JP7447722B2 - electrohydrodynamic pump - Google Patents
electrohydrodynamic pump Download PDFInfo
- Publication number
- JP7447722B2 JP7447722B2 JP2020125197A JP2020125197A JP7447722B2 JP 7447722 B2 JP7447722 B2 JP 7447722B2 JP 2020125197 A JP2020125197 A JP 2020125197A JP 2020125197 A JP2020125197 A JP 2020125197A JP 7447722 B2 JP7447722 B2 JP 7447722B2
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- negative electrode
- target fluid
- positive electrode
- electrohydrodynamic pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 53
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 5
- 238000005192 partition Methods 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Description
本発明は、電気流体力学ポンプに関する。 The present invention relates to electrohydrodynamic pumps.
絶縁性を有する流体に電圧を印加することで流体に流れが生じる電気流体力学効果が知られている。この電気流体力学効果を利用して、流体を吐出する電気流体力学ポンプが提案されている。電気流体力学ポンプは、インペラのような可動部材を必要としないため、小型化が可能である。 2. Description of the Related Art Electrohydrodynamic effects are known in which a flow is generated in an insulating fluid by applying a voltage to the fluid. An electrohydrodynamic pump that discharges fluid by utilizing this electrohydrodynamic effect has been proposed. Electrohydrodynamic pumps do not require moving parts such as impellers, so they can be made smaller.
具体例として、棒状又はメッシュ状に形成され、直流電圧が印加される1又は複数の電極対(正極及び負極)を有し、流路の上流側に流路を横断するよう負極を配置し、下流側に正極を負極と平行に配置した電気流体力学ポンプが提案されている(例えば、特許文献1参照)。 As a specific example, it is formed into a rod shape or a mesh shape, has one or more electrode pairs (positive electrode and negative electrode) to which a DC voltage is applied, and the negative electrode is arranged on the upstream side of the flow path so as to cross the flow path, An electrohydrodynamic pump in which a positive electrode is arranged in parallel with a negative electrode on the downstream side has been proposed (see, for example, Patent Document 1).
従来の電気流体力学ポンプは、差圧(全揚程)が小さいため、用途が限定される。このため、本発明は、差圧が大きい電気流体力学ポンプを提供することを目的とする。 Conventional electrohydrodynamic pumps have limited applications due to their low differential pressure (total head). Therefore, an object of the present invention is to provide an electrohydrodynamic pump with a large differential pressure.
本発明の一態様に係る電気流体力学ポンプは、絶縁性を有する対象流体に電圧を印加することで前記対象流体に流れを生じさせる電気流体力学ポンプであって、下流側に向かって断面積が減少する作用流路を有する流路部材と、前記作用流路の上流側に配設される負極と、前記作用流路の下流側に配設される正極と、を備える。 An electrohydrodynamic pump according to one aspect of the present invention is an electrohydrodynamic pump that generates a flow in a target fluid by applying a voltage to the target fluid having an insulating property, and the cross-sectional area of the target fluid increases toward the downstream side. It includes a flow path member having a decreasing working flow path, a negative electrode disposed upstream of the working flow path, and a positive electrode disposed downstream of the working flow path.
前記電気流体力学ポンプにおいて、前記負極及び前記正極の少なくとも一方は、メッシュ状であってもよい。 In the electrohydrodynamic pump, at least one of the negative electrode and the positive electrode may have a mesh shape.
前記電気流体力学ポンプにおいて、前記負極はメッシュ状であり、前記正極はパイプ状又は針状であってもよい。 In the electrohydrodynamic pump, the negative electrode may have a mesh shape, and the positive electrode may have a pipe shape or a needle shape.
前記電気流体力学ポンプにおいて、前記正極の長手方向は、前記対象流体の流れ方向と平行であってもよい。 In the electrohydrodynamic pump, the longitudinal direction of the positive electrode may be parallel to the flow direction of the target fluid.
前記電気流体力学ポンプは、前記作用流路に前記対象流体を供給する吸込流路を画定すると共に、前記負極を保持する吸込保持部材と、前記作用流路から流出する前記対象流体を案内する吐出流路を画定すると共に、前記正極を保持する吐出保持部材と、をさらに備えてもよい。 The electrohydrodynamic pump defines a suction channel that supplies the target fluid to the working channel, and includes a suction holding member that holds the negative electrode, and a discharge that guides the target fluid flowing out from the working channel. The device may further include a discharge holding member that defines a flow path and holds the positive electrode.
本発明によれば、差圧が大きい電気流体力学ポンプを提供できる。 According to the present invention, an electrohydrodynamic pump with a large differential pressure can be provided.
以下、本発明に係る電気流体力学ポンプの各実施形態について、図面を参照しながら説明をする。なお、以下の説明において、後から説明する実施形態の先に説明した実施形態と同一の構成要素については同一の符号を付して、重複する説明を省略することがある。 Hereinafter, each embodiment of the electrohydrodynamic pump according to the present invention will be described with reference to the drawings. In addition, in the following description, the same reference numerals may be attached to the same components of the embodiment described later as those of the previously described embodiment, and the redundant explanation may be omitted.
<第1実施形態>
図1は、本発明の第1実施形態の電気流体力学ポンプ1の断面図である。電気流体力学ポンプ1は、絶縁性を有する対象流体に電圧を印加することで対象流体に流れを生じさせるポンプである。図1において、電気流体力学ポンプ1の左右の矢印は、対象流体の流れ方向を示す。本実施形態の電気流体力学ポンプ1は、流路部材10と、負極20と、正極30と、吸込保持部材40と、吐出保持部材50と、吸込キャップ60と、吐出キャップ70と、を備える。
<First embodiment>
FIG. 1 is a sectional view of an
流路部材10は、対象流体が流れる作用流路11を有する隔壁部12と、隔壁部12の外側に設けられ、負極20、正極30、吸込保持部材40及び吐出保持部材50を収容する筒状のハウジング部13とを有する。
The
隔壁部12は、所望の形状の作用流路11を画定し、対象流体の流路を作用流路11のみに限定するために、ハウジング部13の内部を封止して上流側の空間と下流側の空間とを隔離するよう形成することができる。
The
作用流路11の断面積は、下流側に向かって減少する。これによって、作用流路11内で対象流体の圧力を増大することができる。本実施形態の電気流体力学ポンプ1において、作用流路11は円錐状に形成されている。
The cross-sectional area of the working
作用流路11の入口の径の出口の径に対する比の下限としては、例えば5以上20以下、好ましくは8以上15以下とすることができる。これによって、対象流体の圧力を十分に増大することができる。
The lower limit of the ratio of the diameter of the inlet to the diameter of the outlet of the working
作用流路11の径の流路長さ(入口と出口の距離、ひいては負極20と正極30との距離)に対する比としては、例えば1以上10以下、好ましくは2以上8以下とすることができる。これによって、比較的小さい流路長さで対象流体の圧力を大きくできる。特に、作用流路11の径の流路長さを小さくすることによって、電気流体力学ポンプ1の差圧をより大きくできる。
The ratio of the diameter of the working
ハウジング部13は、隔壁部12の上流側に吸込保持部材40を保持するために、例えば吸込保持部材40が螺合する内ねじ等の吸込取付構造14を有してもよい。同様に、ハウジング部13は、隔壁部12の下流側に吐出保持部材50を保持するための吐出取付構造15を有してもよい。
In order to hold the
また、ハウジング部13は、対象流体を漏出することなく、内部に配置される負極20及び正極30に外部の電池Bから電圧を印加するための配線Lを接続可能にする配線部16が設けられている。配線部16は、例として、配線Lを引き出す開口と配線Lとの隙間を封止する封止構造、ハウジング部13に気密に取り付けられ、内側に配線Lが接続され、外側に電池Bからの給電線を接続する端子構造などとすることができる。
Further, the
負極20は、例えばメッシュ状、格子状等の対象流体が通過できる開口又は隙間を有する形状を有し、好ましくは対象流体との接触面積が大きいメッシュ状とされる。具体的には、負極20は、金属金網、好ましくは比較的強度が大きいステンレス金網によって形成することができる。
The
負極20は、作用流路11に流入する対象流体と効率よく接触できるよう、作用流路11の入口を覆うよう配置されることが好ましい。また、負極20は、正極30との距離を一定にするよう、対象流体の流れ方向に略垂直に配置されることが好ましい。
It is preferable that the
負極20の開口率としては、15%以上80%以下が好ましく、20%以上65%以下がより好ましく、25%以上50%以下さらに好ましい。これによって、負極20による流路抵抗の増大を抑制しつつ負極20と対象流体との接触面積を確保して、対象流体に差圧を付与することができる。
The aperture ratio of the
負極20は、対象流体を流れやすくするために、部分的に大きい開口又は隙間を有してもよい。具体例として、負極20は、メッシュ状の材料に開口を形成したものであってもよい。
The
正極30は、負極20と同様に、メッシュ状に形成され、作用流路11の出口を覆うよう配置することができる。正極30は、開口面積が小さい作用流路11の出口を覆うため、対象流体との接触面積を確保するために、均等なメッシュ状であることが好ましい。
Like the
吸込保持部材40は、作用流路11に対象流体を供給する吸込流路41を画定すると共に、負極20を保持する。具体的には、吸込保持部材40は、中央部を貫通する吸込流路41と、外周部に設けられ、流路部材10に固定するための固定構造42と、先端部に設けられ、負極20を保持するための保持構造43と、配線Lを配置する配線孔44と、を有する構成とすることができる。
The
吸込流路41の流路面積は、作用流路11の入口の開口面積以上とされる。具体例として、吸込流路41は、作用流路11と同軸に形成され、作用流路11の入口の開口と等しい一定の断面形状を有する。
The flow area of the
固定構造42は、例えば流路部材10のハウジング部13の内周面に形成される内ねじに螺合する外ねじとすることができる。また、固定構造42は、流路部材10の隔壁部12に形成されるネジ穴に螺合するボルトが挿通されるボルト孔等であってもよい。
The
保持構造43は、負極20の形状等に応じて適宜設計することができる。具体例として、保持構造43は、吸込保持部材40の先端面に当接させた負極20の外周部を吸込保持部材40の外周に沿うよう上流側に折り曲げることができるようにする小径部とすることができる。このような構成では、折り曲げた負極20の外周部をバンド等で締め付けることによって吸込保持部材40に負極20を固定してもよい。また、保持構造43は、吸込保持部材40の先端面に負極20を接着剤によって接着する構成とされてもよく、例えばフランジ、キャップ等で吸込保持部材40の先端面に負極20を固定する構成とされてもよい。保持構造43を省略して、負極20を隔壁部12に直接位置決め及び固定できるようにしてもよいが、吸込保持部材40が保持構造43を有することで、容易且つ確実に負極20を作用流路11の入口に配置することができる。
The
吐出保持部材50は、吸込保持部材40と対をなすよう、作用流路11から流出する対象流体を案内する吐出流路51を画定すると共に、正極30を保持する。具体的には、吐出保持部材50は、吸込保持部材40と同様に、中央部を貫通して形成する吐出流路51と、外周部に設けられ、流路部材10に固定するための固定構造52と、先端部に設けられ、正極30を保持するための保持構造53と、配線Lを配置する配線孔54と、を有する構成とすることができる。
The
吸込キャップ60は、流路部材10の上流側の端部を閉鎖し、対象流体を供給する配管(不図示)を接続できるよう構成される。吸込キャップ60の流路部材10に固定するための構造は、技術常識に基づいて適宜選択できるが、本実施形態ではフランジ状の構造とされている。また、吸込キャップ60の配管を接続するための構造は、技術常識に基づいて適宜選択できるが、本実施形態では管用の雌ねじとされている。
The
吐出キャップ70は、吸込キャップ60と対をなすように、流路部材10の下流側の端部を閉鎖し、対象流体を吐出する配管(不図示)を接続できるよう構成される。吐出キャップ70の構造も、技術常識に基づいて適宜選択できる。
The
以上の構成を有する電気流体力学ポンプ1は、負極20が対象流体に電荷を付与し、電荷が付与された対象流体を正極30が静電気力によって吸引して対象流体から電荷を回収する。これにより、対象流体が作用流路11の中を上流側から下流側に移動する。このとき、作用流路11の断面積が下流側に向かって減少していることで、差圧を増大することができる。
In the
<第2実施形態>
図2は、本発明の第2実施形態の電気流体力学ポンプ1Aの断面図である。本実施形態の電気流体力学ポンプ1Aは、複数組の流路部材10、負極20、正極30、吸込保持部材40、及び吐出保持部材50と、1組の吸込キャップ60及び吐出キャップ70と、を備える。
<Second embodiment>
FIG. 2 is a sectional view of an electrohydrodynamic pump 1A according to a second embodiment of the present invention. The electrohydrodynamic pump 1A of this embodiment includes a plurality of sets of
図2の電気流体力学ポンプ1Aは、図1の電気流体力学ポンプ1の吸込キャップ60及び吐出キャップ70を除く要部を直列に複数並べて配設したもの、つまり図1の電気流体力学ポンプ1を多段化したものである。この構成によって、本実施形態の電気流体力学ポンプ1Aは、図1の電気流体力学ポンプ1よりも高い差圧を得ることができる。
The electrohydrodynamic pump 1A of FIG. 2 has a plurality of main parts of the
<第3実施形態>
図3は、本発明の第3実施形態の電気流体力学ポンプ1Bの断面図である。本実施形態の電気流体力学ポンプ1Bは、流路部材10Bと、負極20と、正極30と、吸込保持部材40と、吐出保持部材50と、吸込キャップ60と、吐出キャップ70と、を備える。
<Third embodiment>
FIG. 3 is a sectional view of an
流路部材10Bは、対象流体が流れる作用流路11Bを有する隔壁部12Bと、隔壁部12Bの外側に設けられ、吸込保持部材40及び吐出保持部材50を収容する筒状のハウジング部13とを有する。
The
作用流路11Bは、対象流体の流れ方向(作用流路11Bの中心軸)に対する外壁の傾斜角度が下流に向かって減少するベルマウス状に形成されている。これによって、作用流路11Bにおける対象流体の流路抵抗が小さくなるので、対象流体の流量を大きくした場合の差圧の落ち込みを抑制することができる。
The working
<第4実施形態>
図4は、本発明の第4実施形態の電気流体力学ポンプ1Cの断面図である。本実施形態の電気流体力学ポンプ1Cは、流路部材10Cと、負極20と、正極30Cと、吸込保持部材40と、吐出保持部材50Cと、吸込キャップ60と、吐出キャップ70と、を備える。
<Fourth embodiment>
FIG. 4 is a sectional view of an
流路部材10Cは、対象流体が流れる作用流路11と、作用流路11の下流側に連続する吐出流路17と、吐出保持部材50Cを保持する吐出取付構造15Cと、を有する隔壁部12Cと、隔壁部12Cの外側に設けられる筒状のハウジング部13Cとを有する。
The flow path member 10C includes a
正極30Cは、針状に形成され、吐出流路17の中心軸上に長手方向が対象流体の流れ方向と平行に延びるよう保持される。対象流体は、吐出流路17の外壁と正極30Cの外周面との間の空間を流れる。これによって、正極30Cの対象流体との接触面積を大きくできるので、より確実に負極20で付与された電荷を回収することができる。これにより、電荷を回収できずに正極30を通過した対象流体に上流側に引き戻す力が作用することを防止できるので、電気流体力学ポンプ1Cが生じさせる差圧を大きくすることができる。なお、正極30Cは、対象流体との接触面積を増大するために、中空のパイプ状に形成されてその内部にも対象流体の流路を形成してもよい。
The
吐出保持部材50Cは、正極30Cを保持する保持部55と、ハウジング部13Cの吐出取付構造15Cに係合する取付部56と、保持部55と取付部56を接続するよう放射状に延びる接続部57と、を有することができる。
The
以上、本発明の電気流体力学ポンプの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 Although each preferred embodiment of the electrohydrodynamic pump of the present invention has been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate.
例として、本発明の電気流体力学ポンプにおいて、流路部材以外の構成要素が他の部材を収容するハウジングを有してもよく、他の部材を収容するハウジングを有さず、流路部材、吐出保持部材、及び排出保持部材が互いに気密に接続されてもよい。 For example, in the electrohydrodynamic pump of the present invention, components other than the channel member may have a housing that accommodates the other member, or may not have a housing that accommodates the other member, and the channel member, The discharge holding member and the discharge holding member may be airtightly connected to each other.
また、本発明の電気流体力学ポンプでは、吸込流路も流路部材によって画定されてもよい。この場合、吸込流路の中に負極が保持される。 Furthermore, in the electrohydrodynamic pump of the present invention, the suction channel may also be defined by the channel member. In this case, the negative electrode is held within the suction channel.
また、本発明の電気流体力学ポンプについて、作用流路は、外壁の流れ方向に対する傾斜角度が下流側に向かって増大する形状であってもよく、外壁の流れ方向に対する傾斜角度が中央部から上流側及び下流側の両側に向かってそれぞれ減少する形状であってもよい。 Further, in the electrohydrodynamic pump of the present invention, the working channel may have a shape in which the inclination angle of the outer wall with respect to the flow direction increases toward the downstream side, and the inclination angle of the outer wall with respect to the flow direction increases from the central part to the upstream part. It may have a shape that decreases toward both the side and the downstream side.
また、本発明の電気流体力学ポンプでは、負極が作用流路の上流側に、正極が作用流路の下流側に配置されるが、これは負極と正極との位置関係を意図するものであって、負極が作用流路よりも上流側、正極が作用流路よりも下流側に配置されることを要求するものではない。従って、本発明の電気流体力学ポンプにおける負極及び正極は、流路部材が画定する作用流路の途中に配置されてもよい。 Furthermore, in the electrohydrodynamic pump of the present invention, the negative electrode is placed on the upstream side of the working flow path, and the positive electrode is placed on the downstream side of the working flow path, but this is not intended to be the positional relationship between the negative electrode and the positive electrode. However, it is not required that the negative electrode be disposed upstream of the working flow path and the positive electrode disposed downstream of the working flow path. Therefore, the negative electrode and the positive electrode in the electrohydrodynamic pump of the present invention may be placed in the middle of the working flow path defined by the flow path member.
以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.
上述の実施形態に準じ、作用流路、負極及び正極の形状が異なる電気流体力学ポンプの試作例1~3を作成し、3M社の「ノベック」を対象流体として、10kVの電圧を印加することにより生じる差圧を測定した。 In accordance with the above-described embodiment, prototype examples 1 to 3 of electrohydrodynamic pumps having different shapes of working channels, negative electrodes, and positive electrodes were created, and a voltage of 10 kV was applied using 3M's "Novec" as the target fluid. The differential pressure caused by this was measured.
試作例1の電気流体力学ポンプは、作用流路を断面積が一定の円筒状とし、負極及び正極としてステンレス鋼製金網を使用した。作用流路の口径は20mm、作用流路の長さは5mmとした。負極及び正極のメッシュサイズは、#200(素線径0.05mm、開口率36.8%)とした。 The electrohydrodynamic pump of Prototype Example 1 had a cylindrical working flow path with a constant cross-sectional area, and used stainless steel wire mesh as the negative and positive electrodes. The diameter of the working channel was 20 mm, and the length of the working channel was 5 mm. The mesh size of the negative electrode and positive electrode was #200 (wire diameter 0.05 mm, aperture ratio 36.8%).
試作例2の電気流体力学ポンプは、作用流路を下流側ほど断面積が小さい円錐台状とし、負極及び正極としてステンレス鋼製金網を使用した。作用流路の入口の口径は25mm、作用流路の出口の口径は2mm、作用流路の長さは5mmとした。負極及び正極のメッシュサイズは、#635(素線径0.02mm、開口率25%)とした。 In the electrohydrodynamic pump of Prototype Example 2, the working flow path had a truncated conical shape with a cross-sectional area smaller toward the downstream side, and stainless steel wire mesh was used as the negative and positive electrodes. The diameter of the inlet of the working channel was 25 mm, the diameter of the outlet of the working channel was 2 mm, and the length of the working channel was 5 mm. The mesh size of the negative electrode and positive electrode was #635 (wire diameter 0.02 mm, aperture ratio 25%).
試作例3の電気流体力学ポンプは、作用流路を下流側ほど断面積が小さい円錐台状とし、負極及び正極としてステンレス鋼製金網を使用し、負極には開口を形成した。作用流路の入口の口径は25mm、作用流路の出口の口径は2mm、作用流路の長さは5mmとした。負極及び正極のメッシュサイズは、#250(素線径0.03mm、開口率49.7%)とした。負極の開口の径は5mmとした。 In the electrohydrodynamic pump of Prototype Example 3, the working channel had a truncated conical shape with a cross-sectional area smaller toward the downstream side, stainless steel wire mesh was used as the negative electrode and the positive electrode, and an opening was formed in the negative electrode. The diameter of the inlet of the working channel was 25 mm, the diameter of the outlet of the working channel was 2 mm, and the length of the working channel was 5 mm. The mesh size of the negative electrode and the positive electrode was #250 (wire diameter 0.03 mm, aperture ratio 49.7%). The diameter of the opening of the negative electrode was 5 mm.
差圧の測定方法としては、透明な水槽から対象流体を電気流体力学ポンプに供給し、電気流体力学ポンプの吐出配管として透明なチューブを使用し、水槽の液面の高さと吐出配管の液面との高さの差を測定することで、電気流体力学ポンプが発生する差圧を算出した。つまり、今回の試験では、流量がゼロであるときの電気流体力学ポンプの差圧を測定した。 The method for measuring differential pressure is to supply the target fluid from a transparent water tank to an electrohydrodynamic pump, use a transparent tube as the discharge piping of the electrohydrodynamic pump, and measure the height of the liquid level in the water tank and the liquid level in the discharge piping. The differential pressure generated by the electrohydrodynamic pump was calculated by measuring the height difference between In other words, in this test, we measured the differential pressure of the electrohydrodynamic pump when the flow rate was zero.
この結果、試作例1の電気流体力学ポンプの差圧は391MPa、試作例2の電気流体力学ポンプの差圧は1615MPa、試作例3の電気流体力学ポンプの差圧は1780MPaであった。 As a result, the differential pressure of the electrohydrodynamic pump of Prototype Example 1 was 391 MPa, the differential pressure of the electrohydrodynamic pump of Prototype Example 2 was 1615 MPa, and the differential pressure of the electrohydrodynamic pump of Prototype Example 3 was 1780 MPa.
これらの結果から、作用流路を下流側ほど断面積が小さい円錐台状にすることで、電気流体力学ポンプの差圧を大きく向上できることが確認できた。 From these results, it was confirmed that the differential pressure of the electrohydrodynamic pump could be greatly improved by forming the working flow path into a truncated cone shape with a cross-sectional area smaller toward the downstream side.
また、図5に、試作例3の電気流体力学ポンプの差圧の印加電圧に対する関係を示す。図示するように、印加電圧を高くするほどの差圧が直線的に大きくなるため、この電気流体力学ポンプは対象流体の流れを制御する場合に好適であることが分かる。 Further, FIG. 5 shows the relationship between the differential pressure of the electrohydrodynamic pump of Prototype Example 3 and the applied voltage. As shown in the figure, the differential pressure increases linearly as the applied voltage increases, so it can be seen that this electrohydrodynamic pump is suitable for controlling the flow of a target fluid.
1,1A,1B,1C 電気流体力学ポンプ
10,10B,10C 流路部材
11,11B 作用流路
12,12B,12C 隔壁部
13,13C ハウジング部
14 吸込取付構造
15,15C 吐出取付構造
16 配線部
17 吐出流路
20 負極
30 正極
40 吸込保持部材
41 吸込流路
42 固定構造
43 保持構造
44 配線孔
50,50C 吐出保持部材
51 吐出流路
52 固定構造
53 保持構造
54 配線孔
55 保持部
56 取付部
57 接続部
60 吸込キャップ
70 吐出キャップ
B 電池
L 配線
1, 1A, 1B,
Claims (5)
下流側に向かって断面積が減少する作用流路を有する流路部材と、
前記作用流路の上流側に配設される負極と、
前記作用流路の下流側に配設される正極と、
を備え、
前記作用流路は、前記負極と前記正極の間で断面積が減少する、電気流体力学ポンプ。 An electrohydrodynamic pump that generates a flow in a target fluid by applying a voltage to the target fluid having insulating properties,
a flow path member having a working flow path whose cross-sectional area decreases toward the downstream side;
a negative electrode disposed on the upstream side of the working flow path;
a positive electrode disposed on the downstream side of the working channel;
Equipped with
The working flow path has a reduced cross-sectional area between the negative electrode and the positive electrode.
前記作用流路から流出する前記対象流体を案内する吐出流路を画定すると共に、前記正極を保持する吐出保持部材と、
をさらに備える、請求項1から4のいずれかに記載の電気流体力学ポンプ。 a suction holding member that defines a suction flow path for supplying the target fluid to the working flow path and holds the negative electrode;
a discharge holding member that defines a discharge flow path that guides the target fluid flowing out from the working flow path and holds the positive electrode;
The electrohydrodynamic pump according to any one of claims 1 to 4, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020125197A JP7447722B2 (en) | 2020-07-22 | 2020-07-22 | electrohydrodynamic pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020125197A JP7447722B2 (en) | 2020-07-22 | 2020-07-22 | electrohydrodynamic pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022021557A JP2022021557A (en) | 2022-02-03 |
JP7447722B2 true JP7447722B2 (en) | 2024-03-12 |
Family
ID=80220537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020125197A Active JP7447722B2 (en) | 2020-07-22 | 2020-07-22 | electrohydrodynamic pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7447722B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002021814A (en) | 2000-07-10 | 2002-01-23 | Fujikura Kasei Co Ltd | Actuator |
JP2008141870A (en) | 2006-12-01 | 2008-06-19 | Kanazawa Inst Of Technology | Electrohydrodynamic pump |
JP2010063342A (en) | 2008-09-07 | 2010-03-18 | Kanazawa Inst Of Technology | Electro-hydrodynamic pump and paired electrode unit therefor |
JP2014212625A (en) | 2013-04-18 | 2014-11-13 | 株式会社デンソー | EHD pump |
JP2019506123A (en) | 2016-01-20 | 2019-02-28 | エイピーアール、テクノロジーズ、アクチボラグApr Technologies Ab | Electrohydrodynamic control device |
-
2020
- 2020-07-22 JP JP2020125197A patent/JP7447722B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002021814A (en) | 2000-07-10 | 2002-01-23 | Fujikura Kasei Co Ltd | Actuator |
JP2008141870A (en) | 2006-12-01 | 2008-06-19 | Kanazawa Inst Of Technology | Electrohydrodynamic pump |
JP2010063342A (en) | 2008-09-07 | 2010-03-18 | Kanazawa Inst Of Technology | Electro-hydrodynamic pump and paired electrode unit therefor |
JP2014212625A (en) | 2013-04-18 | 2014-11-13 | 株式会社デンソー | EHD pump |
JP2019506123A (en) | 2016-01-20 | 2019-02-28 | エイピーアール、テクノロジーズ、アクチボラグApr Technologies Ab | Electrohydrodynamic control device |
Also Published As
Publication number | Publication date |
---|---|
JP2022021557A (en) | 2022-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6476441B2 (en) | Electrostatic spray nozzle assembly | |
US9995415B2 (en) | Fluidic device | |
US20130255815A1 (en) | Fluid conduit with variable flow resistance | |
SU1279547A3 (en) | Electrostatic pump | |
EP2833037A2 (en) | Valve unit | |
US20220356085A1 (en) | Fluid circuit with integrated electrostatic discharge mitigation | |
JP7447722B2 (en) | electrohydrodynamic pump | |
JP2016094963A (en) | Joint structure for piping | |
CN104284734A (en) | Electrostatic application apparatus and method for applying liquid | |
JP5083751B2 (en) | Electrohydrodynamic pump | |
TW201532957A (en) | Tube-type ozone generation device | |
CN208078386U (en) | Electrode member and piping installation with electrode member | |
US20220221086A1 (en) | Electrostatic discharge mitigation tubing | |
US11855422B2 (en) | Cable gland including internal dam | |
US20070048199A1 (en) | Fluid treatment apparatus | |
US10047672B2 (en) | Gas turbine wet compression system using electrohydrodynamic (EHD) atomization | |
JP6784504B2 (en) | Particle sensor | |
EP1939600A2 (en) | Pressure sensor device | |
TW202045256A (en) | Filter with electrostatic discharge mitigation sleeve | |
CN113013737A (en) | Combined type ion wind generating device | |
JP4615029B2 (en) | Blower type static elimination electrode structure and blow type static elimination electrode device | |
CN102357436B (en) | Electrostatic atomizer | |
US20170101330A1 (en) | Water treatment apparatus using electrostatic field | |
CN220206760U (en) | Electrode structure for electromagnetic flowmeter and electromagnetic flowmeter | |
MX2021003742A (en) | Reduced scale nozzles for plasma torch and adapter for the nozzles. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7447722 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |