JP7439318B2 - polyurethane foam - Google Patents

polyurethane foam Download PDF

Info

Publication number
JP7439318B2
JP7439318B2 JP2023067486A JP2023067486A JP7439318B2 JP 7439318 B2 JP7439318 B2 JP 7439318B2 JP 2023067486 A JP2023067486 A JP 2023067486A JP 2023067486 A JP2023067486 A JP 2023067486A JP 7439318 B2 JP7439318 B2 JP 7439318B2
Authority
JP
Japan
Prior art keywords
water absorption
absorption rate
washing
polyurethane foam
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023067486A
Other languages
Japanese (ja)
Other versions
JP2023080375A (en
Inventor
莉緒菜 佐藤
貫也 小島
拓朗 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=86058878&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7439318(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2023067486A priority Critical patent/JP7439318B2/en
Publication of JP2023080375A publication Critical patent/JP2023080375A/en
Application granted granted Critical
Publication of JP7439318B2 publication Critical patent/JP7439318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、洗濯後の乾燥性が良好なポリウレタンフォームの提供を目的とする。 An object of the present invention is to provide a polyurethane foam that has good drying properties after washing.

ポリウレタンフォームは、ポリオール成分、イソシアネート、発泡剤を含むポリウレタンフォーム組成物から形成されるものであり、寝具や衣料等の材料として多用されている(特許文献1、2、3)。 Polyurethane foam is formed from a polyurethane foam composition containing a polyol component, an isocyanate, and a blowing agent, and is frequently used as a material for bedding, clothing, and the like (Patent Documents 1, 2, and 3).

特開2005-270146号公報Japanese Patent Application Publication No. 2005-270146 特開2019-17948号公報JP2019-17948A 特開2019-203061号公報JP2019-203061A

しかし、ポリウレタンフォームは、細かいセル(気泡)構造からなるため、保水性が高く、洗濯後の乾燥性が悪い問題がある。 However, since polyurethane foam has a fine cell structure, it has a problem of high water retention and poor drying properties after washing.

本発明は、洗濯後の乾燥性が良好なポリウレタンフォームの提供を目的とする。 An object of the present invention is to provide a polyurethane foam that has good drying properties after washing.

本発明は、ASTM D6866-20によって測定されるバイオマス度が24%以上であるポリウレタンフォームを特徴とする。 The present invention features polyurethane foams having a biomass degree of 24% or more as measured by ASTM D6866-20.

本発明のポリウレタンフォームは、ASTM D6866-20によって測定されるバイオマス度が24%以上であることにより、洗濯後の乾燥性が良好になる。
バイオマス度は、製品に含まれる天然由来原料の割合を意味し、天然由来の物質にしか含まれていない放射性炭素C14が製品にどのくらい含まれているかを測定することで、その製品のバイオマス度を測ることができる。
本発明におけるバイオマス度は、ASTM D6866-20に基づき、加速器質量分析法(AMS法)でポリウレタンフォームのC14濃度を測定し、現在における100%天然由来物質のC14濃度に対する割合(%)を計算することにより求められる。
Since the polyurethane foam of the present invention has a biomass degree of 24% or more as measured by ASTM D6866-20, it has good drying properties after washing.
Biomass degree refers to the proportion of naturally derived raw materials contained in a product, and by measuring how much radioactive carbon C14, which is only contained in naturally derived substances, is contained in the product, the biomass degree of the product can be determined. It can be measured.
The degree of biomass in the present invention is determined by measuring the C14 concentration of polyurethane foam using accelerator mass spectrometry (AMS method) based on ASTM D6866-20, and calculating the ratio (%) to the C14 concentration of the current 100% naturally derived material. It is required by

本発明の各実施例及び各比較例の配合、物性及び洗濯後乾燥性の測定結果を示す表である。It is a table showing the measurement results of the formulation, physical properties, and drying properties after washing of each Example of the present invention and each Comparative Example. 洗濯性試験の各コースの内容を示す表である。It is a table showing the contents of each course of the washability test. 乾燥試験の結果を示す表である。It is a table showing the results of a drying test.

本発明のポリウレタンフォームは、ASTM D6866-20に基づき、加速器質量分析法(AMS法)で測定されるバイオマス度が24%以上であるため、洗濯後の乾燥性が良好になり、乾燥時間を短くすることができる。 The polyurethane foam of the present invention has a biomass degree of 24% or more as measured by accelerator mass spectrometry (AMS method) based on ASTM D6866-20, so it has good drying properties after washing and shortens drying time. can do.

ポリウレタンフォームには、硬質、半硬質、軟質があり、用途に応じて選択される。例えば、マットレスなどの寝具やブラジャーのパットなどの衣料用には軟質ポリウレタンフォームが多用される。本発明のポリレタンフォームは、硬質、半硬質、軟質の何れの場合も含まれる。 Polyurethane foams come in rigid, semi-rigid, and flexible types, and are selected depending on the application. For example, flexible polyurethane foam is often used for bedding such as mattresses and clothing such as bra pads. The polyurethane foam of the present invention includes any of rigid, semi-rigid, and flexible polyurethane foams.

本発明のポリウレタンフォームは、ポリオール成分、ポリイソシアネート、発泡剤を含むポリウレタンフォーム組成物から得られる。ポリウレタンフォーム組成物は、混合撹拌によってポリオール成分とポリイソシアネートが反応し、発泡してポリウレタンフォームが形成される。 The polyurethane foam of the present invention is obtained from a polyurethane foam composition containing a polyol component, a polyisocyanate, and a blowing agent. In the polyurethane foam composition, the polyol component and polyisocyanate react with each other by mixing and stirring, and the polyurethane foam is foamed to form a polyurethane foam.

ポリオール成分は、一つの分子内に水酸基を二つ以上持つ化合物であるポリオールを含む。ポリオール成分には、植物由来ポリオールが含まれる。植物由来ポリオールは、植物由来の原料、例えば植物油等を用いて製造されたポリオールである。 The polyol component includes polyol, which is a compound having two or more hydroxyl groups in one molecule. The polyol component includes a plant-derived polyol. Plant-derived polyols are polyols produced using plant-derived raw materials, such as vegetable oils.

植物油としては、ヒマシ油、ヒマワリ油、菜種油、亜麻仁油、綿実油、キリ油、ヤシ油、ケシ油、トウモロコシ油、大豆油等を挙げることができる。それらのなかでも、ヒマシ油を原料として製造されたヒマシ油ポリオールは、植物由来ポリオールとして好適な一例である。 Examples of vegetable oils include castor oil, sunflower oil, rapeseed oil, linseed oil, cottonseed oil, tung oil, coconut oil, poppy oil, corn oil, soybean oil, and the like. Among them, castor oil polyol produced using castor oil as a raw material is a suitable example of a plant-derived polyol.

ヒマシ油ポリオールは、変性ヒマシ油ポリオール、未変性ヒマシ油ポリオールの何れでもよく、あるいは両方を含んでいてもよい。
変性ヒマシ油ポリオールは、ヒマシ油とヒマシ油以外の油脂とのエステル交換反応物、ヒマシ油と油脂脂肪酸とのエステル交換反応物、ヒマシ油と多価アルコールとのエステル交換反応物、ヒマシ油脂肪酸と多価アルコールとのエステル化反応物、ヒマシ油に含まれる水酸基の一部と酢酸などのモノカルボン酸とのエステル化反応物、これらにアルキレンオキサイドを付加重合した反応物、これらに水素を付加した水素添加物等が挙げられる。
未変性ヒマシ油ポリオールは、精製ヒマシ油ポリオール、半精製ヒマシ油ポリオール、未精製ヒマシ油ポリオール等が挙げられる。
The castor oil polyol may be either a modified castor oil polyol or an unmodified castor oil polyol, or may contain both.
Modified castor oil polyol is a transesterification product between castor oil and fats and oils other than castor oil, a transesterification product between castor oil and fat and oil fatty acids, a transesterification product between castor oil and a polyhydric alcohol, and a transesterification product between castor oil and fatty acids. Esterification reaction products with polyhydric alcohols, esterification reaction products between some of the hydroxyl groups contained in castor oil and monocarboxylic acids such as acetic acid, reaction products obtained by addition polymerization of alkylene oxide to these, and addition polymerization products of these with hydrogen. Examples include hydrogen additives.
Examples of unmodified castor oil polyols include refined castor oil polyols, semi-refined castor oil polyols, unrefined castor oil polyols, and the like.

植物由来ポリオールは、官能基数が2~3.5、水酸基価が40~180mgKOH/g、分子量724~2931が好ましく、一種類あるいは複数種類を使用してもよい。
植物由来ポリオールの量は、ASTM D6866-20によって測定されるバイオマス度が24%以上となるように決定されるが、ポリオール成分100質量部中に15質量部以上が好ましく、より好ましくは30質量部以上、さらに好ましくは80質量部以上である。ポリオール成分には石油油来のポリオールを含んでいてもよい。石油由来ポリオールを含むことにより、成形性・生産性が良好になる。
The plant-derived polyol preferably has a functional group number of 2 to 3.5, a hydroxyl value of 40 to 180 mgKOH/g, and a molecular weight of 724 to 2931, and one or more types may be used.
The amount of plant-derived polyol is determined so that the degree of biomass measured by ASTM D6866-20 is 24% or more, and is preferably 15 parts by mass or more, more preferably 30 parts by mass in 100 parts by mass of the polyol component. The amount is more preferably 80 parts by mass or more. The polyol component may include a polyol derived from petroleum oil. Including petroleum-derived polyol improves moldability and productivity.

石油由来ポリオールは、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール等の何れでもよく、それらの一種類あるいは複数種類を使用してもよい。 The petroleum-derived polyol may be any polyether polyol, polyester polyol, polyether ester polyol, etc., and one or more of these may be used.

ポリエーテルポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、シュークロース等の多価アルコールにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加したポリエーテルポリオールを挙げることができる。 Examples of polyether polyols include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, and sucrose, as well as ethylene oxide and propylene. Examples include polyether polyols to which alkylene oxides such as oxides are added.

ポリエステルポリオールとしては、例えば、マロン酸、コハク酸、アジピン酸等の脂肪族カルボン酸やフタル酸等の芳香族カルボン酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール等の脂肪族グリコール等とから重縮合して得られたポリエステルポリオールを挙げることできる。
また、ポリエーテルエステルポリオールとしては、ポリエーテルポリオールと多塩基酸を反応させてポリエステル化したもの、あるいは1分子内にポリエーテルとポリエステルの両セグメントを有するものを挙げることができる。
Examples of polyester polyols include polycondensation of aliphatic carboxylic acids such as malonic acid, succinic acid, and adipic acid, aromatic carboxylic acids such as phthalic acid, and aliphatic glycols such as ethylene glycol, diethylene glycol, and propylene glycol. Examples include polyester polyols obtained by
Further, examples of the polyether ester polyol include those obtained by reacting a polyether polyol with a polybasic acid to form a polyester, or those having both polyether and polyester segments in one molecule.

石油由来ポリオールは、官能基数が2.0~3.5、水酸基価が15~1000mgKOH/g、分子量100~10000が好ましい。 The petroleum-derived polyol preferably has a functional group number of 2.0 to 3.5, a hydroxyl value of 15 to 1000 mgKOH/g, and a molecular weight of 100 to 10,000.

ポリイソシアネートは、特に制限されるものではなく、芳香族系、脂環式、脂肪族系の何れでもよく、また、1分子中に2個のイソシアネート基を有する2官能のイソシアネート、あるいは1分子中に3個以上のイソシアネート基を有する3官能以上のイソシアネートであってもよく、それらを単独であるいは複数組み合わせて使用してもよい。 The polyisocyanate is not particularly limited, and may be aromatic, alicyclic, or aliphatic, and may be a bifunctional isocyanate having two isocyanate groups in one molecule, or a difunctional isocyanate having two isocyanate groups in one molecule. It may be a trifunctional or higher functional isocyanate having three or more isocyanate groups, and they may be used alone or in combination.

2官能のポリイソシアネートとしては、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2、6-TDI)、m-フェニレンジイソシネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジアネート(2,4’-MDI)、2,2’-ジフェニルメタンジイソシアネート(2,2’-MDI)、キシリレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネートなどの芳香族系のもの、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネートなどの脂環式のもの、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、リジンジイソシアネートなどの芳香族系のものを挙げることができる。なお、ジフェニルメタンジイソシアネート(MDI)は、ポリメリックMDIおよびポリメリックMDIのプレポリマーの複数種類を併用してもよい。 Examples of the difunctional polyisocyanate include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 2,2'-diphenylmethane diisocyanate (2,2'-MDI), Aromatic compounds such as diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, cyclohexane-1,4-diisocyanate, Alicyclic ones such as isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, and methylcyclohexane diisocyanate; aromatic ones such as butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, and lysine diisocyanate. I can list the following. Note that diphenylmethane diisocyanate (MDI) may be used in combination with a plurality of types of polymeric MDI and prepolymers of polymeric MDI.

3官能以上のポリイソシアネートとしては、1-メチルベンゾール-2,4,6-トリイソシアネート、1,3,5-トリメチルベンゾール-2,4,6-トリイソシアネート、ビフェニル-2,4,4’-トリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、メチルジフェニルメタン-4,6,4’-トリイソシアネート、4,4’-ジメチルジフェニルメタン-2,2’,5,5’テトライソシアネート、トリフェニルメタン-4,4’,4”-トリイソシアネート等を挙げることができる。 Examples of trifunctional or more functional polyisocyanates include 1-methylbenzole-2,4,6-triisocyanate, 1,3,5-trimethylbenzole-2,4,6-triisocyanate, and biphenyl-2,4,4'- Triisocyanate, diphenylmethane-2,4,4'-triisocyanate, methyldiphenylmethane-4,6,4'-triisocyanate, 4,4'-dimethyldiphenylmethane-2,2',5,5'tetraisocyanate, triphenyl Methane-4,4',4''-triisocyanate and the like can be mentioned.

イソシアネートインデックス(INDEX)は70~150が好ましく、より好ましくは80~130であり、最も好ましくは90~120である。イソシアネートインデックスが70未満になると、発泡成形性に劣るようになる。一方、イソシアネートインデックスが150を超えるとフォームが硬くなりすぎて脆くなり、耐久性が劣るようになる。イソシアネートインデックスは、ポリイソシアネートにおけるイソシアネート基のモル数をポリオー成分の水酸基や発泡剤としての水などの活性水素基の合計モル数で割った値に100を掛けた値であり、[ポリイソシアネートのNCO当量/活性水素当量×100]で計算される。 The isocyanate index (INDEX) is preferably 70 to 150, more preferably 80 to 130, and most preferably 90 to 120. When the isocyanate index is less than 70, foam moldability becomes poor. On the other hand, if the isocyanate index exceeds 150, the foam becomes too hard and brittle, resulting in poor durability. The isocyanate index is the value obtained by dividing the number of moles of isocyanate groups in the polyisocyanate by the total number of moles of active hydrogen groups such as hydroxyl groups in the polyol component and water as a blowing agent, multiplied by 100. equivalent/active hydrogen equivalent x 100].

発泡剤は、水、炭化水素、ハロゲン系化合物等を挙げることができ、これらの中から1種類でもよく、2種類以上でもよい。炭化水素としては、シクロペンタン、イソペンタン、ノルマルペンタン等を挙げることができる。また、ハロゲン系化合物としては、塩化メチレン、トリクロロフルオロメタン、ジクロロジフルオロメタン、ノナフルオロブチルメチルエーテル、ノナフルオロブチルエチルエーテル、ペンタフルオロエチルメチルエーテル、ヘプタフルオロイソプロピルメチルエーテル等を挙げることができる。これらの中でも発泡剤として水が特に好適である。水は、イオン交換水、水道水、蒸留水等の何れでもよい。発泡剤としての水の配合量は、ポリオール成分を100質量部とした場合、0.5~10質量部であり、好ましくは1~8質量部、より好ましくは1.5~5質量部である。 Examples of the blowing agent include water, hydrocarbons, halogen compounds, etc., and one or more of these may be used. Examples of hydrocarbons include cyclopentane, isopentane, normal pentane, and the like. Examples of the halogen compounds include methylene chloride, trichlorofluoromethane, dichlorodifluoromethane, nonafluorobutyl methyl ether, nonafluorobutyl ethyl ether, pentafluoroethyl methyl ether, heptafluoroisopropyl methyl ether, and the like. Among these, water is particularly suitable as a blowing agent. The water may be ion-exchanged water, tap water, distilled water, or the like. The amount of water as a blowing agent is 0.5 to 10 parts by weight, preferably 1 to 8 parts by weight, more preferably 1.5 to 5 parts by weight, based on 100 parts by weight of the polyol component. .

ポリオール組成物には、その他の成分として触媒、助剤が適宜配合される。
触媒は、ポリウレタンフォーム用として公知のものを使用することができ、特に限定されない。使用可能な触媒として、例えば、トリエチルアミン、トリエチレンジアミン、テトラメチルグアニジン等のアミン触媒や、ジブチルチンジラウレート、スタナスオクトエート等の錫触媒や、フェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒とも称される。)が挙げられる。触媒の全配合量は、触媒の種類によって適宜決定されるが、ポリオール成分100質量部に対して0.01~3.0質量部が一般的であり、好ましくは0.02~1.5質量部、さらに好ましくは0.05~1.2質量部である。
A catalyst and an auxiliary agent are appropriately added to the polyol composition as other components.
The catalyst is not particularly limited, and any catalyst known for use in polyurethane foams can be used. Usable catalysts include, for example, amine catalysts such as triethylamine, triethylenediamine, and tetramethylguanidine, tin catalysts such as dibutyltin dilaurate and stannath octoate, and metal catalysts such as phenylmercury propionate or lead octate. (Also called organometallic catalysts.) The total blending amount of the catalyst is appropriately determined depending on the type of catalyst, but is generally 0.01 to 3.0 parts by mass, preferably 0.02 to 1.5 parts by mass, per 100 parts by mass of the polyol component. parts, more preferably 0.05 to 1.2 parts by mass.

助剤としては、例えば、整泡剤、架橋剤、着色剤、難燃剤、抗菌剤、安定剤、可塑剤等を挙げることができる。 Examples of the auxiliary agents include foam stabilizers, crosslinking agents, coloring agents, flame retardants, antibacterial agents, stabilizers, and plasticizers.

整泡剤は、ポリウレタンフォーム用として公知のものを使用することができ、シリコーン系整泡剤、含フッ素化合物系整泡剤及び界面活性剤を挙げることができる。特に、シリコーン系整泡剤は好適なものである。シリコーン系整泡剤としては、シロキサン鎖主体からなるもの、シロキサン鎖とポリエーテル鎖が線状の構造をとるもの、分岐し枝分かれしたもの、ポリエーテル鎖がシロキサン鎖にペンダント状に変性されたもの等が挙げられる。 As the foam stabilizer, those known for polyurethane foam can be used, and examples thereof include silicone foam stabilizers, fluorine-containing compound foam stabilizers, and surfactants. Particularly suitable are silicone foam stabilizers. Silicone foam stabilizers include those mainly composed of siloxane chains, those with a linear structure of siloxane chains and polyether chains, those with branched structures, and those with polyether chains modified in a pendant form on siloxane chains. etc.

架橋剤としては、エチレングリコール、ジエチレングリコール、グリセリン、ブタンテトラオール、ポリオキシプロピレングリコール等の多価アルコール、ジエタノールアミン、ポリアミン等が挙げられ、それらを単独使用または2種類以上を併用することができる。 Examples of the crosslinking agent include polyhydric alcohols such as ethylene glycol, diethylene glycol, glycerin, butanetetraol, and polyoxypropylene glycol, diethanolamine, and polyamines, and these can be used alone or in combination of two or more types.

ポリウレタンフォームには、スラブ発泡品とモールド発泡品とがあり、本発明のポリウレタンフォームはいずれでもよい。
スラブ発泡品は、ポリウレタンフォーム組成物を混合撹拌してコンベア上に吐出し、コンベア上で発泡させてポリウレタンフォームを連続形成し、その後裁断により所定サイズにしたものである。それに対してモールド発泡品は、金型にポリウレタンフォーム組成物を注入して発泡させたものであり、金型の内面形状に応じた外形状を有する。
Polyurethane foams include slab foam products and mold foam products, and the polyurethane foam of the present invention may be either of them.
A slab foam product is one in which a polyurethane foam composition is mixed and stirred, discharged onto a conveyor, foamed on the conveyor to continuously form a polyurethane foam, and then cut into a predetermined size. On the other hand, a molded foam product is made by injecting a polyurethane foam composition into a mold and foaming it, and has an outer shape that corresponds to the inner surface shape of the mold.

また、本発明のポリウレタンフォームは、除膜処理が未処理のセル膜を有するもの、あるいは除膜処理が行われてセル膜が除去されたものの何れでもよい。
除膜処理は、ポリウレタンフォームのセル膜を除去するための公知の処理であり、ポリウレタンフォームをアルカリ溶液に浸漬してセル膜を溶融する方法や、密閉容器にポリウレタンフォームを収容し、酸素等の可燃ガスを密閉容器に充填した後に点火することにより爆発させてセル膜を破壊する方法等がある。
Further, the polyurethane foam of the present invention may have a cell membrane that has not been subjected to membrane removal treatment, or may have a cell membrane that has been subjected to membrane removal treatment to remove the cell membrane.
Film removal treatment is a well-known treatment for removing the cell membrane of polyurethane foam, and includes a method in which the polyurethane foam is immersed in an alkaline solution to melt the cell membrane, or a method in which the polyurethane foam is placed in an airtight container and exposed to oxygen, etc. There is a method of filling a closed container with combustible gas and then igniting it to cause an explosion and destroy the cell membrane.

この発明の実施例を、比較例と共に具体的に説明する。以下の原料を図1の表に示す配合とした各実施例及び各比較例のポリウレタンフォーム組成物を撹拌混合し、発泡させて各実施例及び各比較例のポリウレタンフォームを作製した。なお、比較例1及び実施例1~3はスラブ発泡品であり、比較例2及び実施例4はモールド発泡品である。また、実施例2については、実施例1のポリウレタンフォームに対して、爆発により除膜処理を行ってセル膜を除去したものであり、セル膜有無以外は、実施例1と同様である。 Examples of the present invention will be specifically described along with comparative examples. The polyurethane foam compositions of each Example and each Comparative Example, in which the following raw materials were mixed as shown in the table of FIG. 1, were stirred and mixed and foamed to produce polyurethane foams of each Example and each Comparative Example. Note that Comparative Example 1 and Examples 1 to 3 are slab foam products, and Comparative Example 2 and Example 4 are mold foam products. Further, in Example 2, the polyurethane foam of Example 1 was subjected to membrane removal treatment by explosion to remove the cell membrane, and was the same as Example 1 except for the presence or absence of the cell membrane.

<ポリオール成分>
・植物由来ポリオール1;未変性(精製処理)ヒマシ油ポリオール、植物度100%、官能基数2.7、水酸基価160mgKOH/g、分子量947、品名:H-30、伊藤製油株式会社製
・植物由来ポリオール2;精製ヒマシ油100質量部とセバシン酸10.9質量部とを撹拌しながら反応させたものであり、精製ヒマシ油/セバシン酸=2/1モルからなる植物度100%のヒマシ油ポリオール、官能基数3.5、水酸基価86mgKOH/g、分子量2182
・石油由来ポリオール1;官能基数3、水酸基価24.1mgKOH/g、分子量6983.4、品名:KC737、三洋化成工業株式会社社製
・石油由来ポリオール2;官能基数3、水酸基価56.1mgKOH/g、分子量3000、品名:EP505S、三井化学株式会社社製
・石油由来ポリオール3;ポリエーテルポリオール、官能基数3、水酸基価56.1mgKOH/g、分子量3000、品名:GP-3050NS、三洋化成工業株式会社製
・石油由来ポリオール4;官能基数3、水酸基価31mgKOH/g、分子量5429、品名:Y-7530、三井化学SKCポリウレタン株式会社社製
<Polyol component>
・Plant-derived polyol 1: Unmodified (refined) castor oil polyol, 100% vegetable content, number of functional groups 2.7, hydroxyl value 160 mgKOH/g, molecular weight 947, product name: H-30, manufactured by Ito Oil Co., Ltd. ・Plant-derived Polyol 2: 100 parts by mass of purified castor oil and 10.9 parts by mass of sebacic acid are reacted with stirring, and is a 100% vegetable-based castor oil polyol consisting of purified castor oil/sebacic acid = 2/1 mole. , functional group number 3.5, hydroxyl value 86mgKOH/g, molecular weight 2182
・Petroleum-derived polyol 1: Number of functional groups: 3, hydroxyl value: 24.1 mgKOH/g, molecular weight: 6983.4, product name: KC737, manufactured by Sanyo Chemical Industries, Ltd. ・Petroleum-derived polyol 2: Number of functional groups: 3, hydroxyl value: 56.1 mgKOH/ g, molecular weight 3000, product name: EP505S, manufactured by Mitsui Chemicals Co., Ltd. Petroleum-derived polyol 3; polyether polyol, number of functional groups 3, hydroxyl value 56.1 mgKOH/g, molecular weight 3000, product name: GP-3050NS, Sanyo Chemical Industries, Ltd. Company-made - Petroleum-derived polyol 4; number of functional groups: 3, hydroxyl value: 31 mgKOH/g, molecular weight: 5429, product name: Y-7530, manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd.

<架橋剤>
・ジエチレングリコール
<発泡剤>
・水
<アミン触媒>
・アミン触媒1;脂肪族3級アミン組成物、品名:DABCO 33LSI、エボニックジャパン社製
・アミン触媒2;品名:2Mabs、日本乳化剤株式会社製
<整泡剤>
・整泡剤1;シリコーン系、品名:SZ1136、東レ・ダウコーニング株式会社製
・整泡剤2;シリコーン系、品名:L-594Plus、エボニック・ジャパン株式会社製
・整泡剤3;シリコーン系、品名:L3184J、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製
<金属触媒>
・スタナスオクトエート、品名:MRH-110、城北化学工業株式会社製
<Crosslinking agent>
・Diethylene glycol <foaming agent>
・Water <Amine catalyst>
・Amine catalyst 1: Aliphatic tertiary amine composition, product name: DABCO 33LSI, manufactured by Evonik Japan Co., Ltd. ・Amine catalyst 2: Product name: 2Mabs, manufactured by Nippon Nyukazai Co., Ltd. <Foam stabilizer>
・Foam stabilizer 1: Silicone type, product name: SZ1136, manufactured by Dow Corning Toray Co., Ltd. ・Foam stabilizer 2: Silicone type, product name: L-594Plus, manufactured by Evonik Japan Co., Ltd. ・Foam stabilizer 3: Silicone type, Product name: L3184J, manufactured by Momentive Performance Materials Japan LLC <Metal catalyst>
- Stanus octoate, product name: MRH-110, manufactured by Johoku Kagaku Kogyo Co., Ltd.

<ポリイソシアネート>
・ポリイソシアネート1;2,4-TDI/2,6-TDI=80/20のトルエンジイソシアネート、品名:コロネートT-80、東ソ-株式会社製
・ポリイソシアネート2;2,4-TDI/2,6-TDI=65/35のトルエンジイソシアネート、品名:コロネートT-65、東ソ-株式会社製
・ポリイソシアネート3;モノメリックMDI(4,4’-MDIと2,4-MDIの混合物。2,4-MDIの比率が25~50%)
<Polyisocyanate>
・Polyisocyanate 1: Toluene diisocyanate with 2,4-TDI/2,6-TDI=80/20, product name: Coronate T-80, manufactured by Tosoh Corporation ・Polyisocyanate 2: 2,4-TDI/2, 6-TDI = 65/35 toluene diisocyanate, product name: Coronate T-65, manufactured by Tosoh Corporation - Polyisocyanate 3; Monomeric MDI (mixture of 4,4'-MDI and 2,4-MDI. 2, 4-MDI ratio is 25-50%)

各実施例及び各比較例のポリウレタンフォームについて、バイオマス度、物性及び洗濯後乾燥性を測定した。測定結果を図1に示す。
バイオマス度(植物度)は、ASTM D6866-20に基づき、加速器質量分析法(AMS法)によって測定した値と、計算上の値の両方を示す。
ASTM D6866では、1950年の大気中の炭素14濃度の標準物質と資料の炭素14濃度測定を行い、その比をもってバイオマス度とすると規定されている。但し、現在の大気中の炭素14濃度は、年々増加しているため補正のためにこの値に係数をかけると規定されている。ASTM D6866-20に従った算出では、2020年の大気補正係数であるREF(pMC)=100.0を用いてバイオマス度の算出をした。
AMS法による測定値によってバイオマス度を評価した。評価基準は、AMS法による測定値が50%以上の場合「◎」、24~50%未満の場合「〇」、24%未満の場合「×」とした。
計算上の値は、式:バイオマス度=植物ポリオール添加部数/(全添加部数-ガスロス)
ガスロス=水添加部数/18×44により算出した。
上記のガスロス算出式における「18」は水の分子量、「44」は二酸化炭素の分子量である。
The degree of biomass, physical properties, and drying properties after washing were measured for the polyurethane foams of each Example and each Comparative Example. The measurement results are shown in Figure 1.
The biomass degree (plant degree) indicates both a value measured by accelerator mass spectrometry (AMS method) and a calculated value based on ASTM D6866-20.
ASTM D6866 stipulates that the carbon-14 concentration in the atmospheric carbon-14 concentration in 1950 is measured using standard materials and materials, and the ratio thereof is defined as the biomass degree. However, since the current concentration of carbon-14 in the atmosphere is increasing year by year, it is stipulated that this value be multiplied by a coefficient for correction. In the calculation according to ASTM D6866-20, the degree of biomass was calculated using the 2020 atmospheric correction factor REF (pMC) = 100.0.
The degree of biomass was evaluated by the value measured by the AMS method. The evaluation criteria were "◎" if the measured value by AMS method was 50% or more, "○" if it was 24 to less than 50%, and "x" if it was less than 24%.
The calculated value is calculated using the formula: Biomass degree = Number of added parts of vegetable polyol / (Total number of added parts - Gas loss)
Calculated by gas loss=number of parts of water added/18×44.
In the above gas loss calculation formula, "18" is the molecular weight of water, and "44" is the molecular weight of carbon dioxide.

物性については、密度(JIS K7222)、25%硬さ(JIS K6400-2 6.7D法)、セル数(JIS K6400-1)、通気度(JIS K6400-7 A法)、引張強度(JIS K6400-5 5)、伸び(JIS K6400-5 5)、引裂強度(JIS K6400-5 6B)、乾熱歪(JIS K6400-4 4.5.2A法)、反発(JIS K6400-3)について測定した。 Regarding physical properties, density (JIS K7222), 25% hardness (JIS K6400-2 6.7D method), number of cells (JIS K6400-1), air permeability (JIS K6400-7 A method), tensile strength (JIS K6400 -5 5), elongation (JIS K6400-5 5), tear strength (JIS K6400-5 6B), dry heat strain (JIS K6400-4 4.5.2A method), and rebound (JIS K6400-3) .

洗濯後乾燥性は、次に示す方法で洗濯後吸水率、脱水後吸水率、24時間乾燥後吸水率について測定し、各測定結果に基づいて洗濯後吸水性評価、洗濯後脱水性評価、洗濯後乾燥性評価、洗濯後乾燥性総合評価を行った。なお、スラブ発泡品と比べてモールド発泡品は、スキン層があって水が抜けにくいため、洗濯後吸水性評価、洗濯後脱水性評価、洗濯後乾燥性評価、洗濯後乾燥性総合評価は、スラブ発泡品とモールド発泡品とに分けて行った。 The drying property after washing is determined by measuring the water absorption rate after washing, the water absorption rate after dehydration, and the water absorption rate after 24 hours drying using the following method.Based on each measurement result, the water absorption rate after washing, the dehydration rate after washing, and the water absorption rate after washing are evaluated. Post-drying performance evaluation and post-washing drying performance comprehensive evaluation were conducted. In addition, compared to slab foam products, mold foam products have a skin layer that makes it difficult for water to escape, so the evaluation of water absorption after washing, dehydration after washing, drying after washing, and overall evaluation of drying after washing are as follows: The tests were conducted separately for slab foamed products and molded foamed products.

洗濯後吸水率は、縦型洗濯機を用い、図2に示す1回目洗濯コース、2回目洗濯コース、3回目洗濯コースを、各実施例及び各比較例のサンプルについて順に実施し、各洗濯コース終了毎にサンプルの重量を測定して吸水率を算出し、3回目洗濯コース終了後の吸水率の値を洗濯後吸水率とした。各洗濯コース終了後の吸水率の算出は、次式による。
吸水率(%)=(各回の洗濯コース後サンプルの重量-洗濯前サンプルの重量)/(洗濯前サンプルの重量)×100
各回の吸水率の値を図3に示す。なお、「洗濯前」は1回目洗濯コースの開始前である。
洗濯後吸水性評価は、次の基準で評価した。スラブ発泡品の比較例1及び実施例1~実施例3については、洗濯後吸水率が160%未満の場合「◎」、160~200%未満の場合「〇」、200%以上の場合「×」とした。モールド発泡品の比較例2及び実施例4については、洗濯後吸水率が95%未満の場合「◎」、95~100%未満の場合「〇」、100%以上の場合「×」とした。
The water absorption rate after washing was determined by sequentially carrying out the first washing course, second washing course, and third washing course shown in Fig. 2 for the samples of each example and each comparative example using a vertical washing machine. After each washing course, the weight of the sample was measured and the water absorption rate was calculated, and the value of the water absorption rate after the third washing course was taken as the post-washing water absorption rate. The water absorption rate after each washing course is calculated using the following formula.
Water absorption rate (%) = (Weight of sample after each washing cycle - Weight of sample before washing) / (Weight of sample before washing) x 100
Figure 3 shows the water absorption rate values for each time. Note that "before washing" means before the start of the first washing course.
The water absorbency after washing was evaluated based on the following criteria. Regarding Comparative Example 1 and Examples 1 to 3 of slab foam products, if the water absorption rate after washing is less than 160%, mark it as "◎", if it is between 160% and less than 200%, mark it as "○", and if it is 200% or more, mark as "×". ”. For Comparative Example 2 and Example 4 of the molded foam products, if the water absorption rate after washing was less than 95%, it was rated "◎", if it was 95 to less than 100%, it was rated "○", and if it was 100% or more, it was rated "x".

脱水後吸水率は、3回目洗濯コース終了後に、図2に示す1回目脱水コースと2回目脱水コースを順に行い、各回の脱水コース終了毎に、サンプルの重量を測定して吸水率を算出し、2回目脱水コース終了後の吸水率を脱水後吸水率とした。各脱水コース終了後の吸水率の算出は、次式による。
吸水率(%)=(各回の脱水コース後サンプルの重量-洗濯前サンプルの重量)/(洗濯前サンプルの重量)×100
各回の脱水コース終了後の吸水率の値を図3に示す。
洗濯後脱水性評価は、次の基準で評価した。スラブ発泡品の比較例1及び実施例1~実施例3については、脱水後吸水率が120%未満の場合「◎」、120~185%未満の場合「〇」、185%以上の場合「×」とした。モールド発泡品の比較例2及び実施例4については、脱水後吸水率が90%未満の場合「◎」、90~95%未満の場合「〇」、95%以上の場合「×」とした。
To calculate the water absorption rate after dehydration, after completing the third washing course, perform the first dehydration course and second dehydration course shown in Figure 2 in order, and after each dehydration course, measure the weight of the sample and calculate the water absorption rate. The water absorption rate after the second dehydration course was defined as the water absorption rate after dehydration. The water absorption rate after each dehydration course is calculated using the following formula.
Water absorption rate (%) = (Weight of sample after each dehydration course - Weight of sample before washing) / (Weight of sample before washing) x 100
Figure 3 shows the water absorption values after each dehydration course.
The dehydration property after washing was evaluated based on the following criteria. For Comparative Example 1 and Examples 1 to 3 of foamed slab products, if the water absorption rate after dehydration is less than 120%, mark it as "◎", if it is from 120 to less than 185%, mark it as "○", or if it is 185% or more, mark as "×". ”. For Comparative Example 2 and Example 4 of the molded foam products, the water absorption rate after dehydration was rated "◎" if it was less than 90%, "○" if it was 90 to less than 95%, and "x" if it was 95% or more.

24時間乾燥後吸水率は、2回目脱水コース終了後のサンプルを24時間室温(20~28℃を室温という。)で放置し、その後のサンプルの重量から吸水率を算出した。24時間乾燥後の吸水率は次式による。
24時間乾燥後の吸水率(%)=(24時間放置後のサンプルの重量)/(洗濯前のサンプルの重量)×100
24時間乾燥後の吸水率の値を図3に示す。
洗濯後乾燥性評価は、次の基準で評価した。スラブ発泡品の比較例1及び実施例1~実施例3については、24時間乾燥後吸水率が1%未満の場合「◎」、1~3%未満の場合「〇」、3%以上の場合「×」とした。モールド発泡品の比較例2及び実施例4については、24時間乾燥後吸水率が5%未満の場合「◎」、5~10%未満の場合「〇」、10%以上の場合「×」とした。
The water absorption rate after 24-hour drying was determined by leaving the sample after the second dehydration course at room temperature (20 to 28°C is referred to as room temperature) for 24 hours, and then calculating the water absorption rate from the weight of the sample. The water absorption rate after drying for 24 hours is determined by the following formula.
Water absorption rate (%) after drying for 24 hours = (weight of sample after being left for 24 hours) / (weight of sample before washing) x 100
Figure 3 shows the water absorption values after drying for 24 hours.
The drying performance after washing was evaluated based on the following criteria. For Comparative Example 1 and Examples 1 to 3 of foamed slab products, if the water absorption rate after 24 hours drying is less than 1%, mark it as "◎", if it is between 1% and less than 3%, mark it as "○", if it is 3% or more I marked it with an “×”. For Comparative Example 2 and Example 4 of molded foam products, if the water absorption rate after 24 hours drying is less than 5%, it is marked "◎", if it is 5 to less than 10%, it is marked "○", and if it is 10% or more, it is marked "x". did.

洗濯乾燥性総合評価は、洗濯後吸水性評価、洗濯後脱水性評価及び洗濯後乾燥性評価が「◎」のみ、または「◎」と「〇」のみからなる場合に洗濯乾燥性総合評価「◎」とし、洗濯後吸水性評価、洗濯後脱水性評価及び洗濯後乾燥性評価の全てが「〇」の場合に洗濯乾燥性総合評価「〇」とし、洗濯後吸水性評価、洗濯後脱水性評価及び洗濯後乾燥性評価に一つでも「×」がある場合に洗濯乾燥性総合評価「×」とした。 Comprehensive laundry/drying performance evaluation is given as "◎" if the post-washing water absorption evaluation, post-washing dehydration evaluation, and post-washing drying evaluation consist of only "◎" or only "◎" and "〇". ”, and if all of the water absorption evaluation after washing, the evaluation of water dehydration after washing, and the evaluation of drying after washing are “〇”, the overall evaluation of washing drying property is “〇”. If there is even one "x" in the post-washing drying performance evaluation, the overall washing/drying performance evaluation was set as "x".

<スラブ発泡品の比較例1及び実施例1~3の結果>
・比較例1
比較例1は、ポリオール成分を石油由来ポリオール3の100質量部とし、植物油来ポリオールが0質量部の例である。
比較例1は、AMS法によるバイオマス度が1%、バイオマス度評価「×」、計算上のバイオマス度が0%、洗濯後吸水率248.4%、洗濯後吸水性評価「×」、脱水後吸水率193.3%、洗濯後脱水性評価「×」、24時間乾燥後吸水率3.95%、洗濯後乾燥性評価「×」、洗濯後乾燥性総合評価「×」であった。
<Results of Comparative Example 1 and Examples 1 to 3 of foamed slab products>
・Comparative example 1
Comparative Example 1 is an example in which the polyol component is 100 parts by mass of petroleum-derived polyol 3 and 0 parts by mass of vegetable oil-derived polyol.
Comparative Example 1 has a biomass degree of 1% according to the AMS method, a biomass degree evaluation of “x”, a calculated biomass degree of 0%, a water absorption rate after washing of 248.4%, a water absorption evaluation after washing of “x”, and after dehydration. The water absorption rate was 193.3%, the dehydration performance after washing was evaluated as "x", the water absorption rate after 24 hour drying was 3.95%, the evaluation of drying performance after washing was "x", and the overall evaluation of drying performance after washing was "x".

・実施例1
実施例1は、ポリオール成分を、植物由来ポリオール1の60質量部、植物油来ポリオール2の20質量部、石油由来ポリオール3の20.45質量部で構成した例である。
実施例1は、AMS法によるバイオマス度が58%、バイオマス度評価「◎」、計算上のバイオマス度が53%、洗濯後吸水率169.9%、洗濯後吸水性評価「〇」、脱水後吸水率137.0%、洗濯後脱水性評価「〇」、24時間乾燥後吸水率0.06%、洗濯後乾燥性評価「◎」であり、洗濯後吸水率、脱水後吸水率及び24時間乾燥後吸水率の何れも比較例1よりも小になり、洗濯後乾燥性総合評価「◎」であった。
・Example 1
Example 1 is an example in which the polyol components were composed of 60 parts by mass of plant-derived polyol 1, 20 parts by mass of vegetable oil-derived polyol 2, and 20.45 parts by mass of petroleum-derived polyol 3.
In Example 1, the biomass degree according to the AMS method is 58%, the biomass degree evaluation is "◎", the calculated biomass degree is 53%, the water absorption rate after washing is 169.9%, the water absorption evaluation after washing is "○", and after dehydration. Water absorption rate is 137.0%, water absorption rate after washing is ``○'', water absorption rate after 24 hour drying is 0.06%, drying rate after washing is ``◎'', water absorption rate after washing, water absorption rate after spin drying, and 24 hours. Both water absorption rates after drying were smaller than those of Comparative Example 1, and the overall evaluation of drying properties after washing was "◎".

・実施例2
実施例2は、実施例1と同じ配合のポリオール組成物から形成されたポリウレタンフォームに対し、除膜処理を行って、セル膜を除去した例である。
実施例2は、ポリオール組成物の配合が同じである実施例1と同様の物性及びバイオマス度を示し、AMS法によるバイオマス度が57%、バイオマス度評価「◎」、計算上のバイオマス度が53%であった。
実施例2は、洗濯後吸水率136.0%、洗濯後吸水性評価「◎」、脱水後吸水率107.2%、洗濯後脱水性評価「◎」、24時間乾燥後吸水率0.06%、洗濯後乾燥性評価「◎」であり、洗濯後吸水率、脱水後吸水率及び24時間乾燥後吸水率の何れも比較例1よりも小になり、洗濯後乾燥性総合評価「◎」であった。なお、ポリウレタンフォームのセル膜が除去されたことにより、洗濯後吸水率、脱水後吸水率について、実施例1よりも小となり乾燥性が良好になった。
・Example 2
Example 2 is an example in which a polyurethane foam formed from a polyol composition having the same formulation as in Example 1 was subjected to membrane removal treatment to remove the cell membrane.
Example 2 shows the same physical properties and biomass degree as Example 1 with the same polyol composition formulation, with a biomass degree of 57% according to the AMS method, a biomass degree evaluation of "◎", and a calculated biomass degree of 53. %Met.
Example 2 has a water absorption rate of 136.0% after washing, a water absorption rating of "◎" after washing, a water absorption rate of 107.2% after dehydration, a water absorption rating of "◎" after washing, and a water absorption rate of 0.06 after drying for 24 hours. %, and the post-washing drying property evaluation was “◎”, and the post-washing water absorption rate, the water absorption rate after dehydration, and the water absorption rate after 24-hour drying were all smaller than Comparative Example 1, and the post-washing drying property evaluation was “◎”. Met. In addition, since the cell membrane of the polyurethane foam was removed, the water absorption rate after washing and the water absorption rate after dehydration were smaller than in Example 1, and the drying performance was improved.

・実施例3
実施例3は、ポリオール成分を、植物由来ポリオール1の37質量部、石油由来ポリオール4の63質量部で構成した例である。
実施例3は、AMS法によるバイオマス度が28%、バイオマス度評価「〇」、計算上のバイオマス度が26%、洗濯後吸水率197.1%、洗濯後吸水性評価「〇」、脱水後吸水率184.7%、洗濯後脱水性評価「〇」、24時間乾燥後吸水率1.77%、洗濯後乾燥性評価「〇」であり、洗濯後吸水率、脱水後吸水率及び24時間乾燥後吸水率の何れも比較例1よりも小になり、洗濯後乾燥性総合評価「〇」であった。
・Example 3
Example 3 is an example in which the polyol component was composed of 37 parts by mass of plant-derived polyol 1 and 63 parts by mass of petroleum-derived polyol 4.
Example 3 has a biomass degree of 28% according to the AMS method, a biomass degree evaluation of “〇”, a calculated biomass degree of 26%, a water absorption rate after washing of 197.1%, a water absorbency evaluation after washing of “〇”, and after dehydration. Water absorption rate is 184.7%, water absorption rate after washing is ``○'', water absorption rate is 1.77% after drying for 24 hours, drying rate is ``○'' after washing, water absorption rate after washing, water absorption rate after drying, and 24 hours. All of the water absorption rates after drying were smaller than those of Comparative Example 1, and the overall evaluation of drying properties after washing was "○".

<モールド発泡品の比較例2及び実施例4の結果>
・比較例2
比較例2は、ポリオール成分を石油由来ポリオール1の70質量部と石油由来ポリオール2の10質量部及び石油由来ポリオール3の20質量部で構成し、植物油来ポリオールが0質量部の例である。
比較例2は、計算上のバイオマス度が0%、洗濯後吸水率115.6%、洗濯後吸水性評価「×」、脱水後吸水率96.4%、洗濯後脱水性評価「◎」、24時間乾燥後吸水率13.7%、洗濯後乾燥性評価「×」、洗濯後乾燥性総合評価「×」であった。
<Results of Comparative Example 2 and Example 4 of molded foam products>
・Comparative example 2
Comparative Example 2 is an example in which the polyol component is composed of 70 parts by mass of petroleum-derived polyol 1, 10 parts by mass of petroleum-derived polyol 2, and 20 parts by mass of petroleum-derived polyol 3, and the vegetable oil-derived polyol is 0 parts by mass.
Comparative Example 2 has a calculated biomass degree of 0%, a water absorption rate after washing of 115.6%, a water absorption rating after washing of "x", a water absorption rate of 96.4% after dehydration, a dehydration rating of "◎" after washing, The water absorption rate after drying for 24 hours was 13.7%, the drying performance after washing was evaluated as "x", and the overall evaluation of drying performance after washing was "x".

・実施例4
実施例4は、ポリオール成分を、植物由来ポリオール1の22質量部、植物油来ポリオール2の17質量部、石油由来ポリオール1の51質量部、石油由来ポリオール2の10質量部で構成した例である。
実施例4は、AMS法によるバイオマス度が27%、バイオマス度評価「〇」、計算上のバイオマス度が23%、洗濯後吸水率94.0%、洗濯後吸水性評価「◎」、脱水後吸水率87.5%、洗濯後脱水性評価「◎」、24時間乾燥後吸水率4.1%、洗濯後乾燥性評価「◎」であり、洗濯後吸水率、脱水後吸水率及び24時間乾燥後吸水率の何れも比較例2よりも小になり、洗濯後乾燥性総合評価「◎」であった。
・Example 4
Example 4 is an example in which the polyol components were composed of 22 parts by mass of plant-derived polyol 1, 17 parts by mass of vegetable oil-derived polyol 2, 51 parts by mass of petroleum-derived polyol 1, and 10 parts by mass of petroleum-derived polyol 2. .
Example 4 has a biomass degree of 27% according to the AMS method, a biomass degree evaluation of “〇”, a calculated biomass degree of 23%, a water absorption rate after washing of 94.0%, a water absorbency evaluation after washing of “◎”, and after dehydration. Water absorption rate is 87.5%, water absorption rate after washing is ``◎'', water absorption rate is 4.1% after drying for 24 hours, drying rate is ``◎'' after washing, water absorption rate after washing, water absorption rate after spin drying, and 24 hours. Both of the water absorption rates after drying were smaller than those of Comparative Example 2, and the overall evaluation of drying properties after washing was "◎".

このように、本発明のポリウレタンフォームは、洗濯後の乾燥性が良好である。
なお、本発明は実施例に限定されず、発明の趣旨を逸脱しない範囲で変更可能である。
Thus, the polyurethane foam of the present invention has good drying properties after washing.
Note that the present invention is not limited to the embodiments, and can be modified without departing from the spirit of the invention.

本発明のポリウレタンフォームは、洗濯後の乾燥性が良好であり、洗濯が行われる物品、例えばマットレスや枕などの寝具、座布団用クッションなどの家具、ブラジャー用パッドなどの衣料等に使用することができる。 The polyurethane foam of the present invention has good drying properties after washing, and can be used for items that are washed, such as bedding such as mattresses and pillows, furniture such as seat cushions, and clothing such as bra pads. can.

Claims (3)

ポリオール成分、ポリイソシアネート、発泡剤を含むポリウレタンフォーム組成物から得られるポリウレタンフォームにおいて、
前記ポリオール成分は、複数種類のヒマシ油由来のポリオール、及び、複数種類の石油由来のポリオールを含み、
前記ポリイソシアネートは、ジフェニルメタンジイソシアネートの異性体の混合物を含
ASTM D6866-20によって測定されるバイオマス度が24%以上であることを特徴とするポリレウレタンフォーム。
In a polyurethane foam obtained from a polyurethane foam composition containing a polyol component, a polyisocyanate, and a blowing agent,
The polyol component includes multiple types of castor oil-derived polyols and multiple types of petroleum-derived polyols,
the polyisocyanate comprises a mixture of isomers of diphenylmethane diisocyanate;
A polyurethane foam characterized by having a biomass degree of 24% or more as measured by ASTM D6866-20.
ポリオール成分、ポリイソシアネート、発泡剤を含むポリウレタンフォーム組成物から得られるポリウレタンフォームにおいて、
前記ポリオール成分は、複数種類のヒマシ油由来のポリオール、及び、複数種類の石油由来のポリオールを含み、
前記ヒマシ油由来のポリオールは、ヒマシ油とセバシン酸との反応物を含
前記ポリイソシアネートは、2,4-ジフェニルメタンジイソシアネートを含
ASTM D6866-20によって測定されるバイオマス度が24%以上であることを特徴とするポリレウレタンフォーム。
In a polyurethane foam obtained from a polyurethane foam composition containing a polyol component, a polyisocyanate, and a blowing agent,
The polyol component includes multiple types of castor oil-derived polyols and multiple types of petroleum-derived polyols,
The castor oil-derived polyol includes a reaction product of castor oil and sebacic acid,
The polyisocyanate includes 2,4- diphenylmethane diisocyanate,
A polyurethane foam characterized by having a biomass degree of 24% or more as measured by ASTM D6866-20.
請求項1または請求項2に記載のポリウレタンフォームであって、
以下の測定方法で測定された前記ポリウレタンフォームの洗濯後吸水率、脱水後吸水率、24時間乾燥後吸水率は、
前記ポリウレタンフォームがスラブ発泡品の場合、前記洗濯後吸水率が200%未満、前記脱水後吸水率が185%未満、前記24時間乾燥後吸水率が3%未満であり、
前記ポリウレタンフォームがモールド発泡品の場合、前記洗濯後吸水率が100%未満、前記脱水後吸水率が95%未満、前記24時間乾燥後吸水率が10%未満であることを特徴とするポリウレタンフォーム。

洗濯後吸水率の測定方法は、縦型洗濯機を用い、表1に示す1回目洗濯コース、2回目洗濯コース、3回目洗濯コースを、前記ポリウレタンフォームのサンプルについて順に実施し、各洗濯コース終了毎に前記サンプルの重量を測定して吸水率を算出し、3回目洗濯コース終了後の吸水率の値を前記洗濯後吸水率とした。
洗濯後吸水率(%)=(各回の洗濯コース後サンプルの重量-洗濯前サンプルの重量)/(洗濯前サンプルの重量)×100
脱水後吸水率の測定方法は、3回目洗濯コース終了後に、表1に示す1回目脱水コースと2回目脱水コースを順に行い、各回の脱水コース終了毎に、前記サンプルの重量を測定して吸水率を算出し、2回目脱水コース終了後の吸水率を前記脱水後吸水率とした。
脱水後吸水率(%)=(各回の脱水コース後サンプルの重量-洗濯前サンプルの重量)/(洗濯前サンプルの重量)×100
24時間乾燥後吸水率は、2回目脱水コース終了後の前記サンプルを24時間室温(20~28℃を室温という。)で放置し、その後の前記サンプルの重量から前記24時間乾燥後吸水率を算出した。
24時間乾燥後吸水率(%)=(24時間放置後のサンプルの重量)/(洗濯前のサンプルの重量)×100
The polyurethane foam according to claim 1 or claim 2 ,
The water absorption rate after washing, water absorption rate after dehydration, and water absorption rate after 24 hours drying of the polyurethane foam were measured by the following measurement method:
When the polyurethane foam is a slab foam product, the water absorption rate after washing is less than 200%, the water absorption rate after dehydration is less than 185%, and the water absorption rate after drying for 24 hours is less than 3%,
When the polyurethane foam is a molded foam product, the polyurethane foam has a water absorption rate of less than 100% after washing, a water absorption rate of less than 95% after dehydration, and a water absorption rate of less than 10% after drying for 24 hours. .

The method for measuring the water absorption rate after washing is to use a vertical washing machine and perform the first washing course, second washing course, and third washing course shown in Table 1 on the polyurethane foam sample in order, and then wait until the end of each washing course. The weight of the sample was measured each time, the water absorption rate was calculated, and the value of the water absorption rate after the third washing course was taken as the water absorption rate after washing.
Water absorption rate after washing (%) = (Weight of sample after each washing course - Weight of sample before washing) / (Weight of sample before washing) x 100
The method for measuring the water absorption rate after dehydration is to perform the first dehydration course and second dehydration course shown in Table 1 in order after the third washing course, and measure the weight of the sample after each dehydration course to determine the water absorption. The water absorption rate after the completion of the second dehydration course was defined as the water absorption rate after dehydration.
Water absorption rate after dehydration (%) = (Weight of sample after each dehydration course - Weight of sample before washing) / (Weight of sample before washing) x 100
The water absorption rate after 24-hour drying is calculated by leaving the sample after the second dehydration course at room temperature for 24 hours (20 to 28°C is referred to as room temperature), and then calculating the water absorption rate after 24-hour drying from the weight of the sample. Calculated.
Water absorption rate after drying for 24 hours (%) = (Weight of sample after being left for 24 hours) / (Weight of sample before washing) x 100
JP2023067486A 2021-10-18 2023-04-17 polyurethane foam Active JP7439318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023067486A JP7439318B2 (en) 2021-10-18 2023-04-17 polyurethane foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2023520505A JP7320158B1 (en) 2021-10-18 2021-10-18 polyurethane foam
PCT/JP2021/038421 WO2023067654A1 (en) 2021-10-18 2021-10-18 Polyurethane foam
JP2023067486A JP7439318B2 (en) 2021-10-18 2023-04-17 polyurethane foam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2023520505A Division JP7320158B1 (en) 2021-10-18 2021-10-18 polyurethane foam

Publications (2)

Publication Number Publication Date
JP2023080375A JP2023080375A (en) 2023-06-08
JP7439318B2 true JP7439318B2 (en) 2024-02-27

Family

ID=86058878

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2023520505A Active JP7320158B1 (en) 2021-10-18 2021-10-18 polyurethane foam
JP2023067489A Active JP7439320B2 (en) 2021-10-18 2023-04-17 polyurethane foam
JP2023067487A Active JP7520180B2 (en) 2021-10-18 2023-04-17 Polyurethane foam
JP2023067488A Active JP7439319B2 (en) 2021-10-18 2023-04-17 polyurethane foam
JP2023067486A Active JP7439318B2 (en) 2021-10-18 2023-04-17 polyurethane foam

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2023520505A Active JP7320158B1 (en) 2021-10-18 2021-10-18 polyurethane foam
JP2023067489A Active JP7439320B2 (en) 2021-10-18 2023-04-17 polyurethane foam
JP2023067487A Active JP7520180B2 (en) 2021-10-18 2023-04-17 Polyurethane foam
JP2023067488A Active JP7439319B2 (en) 2021-10-18 2023-04-17 polyurethane foam

Country Status (3)

Country Link
JP (5) JP7320158B1 (en)
CN (1) CN118541406A (en)
WO (1) WO2023067654A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095082A (en) 2004-09-29 2006-04-13 Inoac Corp Mattress
WO2007020905A1 (en) 2005-08-12 2007-02-22 Mitsui Chemicals Polyurethanes, Inc. Composition for polyurethane foam, polyurethane foam obtained from the composition, and use thereof
JP2007054164A (en) 2005-08-23 2007-03-08 Inoac Corp Puff for makeup
JP2007246779A (en) 2006-03-17 2007-09-27 Inoac Corp Low-resilience polyurethane foam
JP2008266451A (en) 2007-04-20 2008-11-06 Inoac Corp Soft polyurethane foam
JP2009035617A (en) 2007-08-01 2009-02-19 Inoac Corp Flexible polyurethane foam
JP2009167255A (en) 2008-01-11 2009-07-30 Inoac Corp Low-combustible flexible polyurethane foam
JP2010166943A (en) 2009-01-20 2010-08-05 Inoac Corp Pillow
WO2011013815A1 (en) 2009-07-31 2011-02-03 株式会社東洋クオリティワン Urethane foam for use in automobile seats and method for producing same
JP2011038013A (en) 2009-08-12 2011-02-24 Musashi Toryo Kk Vinyl modified polyester polyol, two-component curable coating composition and cured object
JP2011068886A (en) 2009-08-31 2011-04-07 Sanyo Chem Ind Ltd Urethane resin-forming composition for sealing material of membrane module
JP2012046668A (en) 2010-08-27 2012-03-08 Kurabo Ind Ltd Polyurethane foam for mattresses, and mattress comprised of the polyurethane foam
JP2012236910A (en) 2011-05-11 2012-12-06 Inoac Corp Polyurethane foam for flame lamination
WO2013015245A1 (en) 2011-07-25 2013-01-31 株式会社イノアックコーポレーション Polyurethane foam
WO2014129546A1 (en) 2013-02-21 2014-08-28 株式会社イノアック技術研究所 Novel polyether polyol and soft polyurethane foam obtained using same
JP2015205424A (en) 2014-04-18 2015-11-19 株式会社イノアックコーポレーション Skin material, production method thereof and interior material for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314672A (en) * 2006-05-26 2007-12-06 Inoac Corp Polyurethane-foamed article
JP5166838B2 (en) * 2007-11-28 2013-03-21 株式会社イノアックコーポレーション Anti-slip cushioning material
JP2010053157A (en) * 2008-08-26 2010-03-11 Nippon Polyurethane Ind Co Ltd Manufacturing method of flexible polyurethane foam
JP7202055B2 (en) * 2018-12-25 2023-01-11 株式会社イノアックコーポレーション mite-resistant polyurethane foam

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095082A (en) 2004-09-29 2006-04-13 Inoac Corp Mattress
WO2007020905A1 (en) 2005-08-12 2007-02-22 Mitsui Chemicals Polyurethanes, Inc. Composition for polyurethane foam, polyurethane foam obtained from the composition, and use thereof
JP2007054164A (en) 2005-08-23 2007-03-08 Inoac Corp Puff for makeup
JP2007246779A (en) 2006-03-17 2007-09-27 Inoac Corp Low-resilience polyurethane foam
JP2008266451A (en) 2007-04-20 2008-11-06 Inoac Corp Soft polyurethane foam
JP2009035617A (en) 2007-08-01 2009-02-19 Inoac Corp Flexible polyurethane foam
JP2009167255A (en) 2008-01-11 2009-07-30 Inoac Corp Low-combustible flexible polyurethane foam
JP2010166943A (en) 2009-01-20 2010-08-05 Inoac Corp Pillow
WO2011013815A1 (en) 2009-07-31 2011-02-03 株式会社東洋クオリティワン Urethane foam for use in automobile seats and method for producing same
JP2011038013A (en) 2009-08-12 2011-02-24 Musashi Toryo Kk Vinyl modified polyester polyol, two-component curable coating composition and cured object
JP2011068886A (en) 2009-08-31 2011-04-07 Sanyo Chem Ind Ltd Urethane resin-forming composition for sealing material of membrane module
JP2012046668A (en) 2010-08-27 2012-03-08 Kurabo Ind Ltd Polyurethane foam for mattresses, and mattress comprised of the polyurethane foam
JP2012236910A (en) 2011-05-11 2012-12-06 Inoac Corp Polyurethane foam for flame lamination
WO2013015245A1 (en) 2011-07-25 2013-01-31 株式会社イノアックコーポレーション Polyurethane foam
WO2014129546A1 (en) 2013-02-21 2014-08-28 株式会社イノアック技術研究所 Novel polyether polyol and soft polyurethane foam obtained using same
JP2015205424A (en) 2014-04-18 2015-11-19 株式会社イノアックコーポレーション Skin material, production method thereof and interior material for vehicle

Also Published As

Publication number Publication date
CN118541406A (en) 2024-08-23
JP2023080375A (en) 2023-06-08
JP2023080377A (en) 2023-06-08
JP7320158B1 (en) 2023-08-02
JP7520180B2 (en) 2024-07-22
JPWO2023067654A1 (en) 2023-04-27
WO2023067654A1 (en) 2023-04-27
JP2023080378A (en) 2023-06-08
JP2023080376A (en) 2023-06-08
JP7439320B2 (en) 2024-02-27
JP7439319B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
JP5359269B2 (en) Flexible polyurethane foam and method for producing the same
EP2292676B1 (en) Polyurethane foam for flame-laminating
JP5679385B2 (en) Polyurethane foam composition and method for producing flexible polyurethane foam
JP2009203412A (en) Water-absorbing polyurethane foam
JP3892042B2 (en) Polyurethane elastomer
BRPI1001629A2 (en) process for the production of low emission flexible polyurethane foams
JP2006104404A (en) Polyurethane pad for vehicle seat
JP7545926B2 (en) Flexible polyurethane foam and its manufacturing method
WO2013161854A1 (en) Polyurethane foaming composition and method for producing flexible polyurethane foam
JP5394777B2 (en) Water-resistant polyurethane foam
JP7439318B2 (en) polyurethane foam
JP5014827B2 (en) Flexible polyurethane foam
US3047517A (en) Low density, resilient polyurethane foam and method for preparing same
WO1993003090A1 (en) Flexible water-blown polyurethane foams
JPH08333432A (en) Waterproof resin foam
JP2013119620A (en) Flexible polyurethane foam
JP4283142B2 (en) Low resilience polyurethane foam and method for producing the same
JP4068880B2 (en) Method for producing biodegradable flexible polyurethane foam
JP2023023881A (en) Method for producing urethane prepolymer, method for producing polyurethane foam, urethane prepolymer, and polyurethane foam
JP2012017435A (en) Polyurethane elastomer composition and vibration-proof material
SE523962C2 (en) Polyurethane foam composition comprising chain elongated dendritic polyether
JP2010047635A (en) Flexible polyurethane foam and method for manufacturing the same
JPH05125141A (en) Method for producing rigid polyurethane foam
JP2023077164A (en) polyurethane foam
JP2023023882A (en) Impact absorber and polyurethane foam, and vibration-proof member and polyurethane foam

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230421

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7439318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150