JP7449230B2 - Rlm及びビームモニタリングパラメータの最適化された再設定 - Google Patents

Rlm及びビームモニタリングパラメータの最適化された再設定 Download PDF

Info

Publication number
JP7449230B2
JP7449230B2 JP2020542977A JP2020542977A JP7449230B2 JP 7449230 B2 JP7449230 B2 JP 7449230B2 JP 2020542977 A JP2020542977 A JP 2020542977A JP 2020542977 A JP2020542977 A JP 2020542977A JP 7449230 B2 JP7449230 B2 JP 7449230B2
Authority
JP
Japan
Prior art keywords
reference signal
rlm
message
wireless device
signal resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020542977A
Other languages
English (en)
Other versions
JP2021514124A (ja
Inventor
シルヴァ, イカロ エル.イェー. ダ
ヘルカ-リーナ マーッタネン,
クラース ティデスタフ,
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Publication of JP2021514124A publication Critical patent/JP2021514124A/ja
Application granted granted Critical
Publication of JP7449230B2 publication Critical patent/JP7449230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

UEにおけるRLM機能の目的は、RRC_CONNECTED状態におけるサービングセルのダウンリンク無線リンク品質をモニタすることであり、所与のLTEセルと常に関連付けられた及び物理セル識別子(PCI:Physical Cell Identifier)から導出される、セル特有の参照信号(CRS:Specific Reference Signal)に基づく。これは、次に、UEが、RRC_CONNECTED状態にあるときに、それがそれのサービングセルに関して同期しているか同期していないかを判定することを可能にする。
ダウンリンク無線リンク品質のUEの見積が、RLMを目的として、それぞれQout及びQinと称され得る、同期外れ(OOS:out-of-sync)閾値及び同期中(IS:in-sync)閾値と比較される。これらの閾値は、サービングセルからの仮説的物理ダウンリンク制御チャンネル(PDCCH:Physical Downlink Control Channel)送信のブロック誤り率(BLER:Block Error Rate)に関して表される。具体的に、Qoutは、10%BLERに対応し、一方、Qinは2%BLERに対応する。同じ閾値レベルが、DRXを有して及び有さず、適用可能である。
CRSベースのダウンリンク品質と仮説的PDCCH BLERとの間のマッピングは、UE実装形態による。しかしながら、パフォーマンスは、様々な環境のために規定される適合性試験によって検証される。また、PDCCHがダウンリンク送信帯域幅全体のどこかにスケジュールされ得ることを示す、図1に示された、PDCCHがスケジュールされようとしている場所をUEは必ずしも知らないので、ダウンリンク品質は、帯域全体でCRSのRSRPに基づいて計算される。
DRXが、設定されない場合、最後の200ms期間にわたって見積もられたダウンリンク無線リンク品質が、閾値Qoutよりも悪くなるとき、OOSが生じる。同様に、最後の100ms期間にわたって見積もられたダウンリンク無線リンク品質が、閾値Qinよりも良くなるとき、DRXなしに、ISは生じる。同期外れを検出したとき、UEは、同期中の評価を開始する。
RLF機能性における重大な問題は、RRC_CONNECTEDにある間にネットワークによって達することができないそれが検出したときのUE自律アクションを制御するためにRLMからの内部で生成されたIS/OOSイベントを上位レイヤがどのように使用するかである。
LTEにおいて、OOS及びISイベントの発生は、無線リンク故障(RLF:Radio Link Failure)の評価のためにRRC/レイヤ3(すなわち、上位レイヤ)フィルタリングを次に適用することができる、その上位レイヤにUEの物理レイヤによって内部で報告される。図2は、LTEにおける上位レイヤRLM手続きを示す。
RLFに関する詳細UEアクションは、RRC仕様書(38.331)に保存される。
NRについて、100GHzまでの周波数範囲が考慮される。6GHzを超える高周波数無線通信は、重大なパスロス及び侵入ロスを被る。したがって、NRのためのマッシブMIMO方式が、考慮される。
マッシブMIMOでは、ビーム形成の3つの手法が論じられる:アナログ、デジタル、及びハイブリッド(その2つの組合せ)。図3は、ハイブリッドビーム形成の例示的図を示す。ビーム形成は、送信ビーム及び/又は受信ビーム、ネットワーク側又はUE側についてでもよい。
サブアレイのアナログビームは、各OFDMシンボルで単一方向に向けて誘導され得、したがって、サブアレイの数は、ビーム方向の数及び各OFDMシンボルの対応するカバレッジを決定する。しかしながら、サービングエリア全体をカバーするためのビームの数は、通常は、個々のビーム幅が狭いときには特に、サブアレイの数より大きい。したがって、サービングエリア全体をカバーするために、タイムドメインにおいて異なって誘導される狭いビームでの多重伝送もまた、必要とされる見込みがある。これを目的とする複数の狭いカバレッジビームの提供は、「ビーム掃引」と呼ばれる。アナログ及びハイブリッドビーム形成のために、ビーム掃引は、NRにおける基本的カバレッジの提供に必須であるように思われる。これを目的として、異なって誘導されるビームがサブアレイを介して送信され得る、複数のOFDMシンボルが、割り当てられ得、定期的に送信され得る。
図4Aは、2サブアレイでのTXビーム掃引を示す。
図4Bは、3サブアレイでのTXビーム掃引を示す。
SSブロック及びSSバースト設定が、ここで説明される。SSブロックに含まれる信号は、周波数内、周波数間及びRAT間(すなわち、別のRATからのNR測定)を含む、NRキャリアの測定のために使用され得る。
SSB、NR-PSS、NR-SSS及び/又はNR-PBCHは、SS/PBCHブロックとも称され得る、SSブロック内で送信され得る。所与の周波数帯域について、SSブロックは、1つのサブキャリア間隔(たとえば、デフォルト又は設定された)に基づくN OFDMシンボルに対応し、Nは定数である。UEは、少なくともOFDMシンボルインデックス、無線フレームにおけるスロットインデックス及びSSブロックからの無線フレーム番号を識別することができることになる。可能なSSブロック時間位置(たとえば、無線フレームに関する又はSSバーストセットに関する)の単一セットが、周波数帯域ごとに指定される。少なくともマルチビームの場合、SSブロックの少なくとも時間インデックスが、UEに対して指示される。実際に送信されるSSブロックの場所が、接続/アイドルモード測定を助けるために、接続モードUEのDLデータの受信/未使用のSSブロックにおける制御を助けるために、及び、潜在的に、アイドルモードUEのDLデータの受信/未使用のSSブロックにおける制御を助けるために、通知され得る。異なる周波数範囲のSSバーストセット内のSSブロックの最大数、Lは:
・3GHzまでの周波数範囲について、Lは4
・3GHzから6GHzまでの周波数範囲について、Lは8
・6GHzから52.6GHzまでの周波数範囲について、Lは64
一方、1つ又は複数のSSバーストはさらに、SSバーストセット内のSSバーストの数が有限である、SSバーストセット(又はシリーズ)を構成する。物理レイヤ仕様の観点から、SSバーストセットの少なくとも1つの周期性が、サポートされる。UEの観点から、SSバーストセット送信は、周期的である。少なくとも初期セル選択について、UEは、所与のキャリア周波数のSSバーストセット送信のデフォルト周期性(たとえば、5ms、10ms、20ms、40ms、80ms、又は160msのうちの1つ)を想定し得る。UEは、所与のSSブロックがSSバーストセット周期性を有して繰り返されると想定し得る。デフォルトで、UEは、gNBが同じ数の物理ビームを送信することも、SSバーストセット内の異なるSSブロックにわたり同じ物理ビームを送信することも想定しないことが可能である。特別な場合には、SSバーストセットは、1つのSSバーストを含み得る。
各キャリアについて、SSブロックは、時間で整列され得る又は完全に若しくは少なくとも部分的に重複し得る、或いはSSブロックの開始は、時間で整列され得る(たとえば、送信されるSSブロックの実際の数が、異なるセルで異なるとき)。図5は、SSブロック、SSバースト、及びSSバーストセット/シリーズの例示的設定を示す。
バーストセット内のすべてのSSブロックは、5msウインドウ内であるが、そのようなウインドウ内のSSブロックの数は、ヌメロロジに依存する(たとえば、240kHzサブキャリア間隔を有する64SSブロック以下)。図6は、タイムスロット内の及び5msウインドウ内のSSブロックの例示的マッピングを示す。
LTEにおけるMAC CEによるCSI-RSアクティブ化に関して、MAC CEコマンドによるCSI-RSアクティブ化/非アクティブ化は、TS36.321において指定され、そこで、セクション5.19が以下を説明する:
ネットワークは、項6.1.3.14で説明されているCSI-RSリソースMAC制御要素のアクティブ化/非アクティブ化を送ることによって、サービングセルの設定されたCSI-RSリソースをアクティブ化及び非アクティブ化することができる。設定されたCSI-RSリソースは、最初に設定時に及びハンドオーバ後に非アクティブ化される。
セクション6.1.3.14は、以下を開示する:
CSI-RSリソースMAC制御要素のアクティブ化/非アクティブ化は、テーブル6.2.1-1において指定されているようにLCIDを有するMAC PDUサブヘッダによって識別される。それは、設定されたCSIプロセス(N)の数としての可変サイズを有し、図6.1.3.14-1において規定される。アクティブ化/非アクティブ化CSI-RSコマンドは、図6.1.3.14-2において規定されており、CSIプロセスのCSI-RSリソースをアクティブ化する又は非アクティブ化する。CSI-RSリソースMAC制御要素のアクティブ化/非アクティブ化は、UEがCSI-RSリソースMAC制御要素のアクティブ化/非アクティブ化を受信する、サービングセルに適用される。
CSI-RSリソースMAC制御要素のアクティブ化/非アクティブ化は、以下のように規定される:
- R:このフィールドは、CSI-RSプロセスのCSI-RS-ConfigNZPId iと関連するCSI-RSリソースのアクティブ化/非アクティブ化状況を示す。Rフィールドは、CSI-RSプロセスのCSI-RS-ConfigNZPId iと関連するCSI-RSリソースがアクティブ化されることになることを示すために、「1」に設定される。Rフィールドは、CSI-RS-ConfigNZPId iが非アクティブ化されることになることを示すために、「0」に設定される。
図7は、MAC制御要素によるCSI-RSリソースのアクティブ化/非アクティブ化を示す。
図8は、CSI-RSコマンドによるCSI-RSリソースのアクティブ化/非アクティブ化を示す。
MAC CEが、サポートされる最大限のCSI-RSリソースまで選択的アクティブ化することになるとき、MACアクティブ化は、UEがフィードバックをサポートすることができるUEのためのより多くのCSI-RSリソースを設定することができるように、LTEにおいて導入された。次いで、RRCによって再設定する必要なしに、ネットワークは、UEのために設定されたリソースの中から別のセットをアクティブ化することができる。
NRにおけるMAC CE使用に関して、NRについて合意されたMAC CEが、リストに記載される。
Figure 0007449230000001
Figure 0007449230000002
R1-1721734において:
Figure 0007449230000003
NRにおけるRLMの取り扱いに関して、2つのタイプの参照信号(RSタイプ)が、L3可動性のために規定される:LTE及びPBCH/DMRSにおけるPSS/SSSと同等の同期信号を基本的に含む、PBCH/SSブロック(SSB又はSSブロック)と、専用シグナリングを介してさらに設定可能な及び設定された、L3可動性のためのCSI-RS。2つのRSタイプを規定する異なる理由が存在し、それらのうちの1つは、狭いビームでCSI-RSを送信する一方で、広いビームでSSBを送信する可能性である。
RAN1# NR AdHoc#2において、NRでは、RLMのために使用されるRSタイプも設定可能である(CSI-RSベースのRLM及びSSブロックベースのRLMの両方がサポートされる)ことが合意されており、RLMのRSタイプはRRCシグナリングを介して設定されるべきであることは自然に思われる。RAN1#90において、さらなる進展が達せられ、同時にUEの異なるRLM-RSリソースに対して単一のRLM-RSタイプのみをサポートすることが合意された。
NRは、かなり高い周波数(6GHzを超えるが、100GHz以下)で動作することができるので、RLMのために使用されるこれらのRSタイプは、ビーム形成され得る。言い換えれば、配備又は動作周波数に応じて、UEは、どのRSタイプがRLMのために選択されるかに関わらず、ビーム形成された参照信号をモニタするように設定することができる。したがって、LTEとは異なって、RLMのRSは、複数のビームで送信することができる。
CSI-RSの場合、時間/周波数リソース及びシーケンスが、使用され得る。複数のビームが存在し得るとき、UEは、RLMについてどれをモニタするか及びIS/OOSイベントをどのように生成するかを知っている必要がある。SSBの場合、各ビームは、SSBインデックスによって識別する(PBCH及び/又はPBCH/DMRSスクランブリングにおいて時間インデックスから導出する)ことができる。RAN1#90において、これは設定可能であることが合意され、NRにおいて、ネットワークは、以下のように、SSブロック又はCSI-RSに関する、RRCシグナリング、X RLMリソース、によって設定することができる:
- 1つのRLM-RSリソースは、1つのPBCHSSブロック又は1つのCSI-RSリソース/ポートのいずれかでもよい、
- RLM-RSリソースは、少なくともCSI-RSベースのRLMの場合には、UE特有に設定される、
- UEが、1つ又は複数のRLM-RSリソースでRLMを実行するように設定されるとき、
・周期的ISは、すべての設定されたX RLM-RSリソースの中の少なくともY RLM-RSリソースに基づく仮説的PDCCH BLERに対応する見積もられたリンク品質がQ_in閾値を上回るかを指示した
・すべての設定されたX RLM-RSリソースに基づく仮説的PDCCH BLERに対応する見積もられたリンク品質がQ_out閾値未満である場合に、周期的OOSが指示される、
・それは、OOS/ISイベントを生成するためのあらゆるサンプルにおいて最良のビームの品質のみが実際に問題となる、方向を指し示す。
最初の会合、南京におけるRAN2#94において、我々は、NR可動性について議論し、以下が合意された:
ネットワーク制御される可動性の2つのレベル:
1:「セル」レベルにおいて駆動されるRRC
2:ゼロ/最小限のRRC関与(たとえば、セルの規定であるMAC/PHY FFSにおいて)
その後、セル間可動性はRRCレベルに依存することが少なくともRAN2では常に想定されており、その一方で、セル内可動性(同じセル内のビーム管理手続きを含む)は、RRC関与を有するべきではない。
しかしながら、RAN1#90において、以下が合意された:
・NRは、X RLM-RSリソースを設定することをサポートする
- 1つのRLM-RSリソースは、1つのSS/PBCHブロック又は1つのCSI-RSリソース/ポートのいずれかでもよい、
- RLM-RSリソースは、少なくともCSI-RSベースのRLMの場合、UE特有に設定される
次いで、RAN1#90bisにおいて、以下のように、Xの値は制限されるべきであると合意された:
・NRは、UEのための最大X個のRLM-RS(CSI-RS及び/又はSSB)リソースの設定をサポートする
・次の会合で決定されることになるXの最終値、及び(X<=[8])
・注:BMが必要とされる配備シナリオでは、BM処理及び報告が、X以下のRLM-RSを選択するためのネットワークのための必須条件である。
・FFS:サブ6及び6超のGHzについて異なる数を有するかどうか
次いで、RAN1#91において、リソースの最大数のXの値は、以下のように、異なる周波数範囲について変化し得ることが合意された:
・Xの値について:
・3GHz未満について:X=2
・3GHz超及び6GHz未満について:X=4
・6GHz超について:X=[8]
・RLM-SSB:値範囲は、0、1、…、63
・RLM-CSI-RS-timeConfig:
・周期性、P:{5ms,10ms,20ms,40ms}
・スロットオフセット:{0,…,Ps-1}スロット
・Psが、CSI-RSヌメロロジにおける期間P内のスロットの数である場合
・RLM-CSI-RS-FreqBand
・以下の例外を有してBMにおいて合意されたパラメータ値を採用する:
・PRBの最小数は24である。
現在、ある種の課題が存在する。それらの理解を助けるために、これらの合意の結果が、考慮されなければならない。RAN1では、セルをカバーするSSBの数はまた、周波数範囲ごとに変化することが可能であり、以下の値が、RAN1#88bisにおいて合意された:
・異なる周波数範囲のSSバーストセット内のSSブロックの考慮される最大数、Lは、
-3GHz以下の周波数範囲について、SSバーストセット内のSSブロックの最大数、Lは、[1,2,4]である
-3GHzから6GHzまでの周波数範囲について、SSバーストセット内のSSブロックの最大数、Lは、[4,8]である
-6GHzから52.6GHzまでの周波数範囲について、SSバーストセット内のSSブロックの最大数、Lは、[64]である
次いで、特にSSBベースのRLMについて、L(所与の周波数範囲内のセルの送信されるSSBの最大数)とX(所与の周波数範囲のRLM-RSリソースの最大数)との値を比較する場合、以下に示すように、XがLより低いシナリオを有することになる:
Figure 0007449230000004
前述のテーブルから分かるように、RLMのために設定することができるビームの数(「ビーム」という用語は、RLM-RSリソースの代わりに使用され得る)は、セルカバレッジを場合により提供するビームの数より小さい。図9は、3GHZと6GHZとの間の周波数についてのこのシナリオを示し、L=8及びX=4(すなわち、3GHzと6GHzとの間の周波数の)である。次いで、UEが、そのセルのカバレッジ内で移動する場合、RLMのために使用されることになるビームは、再設定される必要がある可能性があり、そうでない場合、UEは、UEがセルカバレッジ下にまだあっても、OSSイベントの生成を場合により開始する(及びRLFを場合により宣言する)ことになる。
その状況が生じるとき、ネットワークが行うことができることを望むと見込まれるのは、PDCCHでUEにサーブするビームと、その結果として、RLMについてモニタされることになるビームとの両方を再設定することである(これらは相互に関連すべきであるので)。図10は、PDCCHビーム及びその結果としてRS-RLMリソース/ビームを再設定するネットワークを示す。
しかしながら、ベースライン解決法に関するある特定の問題が存在する。たとえば、RRCシグナリングが、通常は、モバイルネットワークにおける再設定のために考慮され、したがって、それは、ベースライン解決法などのRLM-RSパラメータをUEが再設定する必要があるたびに、想定され得る。しかしながら、X<Lを有するというRAN1決定の結果は、許されたRLM-RS再設定機構のみが、RRCに基づくものである場合、UEは、RAN2における最初のNR可動性合意に反する、セル内可動性を実行することをRRCシグナリングに恐らくは求めることになる。したがって、所見は、最大限のRLM-RSリソース(8と等しい)の現在のRAN1想定は、先の合意RAN2に反する、セル内RRCベースの可動性を必要とするということである。
本開示のある種の態様及びそれらの実施形態は、これらの又は他の課題に対する解決法を提供することができる。たとえば、RLM-RSリソースなどのRLMパラメータのための設定及び再設定フレームワークを含む、方法が開示される。本方法は、ネットワークによって送られるRRCシグナリングを介してRLM設定のセットでUEが設定されることと、これらの設定が、場合により、たとえば、MAC CE、DCI、又は他のシグナリングを使用する、下位レイヤシグナリングを介して、たとえば、アクティブ化/非アクティブ化によって、更新されることとを含む。
ある種の実施形態によれば、ワイヤレスデバイスによる方法が、無線リンクモニタリング(RLM)及びビームモニタリングの最適化された再設定のために提供される。本方法は、少なくとも1つのRLMパラメータを含む第1のメッセージを、第1のネットワークノードから受信することを含む。第1のメッセージと関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージが、受信される。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
ある種の実施形態によれば、RLM及びビームモニタリングの最適化された再設定のためのワイヤレスデバイスが、提供される。ワイヤレスデバイスは、命令を記憶するメモリと、少なくとも1つのRLMパラメータを含む第1のメッセージを、第1のネットワークノードから、ワイヤレスデバイスに受信させるための命令を実行するように動作可能な処理回路とを含み、第1のメッセージと関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージが、受信される。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
ある種の実施形態によれば、ネットワークノードが、RLM及びビームモニタリングの最適化された再設定のために提供される。本方法は、少なくとも1つのRLMパラメータを含む第1のメッセージを、ワイヤレスデバイスに送ることと、第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、ワイヤレスデバイスに送ることとを含む。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
ある種の実施形態によれば、RLM及びビームモニタリングの最適化された再設定のためのネットワークノードが、提供される。ネットワークノードは、命令を記憶するメモリと、少なくとも1つのRLMパラメータを含む第1のメッセージを、ワイヤレスデバイスに送ること及び第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、ワイヤレスデバイスに送ることをネットワークノードに行わせるための命令を実行するように動作可能な処理回路とを含む。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
ある種の実施形態は、以下の技術的利点のうちの1つ又は複数を提供することができる。たとえば、ある種の実施形態の技術的利点は、セル内可動性によりRRCシグナリングを回避する又は最小限に抑えることを含み得る。具体的には、これらの利点は、セル内可動性によりRLMパラメータが更新される必要があるときに、体験され得る。
開示される実施形態及びそれらの特徴及び利点のより完全な理解のために、以下のような添付の図面と併せて、以下の説明がここで参照される。
物理ダウンリンク制御チャンネル(PDCCH)がダウンリンク送信帯域幅全体のどこかにスケジュールされ得ることを示す図である。 LTEにおける上位レイヤ無線リンクモニタリング(RLM:radio link monitoring)手続きを示す図である。 ハイブリッドビーム形成の例示的図である。 2サブアレイでのTXビーム掃引を示す図である。 3サブアレイでのTXビーム掃引を示す図である。 同期信号(SS:synchronization signal)ブロック、SSバースト、及びSSバーストセット/シリーズの例示的設定を示す図である。 タイムスロット内の及び5msウインドウ内のSSブロックの例示的マッピングを示す図である。 MAC制御要素によるCSI-RSリソースのアクティブ化/非アクティブ化を示す図である。 CSI-RSコマンドによるCSI-RSリソースのアクティブ化/非アクティブ化を示す図である。 RLMのために設定することができるビームの数は、セルカバレッジを場合により提供するビームの数より小さいことを示す図である。 PDCCHビーム及びその結果としてRS-RLMリソース/ビームを再設定するネットワークを示す図である。 ある種の実施形態による、ネットワークによって送られるRRCシグナリングを介してRLM設定のセットでUEが設定されることを含む、例示的方法を示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のための例示的ネットワークを示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のための例示的ネットワークノードを示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のための例示的ワイヤレスデバイスを示す図である。 ある種の実施形態による、例示的ユーザ機器を示す図である。 いくつかの実施形態によって実装される機能が仮想化され得る例示的仮想化環境を示す図である。 ある種の実施形態による、ホストコンピュータに中間ネットワークを介して接続された電気通信ネットワークを示す図である。 ある種の実施形態による、部分的ワイヤレス接続を介してユーザ機器と基地局を介して通信するホストコンピュータの一般化されたブロック図である。 一実施形態による、通信システムにおいて実装される方法を示す図である。 一実施形態による、通信システムにおいて実装されるもう1つの方法を示す図である。 一実施形態による、通信システムにおいて実装されるもう1つの方法を示す図である。 一実施形態による、通信システムにおいて実装されるもう1つの方法を示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のためのワイヤレスデバイスによる例示的方法を示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のための例示的仮想コンピューティングデバイスを示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のためのネットワークノードによる例示的方法を示す図である。 ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のためのもう1つの例示的仮想コンピューティングデバイスを示す図である。
ここで、本明細書で意図された実施形態のうちのいくつかを、添付の図面を参照して、より完全に説明する。しかしながら、他の実施形態が、本明細書で開示される主題の範囲内に含まれ、開示される主題は、本明細書に記載の実施形態のみに限定されるものとして解釈されるべきではなく、これらの実施形態は、当業者に本主題の範囲を伝えるための例として提供される。
一般に、本明細書で使用されるすべての用語は、それが使用されている文脈から異なる意味が明確に与えられる及び/又は暗示されるのでない限り、関連技術分野におけるそれらの通常の意味に従って解釈されるものとする。1つの/その(a/an/the)要素、装置、構成要素、手段、ステップなどのすべての参照は、特に明記のない限り、要素、装置、構成要素、手段、ステップなどの少なくとも1つの例を参照するものとしてオープンに解釈されるものとする。ステップが別のステップに続く若しくは先行するものとして明示的に記載されていない限り、及び/又はステップが別のステップに続く若しくは先行する必要があるということが黙示的である場合、本明細書で開示されるいずれの方法のステップも、開示されている正確な順番で実行される必要はない。本明細書で開示される実施形態のいずれかの任意の特徴は、適切な場合には、任意の他の実施形態に適用され得る。同様に、いずれかの実施形態の任意の利点は、任意の他の実施形態に適用することができ、逆もまた同様である。含まれる実施形態の他の目的、特徴及び利点が、以下の説明から明らかとなろう。
いくつかの実施形態において、非制限的用語「UE」が使用される。本明細書では、UEは、無線信号を介してネットワークノード又は別のUEと通信する能力を有する任意のタイプのワイヤレスデバイスでもよい。UEはまた、無線通信デバイス、目標デバイス、デバイス対デバイス(D2D)UE、マシンタイプUE若しくはマシン対マシン通信(M2M)の能力を有するUE、UEで装備されたセンサ、iPAD、タブレット、モバイル端末、スマートフォン、ラップトップ組み込み装備(LEE:laptop embedded equipped)、ラップトップ搭載機器(LME:laptop mounted equipment)、USBドングル、顧客構内機器(CPE:Customer Premises Equipment)などでもよい。
また、いくつかの実施形態において、総称的専門用語「ネットワークノード」が使用される。それは、基地局、無線基地局、基地局トランシーバ、基地局コントローラ、ネットワークコントローラ、マルチスタンダード無線BS、gNB、en-gNB、ng-eNB、NR BS、エボルブドノードB(eNB)、ノードB、マルチセル/マルチキャストコーディネーションエンティティ(MCE:Multi-cell/multicast Coordination Entity)、リレーノード、アクセスポイント、無線アクセスポイント、リモート無線ユニット(RRU:Remote Radio Unit)、リモート無線ヘッド(RRH:Remote Radio Head)、マルチスタンダードBS(別名、MSR BS)、コアネットワークノード(たとえば、MME、SONノード、コーディネートノード、ポジショニングノード、MDTノードなど)、又は外部ノード(たとえば、サードパーティノード、現在のネットワークの外部のノード)などの無線ネットワークノードを含み得る任意の種類のネットワークノードでもよい。ネットワークノードはまた、試験機器を備え得る。
「BS」という用語は、たとえば、gNB、en-gNB若しくはng-eNB又はリレーノード、或いは実施形態による任意のBSを含み得る。
本明細書では、「無線ノード」という用語は、UE又は無線ネットワークノードを示すために使用され得る。
本明細書では、「シグナリング」という用語は、次のいずれかを含み得る:高レイヤシグナリング(たとえば、RRCなどを介する)、下位レイヤシグナリング(たとえば、物理制御チャンネル又はブロードキャストチャンネルを介する)、或いはその組合せ。シグナリングは、黙示的又は明示的でもよい。シグナリングはさらに、ユニキャスト、マルチキャスト又はブロードキャストでもよい。シグナリングはまた、別のノードに直接又は第3のノードを介してもよい。
本明細書では、RLM手続きという用語は、RLMの間の任意のプロセス発生又はUEによって取られるアクションを指し得る。そのようなプロセス又はアクションの例は、OOS評価、IS評価、IS/OOSのフィルタリング(たとえば、カウンタの開始)、RLFのトリガ、RLFタイマの開始又は満了などである。
本明細書では、RLMパフォーマンスという用語は、無線ノードによって実行されるRLMのパフォーマンスの特徴を示す任意の基準又はメトリックを指し得る。RLMパフォーマンス基準の例は、IS/OOSが検出される評価期間、UE送信器がRLFタイマの満了時にオフにされることになる時間周期などである。
本明細書では、ヌメロロジという用語は、以下のうちのいずれか1つ又はその組合せを含み得る:サブキャリア間隔、帯域幅内のサブキャリアの数、リソースブロックサイズ、シンボル長、CP長など。1つの特定の非制限的例において、ヌメロロジは、7.5kHz、15kHz、30kHz、60kHz、120kHz、又は240kHzのサブキャリア間隔を含む。別の例において、ヌメロロジは、サブキャリア間隔30kHz以上を有して使用され得るCP長である。
ある種の実施形態によれば、RLM-RSリソースを一例として含み得る、RLMパラメータの設定及び再設定フレームワークを含む、方法が提供される。図11は、ある種の実施形態による、ステップ52においてネットワークによって送られるRRCシグナリングを介するRLM設定のセットでUEが設定されることを含む、例示的方法50を示す。図示されるように、設定は、たとえば、MAC Ce、DCI、又は他のシグナリング要素を使用することを含み得る、ステップ54における下位レイヤシグナリングを介する、アクティブ化/非アクティブ化によって、場合により更新される。
後述されるさらなる詳細は、以下を含む:
- 上位レイヤシグナリング(たとえばRRCメッセージ)を介してUEが受信し得るRLM設定/再設定、
- UEがRLM設定/再設定を受信し得る上位レイヤメッセージ(及び関連シナリオ)の種類、
- 上位レイヤシグナリング(RRC)を介する、前に提供された設定/再設定に関連する下位レイヤシグナリングを介して送信されるメッセージに基づいてUEが実行することができる更新の種類。
他の技法が、RLM-RSリソースのセットを変更するNRのために提案された。たとえば、RLMパラメータの再設定は、他の場所で提案された。しかしながら、それらの開示における焦点は、再設定フレームワークを可能な限り効率的にしようとすることに全く関連していない。そうではなくて、RLMパラメータの異なる種類の再設定について、設定に応じて取られるべき異なるUEアクションが存在し得ることが提案された。しかしながら、本明細書の開示では、焦点は、セル内RRCシグナリングを回避する/最小限に抑えるために、再設定フレームワークを可能な限り効率的にすることにある。
もう1つの例として、BWP切り替え時のRLM再設定に関し、以前の開示は存在した。より具体的には、UEが、1つ又は複数のRLM設定を有してネットワークによって設定される、或いはアクティブBWP又はアクティブBWPのセットに基づいて1つ又は複数のRLM設定パラメータを決定する(たとえば、事前に規定されたルールに基づいて)、方法が提案された。それらのうちの1つは、ネットワークによって設定する、或いはアクティブRLM設定としてUEによって決定することができる(たとえば、事前に規定されたルールに基づいて)。標準によって指定された、ネットワークによって設定された、又は事前に規定されたルールに基づいてUEによって決定される、デフォルトRLM再設定もまた存在し得、デフォルトRLM設定は、デフォルトBWPとさらに関連付けられていてもいなくてもよい。一方、本明細書で開示される技法において、各RLM設定は、1つの帯域幅部分(BWP)内でRLMを行うための少なくとも1つのセットの無線リソース及び設定パラメータを含む。
さらに、以前の解決法で提案された変更は、BWPにおける変更があるときのRLM設定の変更である。その一方で、本明細書で開示される技法は、たとえば、セル内可動性により、たとえば、UEが同じBWPにとどまるにもかかわらず、最適化されたRLM再設定フレームワークが必要とされるときなど、UEが同じBWP内にまだある場合にも、RLMパラメータが変更されなければならない場合に適用される。
RLM設定/再設定に関して、UEは、第1のセットの実施形態により、上位レイヤシグナリングを介して受信することができ、UEは、1つ又は複数の(たとえばN1)RLM設定とインデックスのセットとの間のマッピングをネットワークから受信することができ、その設定を適用する。1つのそのような例示的マッピングが、テーブル1に示される:
Figure 0007449230000005
上位レイヤメッセージはまた、上位レイヤメッセージを受信したときにどの設定がアクティブ化されるべきかをUEに指示することができる(黙示的に又は明示的に)。少なくともUEが上位レイヤから設定を単に受信するとき、たとえば、ハンドオーバが発生するとき、UEが接続を再開又は確立しているとき、或いはネットワークが、上位レイヤシグナリングでRLMパラメータを再設定することを単純に決定するとき、下位レイヤを介する追跡の要求を行うことによって、更新メッセージ(たとえばMAC CE)は、回避され得る。
明示的指示は、最初にアクティブ化されると考えられることになる「デフォルト」設定を指示するフラグでもよい。デフォルト設定の黙示的指示は、単純に、第1のインデックスなどの、設定のセットにおける特定のインデックスでもよい。UEは、メッセージを受信したときにUEがアクティブ化するそのデフォルトを使用し、UEが下位レイヤからの更新コマンドへの上位レイヤからの新しい設定を受信するまで、引き続き使用する。1つだけの設定が提供された場合、その黙示的指示は、UEがRRCシグナリングを介してそのRLM設定を単に変更することを意味する。
前述のテーブルに記載された各RLM設定は、それらの組合せの異なるパラメータに関連し得る。
ある種の実施形態によれば、そのテーブル内の各RLM設定は、1セットのRLM-RSリソースでもよい。したがって、特定の実施形態において、同時にUEによってモニタすることができる最大数XのRLM-RSが存在するとき、各セットのRLM-RSリソースは同数のリソースを有し得る。各RLM-RS設定は、1セットのX RLM-RSリソースを含む。もう1つの実施形態において、異なるRLM-RS設定は、異なる数のRLM-RSリソースを有することができ、下位レイヤシグナリングを介して所与の設定をアクティブ化するがネットワークにより高い柔軟性をもたらすインデックスを符号化するためにビットの数を増やすことになる。
たとえば、周波数<3GHzについて、Xは、2以下のリソースになり得る。L=4以下のSSB(SSB1、SSB2、SSB3、SSB4)が存在し得るとき、この例のためにSSBとしてRSタイプのみを考える場合、X RLM-Rsリソースのための以下の組合せが、テーブル2に記載される:
Figure 0007449230000006
それは、ネットワークによってUEに提供される設定/再設定でもよいが、使用される見込みの非常に低いことがある、ある特定の設定の回避に関して、よりスマートなネットワーク決定が存在し得る。たとえば、SSB1及びSSB4が、空間的ドメインにおいて非常に遠く離れており、どのようにしても同時にUEによって決して検出されない場合、下位レイヤシグナリングによっていつかアクティブ化される可能性のあるものとしてその設定を考える意味がないことがある。したがって、1サブセットの見込みのある設定のみをネットワークが再設定する/設定する場合があり得る。そのスマートネットワーク実装形態は、下位レイヤシグナリング(たとえばMAC CE)においてインデックスを符号化するために必要なビットの数を減らす可能性を有し得る。この例では、隣接するビームのみが、見込みのある設定と考えられる。一例が、以下のテーブル3に示される:
Figure 0007449230000007
所与の周波数範囲のRLM-RSリソースの最大数は制限され、たとえば、3GHz未満の周波数の場合には2であるが、UEは、それでも、少ない数のRLM-RSリソースで設定することができることに留意されたい。テーブル4で以下に示されるように、異なる数のリソース、単一の及び2倍のリソースを混合する設定もまた存在し得る:
Figure 0007449230000008
前の例は、RLM-RSリソースとしてSSBリソースのみを示した。しかしながら、すべての実施形態が、それに限定される訳ではない。正確には、同じ論法が、他の2つの起こり得る場合に適用され得る:
- モニタされることになるRLM-RSリソースが、CSI-RSリソースになるように設定される、
- モニタされることになるRLM-RSリソースが、SSB及びCSI-RSリソースの混合物になるように設定される。
第1の場合(RLM-RSとしてのCSI-RSリソースのみ)については、SSBインデックスの代わりに、CSI-Rs設定(BW、シーケンス、タイムドメインリソース、正確な周波数リソース、サブキャリア間隔など)に関連付けられ得る、CSI-RSインデックスを使用することになるということを除いて、前の例は、非常に類似することになる。テーブル5は、第1の例を繰り返すが、CSI-RSを有する:
Figure 0007449230000009
そして、少なくとも1つの例が、SSB及びCSI-RSリソースの組合せとともにテーブル6に示され、そこでは、制限された数の設定が、提供される:
Figure 0007449230000010
設定アクティブ化/非アクティブ化メッセージで送信されることになる(下位レイヤを介してネットワークによって送られることになる)ビットの数は、設定の数が増えるにつれて、増えることに留意されたい。したがって、より効率的な方式をさらに有するために、解決法は、下位レイヤシグナリングを介してアクティブ化されることになるパラメータを制限することになり得、一方、他のパラメータは、単に上位レイヤを介して規定され得る。1つの例示的実施形態において、RSタイプは、単に、RRCを介して設定され、その一方で、正確なリソースは、RRCを介して設定され得、下位レイヤシグナリングを介してアクティブ化され得る。別の例示的実施形態において、その逆が、規定され得る:正確なリソースインデックスが、RRCを介して規定され、1つのRSタイプ又はその他(SSB又はCSI-RS)のアクティブ化が、下位レイヤシグナリングを介して行われる。
周波数<3Hzについて、X=2及びL=4の場合の例を我々は提供したが、前述の方法、例及び実施形態は、その他の場合にも拡張され得る。主な差は、場合による又は見込みのある設定の数及び、場合により、所与の設定のアクティブ化を送るために使用されるビットの数(すなわち、特定の設定のインデックスを符号化するためのビットの数)になろう。
他の実施形態において、ネットワークは、単純に、どのSSBがそのセルによって送信されているかをRRCシグナリングを介してUEに通知する。たとえば、上位レイヤ(>6Ghz)では、64以下のビーム/SSBが存在し得るが、ネットワーク実装形態は、16を単に送信している可能性があり、UEは、これらの16SSBが何かを理解している必要がある。その意味で、この解決法では、UEは、たとえば、64ビットのビットマップを介して、送信されている正確な16ビームを受信することができる。1つの例が与えられる:
送信されるSSBの第1のビットマップ:111111111111111100000...0
第1の16ビットは、第1の16SSBがそのセルによって送信されていることをUEに示す。したがって、UEは、SSBに基づくRLMについて、これらの16ビームのみがアクティブ化され得ることを知っている。次いで、UEは、どれ(これが>6GHzのとき、8以下)がRLMについてモニタされることになるかを指示するように、別のビットマップで(たとえばRRCを介して)設定することができる。たとえば、ネットワークが第1の8ビットを設定及びアクティブ化することを決定すると想定する。
1つの例では、8ビットのみが、ビットマップのために使用され、そこで、RLMについてモニタされることになる正確なSSBが、前のビットマップと関連付けられる。以下の例は、前の例に関連している:
RLMのために使用されることになるSSBの第2のビットマップ:11111110000000001
そのビットマップは、UEが以下をRLMについてモニタすることになることを示す:SSB1、SSB2、…、SSB7及びSSB16。そのビットマップは、RRC又は下位レイヤシグナリング、たとえば、MAC CE、を介して提供することができる。第2のビットマップが提供される最初の時は、RRCを介して行うことができ、その一方で、下位レイヤシグナリングは、異なるビットマップを提供することによってRLM-RSリソースを変更するために使用され得る。
ここで、異なる例が提供され、そこでは、ネットワークは、64ビームの中から、インターカレートされた16SSBを送信することを決定する。それは、以下のことを示すために以下のビットマップをネットワークが送信することを意味する:
送信されるSSBの第1のビットマップ:101010101010101010101...0
UEは、ネットワークがSSB1、SSB3、SSB5、SSB7、…、SSB31を送信することとしてそれを解釈する。したがって、UEは、SSBに基づくRLMについて、これらの16ビームのみが、アクティブ化されたSSB1、SSB3、SSB5、SSB7、…、SSB31になり得ることを知る。したがって、UEは、どれが(これが>6GHzであるとき、8以下)RLMについてモニタされることになるかを示すために、別のビットマップで設定され得る(たとえば、RRCを介して)。たとえば、ネットワークは送信されているものから第1の8SSBを設定及びアクティブ化することを決定すると想定する。次いで、8ビットのみが、ビットマップのために使用され、そこで、RLMについてモニタされることになる正確なSSBが、前のビットマップ、すなわち、リストSSB1、SSB3、SSB5、SSB7、…、SSB31、と関連付けられる。たとえば、RLMビットマップは、以下のようになり得る:
RLMについて使用されることになるSSBの第2のビットマップ:11111110000000001
そのビットマップは、UEが以下をRLMについてモニタすることになることを示す:SSB1、SSB3、SSB5、SSB7、SSB9、SSB11、SSB13及びSSB31。そのビットマップは、RRC又は下位レイヤシグナリング、たとえば、MAC CE、を介して提供することができる。第2のビットマップが提供される最初の時は、RRCを介して行うことができ、一方、下位レイヤシグナリングは、異なるビットマップを提供することによってRLM-RSリソースを変更するために使用され得る。
さらにもう1つの実施形態において、第1のテーブルに記載されたセットにおける各RLM設定は、以下のパラメータのうちの1つ又はこれらの組合せと関連付けられ得る:
- RSタイプ(たとえば、SSB、CSI-RS又はTRSでもよい)、
- BLERペア(1つの閾値はOOS指示の生成向け、もう1つの閾値はIS指示の生成向け)、
- OOS指示を生成するための個々のBLER
- IS指示を生成するための個々のBLER
- 異なるRSタイプリソースを組み合わせるRLM-RSリソースを含む、これらのうちのいずれかの組合せ
さらにもう1つの実施形態において、単一のRLM設定が、アクティブ化されると考えられることになる最初の1つになるように、RRCを介してUEに提供される。次いで、残りの再設定は、MAC CEを介するなど、下位レイヤによって処理される。
その中でUEがRLM設定/再設定を受信することができる上位レイヤメッセージ(及び関連シナリオ)の種類に関して、ある種の実施形態によれば、たとえば、以下のRRCメッセージのうちの1つを介して、RLM設定が提供され得ることが、認識されている:
- UEが、非アクティブ状態から接続された状態になる接続の再開を望むとき、RRCResumeRequestに応答してネットワークによって送信される、RRCResume、
- 基本的に、UEが同じサービングセル内にとどまる及び1セットのそのパラメータを更新するときである、同期なしのRRCReconfiguration。RLMパラメータの場合、それは、同じセルの異なるTRPのカバレッジにUEが入るときに、送信され得る、
- 基本的にハンドオーバ、すなわち、セル間可動性、である、同期を有するRRCReconfiguration。
その種類の更新に関して、UEは、上位レイヤシグナリング(RRC)を介して前に提供された設定/再設定に関連する下位レイヤシグナリングを介して送信されるメッセージに基づいて行い、第1の実施形態の1つの改変形態は、MAC CEなどの、下位レイヤシグナリングが、前述のテーブルにおいて提供されるものなどの、上位レイヤシグナリングを介して提供されるRLM設定のうちの1つに関連するインデックスを符号化することであることが認められている。その下位レイヤシグナリングを受信したとき、UEは、もしあれば、前のアクティブな設定を非アクティブ化し、下位レイヤシグナリングによって示されるものをアクティブ化する。
たとえば、以下のテーブルが、テーブル7において上位レイヤシグナリングを介して提供された場合:
Figure 0007449230000011
各インデックスは、MAC CEを介して送信することができる。RLM-RSリソースが更新されることになるパラメータである場合に主として適用可能な、もう1つの実施形態において、下位レイヤシグナリングに基づく異なる機構が存在し得る。たとえば、UEが、最大数のRLM.RSリソースを有する場合、各MAC CEは、以下のアクションのうちの1つ又はそれらの組合せが実行されることになることをUEに指示するために使用され得る:
- 前に設定された1セットの1つ又は複数のRLM-RSリソースを取り除く、
- 1セットの1つ又は複数のRLM-RSリソースを追加する、
- 前の設定に関連するRLM関連測定結果を削除する又は削除しない。
RLM-RSリソースが更新されることになるパラメータである場合に主に適用可能な、もう1つの実施形態において、UEに前に提供された(たとえば、RRCシグナリングを介して)ものからどの正確なRLM-RSリソースがRLMについてモニタされることになるかを指示するUEへのビットマップを提供する、下位レイヤシグナリングに基づく異なる機構が存在し得る。
さらにもう1つの実施形態において、PDDCH設定、具体的にはPDCCHがUEによって検出されることになるDL方向、の下位レイヤシグナリングの更新はまた、モニタされることになるRLM-RSリソースを変更するようにUEをトリガする。たとえば、下位レイヤからの指示が、PDCCHがSSB0、SSB1、…、SSB8としての1セットのビームと相関性のある/疑似配列されたビームで送信されることを停止することになり、別のセットのビームSSB1、SSB2、…、SSB9と相関性のある/疑似配列されたビームで送信され始めることになることをUEに示す場合、UEは、SSB0、SSB1、…、SSB8からSSB1、SSB2、…、SSB9にそれのRLM-RS設定を更新する。
さらにもう1つの例示的実施形態において、UEがMAC CEを受信するとき、UEは、MAC CEによって指し示されたリソースを現在のセットのRLMリソースであると考えるように、MAC CEは、RLMリソースのセットを更新する。RLMリソースを指し示すことに加えて、MAC CEは、任意選択で、RLMリソースのQCL情報を与える。
UEのサービングセルは、そこからサブセットが潜在的RLMリソースとして考慮されるようにUEのために設定され得る、L SSBを有する。加えて、UEは、IDをそれぞれ有するM CSI-RSリソース又はCSI-RSリソースセットで設定され得る。ここで、Mは、指定された最大値を有する。また、SSBは、最大6ビットによって表されるIDを有する。CSI-RSリソース又はCSI-RSリソースセットのIDを表すために必要とされるビットの最大数は、7以下になり得る。我々は、Xによって、CSI-RSリソース又はCSI-RSリソースセットIDを表すために必要とされるビットの最大数を示す。
図8は、1つのオクテットのみを示すが、MAC CEは、RLMリソースのアクティブ化されたセット内にRLMリソースが存在するのと同数の後述のオクテットを含み得る。加えて、ある種の実施形態によれば、MAC CEは、MAC CEタイプを記述する、場合によりセル及びBWPインデックスを与える、及びQCL infoが存在するか否かを記述するビットを有するために、オクテットを含む。さらに加えて、MAC CEは、特定の実施形態において、オクテットにおいてQCL参照RS、SSB又はCSI-RSインデックスを与えることによって各RLMリソースの付加的オクテットにQCL情報を任意選択で含めることができる。
ビットR8がインデックスはSSBについてであるかを告げる、R8が1に設定される、又はCSI-RSについてR8が0に設定されるように、RLMリソースのRSインデックス又はそれについてのQCL infoを与えるそれぞれのオクテットが、形成される。残りのビット、R7からR1は、RLMリソース、又はQCL info参照リソースのインデックスを与えるために使用される。7ビット未満が、必要とされる場合、そのとき、残りは、MACエンティティによって無視されるパディングビットである。
どのオクテットがRLMリソースを記述するか、及びどのQCLが事前に決定されるか。たとえば、QCL infoは存在すると指示された場合、そのとき、CSI-RSリソースを与える各RLMリソースオクテットに、QCL infoを与えるオクテットが続く。或いは、すべてのRLMリソースが与えられた後、次に続くオクテットが、存在する順番で存在した各CSI-RSリソースのQCL infoを与える。
UEが、1セットのリソースを示すMAC CEを受信するとき、UEは、そのセットを前のセットと比較し得る。前のRLM RSセット内にも存在したそれらのリソースについて、UEは、IS/OOSのモニタリング及び評価を継続する。新しいリソースについて、UEは、IS/OOSのモニタリング及び評価を開始する。そのセット内にもう存在しないリソースについて、UEは、モニタリングを停止し、IS/OOSの評価を破棄する。
問題は、異なる方式でネットワーク実装形態によって解決され得る。たとえば、ある種の実施形態によれば、その問題に対する第1の代替手段は、RLM-RSリソースの数がRLM-RSリソースの最大数及びSSBの最大数と整列される(すなわち、L及びXを整列する)ことでもよい。
他の実施形態において、RLM-RSとしてSSBを決して設定せず、UEに向けて再設定されないが、UEを追跡する/追うネットワークによって異なる方向にビーム形成され得る、1セットのUE特有のCSI-RSリソースに常に依存するなどの他の解決法がさらに存在し得る。それは、UE特有のCSI-RSリソースが設定され得る場合、ごく少数のUEを有するシナリオで機能し得る。他方で、この解決法は、セルで定期的に送信される及び複数のUEにわたり共用される1セットのCSI-RSリソースを設定することをネットワークが望む(設定は、専用シグナリングにおいてまだ提供されるが)場合には、非常に複雑に又は実現不可能になり得る。この解決法は、設定の数、及び、その結果として、下位レイヤシグナリングを介して指示されるビットの数を減らすために、前の実施形態のいずれかと組み合わせて使用され得ることに留意されたい。CSI-RSでUEを場合により追跡することによって、多くの場合には、追跡が使用され得、下位レイヤシグナリングを介してアクティブ化機構でUEを再設定する必要はないので、ネットワークは、限られた量のCSI-RSリソースセットを設定することができる。
さらに他の実施形態において、問題は、SSBの数に関して配備され得るものをRLM RSリソースに関して設定され得るものに制限することによって、対処され得る。製造会社は、そのようにネットワークを実装/配備することはないことになり、実際には、L=Xを使用することになる。
さらに他の実施形態によれば、別のネットワーク関連態様は、上位レイヤ及び下位レイヤによって実行される動作が、異なるノードによって実行され得る、というものになり得る。NRにおいて、MAC機能を場合により実行する、RRC機能及びDU(分散型ユニット)を場合により実行する、CU(中央ユニット)に基づくRANアーキテクチャ。したがって、1つの態様は、DU及びCUの両方が、UEの現在の設定及びアクティブ化されたRLMパラメータについて最新であるように、これらの設定/再設定及びUEに提供されるアクティブ化情報をDU及びCUが交換するというものである。
図12は、いくつかの実施形態による、ワイヤレスネットワークを示す。本明細書に記載の主題は、任意の適切な構成要素を使用する任意の適切なタイプのシステムにおいて実装され得るが、本明細書で開示される実施形態は、図12に示された例示的ワイヤレスネットワークなど、ワイヤレスネットワークに関連して説明される。簡単にするために、図12のワイヤレスネットワークは、ネットワーク106、ネットワークノード160及び160b、並びにWD110、110b、及び110cのみを示す。実際には、ワイヤレスネットワークは、ワイヤレスデバイス間の通信或いはワイヤレスデバイスと固定電話、サービスプロバイダ、又は任意の他のネットワークノード若しくはエンドデバイスなどの別の通信デバイスとの間の通信をサポートするのに適した任意の付加的要素をさらに含み得る。図示された構成要素について、ネットワークノード160及びワイヤレスデバイス(WD)110は、さらに詳しく描かれている。ワイヤレスネットワークは、ワイヤレスネットワークによって又はこれを介して提供されるサービスへのワイヤレスデバイスのアクセス及び/又はそのようなサービスのワイヤレスデバイスの使用を円滑にするために、通信及び他のタイプのサービスを1つ又は複数のワイヤレスデバイスに提供し得る。
ワイヤレスネットワークは、任意のタイプの通信、電気通信、データ、セルラ、及び/又は無線ネットワーク又は他の類似のタイプのシステムを備える、及び/又はそれらとインターフェースすることができる。一部の実施形態では、ワイヤレスネットワークは、特定の標準又は他のタイプの予め規定されたルール又は手続きに従って動作するように設定され得る。したがって、ワイヤレスネットワークの特定の実施形態は、グローバルシステムフォーモバイルコミュニケーションズ(GSM:Global System for Mobile Communications)、ユニバーサルモバイル通信システム(UMTS:Universal Mobile Telecommunications System)、ロングタームエボリューション(LTE:Long Term Evolution)及び/又は他の適切な2G、3G、4G、又は5G標準などの通信標準、IEEE802.11標準などのワイヤレスローカルエリアネットワーク(WLAN:wireless local area network)標準、並びに/或いは、WiMax(Worldwide Interoperability for Microwave Access)、ブルートゥース、Z-Wave及び/又はZigBee標準などの任意の他の適切なワイヤレス通信標準を実装し得る。
ネットワーク106は、1つ又は複数のバックホールネットワーク、コアネットワーク、IPネットワーク、公衆交換電話網(PSTN:public switched telephone network)、パケットデータネットワーク、光ネットワーク、ワイドエリアネットワーク(WAN)、ローカルエリアネットワーク(LAN)、ワイヤレスローカルエリアネットワーク(WLAN)、ワイヤードネットワーク、ワイヤレスネットワーク、メトロポリタンエリアネットワーク、及び、デバイス間の通信を可能にするための他のネットワークを備え得る。
ネットワークノード160及びWD110は、さらに詳しく後述される様々な構成要素を備える。これらの構成要素は、ワイヤレスネットワークにおいてワイヤレス接続を提供することなど、ネットワークノード及び/又はワイヤレスデバイス機能性を提供するために連携する。異なる実施形態において、ワイヤレスネットワークは、任意の数のワイヤード又はワイヤレスネットワーク、ネットワークノード、基地局、コントローラ、ワイヤレスデバイス、リレー局、並びに/或いは、ワイヤード接続又はワイヤレス接続のいずれを介してでもデータ及び/又は信号の通信を円滑にする又はこれに参加する任意の他の構成要素又はシステムを備え得る。
図13は、ある種の実施形態による、例示的ネットワークノード160を示す。本明細書では、ネットワークノードは、ワイヤレスデバイスへのワイヤレスアクセスを可能にする及び/又は提供するためにワイヤレスデバイスと及び/又はワイヤレスネットワーク内の他のネットワークノード又は機器と直接的又は間接的に通信する並びに/或いはワイヤレスネットワークにおいて他の機能(たとえば、管理)を実行する能力を有する、そのように設定された、配置された及び/又は動作可能な機器を指す。ネットワークノードの例は、アクセスポイント(AP)(たとえば、無線アクセスポイント)、基地局(BS)(たとえば、無線基地局、ノードB、発展型ノードB(eNB)及びNR NodeB(gNB))を含むが、これらに限定されない。基地局は、それらが提供するカバレッジの量(又は、つまり、それらの送信電力レベル)に基づいて分類することができ、その場合、フェムト基地局、ピコ基地局、マイクロ基地局、又はマクロ基地局と呼ばれることもある。基地局は、リレーノード又はリレーを制御するリレードナーノードでもよい。ネットワークノードはまた、集中型デジタルユニット及び/又はリモート無線ユニット(RRU)、リモート無線ヘッド(RRH)と時に称される、などの分散型無線基地局の1つ又は複数の(又はすべての)部分を含み得る。そのようなリモート無線ユニットは、アンテナ統合無線のようにアンテナと統合されても統合されなくてもよい。分散型無線基地局の部分は、分散型アンテナシステム(DAS:distributed antenna system)内のノードと呼ばれることもある。ネットワークノードのさらなる例は、MSR BSなどのマルチスタンダード無線(MSR:multi-standard radio)機器、無線ネットワークコントローラ(RNC:radio network controller)又は基地局コントローラ(BSC:base station controller)などのネットワークコントローラ、基地局トランシーバ(BTS:base transceiver station)、送信ポイント、送信ノード、マルチセル/マルチキャストコーディネーションエンティティ(MCE:multi-cell/multicast coordination entity)、コアネットワークノード(たとえば、MSC、MME)、O&Mノード、OSSノード、SONノード、ポジショニングノード(たとえば、E-SMLC)、及び/又はMDTを含む。別の例として、ネットワークノードは、さらに詳しく後述するような仮想ネットワークノードでもよい。しかしながら、より一般的には、ネットワークノードは、ワイヤレスネットワークへのアクセスをワイヤレスデバイスに可能にする及び/又は提供するための或いはワイヤレスネットワークにアクセスしたワイヤレスデバイスに何らかのサービスを提供するための能力を有する、そのように設定された、配置された、及び/又は動作可能な任意の適切なデバイス(又はデバイスのグループ)を表し得る。
図13において、ネットワークノード160は、処理回路170、デバイス可読媒体180、インターフェース190、補助機器184、電源186、電力回路187、及びアンテナ162を含む。図12の例示的ワイヤレスネットワークに示されたネットワークノード160は、ハードウェア構成要素の図示された組合せを含むデバイスを表し得るが、他の実施形態は、構成要素の異なる組合せを有するネットワークノードを備え得る。タスク、特徴、機能及び本明細書で開示される方法を実行するために必要とされるハードウェア及び/又はソフトウェアの任意の適切な組合せをネットワークノードは備えることが、理解されよう。さらに、ネットワークノード160の構成要素は、より大きなボックス内に位置する又は複数のボックス内にネストされた単一ボックスとして図示されているが、実際には、ネットワークノードは、単一の図示された構成要素を構成する複数の異なる物理構成要素を備え得る(たとえば、デバイス可読媒体180は、複数の別個のハードドライブ並びに複数のRAMモジュールを備え得る)。
同様に、ネットワークノード160は、独自のそれぞれの構成要素をそれぞれが有し得る複数の物理的に別個の構成要素(たとえば、NodeB構成要素及びRNC構成要素、又はBTS構成要素及びBSC構成要素など)で構成され得る。ネットワークノード160が複数の別個の構成要素(たとえば、BTS及びBSC構成要素)を備えるある種のシナリオでは、別個の構成要素のうちの1つ又は複数は、いくつかのネットワークノードの間で共用され得る。たとえば、単一RNCは、複数のNodeBを制御し得る。そのようなシナリオでは、各固有のNodeB及びRNCペアは、場合によっては、単一の別個のネットワークノードと考えられ得る。一部の実施形態では、ネットワークノード160は、複数の無線アクセス技術(RAT)をサポートするように設定され得る。そのような実施形態では、いくつかの構成要素は、二重にされ得(たとえば、異なるRATのための別個のデバイス可読媒体180)、いくつかの構成要素は再使用され得る(たとえば、同じアンテナ162がRATによって共用され得る)。ネットワークノード160はまた、たとえば、GSM、WCDMA、LTE、NR、WiFi、又はブルートゥースワイヤレス技術など、ネットワークノード160に統合された異なるワイヤレス技術のための様々な図示された構成要素の複数のセットを含み得る。これらのワイヤレス技術は、ネットワークノード160内の同じ又は異なるチップ又はチップのセット及び他の構成要素内に統合され得る。
処理回路170は、ネットワークノードによって提供されているものとして本明細書に記載された任意の判定、計算又は類似の動作(たとえば、ある種の取得動作)を実行するように設定される。処理回路170によって実行されるこれらの動作は、たとえば、取得された情報を他の情報に変換すること、取得された情報又は変換された情報をネットワークノードに記憶された情報と比較すること、及び/又は取得された情報又は変換された情報に基づいて1つ又は複数の動作を実行することによって、処理回路170によって取得された情報を処理すること、並びに前記処理の結果として判定を行うことを含み得る。
処理回路170は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理装置、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は任意の他の適切なコンピューティングデバイスのうちの1つ又は複数の組合せ、資源、或いは、単独で又はデバイス可読媒体180などの他のネットワークノード160構成要素と併せて、ネットワークノード160機能を提供するように動作可能なハードウェア、ソフトウェア及び/又は符号化されたロジックの組合せを備え得る。たとえば、処理回路170は、デバイス可読媒体180に又は処理回路170内のメモリに記憶された命令を実行し得る。そのような機能性は、本明細書で論じられる様々なワイヤレス特徴、機能、又は利益のいずれかの提供を含み得る。一部の実施形態では、処理回路170は、システムオンチップ(SOC)を含み得る。
一部の実施形態では、処理回路170は、無線周波数(RF)トランシーバ回路172及びベースバンド処理回路174のうちの1つ又は複数を含み得る。一部の実施形態では、無線周波数(RF)トランシーバ回路172及びベースバンド処理回路174は、別個のチップ(又はチップのセット)、ボード、又は、無線ユニット及びデジタルユニットなどのユニット上でもよい。代替実施形態において、RFトランシーバ回路172及びベースバンド処理回路174の一部又はすべては、同じチップ又はチップのセット、ボード、又はユニット上でもよい。
ある種の実施形態では、ネットワークノード、基地局、eNB又は他のそのようなネットワークデバイスによって提供されているものとしての本明細書に記載の機能性の一部又はすべては、デバイス可読媒体180又は処理回路170内のメモリに記憶された命令を実行する処理回路170によって実行され得る。代替実施形態において、機能性のうちの一部又はすべては、ハードワイヤード方式などで、別個の又はディスクリートデバイスの可読媒体に記憶された命令を実行することなしに処理回路170によって提供され得る。それらの実施形態のいずれにおいてでも、デバイス可読記憶媒体に記憶された命令を実行してもしなくても、処理回路170は、記載された機能を実行するように設定することができる。そのような機能によってもたらされる利益は、単独で処理回路170に又はネットワークノード160の他の構成要素に制限されないが、ネットワークノード160全体によって、並びに/或いは一般にエンドユーザ及びワイヤレスネットワークによって享受される。
デバイス可読媒体180は、処理回路170によって使用され得る情報、データ、及び/又は命令を記憶する永続記憶装置、ソリッドステートメモリ、リモートに搭載されたメモリ、磁気媒体、光媒体、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、大容量記憶媒体(たとえば、ハードディスク)、取り外し可能記憶媒体(たとえば、フラッシュドライブ、コンパクトディスク(CD)又はデジタル多用途ディスク(DVD))、及び/又は任意の他の揮発性又は不揮発性の、非一時的デバイス可読及び/又はコンピュータ実行可能なメモリデバイスを含むがこれらに限定されない、任意の形の揮発性又は不揮発性コンピュータ可読メモリを備え得る。デバイス可読媒体180は、コンピュータプログラム、ソフトウェア、ロジック、ルール、コード、テーブルなどのうちの1つ又は複数を含むアプリケーション、及び/又は処理回路170によって実行することができる及びネットワークノード160によって使用することができる他の命令を含む、任意の適切な命令、データ又は情報を記憶し得る。デバイス可読媒体180は、処理回路170によって行われる任意の計算及び/又はインターフェース190を介して受信される任意のデータを記憶するために使用され得る。一部の実施形態では、処理回路170及びデバイス可読媒体180は、統合されると考えられ得る。
インターフェース190は、ネットワークノード160、ネットワーク106、及び/又はWD110の間のシグナリング及び/又はデータのワイヤード又はワイヤレス通信において使用される。図示されているように、インターフェース190は、たとえば、ワイヤード接続を介してネットワーク106に及びネットワーク106から、データを送信及び受信するために、ポート/端末194を備える。インターフェース190はまた、アンテナ162に連結され得る又はある種の実施形態においてアンテナ162の一部であることがある、無線フロントエンド回路192を含む。無線フロントエンド回路192は、フィルタ198及び増幅器196を備える。無線フロントエンド回路192は、アンテナ162及び処理回路170に接続され得る。無線フロントエンド回路は、アンテナ162と処理回路170との間で通信される信号を調整するように設定され得る。無線フロントエンド回路192は、ワイヤレス接続を介して他のネットワークノード又はWDに送出されることになるデジタルデータを受信し得る。無線フロントエンド回路192は、フィルタ198及び/又は増幅器196の組合せを使用する適切なチャンネル及び帯域幅パラメータを有する無線信号にデジタルデータを変換し得る。無線信号は、次いで、アンテナ162を介して送信され得る。同様に、データを受信するとき、アンテナ162は、次いで無線フロントエンド回路192によってデジタルデータに変換される無線信号を収集し得る。デジタルデータは、処理回路170に渡され得る。他の実施形態において、インターフェースは、異なる構成要素及び/又は異なる組合せの構成要素を備え得る。
ある種の代替実施形態において、ネットワークノード160は、別個の無線フロントエンド回路192を含まないことがあり、代わりに、処理回路170が、無線フロントエンド回路を備え得、別個の無線フロントエンド回路192なしにアンテナ162に接続され得る。同様に、一部の実施形態では、すべての又は一部のRFトランシーバ回路172は、インターフェース190の一部と考えられ得る。さらに他の実施形態において、インターフェース190は、1つ又は複数のポート又は端末194、無線フロントエンド回路192、並びにRFトランシーバ回路172、無線ユニット(図示せず)の一部としての、を含み得、そして、インターフェース190は、デジタルユニット(図示せず)の一部であるベースバンド処理回路174と通信し得る。
アンテナ162は、ワイヤレス信号を送信及び/又は受信するように設定された、1つ又は複数のアンテナ、又はアンテナアレイを含み得る。アンテナ162は、無線フロントエンド回路190に結合され得、ワイヤレスにデータ及び/又は信号を送信及び受信する能力を有する任意のタイプのアンテナでもよい。一部の実施形態では、アンテナ162は、たとえば、2GHzと66GHzとの間で、無線信号を送信/受信するように動作可能な1つ又は複数の全方向性の、セクタ又はパネルアンテナを備え得る。全方向性アンテナは、任意の方向において無線信号を送信/受信するために使用され得、セクタアンテナは、特定のエリア内のデバイスから無線信号を送信/受信するために使用され得、そして、パネルアンテナは、相対的に直線で無線信号を送信/受信するために使用されるサイトアンテナのラインでもよい。場合によっては、複数のアンテナの使用は、MIMOと称され得る。ある種の実施形態では、アンテナ162は、ネットワークノード160とは別個でもよく、インターフェース又はポートを介してネットワークノード160に接続可能になり得る。
アンテナ162、インターフェース190、及び/又は処理回路170は、ネットワークノードによって実行されるものとして本明細書に記載された任意の受信動作及び/又はある種の取得動作を実行するように設定され得る。任意の情報、データ及び/又は信号が、ワイヤレスデバイス、別のネットワークノード及び/又は任意の他のネットワーク機器から受信され得る。同様に、アンテナ162、インターフェース190、及び/又は処理回路170は、ネットワークノードによって実行されるものとして本明細書に記載された任意の送信動作を実行するように設定され得る。任意の情報、データ及び/又は信号が、ワイヤレスデバイス、別のネットワークノード及び/又は任意の他のネットワーク機器に送信され得る。
電力回路187は、電力管理回路を備え得る、又はこれに連結され得、本明細書に記載の機能性を実行するための電力をネットワークノード160の構成要素に供給するように設定される。電力回路187は、電源186から電力を受信し得る。電源186及び/又は電力回路187は、それぞれの構成要素に適した形でネットワークノード106の様々な構成要素に電力を提供する(たとえば、それぞれの構成要素のために必要とされる電圧及び電流レベルで)ように設定され得る。電源186は、電力回路187及び/又はネットワークノード160に含まれても、これらの外部でもよい。たとえば、ネットワークノード160は、電気ケーブルなどの入力回路又はインターフェースを介して外部電源(たとえば、電気コンセント)に接続可能になり得、それにより、外部電源が電力回路187に電力を供給する。さらなる例として、電源186は、電力回路187に接続された又はこれに統合された、バッテリ又はバッテリパックの形で電力のソースを備え得る。バッテリは、外部電源が切れた場合に非常用電源を提供し得る。光電池デバイスなどの他のタイプの電源もまた使用され得る。
ネットワークノード160の代替実施形態は、本明細書に記載の機能性及び/又は本明細書に記載の主題をサポートするために必要な任意の機能性のうちのいずれかを含む、ネットワークノードの機能性のある種の態様を提供する責任を負い得る図1に示されたものを超える追加の構成要素を含み得る。たとえば、ネットワークノード160は、ネットワークノード160への情報の入力を可能にするために、及びネットワークノード160からの情報の出力を可能にするために、ユーザインターフェース機器を含み得る。これは、ネットワークノード160のための診断、メンテナンス、修理、及び他の管理機能をユーザが実行することを可能にし得る。
図14は、ある種の実施形態による、例示的ワイヤレスデバイス(WD)110を示す。本明細書では、WDは、ネットワークノード及び/又は他のワイヤレスデバイスとワイヤレスに通信する能力を有する、そのように設定された、配置された及び/又は動作可能なデバイスを指す。特に断りのない限り、WDという用語は、ユーザ機器(UE)と同義で本明細書において使用され得る。ワイヤレスに通信することは、電磁波、無線波、赤外線波、及び/又は電波を介して情報を伝えるのに適した他のタイプの信号を使用してワイヤレス信号を送信/受信することを含み得る。一部の実施形態では、WDは、直接の人間の相互作用なしに情報を送信及び/又は受信するように設定され得る。たとえば、WDは、内部又は外部イベントによってトリガされたとき、又はネットワークからの要求に応答して、所定のスケジュールでネットワークに情報を送信するように設計され得る。WDの例は、スマートフォン、携帯電話、セルフォン、ボイスオーバーIP(VoIP)フォン、ワイヤレスローカルループフォン、デスクトップコンピュータ、携帯情報端末(PDA)、ワイヤレスカメラ、ゲーム機又はデバイス、音楽記憶デバイス、再生装置、ウェアラブル端末デバイス、ワイヤレスエンドポイント、モバイル局、タブレット、ラップトップ、ラップトップ埋め込み機器(LEE)、ラップトップ搭載機器(LME)、スマートデバイス、ワイヤレス顧客構内機器(CPE)。車両搭載ワイヤレス端末デバイスなどを含むが、これらに限定されない。WDは、たとえば、サイドリンク通信、車両対車両(V2V:vehicle-to-vehicle)、車両対インフラストラクチャ(V2I:vehicle-to-infrastructure)、車両対あらゆる物(V2X:vehicle-to-everything)の3GPP標準を実装することによって、デバイス対デバイス(D2D)通信をサポートすることができ、この場合、D2D通信デバイスと称され得る。さらに別の特定の例として、IoT(Internet of Things)シナリオにおいて、WDは、モニタリング及び/又は測定を実行する及びそのようなモニタリング及び/又は測定の結果を別のWD及び/又はネットワークノードに送信するマシン又は他のデバイスを表し得る。WDは、この場合、3GPPコンテキストではMTCデバイスと称され得るマシン対マシン(M2M)デバイスでもよい。1つの特定の例として、WDは、3GPP NB-IoT(narrow band internet of things)標準を実装するUEでもよい。そのようなマシン又はデバイスの具体的な例は、センサ、電力メータなどの計測デバイス、産業マシン、又は家庭用若しくは個人用器具(たとえば、冷蔵庫、テレビジョンなど)、パーソナルウェアラブル(たとえば、腕時計、フィットネストラッカなど)である。他のシナリオにおいて、WDは、その動作状況の監視及び/又は報告或いはその動作に関連する他の機能の能力を有する車両又は他の機器を表し得る。前述のようなWDは、ワイヤレス接続のエンドポイントを表し得、その場合、デバイスはワイヤレス端末と称され得る。さらに、前述のようなWDは、モバイルでもよく、その場合、それはモバイルデバイス又はモバイル端末とも称され得る。
図14に示されているように、ワイヤレスデバイス110は、アンテナ111、インターフェース114、処理回路120、デバイス可読媒体130、ユーザインターフェース機器132、補助機器134、電源136及び電力回路137を含む。WD110は、たとえば、少し例を挙げると、GSM、WCDMA、LTE、NR、WiFi、WiMAX、又はブルートゥースワイヤレス技術など、WD110によってサポートされる異なるワイヤレス技術のための、図示された構成要素のうちの1つ又は複数の構成要素の複数のセットを含み得る。これらのワイヤレス技術は、WD110内の他の構成要素と同じ又は異なるチップ又はチップのセットに統合され得る。
アンテナ111は、ワイヤレス信号を送信及び/又は受信するように設定された1つ又は複数のアンテナ又はアンテナアレイを含み得、インターフェース114に接続される。ある種の代替実施形態において、アンテナ111は、WD110とは別個でもよく、インターフェース又はポートを介してWD110に接続可能になり得る。アンテナ111、インターフェース114、及び/又は処理回路120は、WDによって実行されるものとして本明細書に記載されている任意の受信又は送信動作を実行するように設定され得る。任意の情報、データ及び/又は信号が、ネットワークノード及び/又は別のWDから受信され得る。一部の実施形態では、無線フロントエンド回路及び/又はアンテナ111は、インターフェースと考えられ得る。
図14に示されているように、インターフェース114は、無線フロントエンド回路112及びアンテナ111を備える。無線フロントエンド回路112は、1つ又は複数のフィルタ118及び増幅器116を備える。無線フロントエンド回路114は、アンテナ111及び処理回路120に接続され、アンテナ111と処理回路120との間で通信される信号を調整するように設定される。無線フロントエンド回路112は、アンテナ111に連結され得る、又はアンテナ111の一部でもよい。一部の実施形態では、WD110は、別個の無線フロントエンド回路112を含まないことがあり、そうではなくて、処理回路120は、無線フロントエンド回路を備え得、アンテナ111に接続され得る。同様に、一部の実施形態では、RFトランシーバ回路122の一部又はすべては、インターフェース114の一部と考えられ得る。無線フロントエンド回路112は、ワイヤレス接続を介して他のネットワークノード又はWDに送出されることになるデジタルデータを受信し得る。無線フロントエンド回路112は、フィルタ118及び/又は増幅器116の組合せを使用して適切なチャンネル及び帯域幅パラメータを有する無線信号にデジタルデータを変換し得る。無線信号は、次いで、アンテナ111を介して送信され得る。同様に、データを受信しているとき、アンテナ111は、次いで無線フロントエンド回路112によってデジタルデータに変換される、無線信号を収集し得る。デジタルデータは、処理回路120に渡され得る。他の実施形態において、インターフェースは、異なる構成要素及び/又は異なる組合せの構成要素を備え得る。
処理回路120は、マイクロプロセッサ、コントローラ、マイクロコントローラ、中央処理装置、デジタル信号プロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又は任意の他の適切なコンピューティングデバイスのうちの1つ又は複数の組合せ、資源、或いは、単独で又はデバイス可読媒体130などの他のWD110構成要素と連動して、WD110機能性を提供するように動作可能なハードウェア、ソフトウェア、及び/又は符号化されたロジックの組合せを備え得る。そのような機能性は、本明細書で論じられる様々なワイヤレス特徴又は利益のいずれかの提供を含み得る。たとえば、処理回路120は、本明細書で開示される機能性を提供するために、デバイス可読媒体130に又は処理回路120内のメモリに記憶された命令を実行し得る。
図14に示されているように、処理回路120は、RFトランシーバ回路122、ベースバンド処理回路124、及びアプリケーション処理回路126のうちの1つ又は複数を含む。他の実施形態において、処理回路は、異なる構成要素及び/又は異なる組合せの構成要素を備え得る。ある種の実施形態では、WD110の処理回路120は、SOCを備え得る。一部の実施形態では、RFトランシーバ回路122、ベースバンド処理回路124、及びアプリケーション処理回路126は、別個のチップ又はチップのセット上にあることがある。代替実施形態において、ベースバンド処理回路124及びアプリケーション処理回路126の一部又はすべては、1つのチップ又はチップのセット内に結合され得、RFトランシーバ回路122は、別個のチップ又はチップのセット上にあってもよい。さらに代替実施形態において、RFトランシーバ回路122及びベースバンド処理回路124の一部又はすべては、同じチップ又はチップのセット上にあることがあり、アプリケーション処理回路126は、別個のチップ又はチップのセット上にあることがある。さらに他の代替実施形態において、RFトランシーバ回路122、ベースバンド処理回路124、及びアプリケーション処理回路126の一部又はすべては、同じチップ又はチップのセット内に結合され得る。一部の実施形態では、RFトランシーバ回路122は、インターフェース114の一部でもよい。RFトランシーバ回路122は、処理回路120のRF信号を調整し得る。
ある種の実施形態では、WDによって実行されるものとして本明細書に記載の機能性の一部又はすべては、ある種の実施形態ではコンピュータ可読記憶媒体であることがある、デバイス可読媒体130に記憶された命令を実行する処理回路120によって提供され得る。代替実施形態において、機能性の一部の又はすべては、ハードワイヤード方式などで、別個の又はディスクリートデバイスの可読記憶媒体に記憶された命令を実行することなしに処理回路120によって提供され得る。それらの特定の実施形態のいずれかにおいて、デバイス可読記憶媒体に記憶された命令を実行してもしなくても、処理回路120は、記載された機能性を実行するように設定することができる。そのような機能性によって提供される利益は、単独で処理回路120に又はWD110の他の構成要素に限定されず、全体としてのWD110によって、及び/又は一般にエンドユーザ及びワイヤレスネットワークによって、享受される。
処理回路120は、WDによって実行されるものとして本明細書に記載された任意の決定、計算、又は類似の動作(たとえば、ある種の取得動作)を実行するように設定され得る。処理回路120によって実行されるものとしての、これらの動作は、たとえば、取得された情報を他の情報に変換すること、取得された情報又は変換された情報をWD110によって記憶された情報と比較すること、及び/又は取得された情報又は変換された情報に基づいて1つ又は複数の動作を実行することにより、処理回路120によって取得された情報を処理すること、並びに前記処理の結果として判定を行うことを含み得る。
デバイス可読媒体130は、コンピュータプログラム、ソフトウェア、ロジック、ルール、コード、テーブルなどのうちの1つ又は複数を含むアプリケーション及び/又は処理回路120によって実行することが可能な他の命令を記憶するように動作可能になり得る。デバイス可読媒体130は、コンピュータメモリ(たとえば、ランダムアクセスメモリ(RAM)又は読取り専用メモリ(ROM))、大容量記憶媒体(たとえば、ハードディスク)、取り外し可能記憶媒体(たとえば、コンパクトディスク(CD)又はデジタルビデオディスク(DVD))、及び/又は処理回路120によって使用され得る情報、データ、及び/又は命令を記憶する任意の他の揮発性又は不揮発性の、非一時的デバイス可読及び/又はコンピュータ実行可能メモリデバイスを含み得る。一部の実施形態では、処理回路120及びデバイス可読媒体130は、統合されたものとして考えられ得る。
ユーザインターフェース機器132は、人間のユーザがWD110と相互作用することを可能にする構成要素を提供し得る。そのような相互作用は、視覚、聴覚、触覚などの多数の形態をとり得る。ユーザインターフェース機器132は、ユーザへの出力を生み出すように及びユーザが入力をWD110に提供することを可能にするように動作可能になり得る。相互作用のタイプは、WD110にインストールされたユーザインターフェース機器132のタイプに応じて変化し得る。たとえば、WD110がスマートフォンである場合には、相互作用はタッチスクリーンを介し得、WD110がスマートメータである場合には、相互作用は、使用量(たとえば、使用されたガロン数)を提供するスクリーン又は警報音を提供する(たとえば、煙が検知された場合に)スピーカを介し得る。ユーザインターフェース機器132は、入力インターフェース、デバイス及び回路と、出力インターフェース、デバイス及び回路とを含み得る。ユーザインターフェース機器132は、WD110への情報の入力を可能にするように設定され、処理回路120に接続されて処理回路120が入力情報を処理することを可能にする。ユーザインターフェース機器132は、たとえば、マイクロフォン、近接若しくは他のセンサ、キー/ボタン、タッチディスプレイ、1つ又は複数のカメラ、USBポート、又は他の入力回路を含み得る。ユーザインターフェース機器132はまた、WD110からの情報の出力を可能にするように、及び処理回路120がWD110から情報を出力することを可能にするように設定される。ユーザインターフェース機器132は、たとえば、スピーカ、ディスプレイ、振動回路、USBポート、ヘッドフォンインターフェース、又は他の出力回路を含み得る。ユーザインターフェース機器132の1つ又は複数の入力及び出力インターフェース、デバイス、及び回路を使用し、WD110は、エンドユーザ及び/又はワイヤレスネットワークと通信することができ、それらが本明細書に記載の機能性から利益を得ることを可能にし得る。
補助機器134は、WDによって一般に実行されないことがあるより多くの特定の機能性を提供するように動作可能である。これは、様々な目的で測定を行うための専門のセンサ、ワイヤード通信などの付加的タイプの通信のためのインターフェースなどを備え得る。補助機器134の構成要素の包含及びタイプは、実施形態及び/又はシナリオに応じて異なり得る。
一部の実施形態では、電源136は、バッテリ又はバッテリパックの形でもよい。外部電源(たとえば、電気コンセント)、光電池デバイス又は動力電池など、他のタイプの電源もまた使用され得る。WD110はさらに、本明細書に記載又は示された任意の機能性を実行するために電源136からの電力を必要とするWD110の様々な部分に電源136から電力を届けるための電力回路137を備え得る。ある種の実施形態では、電力回路137は、電力管理回路を備え得る。電力回路137は、付加的に又は別法として外部電源から電力を受信するように動作可能になり得、その場合、WD110は、入力回路又は電気動力ケーブルなどのインターフェースを介して外部電源(電気コンセントなど)に接続可能になり得る。ある種の実施形態では、電力回路137はまた、外部電源から電源136に電力を届けるように動作可能になり得る。これは、たとえば、電源136の充電のためでもよい。電力回路137は、任意のフォーマッティング、変換、又は他の修正を電源136からの電力に実行して、電力を、電力が供給される先のWD110のそれぞれの構成要素に適するようにさせることができる。
図15は、ある種の実施形態による、例示的UE200を示す。本明細書では、ユーザ機器又はUEは、関連デバイスを所有及び/又は操作する人間ユーザという意味でのユーザを必ずしも有さないことがある。そうではなく、UEは、人間ユーザへの販売、又は人間ユーザによる操作向けに意図されるが、特定の人間ユーザに関連付けられていないことがある、又は最初は特定の人間ユーザに関連付けられていないことがあるデバイスを表し得る(たとえば、スマートスプリンクラコントローラ)。別法として、UEは、エンドユーザへの販売又はエンドユーザによる操作向けに意図されていないが、ユーザの利益に関連し得る又はユーザの利益のために操作され得るデバイスを表し得る(たとえば、スマート電力メータ)。UE2200は、NB-IoT UE、マシンタイプ通信(MTC:machine type communication)UE、及び/又は拡張MTC(eMTC:enhanced MTC)UEを含む、第3世代パートナシッププロジェクト(3GPP)によって識別された任意のUEでもよい。図2に示されているような、UE200は、3GPPのGSM、UMTS、LTE、及び/又は5G標準など、第3世代パートナシッププロジェクト(3GPP)によって公表された1つ又は複数の通信標準による通信向けに設定されたWDの一例である。前述のように、WD及びUEという用語は、同義で使用され得る。したがって、図11はUEであるが、本明細書で論じられる構成要素は、WDに同等に適用可能であり、逆もまた同様である。
図15では、UE200は、入力/出力インターフェース205、無線周波数(RF)インターフェース209、ネットワーク接続インターフェース211、ランダムアクセスメモリ(RAM)217、読取り専用メモリ(ROM)219、及び記憶媒体221などを含むメモリ215、通信サブシステム231、電源233、及び/又は任意の他の構成要素、或いはその任意の組合せに動作可能なように連結された、処理回路201を含む。記憶媒体221は、オペレーティングシステム223、アプリケーションプログラム225、及びデータ227を含む。他の実施形態において、記憶媒体221は、他の類似のタイプの情報を含み得る。ある種のUEは、図2に示されたすべての構成要素、又はそれらの構成要素のサブセットのみを使用し得る。構成要素間の統合のレベルは、UEによって異なり得る。さらに、ある種のUEは、複数のプロセッサ、メモリ、トランシーバ、送信器、受信器などの構成要素の複数のインスタンスを含み得る。
図15では、処理回路201は、コンピュータ命令及びデータを処理するように設定され得る。処理回路201は、1つ又は複数のハードウェア実装された状態マシン(たとえば、離散的なロジック、FPGA、ASICなどにおける)など、メモリ内のマシン可読コンピュータプログラムとして記憶されたマシン命令を実行するように動作可能な任意の順次状態マシン、適切なファームウェアと一緒のプログラマブルロジック、適切なソフトウェアと一緒の、マイクロプロセッサ又はデジタル信号プロセッサ(DSP)などの、1つ又は複数の記憶されたプログラム、汎用プロセッサ、或いは前記の任意の組合せを実装するように設定され得る。たとえば、処理回路201は、2つの中央処理装置(CPU)を含み得る。データは、コンピュータによる使用に適した形の情報でもよい。
図示された実施形態では、入力/出力インターフェース205は、通信インターフェースを入力デバイス、出力デバイス、或いは、入力及び出力デバイスに提供するように設定され得る。UE200は、入力/出力インターフェース205を介して出力デバイスを使用するように設定され得る。出力デバイスは、入力デバイスと同じタイプのインターフェースポートを使用し得る。たとえば、USBポートは、UE200への入力及びUE200からの出力を提供するために使用され得る。出力デバイスは、スピーカ、サウンドカード、ビデオカード、ディスプレイ、モニタ、プリンタ、アクチュエータ、エミッタ、スマートカード、別の出力デバイス、又はその任意の組合せでもよい。UE200は、ユーザがUE200内に情報をキャプチャすることを可能にするために入力/出力インターフェース205を介して入力デバイスを使用するように設定され得る。入力デバイスは、タッチセンサ式又はプレゼンスセンサ式ディスプレイ、カメラ(たとえば、デジタルカメラ、デジタルビデオカメラ、ウェブカメラなど)、マイクロフォン、センサ、マウス、トラックボール、方向性パッド、トラックパッド、スクロールホイール、スマートカードなどを含み得る。プレゼンスセンサ式ディスプレイは、ユーザからの入力を感知するための容量性又は抵抗性タッチセンサを含み得る。センサは、たとえば、加速度計、ジャイロスコープ、傾斜センサ、力センサ、磁力計、光センサ、近接センサ、別の同様のセンサ、又はその任意の組合せでもよい。たとえば、入力デバイスは、加速度計、磁力計、デジタルカメラ、マイクロフォン、及び光センサでもよい。
図15では、RFインターフェース209は、送信器、受信器、及びアンテナなどのRF構成要素に通信インターフェースを提供するように設定され得る。ネットワーク接続インターフェース211は、通信インターフェースをネットワーク243aに提供するように設定され得る。ネットワーク243aは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、コンピュータネットワーク、ワイヤレスネットワーク、電気通信ネットワーク、別の同様のネットワーク又はその任意の組合せなど、ワイヤード及び/又はワイヤレスネットワークを包含し得る。たとえば、ネットワーク243aは、Wi-Fiネットワークを備え得る。ネットワーク接続インターフェース211は、イーサネット、TCP/IP、SONET、ATMなどの1つ又は複数の通信プロトコルによる通信ネットワークを介して1つ又は複数の他のデバイスと通信するために使用される受信器及び送信器インターフェースを含むように設定され得る。ネットワーク接続インターフェース211は、通信ネットワークリンク(たとえば、光、電気など)に適した受信器及び送信器機能性を実装し得る。送信器及び受信器機能は、回路構成要素、ソフトウェア又はファームウェアを共用し得、或いは別法として別個に実装され得る。
RAM217は、オペレーティングシステム、アプリケーションプログラム、及びデバイスドライバなどのソフトウェアプログラムの実行中にデータ又はコンピュータ命令の記憶又はキャッシュを行うために処理回路201にバス202を介してインターフェースするように設定され得る。ROM219は、コンピュータ命令又はデータを処理回路201に提供するように設定され得る。たとえば、ROM219は、基本入力及び出力(I/O)、スタートアップ、又は不揮発性メモリに記憶されたキーボードからのキーストロークの受信などの基本システム機能のための不変の低レベルシステムコード又はデータを記憶するように設定され得る。記憶媒体221は、RAM、ROM、プログラマブル読取り専用メモリ(PROM)、消去可能プログラマブル読取り専用メモリ(EPROM)、電気的消去可能プログラマブル読取り専用メモリ(EEPROM)、磁気ディスク、光ディスク、フロッピディスク、ハードディスク、取り外し可能カートリッジ、又はフラッシュドライブなどのメモリを含むように設定され得る。1つの例では、記憶媒体221は、オペレーティングシステム223、ウェブブラウザアプリケーションなどのアプリケーションプログラム225、ウィジェット若しくはガジェットエンジン又は別のアプリケーション、及びデータファイル227を含むように設定され得る。記憶媒体221は、UE200によって使用するために、バラエティ豊かな様々なオペレーティングシステムのいずれか又はオペレーティングシステムの組合せを記憶し得る。
記憶媒体221は、RAID(redundant array of independent disk)、フロッピディスクドライブ、フラッシュメモリ、USBフラッシュドライブ、外部ハードディスクドライブ、サムドライブ、ペンドライブ、キードライブ、高密度デジタル多用途ディスク(HD-DVD:high-density digital versatile disc)光ディスクドライブ、内部ハードディスクドライブ、ブルーレイ光ディスクドライブ、ホログラフィックデジタルデータストレージ(HDDS:holographic digital data storage)光ディスクドライブ、外部ミニデュアルインラインメモリモジュール(DIMM:mini-dual in-line memory module)、同期型ダイナミックランダムアクセスメモリ(SDRAM:synchronous dynamic random access memory)、外部マイクロDIMM SDRAM、加入者識別モジュール若しくは取り外し可能ユーザ識別(SIM/RUIM:subscriber identity module or a removable user identity)モジュールなどのスマートカードメモリ、他のメモリ、或いはその任意の組合せなどのいくつかの物理ドライブユニットを含むように設定され得る。記憶媒体221は、UE200が、一時的又は非一時的メモリ媒体に記憶された、コンピュータで実行可能な命令、アプリケーションプログラムなどにアクセスすること、データをオフロードすること、或いはデータをアップロードすることを可能にし得る。通信システムを使用するものなどの製造品は、デバイス可読媒体を備え得る記憶媒体221において有形に実施され得る。
図15において、処理回路201は、通信サブシステム231を使用するネットワーク243bと通信するように設定され得る。ネットワーク243a及びネットワーク243bは、1つ又は複数の同じネットワーク或いは1つ又は複数の異なるネットワークでもよい。通信サブシステム231は、ネットワーク243bと通信するために使用される1つ又は複数のトランシーバを含むように設定され得る。たとえば、通信サブシステム231は、IEEE802.5、CDMA、WCDMA、GSM、LTE、UTRAN、WiMaxなどの1つ又は複数の通信プロトコルによる無線アクセスネットワーク(RAN)の別のWD、UE、又は基地局など、ワイヤレス通信の能力を有する別のデバイスの1つ又は複数のリモートトランシーバと通信するために使用される1つ又は複数のトランシーバを含むように設定され得る。各トランシーバは、それぞれ、RANリンクに適した送信器又は受信器機能性(たとえば、周波数割当てなど)を実装するために送信器233及び/又は受信器235を含み得る。さらに、各トランシーバの送信器233及び受信器235は、回路構成要素、ソフトウェア又はファームウェアを共用し得る、或いは別法として別個に実装され得る。
図示された実施形態において、通信サブシステム231の通信機能は、データ通信、音声通信、マルチメディア通信、ブルートゥースなどの短距離通信、近距離無線通信、位置を判定するためのグローバルポジショニングシステム(GPS)の使用などの位置ベースの通信、別の同様の通信機能、或いはその任意の組合せを含み得る。たとえば、通信サブシステム231は、セルラ通信、Wi-Fi通信、ブルートゥース通信、及びGPS通信を含み得る。ネットワーク243bは、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、コンピュータネットワーク、ワイヤレスネットワーク、電気通信ネットワーク、別の同様のネットワーク又はその任意の組合せなど、ワイヤード及び/又はワイヤレスネットワークを包含し得る。たとえば、ネットワーク243bは、セルラネットワーク、Wi-Fiネットワーク、及び/又は近距離無線ネットワークでもよい。電源213は、交流(AC)又は直流(DC)電力をUE200の構成要素に提供するように設定され得る。
本明細書に記載の特徴、利益及び/又は機能は、UE200の構成要素のうちの1つにおいて実装され得る、又はUE200の複数の構成要素を横断して分割され得る。さらに、本明細書に記載の特徴、利益、及び/又は機能は、ハードウェア、ソフトウェア又はファームウェアの任意の組合せにおいて実装され得る。1つの例では、通信サブシステム231は、本明細書に記載の構成要素のいずれかを含むように設定され得る。さらに、処理回路201は、バス202を介してそのような構成要素のいずれかと通信するように設定され得る。別の例では、そのような構成要素のいずれかは、処理回路201によって実行されたときに本明細書に記載の対応する機能を実行するメモリに記憶されたプログラム命令によって表され得る。別の例では、そのような構成要素のうちのいずれかの構成要素の機能性は、処理回路201と通信サブシステム231との間で分割され得る。別の例では、そのような構成要素のうちのいずれかの構成要素の非計算集約的機能は、ソフトウェア又はファームウェアにおいて実装され得、計算集約的機能は、ハードウェアにおいて実装され得る。
図16は、一部の実施形態によって実装される機能が仮想化され得る例示的仮想化環境300を示す。これに関連して、仮想化は、ハードウェアプラットフォーム、記憶デバイス及びネットワーク資源の仮想化を含み得る装置又はデバイスの仮想バージョンの作成を意味する。本明細書では、仮想化は、ノード(たとえば、仮想化された基地局又は仮想化された無線アクセスノード)に或いはデバイス(たとえば、UE、ワイヤレスデバイス又は任意の他のタイプの通信デバイス)又はその構成要素に適用することができ、機能性の少なくとも一部分が1つ又は複数の仮想構成要素として実装される(たとえば、1つ又は複数のアプリケーション、構成要素、機能、仮想マシン又は1つ又は複数のネットワーク内の1つ又は複数の物理処理ノードで実行するコンテナを介して)実装形態に関する。
一部の実施形態では、本明細書に記載の機能の一部又はすべては、ハードウェアノード330のうちの1つ又は複数によってホストされる1つ又は複数の仮想環境300において実装された1つ又は複数の仮想マシンによって実行される仮想構成要素として実装され得る。さらに、仮想ノードが無線アクセスノードではない又は無線接続性(たとえば、コアネットワークノード)を必要としない実施形態では、そのとき、ネットワークノードは、完全に仮想化され得る。
本機能は、本明細書で開示される実施形態のうちのいくつかの実施形態の特徴、機能、及び/又は利益のうちのいくつかを実装するように動作可能な1つ又は複数のアプリケーション320(ソフトウェアインスタンス、仮想アプライアンス、ネットワーク機能、仮想ノード、仮想ネットワーク機能などと別称され得る)によって実装され得る。アプリケーション320は、処理回路360及びメモリ390を備えるハードウェア330を提供する仮想化環境300において実行される。メモリ390は、処理回路360によって実行可能な命令395を含み、それにより、アプリケーション320は、本明細書で開示される特徴、利益、及び/又は機能のうちの1つ又は複数を提供するように動作可能である。
仮想化環境300は、民生(COTS:commercial off-the-shelf)プロセッサ、特定用途向け集積回路(ASIC)、或いはデジタル若しくはアナログハードウェア構成要素又は専用プロセッサを含む任意の他のタイプの処理回路でもよい、1セットの1つ又は複数のプロセッサ又は処理回路360を備えた、汎用又は専用ネットワークハードウェアデバイス330を備える。各ハードウェアデバイスは、命令395又は処理回路360によって実行されるソフトウェアを一時的に記憶するための非永続メモリでもよいメモリ390-1を備え得る。各ハードウェアデバイスは、物理ネットワークインターフェース380を含む、ネットワークインターフェースカードとしても知られる、1つ又は複数のネットワークインターフェースコントローラ(NIC:network interface controller)370を備え得る。各ハードウェアデバイスはまた、ソフトウェア395がそこに記憶された非一時的、永続的、マシン可読記憶媒体390-2、及び/又は処理回路360によって実行可能な命令を含み得る。ソフトウェア395は、1つ又は複数の仮想化レイヤ350(ハイパーバイザとも呼ばれる)のインスタンスを作成するためのソフトウェア、仮想マシン340を実行するためのソフトウェア、並びに本明細書に記載のいくつかの実施形態に関連して記載された機能、特徴及び/又は利益をそれが実行することを可能にするソフトウェアを含む、任意のタイプのソフトウェアを含み得る。
仮想マシン340は、仮想処理、仮想メモリ、仮想ネットワーキング又はインターフェース及び仮想ストレージを備え、対応する仮想化レイヤ350又はハイパーバイザによって実行され得る。仮想アプライアンス320のインスタンスの異なる実施形態は、仮想マシン340のうちの1つ又は複数で実装され得、実装形態は、異なる形で行われ得る。
動作中、処理回路360は、仮想マシンモニタ(VMM:virtual machine monitor)と時に称されることがあるハイパーバイザ又は仮想化レイヤ350のインスタンスを作成するために、ソフトウェア395を実行する。仮想化レイヤ350は、仮想マシン340にネットワーキングハードウェアのように見える仮想オペレーティングプラットフォームを示し得る。
図3に示されるように、ハードウェア330は、一般又は特定の構成要素を有するスタンドアロンネットワークノードでもよい。ハードウェア330は、アンテナ3225を備え得、仮想化を介していくつかの機能を実装し得る。別法として、ハードウェア330は、多数のハードウェアノードが連携する及び、とりわけアプリケーション320のライフサイクル管理を監督する、管理及び編成(MANO:management and orchestration)3100を介して管理される、ハードウェアのより大きなクラスタ(たとえば、データセンタ又は顧客構内機器(CPE)内など)の一部でもよい。
ハードウェアの仮想化は、いくつかの文脈では、ネットワーク機能仮想化(NFV:network function virtualization)と称される。NFVは、データセンタ及び顧客構内機器内に置かれ得る、業界標準高容量サーバハードウェア、物理スイッチ、及び物理ストレージに多数のネットワーク機器タイプを統合するために使用され得る。
NFVとの関連で、仮想マシン340は、プログラムが物理的な非仮想化マシンで実行していたかのようにプログラムを実行する物理マシンのソフトウェア実装形態でもよい。それぞれの仮想マシン340、及びその仮想マシンを実行するハードウェア330のその部分は、それがその仮想マシン専用のハードウェア及び/又は他の仮想マシン340とその仮想マシンによって共用されるハードウェアであれば、別個の仮想ネットワーク要素(VNE)を形成する。
さらにNFVに関連して、仮想ネットワーク機能(VNF:Virtual Network Function)は、ハードウェアネットワーキングインフラストラクチャ330の最上部の1つ又は複数の仮想マシン340において実行する特定のネットワーク機能を処理する責任を有し、図3のアプリケーション320に対応する。
一部の実施形態では、1つ又は複数の送信器3220及び1つ又は複数の受信器3210をそれぞれ含む1つ又は複数の無線ユニット3200は、1つ又は複数のアンテナ3225に連結され得る。無線ユニット3200は、1つ又は複数の適切なネットワークインターフェースを介してハードウェアノード330と直接通信することができ、無線アクセスノード又は基地局などの無線能力を有する仮想ノードを提供するために仮想構成要素と組み合わせて使用され得る。
一部の実施形態では、一部のシグナリングは、別法としてハードウェアノード330と無線ユニット3200との間の通信のために使用され得る制御システム3230の使用の影響を受け得る。
図17は、一部の実施形態による、中間ネットワークを介してホストコンピュータに接続された電気通信ネットワークを示す。図17を参照すると、一実施形態によれば、通信システムは、無線アクセスネットワークなどのアクセスネットワーク411及びコアネットワーク414を備える、3GPPタイプのセルラネットワークなどの電気通信ネットワーク410を含む。アクセスネットワーク411は、それぞれが対応するカバレッジエリア413a、413b、413cを規定する、NB、eNB、gNB又は他のタイプのワイヤレスアクセスポイントなどの複数の基地局412a、412b、412cを備える。各基地局412a、412b、412cは、ワイヤード又はワイヤレス接続415を介してコアネットワーク414に接続可能である。カバレッジエリア413c内に置かれた第1のUE491は、対応する基地局412cにワイヤレスで接続される又は対応する基地局412cによってページングされるように設定され得る。カバレッジエリア413a内の第2のUE492は、対応する基地局412aにワイヤレスに接続可能である。複数のUE491、492が本例では図示されているが、開示される実施形態は、唯一のUEがカバレッジエリア内にある又は唯一のUEが対応する基地局412に接続している状況に同等に適用可能である。
電気通信ネットワーク410自体は、ホストコンピュータ430に接続され、ホストコンピュータ430は、スタンドアロンサーバ、クラウド実装されたサーバ、分散型サーバのハードウェア及び/又はソフトウェアにおいて或いはサーバファーム内の処理資源として実施され得る。ホストコンピュータ430は、サービスプロバイダの所有権又は制御の下にあってもよく、或いはサービスプロバイダによって又はサービスプロバイダのために動作させられ得る。電気通信ネットワーク410とホストコンピュータ430との接続421及び422は、コアネットワーク414からホストコンピュータ430に直接延びてもよく、或いはオプションの中間ネットワーク420を介してもよい。中間ネットワーク420は、パブリックネットワーク、プライベートネットワーク又はホスト型ネットワークのうちの1つ、又はそれらのうちの2つ以上の組合せでもよく、中間ネットワーク420は、もしあるなら、バックボーンネットワーク又はインターネットでもよく、具体的には、中間ネットワーク420は、2つ以上のサブネットワーク(図示せず)を備え得る。
全体としての図4の通信システムは、接続されたUE491、492及びホストコンピュータ430の間の接続性を有効にする。接続性は、オーバーザトップ(OTT:over-the-top)接続450として説明され得る。ホストコンピュータ430及び接続されたUE491、492は、媒介としてアクセスネットワーク411、コアネットワーク414、任意の中間ネットワーク420及び可能なさらなるインフラストラクチャ(図示せず)を使用し、OTT接続450を介してデータ及び/又はシグナリングを通信するように設定される。OTT接続450は、OTT接続450が通過する参加通信デバイスはアップリンク及びダウンリンク通信のルーティングを認識しないという意味で、透過的になり得る。たとえば、基地局412は、接続されたUE491に転送される(たとえば、ハンドオーバされる)ことになるホストコンピュータ430に由来するデータとの着信ダウンリンク通信の過去のルーティングに関して知らされないことがある、又は知らされる必要はない。同様に、基地局412は、UE491からホストコンピュータ430に向けて始められる外向きのアップリンク通信の未来のルーティングを認識する必要はない。
図18は、いくつかの実施形態による、部分的にワイヤレスな接続を介してユーザ機器と基地局を介して通信するホストコンピュータを示す。前段落で論じられたUE、基地局及びホストコンピュータの一実施形態による例示的実装形態について、図18を参照して、ここで説明する。通信システム500では、ホストコンピュータ510は、通信システム500の異なる通信デバイスのインターフェースとのワイヤード又はワイヤレス接続をセットアップ及び維持するように設定された通信インターフェース516を含むハードウェア515を備える。ホストコンピュータ510はさらに、ストレージ及び/又は処理能力を有し得る処理回路518を備える。具体的には、処理回路518は、1つ又は複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、或いは命令を実行するようになされたこれらの組合せ(図示せず)を備え得る。ホストコンピュータ510はさらに、ホストコンピュータ510に記憶された若しくはこれによってアクセス可能な及び処理回路518によって実行可能な、ソフトウェア511を備える。ソフトウェア511は、ホストアプリケーション512を含む。ホストアプリケーション512は、UE530及びホストコンピュータ510で終了するOTT接続550を介して接続するUE530など、リモートユーザにサービスを提供するように動作可能になり得る。サービスのリモートユーザへの提供において、ホストアプリケーション512は、OTT接続550を使用して送信されるユーザデータを提供し得る。
通信システム500はさらに、電気通信システムにおいて提供される並びにホストコンピュータ510と及びUE530とそれが通信することを可能にするハードウェア525を備える、基地局520を含む。ハードウェア525は、通信システム500の異なる通信デバイスのインターフェースとのワイヤード又はワイヤレス接続をセットアップ及び維持するための通信インターフェース526、並びに基地局520によってサービスされるカバレッジエリア(図18には図示せず)内に置かれたUE530とのワイヤレス接続570を少なくともセットアップ及び維持するための無線インターフェース527を含み得る。通信インターフェース526は、ホストコンピュータ510への接続560を円滑にするように設定され得る。接続560は直接でもよく、或いは、接続560は、電気通信システムのコアネットワーク(図18には図示せず)を通過及び/又は電気通信システム外部の1つ又は複数の中間ネットワークを通過してもよい。示された実施形態において、基地局520のハードウェア525は、1つ又は複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ又は命令を実行するようになされたこれらの組合せ(図示せず)を含み得る、処理回路528をさらに含む。基地局520はさらに、内部に記憶された又は外部接続を介してアクセス可能なソフトウェア521を有する。
通信システム500はさらに、既に言及されたUE530を含む。それのハードウェア535は、UE530が現在位置しているカバレッジエリアにサーブする基地局とのワイヤレス接続570をセットアップ及び保持するように設定された無線インターフェース537を含み得る。UE530のハードウェア535はさらに、1つ又は複数のプログラマブルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ又は命令を実行するようになされたこれらの組合せ(図示せず)を含み得る、処理回路538を含む。UE530はさらに、UE530に記憶された若しくはUE530によってアクセス可能な及び処理回路538によって実行可能な、ソフトウェア531を備える。ソフトウェア531は、クライアントアプリケーション532を含む。クライアントアプリケーション532は、ホストコンピュータ510の支援を有して、UE530を介して人間の又は人間ではないユーザにサービスを提供するように動作可能になり得る。ホストコンピュータ510では、実行中のホストアプリケーション512は、UE530及びホストコンピュータ510で終了するOTT接続550を介して実行中のクライアントアプリケーション532と通信し得る。ユーザへのサービスの提供において、クライアントアプリケーション532は、要求データをホストアプリケーション512から受信し、要求データに応答してユーザデータを提供することができる。OTT接続550は、要求データ及びユーザデータの両方を転送することができる。クライアントアプリケーション532は、それが提供するユーザデータを生成するために、ユーザと対話することができる。
図18に示されたホストコンピュータ510と、基地局520と、UE530とは、それぞれ、図4のホストコンピュータ430と、基地局412a、412b、412cのうちの1つと、UE491、492のうちの1つと類似する又は同一であってもよいことに留意されたい。すなわち、これらのエンティティの内部の動きは、図18に示されるようでもよく、独立して、周囲のネットワークトポロジは、図4のそれでもよい。
図18において、OTT接続550は、媒介デバイスの明示的参照及びこれらのデバイスを介するメッセージの正確なルーティングなしに、基地局520を介するホストコンピュータ510とUE530との通信を説明するために抽象的に描かれてある。ネットワークインフラストラクチャは、ルーティングを判定することができ、それは、UE530から若しくはサービスプロバイダオペレーティングホストコンピュータ510から又はその両方から隠すように設定され得る。OTT接続550がアクティブである間、ネットワークインフラストラクチャは、それがルーティングを動的に変更する判定(たとえば、ネットワークの負荷バランシング検討又は再設定に基づく)をさらに行うことができる。
UE530と基地局520との間のワイヤレス接続570は、本開示を通じて説明される実施形態の教示に従う。様々な実施形態のうちの1つ又は複数は、ワイヤレス接続570が最後のセグメントを形成する、OTT接続550を使用してUE530に提供されるOTTサービスのパフォーマンスを改善する。より詳細には、これらの実施形態の教示は、セル内可動性によるRRCシグナリングを最小限に抑える又は回避することによって、RRCシグナリングを改善することができる。これは、ユーザ体験の改善及びワイヤレスリソースのよりよい使用などの利益をもたらすことができる。
測定手続きは、1つ又は複数の実施形態が改善するモニタリングデータレート、レイテンシ及び他の要因を目的として、提供され得る。測定結果の変動に応答して、ホストコンピュータ510とUE530との間のOTT接続550を再設定するためのオプションのネットワーク機能性がさらに存在し得る。測定手続き及び/又はOTT接続550を再設定するためのネットワーク機能性は、ホストコンピュータ510のソフトウェア511及びハードウェア515において、又はUE530のソフトウェア531及びハードウェア535において、又はその両方で実装され得る。実施形態において、センサ(図示せず)は、OTT接続550が通過する通信デバイスにおいて又はそのような通信デバイスに関連して配備され得、センサは、上記で例示されたモニタされる数量の値を供給すること、或いはそこからソフトウェア511、531がモニタされる数量を計算又は推定し得る他の物理数量の値を供給することによって、測定手続きに参加し得る。OTT接続550の再設定は、メッセージフォーマット、再送信設定、好ましいルーティングなどを含み得、再設定は基地局520に影響を及ぼす必要はなく、そして、それは基地局520に知られてなくても又は感知できなくてもよい。そのような手続き及び機能性は、当分野では知られており、実施されることがある。ある種の実施形態では、測定は、スループット、伝搬時間、レイテンシなどのホストコンピュータ510の測定を円滑にする占有UEシグナリングを含み得る。ソフトウェア511及び531が、OTT接続550を使用し、それが伝搬時間、エラーなどをモニタする間に、メッセージ、具体的には空の又は「ダミー」メッセージ、を送信させるので、測定は実装され得る。
図19は、1つの実施形態による、通信システムにおいて実装される方法を示す流れ図である。通信システムは、図17及び18を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図19のみの図面の参照が、このセクションに含まれることになる。ステップ610において、ホストコンピュータはユーザデータを提供する。ステップ610のサブステップ611(オプションでもよい)では、ホストコンピュータは、ホストアプリケーションを実行することによって、ユーザデータを提供する。ステップ620では、ホストコンピュータは、ユーザデータをUEに運ぶ送信を開始する。ステップ630(オプションでもよい)では、基地局が、本開示を通して説明される実施形態の教示に従って、ホストコンピュータが開始した送信において運ばれたユーザデータをUEに送信する。ステップ640(やはりオプションでもよい)で、UEは、ホストコンピュータによって実行されるホストアプリケーションに関連するクライアントアプリケーションを実行する。
図20は、1つの実施形態による、通信システムにおいて実装される方法を示す流れ図である。通信システムは、図17及び18を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図20の図面の参照のみが、このセクションに含まれることになる。本方法のステップ710において、ホストコンピュータはユーザデータを提供する。オプションのサブステップ(図示せず)において、ホストコンピュータは、ホストアプリケーションを実行することによって、ユーザデータを提供する。ステップ720で、ホストコンピュータは、ユーザデータをUEに運ぶ送信を開始する。送信は、本開示を通して説明される実施形態の教示によれば、基地局を通り得る。ステップ730(オプションでもよい)で、UEは、その送信で運ばれたユーザデータを受信する。
図21は、1つの実施形態による、通信システムにおいて実装される方法を示す流れ図である。通信システムは、図17及び18を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図21の図面の参照のみが、このセクションに含まれることになる。ステップ810(オプションでもよい)で、UEは、ホストコンピュータによって提供された入力データを受信する。追加で又は別法として、ステップ820で、UEはユーザデータを提供する。ステップ820のサブステップ821(オプションでもよい)で、UEは、クライアントアプリケーションを実行することによって、ユーザデータを提供する。ステップ810のサブステップ811(オプションでもよい)で、UEは、ホストコンピュータによって提供される受信された入力データに反応してユーザデータを提供するクライアントアプリケーションを実行する。ユーザデータの提供において、実行されるクライアントアプリケーションは、ユーザから受信されたユーザ入力をさらに考慮し得る。ユーザデータが提供された具体的方式に関わらず、UEは、サブステップ830(オプションでもよい)で、ユーザデータのホストコンピュータへの送信を開始する。本方法のステップ840において、ホストコンピュータは、本開示を通して説明される実施形態の教示によれば、UEから送信されたユーザデータを受信する。
図22は、1つの実施形態による、通信システムにおいて実装された方法を示す流れ図である。通信システムは、図17及び18を参照して説明されるものでもよいホストコンピュータ、基地局及びUEを含む。本開示を簡単にするために、図22の図面の参照のみが、このセクションに含まれることになる。ステップ910(オプションでもよい)において、本開示を通して説明される実施形態の教示に従って、基地局は、ユーザデータをUEから受信する。ステップ920(オプションでもよい)で、基地局は、受信されたユーザデータのホストコンピュータへの送信を開始する。ステップ930(オプションでもよい)で、ホストコンピュータは、基地局によって開始された送信で運ばれたユーザデータを受信する。
本明細書で開示される任意の適切なステップ、方法、特徴、機能、又は利益は、1つ又は複数の仮想装置の1つ又は複数の機能ユニット又はモジュールを介して実行され得る。各仮想装置は、いくつかのこれらの機能ユニットを備え得る。これらの機能ユニットは、1つ又は複数のマイクロプロセッサ又はマイクロコントローラを含み得る、処理回路、並びに、デジタル信号プロセッサ(DSP)、専用デジタルロジックなどを含み得る、他のデジタルハードウェアを介して実装され得る。処理回路は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、キャッシュメモリ、フラッシュメモリデバイス、光記憶デバイスなど、1つの又はいくつかのタイプのメモリを含み得る、メモリに記憶されたプログラムコードを実行するように設定され得る。メモリに記憶されたプログラムコードは、1つ又は複数の電気通信及び/又はデータ通信プロトコルを実行するためのプログラム命令並びに本明細書に記載の技法のうちの1つ又は複数を実行するための命令を含む。いくつかの実装形態において、処理回路は、本開示の1つ又は複数の実施形態による対応する機能をそれぞれの機能ユニットに実行させるために使用され得る。
ユニットという用語は、電子工学、電気デバイス及び/又は電子デバイスの分野における従来の意味を有し得、たとえば、本明細書に記載されているものなどのような、電気及び/又は電子回路、デバイス、モジュール、プロセッサ、受信器、送信器、メモリ、ロジックソリッドステート及び/又はディスクリートデバイス、それぞれのタスク、手続き、計算、出力、及び/又は表示機能を実行するためのコンピュータプログラム又は命令などを含み得る。
図23は、ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のためのワイヤレスデバイス110による例示的方法1000を示す。本方法は、ワイヤレスデバイス110が、第1のネットワークノード160から、少なくとも1つのRLMパラメータを含む第1のメッセージを受信するとき、ステップ1010で開始する。ステップ1020において、ワイヤレスデバイス110は、第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、第1のネットワークノード160から受信する。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
特定の一実施形態によれば、第1のメッセージが、無線リソース制御(RRC)信号として受信され、第2のメッセージが、媒体アクセス制御(MAC)制御要素として受信される。
特定の一実施形態によれば、少なくとも1つのRLMパラメータは、第1のRLMパラメータ及び第2のRLMパラメータを含む。第1のRLMパラメータは、第1のセットの参照信号リソースに関連し、第2のRLMパラメータは、第2のセットの参照信号リソースに関連している。第2のセットの参照信号リソースは、第1のセットの参照信号リソースとは異なる。
特定の一実施形態によれば、第1のセットの参照信号リソース及び第2のセットの参照信号リソースのそれぞれは、セルのカバレッジを提供するいくつかの参照信号リソースより少ない。
特定の一実施形態によれば、本方法はさらに、第2のメッセージに基づいて少なくとも1つの参照信号リソースのRLMを実行するワイヤレスデバイス110を含み、少なくとも1つの参照信号リソースは、少なくとも1つの同期信号ブロック(SSB)又は少なくとも1つのチャンネル状態情報-参照信号(CSI-RS)を含む。
特定の一実施形態において、第2のメッセージの受信に応答して、ワイヤレスデバイス110は、第1のセットの参照信号リソース内の少なくとも1つの参照信号リソースを非アクティブ化する。
特定の一実施形態において、第2のメッセージの受信に応答して、ワイヤレスデバイス110は、第1のセットの参照信号リソース内にない少なくとも1つの参照信号リソースをアクティブ化する。
特定の一実施形態において、第1のメッセージは、参照信号タイプを識別し、第2のメッセージは、その参照信号タイプの1つ又は複数の参照信号リソースを識別する。
ある種の実施形態において、前述のようなRLM及びビームモニタリングの最適化された再設定のための方法は、仮想コンピューティングデバイスによって実行され得る。図24は、ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のための例示的仮想コンピューティングデバイス1100を示す。ある種の実施形態において、仮想コンピューティングデバイス1100は、図23に図解及び記述された方法に関して前述されたものと類似のステップを実行するためのモジュールを含み得る。たとえば、仮想コンピューティングデバイス1100は、第1の受信モジュール1110、第2の受信モジュール1120、及びRLM及びビームモニタリングの最適化された再設定のための任意の他の適切なモジュールを含み得る。いくつかの実施形態において、モジュールのうちの1つ又は複数は、図13の1つ又は複数のプロセッサ170を使用して、実装され得る。ある種の実施形態において、様々なモジュールのうちの2つ以上のモジュールの機能は、単一モジュールに結合され得る。
第1の受信モジュール1110は、仮想コンピューティングデバイス1100の受信機能のうちのいくらかを実行し得る。たとえば、特定の実施形態において、第1の受信モジュール1110は、少なくとも1つのRLMパラメータを含む第1のメッセージを、第1のネットワークノード160から受信し得る。
第2の受信モジュール1120は、仮想コンピューティングデバイス1100の受信機能のうちの他のいくらかを実行し得る。たとえば、特定の実施形態において、第2の受信モジュール1110は、第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、第1のネットワークノード160から受信し得る。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
仮想コンピューティングデバイス1100の他の実施形態は、前述の機能性及び/又は任意の追加の機能性のいずれかを含む(前述の解決法をサポートするために必要な任意の機能性を含む)、ワイヤレスデバイスの機能性のある特定の態様を提供する責任を有し得る図24に示されたもの以上の追加の構成要素を含み得る。様々な異なるタイプのワイヤレスデバイス110は、同じ物理ハードウェアを有するが異なる無線アクセス技術をサポートするように設定された(たとえば、プログラミングを介して)構成要素を含み得る、或いは部分的に又は完全に異なる物理構成要素を表し得る。
図25は、ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のためのネットワークノード160による例示的方法1200を示す。本方法は、ネットワークノード160が、少なくとも1つのRLMパラメータを含む第1のメッセージを、ワイヤレスデバイス110に送るとき、ステップ1210で開始する。ステップ1220で、ネットワークノード160は、第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、ワイヤレスデバイス110に送る。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
特定の一実施形態によれば、第1のメッセージは、無線リソース制御(RRC)信号として送られ、第2のメッセージは、媒体アクセス制御(MAC)制御要素として送られる。
特定の一実施形態によれば、少なくとも1つのRLMパラメータは、少なくとも1つの同期信号ブロック(SSB)又は少なくとも1つのチャンネル状態情報-参照信号(CSI-RS)に関連する。
特定の一実施形態によれば、第2のメッセージは、ワイヤレスデバイスはセル内で移動したという判定に応答して、ワイヤレスデバイスに送られる。
特定の一実施形態によれば、第1のメッセージは、参照信号タイプを識別し、第2のメッセージは、その参照信号タイプの1つ又は複数の参照信号リソースを識別する。
特定の一実施形態によれば、少なくとも1つのRLMパラメータは、第1のRLMパラメータ及び第2のRLMパラメータを含む。第1のRLMパラメータは、第1のセットの参照信号リソースと関連しており、第2のRLMパラメータは、第2のセットの参照信号リソースと関連している。第2のセットの参照信号リソースは、第1のセットの参照信号リソースとは異なる。
特定の一実施形態によれば、第1のセットの参照信号リソース及び第2のセットの参照信号リソースのそれぞれは、セルのカバレッジを提供するいくつかの参照信号リソースより少ない。
ある種の実施形態において、前述のようなRLM及びビームモニタリングの最適化された再設定のための方法は、仮想コンピューティングデバイスによって実行され得る。図26は、ある種の実施形態による、RLM及びビームモニタリングの最適化された再設定のための例示的仮想コンピューティングデバイス1300を示す。ある種の実施形態において、仮想コンピューティングデバイス1300は、図25に図解及び記述された方法に関して前述されたものと類似のステップを実行するためのモジュールを含み得る。たとえば、仮想コンピューティングデバイス1100は、第1の送信モジュール1310、第2の送信モジュール1320、及びRLM及びビームモニタリングの最適化された再設定のための任意の他の適切なモジュールを含み得る。いくつかの実施形態において、モジュールのうちの1つ又は複数は、図14の1つ又は複数のプロセッサ120を使用して、実装され得る。ある種の実施形態において、様々なモジュールのうちの2つ以上のモジュールの機能が、単一のモジュールに結合され得る。
第1の送信モジュール1310は、仮想コンピューティングデバイス1300の送信機能のうちのいくらかを実行し得る。たとえば、特定の実施形態において、第1の送信モジュール1310は、少なくとも1つのRLMパラメータを含む第1のメッセージを、ワイヤレスデバイス110に、送り得る。
第2の送信モジュール1320は、仮想コンピューティングデバイス1300の送信機能のうちの他のいくらかを実行し得る。たとえば、特定の一実施形態において、第2の送信モジュール1310は、第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、ワイヤレスデバイス110に、送り得る。第2のメッセージは、第1のメッセージと比較して下位レイヤ信号である。
仮想コンピューティングデバイス1300の他の実施形態は、前述の機能性及び/又は任意の追加の機能性のうちのいずれかを含む(前述の解決法をサポートするために必要な任意の機能性を含む)、ネットワークノードの機能性のある特定の態様を提供する責任を有し得る図26に示されたもの以上の追加の構成要素を含み得る。様々な異なるタイプのネットワークノード160は、同じ物理ハードウェアを有するが異なる無線アクセス技術をサポートするように設定された(たとえば、プログラミングを介して)構成要素を含み得る、或いは部分的に又は完全に異なる物理構成要素を表し得る。
いくつかの付加的例示的実施形態が、ここで説明される:
グループA実施形態
実施形態1.RLM及びビームモニタリングの最適化された再設定のためのワイヤレスデバイスによって実行される方法であり、以下を含む方法:
-RLMパラメータを含む第1の設定メッセージを受信すること、
-更新されたRLMパラメータを含む第2の設定メッセージを受信すること、そこで、第2の設定メッセージは、第1の設定メッセージと比較して下位レイヤ信号である。
実施形態2.前述のステップ、手続き又は利益のうちのいずれかの任意の組合せをさらに含む、1の方法。
実施形態3.さらに以下を含む、前の実施形態のいずれかの方法:
-ユーザデータを提供することと、
-基地局への送信を介してホストコンピュータにユーザデータを転送すること。
グループB実施形態
実施形態4.以下を含む、RLM及びビームモニタリングの最適化された再設定のために基地局によって実行される方法:
-RLMパラメータを含む第1の設定メッセージを送ることと、
-RLMパラメータを更新する必要性を検出することと、
-更新されたRLMパラメータを含む第2の設定メッセージを送ること、そこで、第2の設定メッセージは、第1の設定メッセージと比較して下位レイヤ信号である。
実施形態5.前述のステップ、手続き又は利益のいずれかの任意の組合せをさらに含む、4の方法。
実施形態6.以下をさらに含む、前の実施形態のいずれかの方法:
-ユーザデータを取得することと、
-ユーザデータをホストコンピュータ又はワイヤレスデバイスに転送すること。
グループC実施形態
実施形態7.RLM及びビームモニタリングの最適化された再設定のためのワイヤレスデバイスであり、以下を備えるワイヤレスデバイス:
-グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかを実行するように設定された処理回路と、
-ワイヤレスデバイスに電力を供給するように設定された電源回路。
実施形態8.RLM及びビームモニタリングの最適化された再設定のための基地局であり、以下を備える基地局:
-グループB実施形態のうちのいずれかの実施形態のステップのうちのいずれかを実行するように設定された処理回路と、
-ワイヤレスデバイスに電力を供給するように設定された電源回路。
実施形態9.RLM及びビームモニタリングの最適化された再設定のためのユーザ機器(UE)であり、以下を備えるUE:
-ワイヤレス信号を送る及び受信するように設定されたアンテナと、
-アンテナに及び処理回路に接続されており、アンテナと処理回路との間で通信される信号を調節するように設定された無線フロントエンド回路、
-グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかを実行するように設定された処理回路と、
-処理回路に接続されており、UEへの情報の入力が処理回路によって処理されることを可能にするように設定された入力インターフェースと、
-処理回路に接続されており、処理回路によって処理されたUEからの情報を出力するように設定された出力インターフェースと、
-処理回路に接続されており、UEに電力を供給するように設定されたバッテリ。
実施形態10.以下を備えたホストコンピュータを含む通信システム:
-ユーザデータを提供するように設定された処理回路と、
-ユーザ機器(UE)への送信のためにセルラネットワークにユーザデータを転送するように設定された通信インターフェース、
-そこで、セルラネットワークは、無線インターフェース及び処理回路を有する基地局を備え、基地局の処理回路は、グループB実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行するように設定されている。
実施形態11.基地局をさらに含む、前の実施形態の通信システム。
実施形態12.さらにUEを含む、前の2つの実施形態の通信システム、そこで、UEは基地局と通信するように設定される。
実施形態13.前の3つの実施形態の通信システム、そこでは:
-ホストコンピュータの処理回路は、ホストアプリケーションを実行するように設定され、それによってユーザデータを提供する、そして、
-UEは、ホストアプリケーションと関連するクライアントアプリケーションを実行するように設定された処理回路を備える。
実施形態14.ホストコンピュータ、基地局及びユーザ機器(UE)を含む通信システムにおいて実装される方法であって、以下を含む方法:
-ホストコンピュータにおいて、ユーザデータを提供することと、
-ホストコンピュータにおいて、基地局を備えたセルラネットワークを介してUEにユーザデータを運ぶ送信を開始すること、そこで、基地局は、グループB実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行する。
実施形態15.基地局において、ユーザデータを送信することをさらに含む、前の実施形態の方法。
実施形態16.前の2つの実施形態の方法、そこで、ユーザデータは、ホストアプリケーションを実行することによってホストコンピュータにおいて提供され、本方法は、UEにおいて、ホストアプリケーションと関連するクライアントアプリケーションを実行することをさらに含む。
実施形態17.基地局と通信するように設定されたユーザ機器(UE)であって、前の3つの実施形態を実行するように設定された無線インターフェース及び処理回路を備えたUE。
実施形態18.以下を備えた、ホストコンピュータを含む通信システム:
-ユーザデータを提供するように設定された処理回路と、
-ユーザ機器(UE)への送信のためにセルラネットワークにユーザデータを転送するように設定された通信インターフェース、
-そこで、UEは、無線インターフェース及び処理回路を備え、UEの構成要素は、グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行するように設定される。
実施形態19.前の実施形態の通信システム、そこで、セルラネットワークは、UEと通信するように設定された基地局をさらに含む。
実施形態20.前の2つの実施形態の通信システム、そこで:
-ホストコンピュータの処理回路は、ホストアプリケーションを実行するように設定され、それによってユーザデータを提供する、そして、
-UEの処理回路は、ホストアプリケーションと関連するクライアントアプリケーションを実行するように設定される。
実施形態21.ホストコンピュータ、基地局及びユーザ機器(UE)を含む通信システムにおいて実装される方法であって、以下を含む方法:
-ホストコンピュータにおいて、ユーザデータを提供することと、
-ホストコンピュータにおいて、基地局を備えたセルラネットワークを介してUEにユーザデータを運ぶ送信を開始すること、そこで、UEは、グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行する。
実施形態22.UEにおいて、基地局からユーザデータを受信することをさらに含む、前の実施形態の方法。
実施形態23.以下を備えたホストコンピュータを含む通信システム:
-ユーザ機器(UE)から基地局への送信に由来するユーザデータを受信するように設定された通信インターフェース、
-そこで、UEは、無線インターフェース及び処理回路を備え、UEの処理回路は、グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行するように設定される。
実施形態24.UEをさらに含む、前の実施形態の通信システム。
実施形態25.基地局をさらに含む、前の2つの実施形態の通信システムであって、そこで、基地局は、UEと通信するように設定された無線インターフェースと、UEから基地局への送信によって運ばれたユーザデータをホストコンピュータに転送するように設定された通信インターフェースとを含む。
実施形態26.前の3つの実施形態の通信システム、そこでは:
-ホストコンピュータの処理回路は、ホストアプリケーションを実行するように設定され、そして、
-UEの処理回路は、ホストアプリケーションと関連するクライアントアプリケーションを実行するように設定され、それによってユーザデータを提供する。
実施形態27.前の4つの実施形態の通信システム、そこでは:
-ホストコンピュータの処理回路は、ホストアプリケーションを実行するように設定され、それによって要求データを提供し、そして、
-UEの処理回路は、ホストアプリケーションと関連するクライアントアプリケーションを実行するように設定され、それによって要求データに応答してユーザデータを提供する。
実施形態28.ホストコンピュータ、基地局及びユーザ機器(UE)を含む通信システムにおいて実装される方法であって、以下を含む方法:
-ホストコンピュータにおいて、UEから基地局に送信されるユーザデータを受信すること、そこで、UEは、グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行する。
実施形態29.UEにおいて、基地局にユーザデータを提供することをさらに含む、前の実施形態の方法。
実施形態30.以下をさらに含む、前の2つの実施形態の方法:
-UEにおいて、クライアントアプリケーションを実行し、それによって送信されることになるユーザデータを提供することと、
-ホストコンピュータにおいて、クライアントアプリケーションと関連するホストアプリケーションを実行すること。
実施形態31.以下をさらに含む、前の3つの実施形態の方法:
-UEにおいて、クライアントアプリケーションを実行することと、
-UEにおいて、クライアントアプリケーションへの入力データを受信することであり、入力データは、クライアントアプリケーションと関連するホストアプリケーションを実行することによって、ホストコンピュータにおいて提供される、こと、
-そこで、送信されることになるユーザデータは、入力データに応答して、クライアントアプリケーションによって提供される。
実施形態32.ユーザ機器(UE)から基地局への送信に由来するユーザデータを受信するように設定された通信インターフェースを備えたホストコンピュータを含む通信システム、そこで、基地局は、無線インターフェース及び処理回路を備え、基地局の処理回路は、グループB実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行するように設定される。
実施形態33.基地局をさらに含む、前の実施形態の通信システム。
実施形態34.UEをさらに含む、前の2つの実施形態の通信システム、そこで、UEは、基地局と通信するように設定される。
実施形態35.前の3つの実施形態の通信システム、そこでは:
-ホストコンピュータの処理回路は、ホストアプリケーションを実行するように設定され、
-UEは、ホストアプリケーションと関連するクライアントアプリケーションを実行するように設定され、それによって、ホストコンピュータによって受信されることになるユーザデータを提供する。
実施形態36.ホストコンピュータ、基地局及びユーザ機器(UE)を含む通信システムにおいて実装される方法であって、以下を含む方法:
-ホストコンピュータにおいて、基地局がUEから受信した送信に由来するユーザデータを基地局から受信すること、そこで、UEは、グループA実施形態のうちのいずれかの実施形態のステップのうちのいずれかのステップを実行する。
実施形態37.基地局において、UEからユーザデータを受信することをさらに含む、前の実施形態の方法。
実施形態38.基地局において、受信されたユーザデータのホストコンピュータへの送信を開始することをさらに含む、前の2つの実施形態の方法。
略語
以下の略語のうちの少なくともいくつかが、本開示において使用され得る。略語の間に不一致がある場合には、それが前述でどのように使用されているかを優先すべきである。以下に複数回記載されている場合、第1の記載はいずれの後続の記載よりも優先されるべきである。
1x RTT CDMA2000 1x無線送信技術
3GPP 第3世代パートナーシッププロジェクト
5G 第5世代
ABS オールモストブランクサブフレーム
ARQ 自動リピート要求
AWGN 加算性白色ガウス雑音
BCCH ブロードキャスト制御チャンネル
BCH ブロードキャストチャンネル
CA キャリアアグリゲーション
CC キャリア構成要素
CCCH SDU 共通の制御チャンネルSDU
CDMA コード分割多重アクセス
CGI セルグローバル識別子
CIR チャンネルインパルス応答
CP サイクリックプレフィックス
CPICH 共通パイロットチャンネル
CPICH Ec/No 帯域内の電力密度によって分けられたチップごとのCPICH受信エネルギ
CQI チャンネル品質情報
C-RNTI セルRNTI
CSI チャンネル状態情報
DCCH 専用制御チャンネル
DL ダウンリンク
DM 復調
DMRS 復調参照信号
DRX 間欠受信
DTX 間欠送信
DTCH 専用トラフィックチャンネル
DUT 被試験デバイス
E-CID 拡張セルID(位置決め方法)
E-SMLC エボルブドサービングモバイルロケーションセンタ
ECGI エボルブドCGI
eNB E-UTRAN NodeB
ePDCCH 拡張物理ダウンリンク制御チャンネル
E-SMLC エボルブドサービングモバイルロケーションセンタ
E-UTRA エボルブドUTRA
E-UTRAN エボルブドUTRAN
FDD 周波数分割複信
FFS 要研究
GERAN GSM EDGE無線アクセスネットワーク
gNB NRにおける基地局
GNSS グローバル航行衛星システム
GSM グローバルシステムフォーモバイルコミュニケーション
HARQ ハイブリッド自動リピート要求
HO ハンドオーバ
HSPA 高速パケットアクセス
HRPD 高速パケットデータ
LOS 見通し線
LPP LTE位置決めプロトコル
LTE ロングタームエボリューション
MAC メディアアクセスコントロール
MBMS マルチメディアブロードキャストマルチキャストサービス
MBSFN マルチメディアブロードキャストマルチキャストサービス単一周波数ネットワーク
MBSFN ABS MBSFNオールモストブランクサブフレーム
MDT ドライブテストの最小化
MIB マスタ情報ブロック
MME 可動性管理エンティティ
MSC モバイル交換局
NPDCCH 狭帯域物理ダウンリンク制御チャンネル
NR 新無線
OCNG OFDMAチャンネル雑音発生器
OFDM 直交周波数分割多重
OFDMA 直交周波数分割多重アクセス
OSS オペレーションサポートシステム
OTDOA 到達の観測時間差
O&M 運用及び保守
PBCH 物理ブロードキャストチャンネル
P-CCPCH プライマリ共通コントロール物理チャンネル
PCell プライマリセル
PCFICH 物理コントロールフォーマットインジケータチャンネル
PDCCH 物理ダウンリンク制御チャンネル
PDP プロファイル遅延プロファイル
PDSCH 物理ダウンリンク共有チャンネル
PGW パケットゲートウェイ
PHICH 物理ハイブリッド自動再送要求指示チャンネル
PLMN 公衆地上移動体通信網
PMI プリコーダマトリクスインジケータ
PRACH 物理ランダムアクセスチャンネル
PRS 位置決め参照信号
PSS プライマリ同期信号
PUCCH 物理アップリンク制御チャンネル
PUSCH 物理アップリンク共有チャンネル
RACH ランダムアクセスチャンネル
QAM 直交振幅変調
RAN 無線アクセスネットワーク
RAT 無線アクセス技術
RLM 無線リンク管理
RNC 無線ネットワークコントローラ
RNTI 無線ネットワーク一時識別子
RRC 無線資源制御
RRM 無線資源管理
RS 参照信号
RSCP 受信信号コード電力
RSRP 参照シンボル受信電力又は参照信号受信電力
RSRQ 参照信号受信品質又は参照シンボル受信品質
RSSI 受信信号強度インジケータ
RSTD 参照信号時間差
SCH 同期チャンネル
SCell 2次セル
SDU サービスデータユニット
SFN システムフレーム番号
SGW サービングゲートウェイ
SI システム情報
SIB システム情報ブロック
SNR 信号対雑音比
SON 自己最適化ネットワーク
SS 同期信号
SSS 2次同期信号
TDD 時分割複信
TDOA 到達時間差
TOA 到達時間
TSS 3次同期信号
TTI 送信時間間隔
UE ユーザ機器
UL アップリンク
UMTS ユニバーサルモバイルテレコミュニケーションシステム
USIM 汎用加入者識別モジュール
UTDOA アップリンク到達時間差
UTRA ユニバーサル地上無線アクセス
UTRAN ユニバーサル地上無線アクセスネットワーク
WCDMA ワイドCDMA
WLAN ワイドローカルエリアネットワーク

Claims (24)

  1. 無線リンクモニタリング(RLM)の最適化された再設定のためにワイヤレスデバイス(110)によって実行される方法であって、
    1つ又は複数の参照信号をモニタリングするために前記ワイヤレスデバイスによって用いられる少なくとも1つのRLMパラメータを含む第1のメッセージを、第1のネットワークノード(160)から受信することと、
    前記ワイヤレスデバイスに関して、前記第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、前記第1のネットワークノードから受信することであって、前記第2のメッセージは、前記第1のメッセージと比較して下位レイヤ信号であり、アクティブ化された前記少なくとも1つのRLMパラメータが、前記第2のメッセージを受信する前にアクティブ化された少なくとも1つの第1の参照信号に関連している、受信することと、
    前記少なくとも1つのRLMパラメータに関連する1つ又は複数の参照信号をモニタリングすることと、
    を含む、方法。
  2. 前記少なくとも1つのRLMパラメータが、第1のRLMパラメータ及び第2のRLMパラメータを含み、
    前記第1のRLMパラメータが、第1のセットの参照信号リソースに関連しており、
    前記第2のRLMパラメータが、第2のセットの参照信号リソースに関連しており、
    前記第2のセットの参照信号リソースが、前記第1のセットの参照信号リソースとは異なる、請求項に記載の方法。
  3. 前記第1のセットの参照信号リソース及び前記第2のセットの参照信号リソースのそれぞれが、セルのカバレッジを提供するいくつかの参照信号リソースより少ない、請求項に記載の方法。
  4. 前記第2のメッセージを受信したことに応答して、前記第1のセットの参照信号リソース内の少なくとも1つの参照信号リソースを非アクティブ化すること
    をさらに含む、請求項又はに記載の方法。
  5. 前記第2のメッセージを受信したことに応答して、前記第1のセットの参照信号リソース内にない少なくとも1つの参照信号リソースをアクティブ化すること
    をさらに含む、請求項からのいずれか一項に記載の方法。
  6. 前記第2のメッセージに基づいて少なくとも1つの参照信号リソースのRLMを実行すること
    をさらに含み、
    前記少なくとも1つの参照信号リソースが、少なくとも1つの同期信号ブロック(SSB)又は少なくとも1つのチャンネル状態情報-参照信号(CSI-RS)を含む、
    請求項1からのいずれか一項に記載の方法。
  7. 前記第1のメッセージが、参照信号タイプを識別し、
    前記第2のメッセージが、前記参照信号タイプの1つ又は複数の参照信号リソースを識別する、請求項に記載の方法。
  8. 無線リンクモニタリング(RLM)の最適化された再設定のためのワイヤレスデバイス(110)であって、
    命令を記憶するメモリ(130)と、
    1つ又は複数の参照信号をモニタリングするために前記ワイヤレスデバイスによって用いられる少なくとも1つのRLMパラメータを含む第1のメッセージを、第1のネットワークノード(160)から受信することと、
    前記ワイヤレスデバイスに関して、前記第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、前記第1のネットワークノードから受信することであって、前記第2のメッセージは、前記第1のメッセージと比較して下位レイヤ信号であり、アクティブ化された前記少なくとも1つのRLMパラメータが、前記第2のメッセージを受信する前にアクティブ化された少なくとも1つの第1の参照信号に関連している、受信することと、
    前記少なくとも1つのRLMパラメータに関連する1つ又は複数の参照信号をモニタリングすることと、
    を前記ワイヤレスデバイスに行わせるために前記命令を実行するように動作可能な処理回路(120)と
    を備えた、ワイヤレスデバイス。
  9. 前記少なくとも1つのRLMパラメータが、第1のRLMパラメータ及び第2のRLMパラメータを含み、
    前記第1のRLMパラメータが、第1のセットの参照信号リソースに関連しており、
    前記第2のRLMパラメータが、第2のセットの参照信号リソースに関連しており、
    前記第2のセットの参照信号リソースは、第1のセットの参照信号リソースとは異なる、
    請求項に記載のワイヤレスデバイス。
  10. 前記第1のセットの参照信号リソース及び前記第2のセットの参照信号リソースのそれぞれが、セルのカバレッジを提供するいくつかの参照信号リソースより少ない、請求項に記載のワイヤレスデバイス。
  11. 前記処理回路が、
    前記第2のメッセージを受信したことに応答して、前記第1のセットの参照信号リソース内の少なくとも1つの参照信号リソースを非アクティブ化すること
    を前記ワイヤレスデバイスに行わせるために前記命令を実行するように動作可能である、請求項又は10に記載のワイヤレスデバイス。
  12. 前記処理回路が、
    前記第2のメッセージを受信したことに応答して、前記第1のセットの参照信号リソース内にない少なくとも1つの参照信号リソースをアクティブ化すること
    を前記ワイヤレスデバイスに行わせるために前記命令を実行するように動作可能である、請求項から11のいずれか一項に記載のワイヤレスデバイス。
  13. 前記処理回路が、
    前記第2のメッセージに基づいて少なくとも1つの参照信号リソースのRLMを実行すること
    を前記ワイヤレスデバイスに行わせるために前記命令を実行するように動作可能であり、
    前記少なくとも1つの参照信号リソースが、少なくとも1つの同期信号ブロック(SSB)又は少なくとも1つのチャンネル状態情報-参照信号(CSI-RS)を含む、請求項から12のいずれか一項に記載のワイヤレスデバイス。
  14. 前記第1のメッセージが、参照信号タイプを識別し、
    前記第2のメッセージが、前記参照信号タイプの1つ又は複数の参照信号リソースを識別する、
    請求項に記載のワイヤレスデバイス。
  15. 無線リンクモニタリング(RLM)の最適化された再設定のためにネットワークノード(160)によって実行される方法であって、
    1つ又は複数の参照信号をモニタリングするためにワイヤレスデバイスによって用いられる少なくとも1つのRLMパラメータを含む第1のメッセージを、前記ワイヤレスデバイス(110)に送ることと、
    前記ワイヤレスデバイスに関して、前記第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、前記ワイヤレスデバイスに送ることであって、前記第2のメッセージは、前記第1のメッセージと比較して下位レイヤ信号であり、アクティブ化された前記少なくとも1つのRLMパラメータが、前記第2のメッセージを送信する前にアクティブ化された少なくとも1つの第1の参照信号に関連している、送ることと、
    を含む、方法。
  16. 前記第2のメッセージが、前記ワイヤレスデバイスはセル内で移動したという判定に応答して、前記ワイヤレスデバイスに送られる、請求項15に記載の方法。
  17. 前記第1のメッセージが、参照信号タイプを識別し、
    前記第2のメッセージが、前記参照信号タイプの1つ又は複数の参照信号リソースを識別する、
    請求項15又は16に記載の方法。
  18. 前記少なくとも1つのRLMパラメータが、第1のRLMパラメータ及び第2のRLMパラメータを含み、
    前記第1のRLMパラメータが、第1のセットの参照信号リソースに関連しており、
    前記第2のRLMパラメータが、第2のセットの参照信号リソースに関連しており、
    前記第2のセットの参照信号リソースが、前記第1のセットの参照信号リソースとは異なる、
    請求項15又は16に記載の方法。
  19. 前記第1のセットの参照信号リソース及び前記第2のセットの参照信号リソースのそれぞれが、セルのカバレッジを提供するいくつかの参照信号リソースより少ない、請求項18に記載の方法。
  20. 無線リンクモニタリング(RLM)の最適化された再設定のためのネットワークノード(160)であって、
    命令を記憶するメモリ(180)と、
    1つ又は複数の参照信号をモニタリングするためにワイヤレスデバイスによって用いられる少なくとも1つのRLMパラメータを含む第1のメッセージを、前記ワイヤレスデバイス(110)に送ること、及び
    前記ワイヤレスデバイスに関して、前記第1のメッセージに関連する少なくとも1つのRLMパラメータのアクティブ化を指示する第2のメッセージを、前記ワイヤレスデバイスに送ることであって、前記第2のメッセージは、前記第1のメッセージと比較して下位レイヤ信号であり、アクティブ化された前記少なくとも1つのRLMパラメータが、前記第2のメッセージを送信する前にアクティブ化された少なくとも1つの第1の参照信号に関連している、送ること
    を前記ネットワークノードに行わせるために前記命令を実行するように動作可能な処理回路(170)と
    を備える、ネットワークノード。
  21. 前記第2のメッセージが、前記ワイヤレスデバイスはセル内で移動したという判定に応答して、前記ワイヤレスデバイスに送られる、請求項20に記載のネットワークノード。
  22. 前記第1のメッセージが、参照信号タイプを識別し、
    前記第2のメッセージが、前記参照信号タイプの1つ又は複数の参照信号リソースを識別する、
    請求項20又は21に記載のネットワークノード。
  23. 前記少なくとも1つのRLMパラメータが、第1のRLMパラメータ及び第2のRLMパラメータを含み、
    前記第1のRLMパラメータが、第1のセットの参照信号リソースに関連しており、
    前記第2のRLMパラメータが、第2のセットの参照信号リソースに関連しており、
    前記第2のセットの参照信号リソースが、前記第1のセットの参照信号リソースとは異なる、
    請求項20又は21に記載のネットワークノード。
  24. 前記第1のセットの参照信号リソース及び前記第2のセットの参照信号リソースのそれぞれが、セルのカバレッジを提供するいくつかの参照信号リソースより少ない、請求項23に記載のネットワークノード。
JP2020542977A 2018-02-16 2019-02-14 Rlm及びビームモニタリングパラメータの最適化された再設定 Active JP7449230B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862710466P 2018-02-16 2018-02-16
US62/710,466 2018-02-16
PCT/IB2019/051200 WO2019159096A1 (en) 2018-02-16 2019-02-14 Optimized reconfiguration of rlm and beam monitoring parameters

Publications (2)

Publication Number Publication Date
JP2021514124A JP2021514124A (ja) 2021-06-03
JP7449230B2 true JP7449230B2 (ja) 2024-03-13

Family

ID=65520351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020542977A Active JP7449230B2 (ja) 2018-02-16 2019-02-14 Rlm及びビームモニタリングパラメータの最適化された再設定

Country Status (7)

Country Link
US (2) US11582103B2 (ja)
EP (1) EP3753281A1 (ja)
JP (1) JP7449230B2 (ja)
CN (1) CN111727620B (ja)
MX (1) MX2020008579A (ja)
RU (1) RU2746585C1 (ja)
WO (1) WO2019159096A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108848523B (zh) * 2017-06-16 2019-09-20 华为技术有限公司 一种无线链路监控方法和装置
US11582103B2 (en) * 2018-02-16 2023-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Optimized reconfiguration of RLM and beam monitoring parameters
WO2020004923A1 (en) * 2018-06-26 2020-01-02 Lg Electronics Inc. Method for performing measurement and device supporting the same
WO2020011708A1 (en) * 2018-07-13 2020-01-16 Sony Corporation Time-overlapping beam-swept transmissions
KR20200035791A (ko) * 2018-09-27 2020-04-06 삼성전자주식회사 무선 통신 시스템에서 라디오 링크 모니터링 방법 및 장치
CN110972288A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 传输信号的方法和通信装置
US20210385675A1 (en) * 2018-11-01 2021-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Configuring Radio Link Monitoring (RLM) for Moving Radio Access Network (RAN)
JP7303890B2 (ja) * 2018-11-02 2023-07-05 アップル インコーポレイテッド 電力節約のための無線リンクモニタリング強化
US10980035B2 (en) 2018-12-03 2021-04-13 Apple Inc. Supplemental use of millimeter wave spectrum
EP3981091A1 (en) * 2019-07-10 2022-04-13 Apple Inc. Radio link monitoring (rlm) for unicast sidelink (sl) communications
KR20210046495A (ko) * 2019-10-18 2021-04-28 삼성전자주식회사 무선 통신 시스템에서 제어 메시지 전송 방법 및 장치
US11368891B2 (en) 2020-02-12 2022-06-21 Apple Inc. Primary cell switching in non-simultaneous uplink carrier aggregation scenarios
US11856415B2 (en) 2020-05-15 2023-12-26 Huawei Technologies Co., Ltd. Method, apparatus, and system utilizing lower layer signalling for mobility beam management
CN115804132A (zh) * 2020-08-07 2023-03-14 华为技术有限公司 一种通信方法及装置
US20220295499A1 (en) * 2021-03-12 2022-09-15 Samsung Electronics Co., Ltd. Method and apparatus for configuring a reference signal burst
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers
CN115119340A (zh) * 2021-03-22 2022-09-27 夏普株式会社 用户设备及其执行方法
CN115333694B (zh) * 2021-05-10 2024-05-31 维沃移动通信有限公司 Csi测量资源的处理方法及装置、终端及可读存储介质
US11659422B2 (en) * 2021-06-02 2023-05-23 Apple Inc. Mechanisms for radio link failure (RLF) reporting to network
WO2024033139A1 (en) * 2022-08-09 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Joint radio link failure (rlf) detection for l1/l2 inter-cell mobility
US20240196240A1 (en) * 2022-12-08 2024-06-13 Samsung Electronics Co., Ltd. Radio link monitoring in full-duplex systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180007574A1 (en) 2015-01-30 2018-01-04 Lg Electronics Inc. Radio link monitoring method in wireless communication system and device therefor
WO2018027886A1 (en) 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Two-level mobility reference signal configuration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507570A (en) 2012-11-05 2014-05-07 Broadcom Corp Providing enhanced Radio Link Monitoring
RU2623736C2 (ru) 2013-01-18 2017-06-29 Хуавей Текнолоджиз Ко., Лтд. Способ измерения, способ измерения соты, устройство и узел связи
US9258747B2 (en) * 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
ES2802098T3 (es) * 2014-01-27 2021-01-15 Ericsson Telefon Ab L M Métodos y equipo de usuario para monitorización de enlace de radio adaptativa
JP6674954B2 (ja) 2015-02-05 2020-04-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるcsiをフィードバックするための方法及びこのための装置
US10165617B2 (en) * 2015-04-13 2018-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods of adapting receiver configuration for control channel reception based on DRX status
WO2017197264A1 (en) 2016-05-12 2017-11-16 Idac Holdings, Inc. Flow-based processing in wireless systems
US11582103B2 (en) * 2018-02-16 2023-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Optimized reconfiguration of RLM and beam monitoring parameters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180007574A1 (en) 2015-01-30 2018-01-04 Lg Electronics Inc. Radio link monitoring method in wireless communication system and device therefor
WO2018027886A1 (en) 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Two-level mobility reference signal configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Intel Corporation, Summary of Tuesday offline discussion for NR Radio Link Monitoring [online], 3GPP TSG RAN WG1 Meeting #91 R1-1721375, インターネット <URL:https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_91/Docs/R1-1721375.zip>, 2017年12月01日, p.1-3

Also Published As

Publication number Publication date
MX2020008579A (es) 2020-09-21
US20210028984A1 (en) 2021-01-28
TW201939984A (zh) 2019-10-01
JP2021514124A (ja) 2021-06-03
CN111727620A (zh) 2020-09-29
US11985031B2 (en) 2024-05-14
RU2746585C1 (ru) 2021-04-16
CN111727620B (zh) 2024-01-02
WO2019159096A1 (en) 2019-08-22
EP3753281A1 (en) 2020-12-23
US20230198842A1 (en) 2023-06-22
US11582103B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
JP7449230B2 (ja) Rlm及びビームモニタリングパラメータの最適化された再設定
JP7079326B2 (ja) 帯域幅部分切替え時の無線リンク監視/無線リンク失敗再設定
JP7213963B2 (ja) Nr-dcにおける測定設定
CN111434146B (zh) 用于进行测量报告的方法和设备
KR20220007732A (ko) 무선 통신 네트워크에서 업링크 기준 신호 전송들을 제어하기 위한 방법들 및 장치
CN112586037B (zh) 用于iab节点的ssb/rmsi周期的确定
CN112806064B (zh) Ne-dc和nr-nr dc中的测量间隙配置
JP7203864B2 (ja) 測定報告タイマ
CN114902732A (zh) 用于条件切换候选的测量报告
WO2022130273A1 (en) Mobility procedure for multi-sim
JP2021523628A (ja) マルチセルidシナリオにおけるセルid選択
JP2021505027A (ja) Lte−nrインターワーキングにおける測定をトリガすることに関する
JP2023509799A (ja) 低複雑度ユーザ機器のためのランダムアクセス
CN113632538A (zh) 用于无随机接入信道切换/辅小区组变更的对齐配置
TWI839344B (zh) 無線電鏈路監測及波束監測參數之最佳化重組態
JP7512379B2 (ja) 条件付きハンドオーバ候補のための測定リポーティング
CN113302996B (en) Method and device for positioning based on sounding reference signal
CN116076112A (zh) 用于新无线电(nr)的用户设备定位

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230308

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230317

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230407

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240301

R150 Certificate of patent or registration of utility model

Ref document number: 7449230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150