JP7444706B2 - current sensor - Google Patents

current sensor Download PDF

Info

Publication number
JP7444706B2
JP7444706B2 JP2020102812A JP2020102812A JP7444706B2 JP 7444706 B2 JP7444706 B2 JP 7444706B2 JP 2020102812 A JP2020102812 A JP 2020102812A JP 2020102812 A JP2020102812 A JP 2020102812A JP 7444706 B2 JP7444706 B2 JP 7444706B2
Authority
JP
Japan
Prior art keywords
sensor
magnetic core
winding
excitation
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020102812A
Other languages
Japanese (ja)
Other versions
JP2021196259A (en
Inventor
大輔 中村
尊雄 今川
健司 有松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Industrial Equipment Systems Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2020102812A priority Critical patent/JP7444706B2/en
Publication of JP2021196259A publication Critical patent/JP2021196259A/en
Application granted granted Critical
Publication of JP7444706B2 publication Critical patent/JP7444706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、直流電気設備における漏洩電流を検出する電流センサに関する。 The present invention relates to a current sensor that detects leakage current in DC electrical equipment.

メガソーラなど太陽光発電設備の普及に伴い、太陽光発電設備における感電保護、火災保護および保守性向上のため、電路への人体の接触、損傷や劣化による漏れ電流の発生を検知する必要がある。 With the spread of solar power generation equipment such as mega solar, it is necessary to detect the occurrence of leakage current due to human contact with electrical circuits, damage, and deterioration in order to protect against electric shock, protect against fire, and improve maintainability of solar power generation equipment.

このような課題に対し、特許文献1には、環状の磁性体コアにコイルを巻回し、直流電路を磁性体コアに往復で貫通させ、巻回したコイルに交流の励磁電圧を印加し、漏洩電流によるコアの磁気飽和によって発生する二次高調波を検出することにより、漏洩電流を検出する方式が記載されている。 To solve this problem, Patent Document 1 discloses that a coil is wound around an annular magnetic core, a DC current path is passed through the magnetic core in a reciprocating manner, and an AC excitation voltage is applied to the wound coil to prevent leakage. A method is described in which leakage current is detected by detecting second harmonics generated by magnetic saturation of the core due to current.

特開2013-110925号公報Japanese Patent Application Publication No. 2013-110925

従来技術によるセンサでは、環状の磁性体コアにコイルを巻回し、交流で励磁するため、漏電検出対象の電路には励磁によって零相電圧が誘起される。一方で太陽光発電設備では、太陽光モジュールを地上もしくは屋上など広い面積で展開することで大きな電力を得ようとするが、これにより一般的な電気設備より大きい対地静電容量を持つことになる。従来技術によるセンサをこのような大きい対地静電容量を持つ回路に適用した場合、センサの励磁で誘起された零相電圧により、対地静電容量と接地極を経由したループに電流が流れ、センサの動作が阻害されるという問題があった。 In the conventional sensor, a coil is wound around an annular magnetic core and is excited with alternating current, so that a zero-sequence voltage is induced in the electrical path to be detected for leakage due to the excitation. On the other hand, solar power generation equipment attempts to obtain large amounts of power by deploying solar modules over a large area, such as on the ground or on a rooftop, but this results in a larger ground capacitance than general electrical equipment. . When a conventional sensor is applied to a circuit with such a large ground capacitance, the zero-sequence voltage induced by excitation of the sensor causes a current to flow in the loop via the ground capacitance and the ground electrode, and the sensor There was a problem that the operation of the device was hindered.

本発明は、太陽光発電システムなどの対地静電容量に左右されない、安定な電流検出手段を提供することを目的とする。 An object of the present invention is to provide a stable current detection means that is not affected by the ground capacitance of a solar power generation system or the like.

本発明の電流センサは、上述の課題に対応するため、環状の磁性体コアを二個使用し、それぞれのコアを逆位相で励磁することにより、漏電検出対象の電路に誘起される零相電圧を打ち消し、対地静電容量と接地極を経由したループインピーダンスの影響を受けないようにする。 In order to solve the above-mentioned problems, the current sensor of the present invention uses two annular magnetic cores and excites each core in opposite phases to reduce the zero-sequence voltage induced in the electrical circuit to be detected for earth leakage. This cancels out the effects of ground capacitance and loop impedance via the ground electrode.

本発明の「電流センサ」の一例を挙げるならば、
主回路導体を流れる直流電流を検出する電流センサであって、
主センサと補助センサとを備え、
前記主センサは、前記主回路導体が貫通する環状の第1の磁気コアと、前記第1の磁気コアに巻回された第1の励磁巻線および第1の検出巻線とを備え、
前記補助センサは、主回路導体が貫通する環状の2の磁気コアと、前記第2の磁気コアに巻回され、前記第の励磁巻線と同じ巻数の第2の励磁巻線と、前記第2の磁気コアに巻回された第2の検出巻線とを備え、
前記第1の励磁巻線と前記第2の励磁巻線はそれぞれの磁気コアを逆位相で励磁するように直列または並列に接続されて励磁回路に接続され、
前記第1の検出巻線と前記第2の検出巻線はノイズを打ち消すように並列に接続されて二次高調波検出回路に接続されているものである。
To give an example of the "current sensor" of the present invention,
A current sensor that detects a direct current flowing through a main circuit conductor,
Equipped with a main sensor and an auxiliary sensor,
The main sensor includes a first annular magnetic core through which the main circuit conductor passes, and a first excitation winding and a first detection winding wound around the first magnetic core,
The auxiliary sensor includes a second annular magnetic core through which a main circuit conductor passes, and a second excitation winding that is wound around the second magnetic core and has the same number of turns as the first excitation winding . a second detection winding wound around the second magnetic core ;
The first excitation winding and the second excitation winding are connected in series or parallel to an excitation circuit so as to excite their respective magnetic cores in opposite phases ;
The first detection winding and the second detection winding are connected in parallel to cancel noise and are connected to a second harmonic detection circuit .

本発明によれば、太陽光発電システムなどの対地静電容量に左右されない、安定な電流検出手段を提供することが出来る。 According to the present invention, it is possible to provide a stable current detection means that is not affected by the ground capacitance of a solar power generation system or the like.

上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be made clear by the description of the embodiments below.

本発明における実施例1の電流センサの接続図である。It is a connection diagram of the current sensor of Example 1 in this invention. 本発明における実施例2の電流センサの接続図である。It is a connection diagram of the current sensor of Example 2 in this invention. 本発明における実施例3の電流センサの構造図である。It is a structural diagram of the current sensor of Example 3 in this invention. 従来の技術による電流センサの接続図である。FIG. 2 is a connection diagram of a current sensor according to the prior art.

本発明の実施例の説明に先立って、環状の磁性体を用いた直流漏洩電流を検出する従来の技術を説明する。 Prior to describing embodiments of the present invention, a conventional technique for detecting DC leakage current using an annular magnetic body will be described.

図4は、従来の技術における電流センサの接続図である。従来の技術による電流センサは、軟磁性材料からなる環状の磁気コア11に往復分一対の主回路導体12を貫通した構造とする。環状の磁気コア11には励磁巻線13と検出巻線14が巻回されており、励磁巻線13には励磁回路15が、検出巻線14には二次高調波検出回路16が接続される。そして、励磁巻線13には励磁回路15から交流の励磁電圧が加えられる。主回路に接続された負荷に異常がなく、漏れ電流が流れていない場合は、主回路導体12に流れる電流は互いに逆向きで等しい電流が流れるが、負荷で地絡事故が発生し、漏れ電流が流れることにより主回路導体12に流れる逆方向の電流に差が生じた場合には、磁気コア11の中に電流の差分に応じた磁界が誘起される。このとき、磁気コア11は励磁回路15と励磁巻線13によって励磁されており、検出巻線14には励磁電流に応じた電圧が誘起されているが、磁気コア11の内部に誘起された漏れ電流に基づく磁界によって軟磁性材料からなる磁気コアの磁気特性に偏りが生じ、検出巻線14には二次高調波が誘起される。この二次高調波を二次高調波検出回路16によって検出し、漏洩電流の有無を検出するものである。 FIG. 4 is a connection diagram of a current sensor in the prior art. A current sensor according to the conventional technology has a structure in which a pair of main circuit conductors 12 for reciprocation pass through an annular magnetic core 11 made of a soft magnetic material. An excitation winding 13 and a detection winding 14 are wound around the annular magnetic core 11, an excitation circuit 15 is connected to the excitation winding 13, and a second harmonic detection circuit 16 is connected to the detection winding 14. Ru. An alternating current excitation voltage is applied to the excitation winding 13 from an excitation circuit 15 . If there is no abnormality in the load connected to the main circuit and no leakage current is flowing, the currents flowing in the main circuit conductor 12 are equal and opposite to each other, but if a ground fault occurs in the load, leakage current When a difference occurs in the current flowing in the opposite direction to the main circuit conductor 12 due to the flow of the current, a magnetic field corresponding to the difference in current is induced in the magnetic core 11. At this time, the magnetic core 11 is excited by the excitation circuit 15 and the excitation winding 13, and a voltage corresponding to the excitation current is induced in the detection winding 14, but leakage induced inside the magnetic core 11 occurs. The magnetic field based on the current causes a bias in the magnetic properties of the magnetic core made of a soft magnetic material, and a second harmonic is induced in the detection winding 14. This second harmonic is detected by a second harmonic detection circuit 16 to detect the presence or absence of leakage current.

太陽光発電設備では、大きな電力を得るために太陽光モジュールを広い面積で展開することにより、一般的な電気設備より大きい対地静電容量を持つことになる。従来技術による電流センサをこのような大きい対地静電容量を持つ回路に用いた場合、電流センサの励磁で誘起された零相電圧により、対地静電容量と接地極を経由したループに電流が流れ、電流センサの動作が阻害されるという問題が生じる。 In order to obtain large amounts of power, solar power generation equipment deploys solar modules over a wide area, which results in it having a larger ground capacitance than general electrical equipment. When a conventional current sensor is used in a circuit with such a large ground capacitance, the zero-sequence voltage induced by excitation of the current sensor causes a current to flow through the loop via the ground capacitance and the ground electrode. , a problem arises in that the operation of the current sensor is inhibited.

本発明は、この問題を解決し、対地静電容量に左右されない安定な電流センサを提供するものである。 The present invention solves this problem and provides a stable current sensor that is not affected by ground capacitance.

図1に、本発明の実施例1の電流センサの接続図を示す。本実施例の電流センサは、主センサ200と補助センサ210から構成されている。主センサ200は、従来の技術による電流センサと同じく、軟磁性材料からなる環状の第1の磁気コア21、往復分一対の主回路導体22、第1の磁気コアに巻回した第1の励磁巻線23と第1の検出巻線24、第1の励磁巻線に接続した励磁回路25、第1の検出巻線に接続した二次高調波検出回路26を構成にもち、その動作原理は同様である。補助センサ210は、第1の磁気コアと同様の環状の第2の磁気コア27を有し、第2の磁気コアには第1の励磁巻線23と等しい巻数の第2の励磁巻線28が巻回されている。第1の励磁巻線23と第2の励磁巻線28とは互いに逆の極性で直列に接続され、励磁回路25に接続される。ここで、「互いに逆の極性で直列に接続され」とは、第1の励磁巻線23により第1の磁気コア21に発生する磁力線と第2の励磁巻線28により第2の磁気コア27に発生する磁力線とが逆方向(逆位相)となるように直列に接続することをいう。そして、主回路導体22は、第1の磁気コア21および第2の磁気コア27を貫通して配置される。
FIG. 1 shows a connection diagram of a current sensor according to a first embodiment of the present invention. The current sensor of this embodiment includes a main sensor 200 and an auxiliary sensor 210. The main sensor 200, like the conventional current sensor, includes a first annular magnetic core 21 made of a soft magnetic material, a pair of main circuit conductors 22 for reciprocation, and a first excitation coil wound around the first magnetic core. The structure includes a winding 23, a first detection winding 24, an excitation circuit 25 connected to the first excitation winding, and a second harmonic detection circuit 26 connected to the first detection winding, and its operating principle is as follows. The same is true. The auxiliary sensor 210 has an annular second magnetic core 27 similar to the first magnetic core, and the second magnetic core has a second excitation winding 28 having the same number of turns as the first excitation winding 23. is wound. The first excitation winding 23 and the second excitation winding 28 are connected in series with opposite polarities and connected to the excitation circuit 25 . Here, "connected in series with mutually opposite polarities" means that the lines of magnetic force generated in the first magnetic core 21 by the first excitation winding 23 and the lines of magnetic force generated in the second magnetic core 27 by the second excitation winding 28 Connecting in series so that the lines of magnetic force generated in the magnetic field are in the opposite direction (opposite phase). The main circuit conductor 22 is arranged to penetrate the first magnetic core 21 and the second magnetic core 27.

太陽光発電設備の直流回路に本実施例の電流センサを使用した場合、電流センサの励磁によって主回路導体22に誘起される電圧は主センサと補助センサとでそれぞれ逆位相となり、互いに打ち消しあう。そのため、零相電圧は発生せず、対地静電容量と接地極を経由したループインピーダンスの影響を受けなくなる。 When the current sensor of this embodiment is used in a DC circuit of a solar power generation facility, the voltages induced in the main circuit conductor 22 by excitation of the current sensor have opposite phases in the main sensor and the auxiliary sensor, and cancel each other out. Therefore, no zero-sequence voltage is generated, and it is no longer affected by ground capacitance and loop impedance via the ground electrode.

なお、図1では、第1の励磁巻線23と第2の励磁巻線28を互いに逆の極性で直列に接続して励磁したが、第1の励磁巻線23と第2の励磁巻線28を互いに逆の極性で並列に接続して励磁することによっても同様の効果を得ることができる。 In addition, in FIG. 1, the first excitation winding 23 and the second excitation winding 28 are connected in series with mutually opposite polarities for excitation, but the first excitation winding 23 and the second excitation winding A similar effect can also be obtained by connecting the magnets 28 in parallel with opposite polarities and energizing them.

図2に、本発明の実施例2の電流センサの接続図を示す。実施例1と同じ構成要素については、同一の符号を付して説明を省略する。 FIG. 2 shows a connection diagram of a current sensor according to a second embodiment of the present invention. Components that are the same as those in Example 1 are given the same reference numerals and descriptions thereof will be omitted.

本実施例では、前記実施例1と同様に、主センサ200の第1の磁気コア21および補充センサ210の第2の磁気コア27を構成に持ち、主回路導体22がこれらを貫通した構造である。それぞれのコアには巻数の等しい第1の励磁巻線23および第2の励磁巻線28を備え、逆極性で直列に接続し、励磁回路25により励磁する。なお、この接続は逆並列であっても良い。 This embodiment has a structure in which the first magnetic core 21 of the main sensor 200 and the second magnetic core 27 of the supplementary sensor 210 are provided, and the main circuit conductor 22 penetrates them, as in the first embodiment. be. Each core is provided with a first excitation winding 23 and a second excitation winding 28 having the same number of turns, connected in series with opposite polarities, and excited by an excitation circuit 25. Note that this connection may be in antiparallel.

本実施例では、主センサ200の第1の磁気コア21に第1の検出巻線24を巻回すとともに、補助センサ210の第2の磁気コア27に第2の検出巻線29を巻回し、それらを逆並列に接続して二次高調波検出回路26に入力する。ここで、「それらを逆並列に接続して」とは、第1の検出巻線24と第2の検出巻線29がノイズを打ち消すように並列に接続することをいう。そして、二次高調波を検出することにより漏洩電流を検出する。
In this embodiment, the first detection winding 24 is wound around the first magnetic core 21 of the main sensor 200, and the second detection winding 29 is wound around the second magnetic core 27 of the auxiliary sensor 210. These are connected in antiparallel and input to the second harmonic detection circuit 26. Here, "connecting them in antiparallel" means that the first detection winding 24 and the second detection winding 29 are connected in parallel so as to cancel out noise. Then, leakage current is detected by detecting the second harmonic.

本実施例によれば、実施例1の対地静電容量と接地極を経由したループインピーダンスの影響を受けなくする効果に加えて、主回路導体に接続したパワー半導体素子のスイッチングに起因し、対地静電容量を通じて流れるノイズ電流を、二つの検出巻線を逆並列に接続することで短絡して打ち消し、電流センサのSN比を改善することができる。 According to this embodiment, in addition to the effect of eliminating the influence of the ground capacitance and the loop impedance via the ground electrode of the first embodiment, the The noise current flowing through the capacitance can be canceled by short-circuiting the two detection windings by connecting them in antiparallel, thereby improving the S/N ratio of the current sensor.

図3に、本発明の実施例3の電流センサの構造図を示す。図3(a)は上方から見た平面図、図3(b)は図3(a)のA-A断面図である。本実施例の電流センサは、実施例2の電流センサを具体化したものである。電流センサは、円筒形状のケース30を備え、その中央に、主回路導体を通す円筒状の穴31を有している。 FIG. 3 shows a structural diagram of a current sensor according to Example 3 of the present invention. 3(a) is a plan view seen from above, and FIG. 3(b) is a sectional view taken along line AA in FIG. 3(a). The current sensor of this example is a specific example of the current sensor of Example 2. The current sensor includes a cylindrical case 30, and has a cylindrical hole 31 in the center thereof through which the main circuit conductor passes.

図3(b)の断面図に示すように、電流センサは、間に永久磁石38を介在して主センサ300と補助センサ310とを積み重ねた構造である。主センサ300は、環状の第1の磁気コア32に第1の励磁巻線33と第1の検出巻線34とを巻回して構成する。補助センサ310は、第1の磁気コア32と同様である環状の第2の磁気コア35に第2の励磁巻線36と第2の検出巻線37とを巻回して構成する。第1の磁気コア32および第2の磁気コア35には、フェライトやNiFe合金(パーマロイ)等の軟磁性材料を用いる。積み重ねた補助センサ310、永久磁石38、主センサ300は、一体として磁性材料のケース30に収納されている。ケース30は、主センサの第1の磁気コア32の上方、主センサの第1の磁気コア32と補助センサの第2の磁気コア35の側方、補助センサの第2の磁気コア35の下方を覆うとともに、穴31の内側に第1の磁気コア32および第2の磁気コア35の内周部を覆う位置まで伸びている。第1の磁気コア32と第2の磁気コア35の間に挿入した永久磁石38は、環状の磁石であり、図の上下方向に第2の磁気コア35から第1の磁気コア32に向かって磁化されている。永久磁石から出た磁束は、図に矢印で示すように、穴31の内側の磁性材料からなるケース30に向かって流れる。これにより、環状の第1の磁気コア32および第2の磁気コア35に円周方向と直交するバイアス磁界を加えることにより、磁気コアの保磁力を低く保ち、大きな地絡電流によるセンサ動作点の変化を防止する。 As shown in the cross-sectional view of FIG. 3(b), the current sensor has a structure in which a main sensor 300 and an auxiliary sensor 310 are stacked with a permanent magnet 38 interposed therebetween. The main sensor 300 is configured by winding a first excitation winding 33 and a first detection winding 34 around a first annular magnetic core 32 . The auxiliary sensor 310 is constructed by winding a second excitation winding 36 and a second detection winding 37 around a second annular magnetic core 35 that is similar to the first magnetic core 32 . For the first magnetic core 32 and the second magnetic core 35, a soft magnetic material such as ferrite or NiFe alloy (permalloy) is used. The stacked auxiliary sensor 310, permanent magnet 38, and main sensor 300 are housed as one body in a case 30 made of magnetic material. The case 30 is arranged above the first magnetic core 32 of the main sensor, on the sides of the first magnetic core 32 of the main sensor and the second magnetic core 35 of the auxiliary sensor, and below the second magnetic core 35 of the auxiliary sensor. It also extends inside the hole 31 to a position that covers the inner peripheries of the first magnetic core 32 and the second magnetic core 35 . The permanent magnet 38 inserted between the first magnetic core 32 and the second magnetic core 35 is an annular magnet, and is directed from the second magnetic core 35 to the first magnetic core 32 in the vertical direction of the figure. It is magnetized. The magnetic flux emitted from the permanent magnet flows toward the case 30 made of a magnetic material inside the hole 31, as shown by the arrow in the figure. As a result, by applying a bias magnetic field perpendicular to the circumferential direction to the annular first magnetic core 32 and second magnetic core 35, the coercive force of the magnetic cores is kept low and the sensor operating point due to large ground fault current is reduced. Prevent change.

主センサの第1の励磁巻線33と補助センサの第2の励磁巻線36とは、センサ内で逆の極性で直列または並列に接続しても良いし、それぞれの端子をセンサ外へ出しておき、センサ外の配線で逆の極性で直列または並列に接続しても良い。また、主センサの第1の検出巻線34と補助センサの第2の検出巻線37とは、センサ内で逆並列接続しても良いし、それぞれの端子を素子外へ出しておき、センサ外の配線で逆並列接続しても良い。 The first excitation winding 33 of the main sensor and the second excitation winding 36 of the auxiliary sensor may be connected in series or parallel with opposite polarity within the sensor, or their respective terminals may be connected outside the sensor. They may be connected in series or in parallel with opposite polarity using wiring outside the sensor. Further, the first detection winding 34 of the main sensor and the second detection winding 37 of the auxiliary sensor may be connected in antiparallel within the sensor, or their respective terminals may be brought out outside the element. You can also connect them in antiparallel using external wiring.

本実施例では、ケース30を磁性材料で形成することにより、磁束の通る磁気回路ヨークと兼用したが、非磁性材料からなるケースとしてもよい。 In this embodiment, the case 30 is made of a magnetic material so that it also serves as a magnetic circuit yoke through which magnetic flux passes, but the case 30 may be made of a non-magnetic material.

本実施例の電流センサによれば、主センサと補助センサを積層して1つのケース内に収容したので、本発明の電流センサを1つの素子として小型化することができる。また、間にバイアス磁界印加用の永久磁石を介在して、主センサと補助センサの積み重ね構造とすることにより、単一の永久磁石で2つの磁気コアにバイアス磁界を印加することができ、コスト増を抑え、小型化した電流センサ素子を提供することができる。 According to the current sensor of this embodiment, since the main sensor and the auxiliary sensor are stacked and housed in one case, the current sensor of the present invention can be miniaturized as one element. In addition, by creating a stacked structure of the main sensor and auxiliary sensor with a permanent magnet interposed between them for applying a bias magnetic field, it is possible to apply a bias magnetic field to two magnetic cores with a single permanent magnet, reducing costs. Therefore, it is possible to provide a current sensor element that is reduced in size and that increases in size.

本実施例では、実施例2の電流センサを具体化したセンサについて説明したが、実施例1の電流センサとするには、第2の検出巻線を除けばよい。 In this example, a sensor that embodies the current sensor of Example 2 has been described, but the current sensor of Example 1 can be obtained by removing the second detection winding.

11…磁気コア、12…主回路導体、13…励磁巻線、14…検出巻線、15…励磁回路、16…二次高調波検出回路、
21…第1の磁気コア、22…主回路導体、23…第1の励磁巻線、24…第1の検出巻線、25…励磁回路、26…二次高調波検出回路、27…第2の磁気コア、28…第2の励磁巻線、29…第2の検出巻線、
30…ケース、31…穴、32…第1の磁気コア、33…第1の励磁巻線、34…第1の検出巻線、35…第2の磁気コア、36…第2の励磁巻線、37…第2の検出巻線、
200…主センサ、210…補助センサ、300…主センサ、310…補助センサ。
DESCRIPTION OF SYMBOLS 11... Magnetic core, 12... Main circuit conductor, 13... Excitation winding, 14... Detection winding, 15... Excitation circuit, 16... Secondary harmonic detection circuit,
DESCRIPTION OF SYMBOLS 21... First magnetic core, 22... Main circuit conductor, 23... First excitation winding, 24... First detection winding, 25... Excitation circuit, 26... Second harmonic detection circuit, 27... Second magnetic core, 28... second excitation winding, 29... second detection winding,
30... Case, 31... Hole, 32... First magnetic core, 33... First excitation winding, 34... First detection winding, 35... Second magnetic core, 36... Second excitation winding , 37... second detection winding,
200...Main sensor, 210...Auxiliary sensor, 300...Main sensor, 310...Auxiliary sensor.

Claims (4)

主回路導体を流れる直流電流を検出する電流センサであって、
主センサと補助センサとを備え、
前記主センサは、前記主回路導体が貫通する環状の第1の磁気コアと、前記第1の磁気コアに巻回された第1の励磁巻線および第1の検出巻線とを備え、
前記補助センサは、主回路導体が貫通する環状の2の磁気コアと、前記第2の磁気コアに巻回され、前記第の励磁巻線と同じ巻数の第2の励磁巻線と、前記第2の磁気コアに巻回された第2の検出巻線とを備え、
前記第1の励磁巻線と前記第2の励磁巻線はそれぞれの磁気コアを逆位相で励磁するように直列または並列に接続されて励磁回路に接続され
前記第1の検出巻線と前記第2の検出巻線はノイズを打ち消すように並列に接続されて二次高調波検出回路に接続されていることを特徴とする電流センサ。
A current sensor that detects a direct current flowing through a main circuit conductor,
Equipped with a main sensor and an auxiliary sensor,
The main sensor includes a first annular magnetic core through which the main circuit conductor passes, and a first excitation winding and a first detection winding wound around the first magnetic core,
The auxiliary sensor includes a second annular magnetic core through which a main circuit conductor passes, and a second excitation winding that is wound around the second magnetic core and has the same number of turns as the first excitation winding . a second detection winding wound around the second magnetic core ;
The first excitation winding and the second excitation winding are connected in series or parallel to an excitation circuit so as to excite their respective magnetic cores in opposite phases ;
A current sensor characterized in that the first detection winding and the second detection winding are connected in parallel to cancel noise and are connected to a second harmonic detection circuit .
主回路導体を流れる直流電流を検出する電流センサであって、
主センサと補助センサとを備え、
前記主センサは、前記主回路導体が貫通する環状の第1の磁気コアと、前記第1の磁気コアに巻回された第1の励磁巻線および第1の検出巻線とを備え、
前記補助センサは、主回路導体が貫通する環状の第2の磁気コアと、前記第2の磁気コアに巻回され、前記第1の励磁巻線と同じ巻数の第2の励磁巻線とを備え、
前記第1の励磁巻線と前記第2の励磁巻線はそれぞれの磁気コアを逆位相で励磁するように直列または並列に接続されて励磁回路に接続され、
前記第1の検出巻線は、二次高調波検出回路に接続され、
バイアス用の永久磁石を間に介在して、前記主センサと前記補助センサとを積み重ねて、ケースに収容されていることを特徴とする電流センサ。
A current sensor that detects a direct current flowing through a main circuit conductor,
Equipped with a main sensor and an auxiliary sensor,
The main sensor includes a first annular magnetic core through which the main circuit conductor passes, and a first excitation winding and a first detection winding wound around the first magnetic core,
The auxiliary sensor includes a second annular magnetic core through which a main circuit conductor passes, and a second excitation winding that is wound around the second magnetic core and has the same number of turns as the first excitation winding. Prepare,
The first excitation winding and the second excitation winding are connected in series or parallel to an excitation circuit so as to excite their respective magnetic cores in opposite phases;
the first detection winding is connected to a second harmonic detection circuit;
A current sensor characterized in that the main sensor and the auxiliary sensor are stacked on top of each other with a permanent magnet for bias interposed therebetween and housed in a case.
請求項に記載の電流センサにおいて、
前記主センサ、前記永久磁石および前記補助センサの周囲を取り囲む磁性材料のケースを備えることを特徴とする電流センサ。
The current sensor according to claim 2 ,
A current sensor comprising a case made of a magnetic material surrounding the main sensor, the permanent magnet, and the auxiliary sensor.
請求項に記載の電流センサにおいて、
前記永久磁石は、環状の前記第1の磁気コアおよび前記第2の磁気コアに円周方向と直交するバイアス磁界を加えることを特徴とする電流センサ。
The current sensor according to claim 3 ,
The current sensor is characterized in that the permanent magnet applies a bias magnetic field perpendicular to the circumferential direction to the annular first magnetic core and the second magnetic core.
JP2020102812A 2020-06-15 2020-06-15 current sensor Active JP7444706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102812A JP7444706B2 (en) 2020-06-15 2020-06-15 current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102812A JP7444706B2 (en) 2020-06-15 2020-06-15 current sensor

Publications (2)

Publication Number Publication Date
JP2021196259A JP2021196259A (en) 2021-12-27
JP7444706B2 true JP7444706B2 (en) 2024-03-06

Family

ID=79197629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102812A Active JP7444706B2 (en) 2020-06-15 2020-06-15 current sensor

Country Status (1)

Country Link
JP (1) JP7444706B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162244A (en) 1998-11-27 2000-06-16 Sumitomo Special Metals Co Ltd Dc current sensor
JP2006300915A (en) 2005-03-22 2006-11-02 Hioki Ee Corp Current sensor
JP2007316042A (en) 2006-05-23 2007-12-06 Cdn Corp Direct current sensor and direct-current detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162244A (en) 1998-11-27 2000-06-16 Sumitomo Special Metals Co Ltd Dc current sensor
JP2006300915A (en) 2005-03-22 2006-11-02 Hioki Ee Corp Current sensor
JP2007316042A (en) 2006-05-23 2007-12-06 Cdn Corp Direct current sensor and direct-current detector

Also Published As

Publication number Publication date
JP2021196259A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
US8433528B2 (en) Ground fault detection system and method
JP3286431B2 (en) DC current sensor
JP2010014478A (en) Leakage detector
US20100188786A1 (en) Fault Current Limiter
CN111771250B (en) Current transformer
EP2977776A1 (en) Method and device for detecting a residual current in a charging cable and charging cable using said device
US3863109A (en) Short circuit sensing device for electromagnetic induction apparatus
JP2007316042A (en) Direct current sensor and direct-current detector
JP2018072228A (en) Current detection device
JP7444706B2 (en) current sensor
JP7208830B2 (en) Current sensor element
US2523778A (en) Grounding transformer and protective system therefor
US10083789B2 (en) Apparatus for reducing a magnetic unidirectional flux component in the core of a transformer
JP2013027262A (en) Inverter power supply device
JPH10223454A (en) Eddy current shield device, and three-phase transformer
JP2586156B2 (en) AC / DC dual-purpose current detection method
KR102039268B1 (en) An Alternating and Direct Current Detection Circuit
JP2022138349A (en) current sensor
WO2015070345A1 (en) Simultaneous measurement technique for line current, geomagnetically induced currents (gic) and transient currents in power systems
JP6695054B2 (en) Magnetization prevention device and current detection device using the same
JP3093532B2 (en) DC current sensor
JPH0226747B2 (en)
KR101034989B1 (en) Power quality improvement devices
JPH09243697A (en) D.c. ground-fault detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7444706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150