin. - The resin composition according to any one of 3 . 前記樹脂組成物はマスターバッチ用樹脂組成物である請求項1~のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4 , wherein the resin composition is a masterbatch resin composition. 請求項1~のいずれか1項に記載の樹脂組成物を成形加工した樹脂成形体。 A resin molded article obtained by molding the resin composition according to any one of claims 1 to 5 . 熱可塑性樹脂を準備し、
遠赤外線放射物質粒子及び近赤外線反射物質粒子を準備し、
前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多くなるように、熱可塑性樹脂中に混練させる工程を含み、
前記近赤外線反射物質無機粒子はB型シリカゲルであり、
前記遠赤外線放射物質粒子は酸化ジルコニウムであり、
前記遠赤外線放射物質粒子は微分散していることを特徴とする樹脂組成物の製造方法。
Prepare thermoplastic resin,
Prepare far-infrared emitting material particles and near-infrared reflecting material particles,
The method includes a step of kneading the near-infrared reflective material particles into the thermoplastic resin so that the amount of the near-infrared reflective material particles is greater than the amount of the far-infrared emitting material particles,
The near-infrared reflective material inorganic particles are B-type silica gel ,
The far-infrared emitting material particles are zirconium oxide,
A method for producing a resin composition , wherein the far-infrared emitting material particles are finely dispersed .
熱可塑性樹脂を準備し、
遠赤外線放射物質粒子及び近赤外線反射物質粒子を準備し、
前記近赤外線反射物質粒子の配合量は、遠赤外線放射物質粒子の配合量より多くなるようにして、
樹脂溶融部と、減圧ラインを備えた混練分散部と、押し出し部を連続して接続し、
前記混練溶融部に、水分散液とした遠赤外線放射物質粒子と、加熱溶融させた樹脂とを供給し、
次に前記混練分散部に送り、溶融混練と同時に前記減圧ラインから水分を気体の状態で除去し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する一次混練工程と、
得られたペレットと近赤外線反射物質粒子をドライブレンドし、溶融混練し、押し出し部から樹脂組成物を押し出して冷却し、ペレット化する二次混練工程を含み、
前記近赤外線反射物質無機粒子はB型シリカゲルであり、
前記遠赤外線放射物質粒子は酸化ジルコニウムであり、
前記遠赤外線放射物質粒子は微分散していることを特徴とする樹脂組成物の製造方法。
Prepare thermoplastic resin,
Prepare far-infrared emitting material particles and near-infrared reflecting material particles,
The amount of the near-infrared reflecting material particles is greater than the amount of the far-infrared emitting material particles,
The resin melting section, the kneading dispersion section equipped with a vacuum line, and the extrusion section are connected continuously,
Supplying far-infrared emitting material particles made into an aqueous dispersion and a heated and melted resin to the kneading and melting section,
Next, a primary kneading step of sending the resin composition to the kneading and dispersing section, removing water in a gaseous state from the vacuum line at the same time as melting and kneading, extruding the resin composition from the extrusion section, cooling it, and pelletizing it;
A secondary kneading step of dry blending the obtained pellets and near-infrared reflective material particles, melt-kneading, extruding the resin composition from an extrusion section, cooling, and pelletizing,
The near-infrared reflective material inorganic particles are B-type silica gel ,
The far-infrared emitting material particles are zirconium oxide,
A method for producing a resin composition , wherein the far-infrared emitting material particles are finely dispersed .
JP2019126916A 2019-07-08 2019-07-08 Resin composition, resin molded article, and method for producing resin composition Active JP7450347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019126916A JP7450347B2 (en) 2019-07-08 2019-07-08 Resin composition, resin molded article, and method for producing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126916A JP7450347B2 (en) 2019-07-08 2019-07-08 Resin composition, resin molded article, and method for producing resin composition

Publications (2)

Publication Number Publication Date
JP2021011546A JP2021011546A (en) 2021-02-04
JP7450347B2 true JP7450347B2 (en) 2024-03-15

Family

ID=74227799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126916A Active JP7450347B2 (en) 2019-07-08 2019-07-08 Resin composition, resin molded article, and method for producing resin composition

Country Status (1)

Country Link
JP (1) JP7450347B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051113A (en) 2010-08-31 2012-03-15 Hiraoka & Co Ltd Heat controllable sheet
CN104177685A (en) 2014-08-19 2014-12-03 东莞市普凯塑料科技有限公司 Infrared reflection/emission thermal-insulating plastic functional master batch and preparation method thereof
JP2020026518A (en) 2018-08-09 2020-02-20 積水化成品工業株式会社 Organic inorganic composite particle, method for producing the same, and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279599A (en) * 1993-10-04 1994-10-04 Toray Ind Inc Biaxially oriented polyester film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051113A (en) 2010-08-31 2012-03-15 Hiraoka & Co Ltd Heat controllable sheet
CN104177685A (en) 2014-08-19 2014-12-03 东莞市普凯塑料科技有限公司 Infrared reflection/emission thermal-insulating plastic functional master batch and preparation method thereof
JP2020026518A (en) 2018-08-09 2020-02-20 積水化成品工業株式会社 Organic inorganic composite particle, method for producing the same, and application thereof

Also Published As

Publication number Publication date
JP2021011546A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN107641297B (en) Master batch with heat storage and heat preservation functions, product and preparation method thereof
CN107674389A (en) The manufacture device and manufacture method of three-dimensional contouring toner, three-dimensional contouring thing
CN108715656A (en) A kind of PE/CaCO3Ventilative film master batch and preparation method thereof
JP7450347B2 (en) Resin composition, resin molded article, and method for producing resin composition
CN113564741B (en) Far infrared functional powder, far infrared fiber, and preparation method and application thereof
JP4138949B2 (en) Non-crosslinked polyethylene resin expanded particles and molded articles thereof
CN106222787A (en) A kind of regenerative piece of polyester bottle prepares the method for photothermal response chopped fiber
KR102129411B1 (en) Pellet comprising resin and oil
JP3553325B2 (en) Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article
US6224799B1 (en) Method for new additive concentrates
Park et al. Effect of SiC and ZnO nanoparticles on UV absorbance and heat transfer of PET composite film
US20120177852A1 (en) Heat regenerating element and heat regenerating material using same
KR100337572B1 (en) Pillow Chip Prepared With Polypropylene Resin Composition Containing Quartz Porphyry and Charcoal
EP2094775B1 (en) Optically transparent, xray-opaque composition, methods of manufacture thereof and articles comprising the same
CN113527850A (en) Cool functional masterbatch, cool fiber and preparation method and application thereof
TW201831595A (en) Color masterbatch composition for dark color textiles or engineering plastics and products thereof comprising a thermoplastic polyester, a yellow color component, a red color component, and a blue color component
KR102203026B1 (en) Master batch for freshness-keeping film containing illite, preparation method thereof, and preparation method of freshness-keeping film using the same
JP5764851B2 (en) Light absorbing composition and light absorbing device comprising the same
CN111087630A (en) Processing method of master batch
KR20170000307A (en) Multi function pp filament and Products of mixture of polypropylene resin with illite
JPH08267597A (en) Wood panel like polyolefinic resin panel and production thereof
KR101960457B1 (en) Production method of high-functionality filament yarn containing illite
US20210396640A1 (en) Extrudable compositions comprising fillers and devices made from the compositions
CN116043354A (en) Light-colored thermal fiber and preparation method thereof
KR20160062531A (en) Preparation method of thermoplastic resin composition and thermoplastic resin composition prepared thereby

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7450347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150