JP7439038B2 - コミュニケーション用談話ツリーの使用による修辞学的分析の可能化 - Google Patents

コミュニケーション用談話ツリーの使用による修辞学的分析の可能化 Download PDF

Info

Publication number
JP7439038B2
JP7439038B2 JP2021206038A JP2021206038A JP7439038B2 JP 7439038 B2 JP7439038 B2 JP 7439038B2 JP 2021206038 A JP2021206038 A JP 2021206038A JP 2021206038 A JP2021206038 A JP 2021206038A JP 7439038 B2 JP7439038 B2 JP 7439038B2
Authority
JP
Japan
Prior art keywords
discourse
rhetorical
answer
question
tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021206038A
Other languages
English (en)
Other versions
JP2022050439A (ja
Inventor
ガリツキー,ボリス
Original Assignee
オラクル・インターナショナル・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オラクル・インターナショナル・コーポレイション filed Critical オラクル・インターナショナル・コーポレイション
Publication of JP2022050439A publication Critical patent/JP2022050439A/ja
Priority to JP2023069723A priority Critical patent/JP7546096B6/ja
Application granted granted Critical
Publication of JP7439038B2 publication Critical patent/JP7439038B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • G06F40/35Discourse or dialogue representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • G06F16/316Indexing structures
    • G06F16/322Trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/332Query formulation
    • G06F16/3329Natural language query formulation or dialogue systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/205Parsing
    • G06F40/211Syntactic parsing, e.g. based on context-free grammar [CFG] or unification grammars
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • G06F40/42Data-driven translation
    • G06F40/44Statistical methods, e.g. probability models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • G06F40/51Translation evaluation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • G06F40/55Rule-based translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Machine Translation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Information Transfer Between Computers (AREA)

Description

関連出願の相互参照
本願は、2017年5月10日に提出された米国仮出願第62/504,377号の利益を主張するものであって、その全体が引用によりこの明細書中に援用されている。
技術分野
本開示は、概して言語学に関する。より具体的には、本開示は、談話分析を行なうためにコミュニケーション用談話ツリーを用いることに関する。
連邦政府が支援する研究および開発の下でなされた発明に対する権利についての申告
該当せず
背景
語学は言語に関する科学的研究である。言語学の一局面は、英語などの人の自然言語に対してコンピュータサイエンスを適用することである。プロセッサ速度の大幅な上昇およびメモリ容量の大幅な増大により、言語学にコンピュータを適用することが増えてきている。たとえば、言語談話をコンピュータで分析できれば、ユーザからの質問に回答することができる自動化エージェントなどの多数の用途が促進される。質問に回答し、議論を促進し、ダイアログを管理し、社会的振興をもたらすために「チャットボット(chatbot)
」およびエージェントを用いることが次第に普及してきている。この必要性に対処するために、複合的セマンティクスを含む広範囲の技術が開発されてきた。このような技術は、単純で短い問合せおよび返答の場合に自動化エージェントをサポートすることができる。
しかし、このような解決策では、質問に答えるための豊富な談話関連情報を活用したり、ダイアログを管理したり、推薦を行ったり、または、「チャットボット」システムを実現したりすることができない。なぜなら、既存の解決策では、修辞学的分析が不十分であるため、回答を質問とを一致させることができないからである。より具体的には、統計ベースの解決策では、センテンスからトピックを判断し、センテンスと回答との間の修辞学的合致に対処するタスクを分離することができない。統計ベースの解決策は、質問および応答の修辞構造を全く考慮していないか、または、トピックと修辞との合致に同時に対処しようと試みて、修辞学的合致に適切に対処することができていない。修辞学的分析が十分でなければ、任意の修辞構造を有し得る質問を、任意の修辞構造を有する可能性もある適切な回答と一致させることができない。
したがって、質問と回答との間の修辞学的合致を正確に表現することができる新しい解決策が必要とされている。
概要
概して、本発明のシステム、装置および方法は1つ以上のセンテンス同士の修辞関係を計算することに関する。一例においては、コンピュータによって実現される方法は、フラグメントを含むセンテンスにアクセスする。少なくとも1つのフラグメントは動詞および単語を含む。各々の単語は、フラグメント内で単語の役割を果たし得る。各々のフラグメントは基本談話単位である。当該方法は、センテンスフラグメント間の修辞関係を表現する談話ツリーを生成する。談話ツリーは、非終端ノードおよび終端ノードを含むノードを含む。各々の非終端ノードは、センテンスフラグメントのうちの2つのセンテンスフラグ
メント間の修辞関係を表現しており、談話ツリーの複数ノードのうち各終端ノードは、センテンスフラグメントのうちの1つに関連付けられている。当該方法は、動詞を有する各フラグメントを動詞シグネチャと一致させ、これにより、コミュニケーション用談話ツリーを作成する。
この一致させることは、多数の動詞シグネチャにアクセスすることを含む。各々の動詞シグネチャは、フラグメントの動詞および主題役割のシーケンスを含む。当該方法は、複数の動詞シグネチャのうちの各動詞シグネチャごとに、フラグメントにおける単語の役割と一致する、それぞれのシグネチャの主題役割の数を判断する。当該方法は、最多数の一致を含む特定の動詞シグネチャに基づいて複数の動詞シグネチャから特定の動詞シグネチャを選択する。当該方法は特定の動詞シグネチャをフラグメントに関連付ける。
一局面に従った例示的な修辞学的分類環境を示す図である。 一局面に従った談話ツリーの一例を示す図である。 一局面に従った談話ツリーのさらに別の例を示す図である。 一局面に従った例示的なスキーマを示す図である。 一局面に従った階層型バイナリツリーのノードリンク表現を示す図である。 一局面に従った、図5における表現についての例示的なインデントされたテキストエンコーディングを示す図である。 一局面に従った、財産税に関する要求例についての例示的なDTを示す図である。 図7に表わされる質問についての例示的な応答を示す図である。 一局面に従った公式の回答についての談話ツリーを示す図である。 一局面に従った未処理の回答についての談話ツリーを示す図である。 一局面に従った、第1のエージェントの請求についてのコミュニケーション用談話ツリーを示す図である。 一局面に従った、第2のエージェントの請求についてのコミュニケーション用談話ツリーを示す図である。 一局面に従った、第3のエージェントの請求についてのコミュニケーション用談話ツリーを示す図である。 一局面に従ったパース交錯を示す図である。 一局面に従った、コミュニケーション用談話ツリーを構築するための例示的なプロセスを示す図である。 一局面に従った、談話ツリーおよびシナリオグラフを示す図である。 一局面に従った、要求・応答ペアの形成を示す図である。 一局面に従った、最大の共通サブコミュニケーション用談話ツリーを示す図である。 一局面に従った、コミュニケーション用談話ツリーのためのカーネル学習フォーマットでツリーを示す図である。 一局面に従った、修辞学的合致分類部を実現するのに用いられる例示的なプロセスを示す図である。 一局面に従った、投稿に関してコメントするチャットボットを示す図である。 一局面に従った、投稿に関してコメントするチャットボットを示す図である。 一局面に従った、アルゴリズムテキストについての談話ツリーを示す図である。 一局面に従った注釈付きセンテンスを示す図である。 一局面に従った注釈付きセンテンスを示す図である。 一局面に従ったダイアログの談話動作を示す図である。 一局面に従ったダイアログの談話動作を示す図である。 上記局面のうちの1つを実現するための分散型システムを示す簡略図である。 一局面に従った、或る局面のシステムの構成要素によって提供されるサービスがクラウドサービスとして提供され得るシステム環境の構成要素を示す簡略ブロック図である。 本発明のさまざまな局面が実現され得る例示的なコンピュータシステムを示す図である。
詳細な説明
ここに開示されるいくつかの局面は、コンピュータにより実現される言語学の分野を技術的に改善させる。より具体的には、ここに記載されるいくつかの局面は、コミュニケーション用談話ツリーにおける1つ以上のセンテンスの修辞関係を表わしている。
「コミュニケーション用談話ツリー」または「CDT(communicative discourse tree)」は、コミュニケーション行動で補われる談話ツリーを含む。コミュニケーション行動は、相互の討議および討論に基づき個々人が取る協調的行動である。
この明細書中において開示されるさらに別の局面は、コミュニケーション用談話ツリーを用いることで、ユーザから受取った質問に回答することができる自動化エージェントまたはチャットボットの改善を実現する。コミュニケーション用談話ツリーを用いることで、いくつかの局面は、センテンスからトピックを判断して、センテンスと回答との間の修辞学的合致に対処するタスクをしばしば分離できないという、従前のシステムの限界を克服する。
一例においては、コンピューティングデバイス上で実行される修辞学的分類アプリケーションは、ユーザから質問を受取る。修辞学的分類アプリケーションは、質問についてのコミュニケーション用談話ツリーを生成する。コミュニケーション用談話ツリーは、談話ツリーであるか、または、コミュニケーション行動を含む談話ツリーであるツリーである。修辞学的分類アプリケーションは、質問に対する起こり得る回答のデータベースにアクセスする。予測モデルを用いて、修辞学的合致アプリケーションは、質問と起こり得る各回答との間の相補性のレベルを判断する。相補性のレベルがしきい値を上回っていると判断したことに応じて、修辞学的合致分類部は、たとえば表示装置を介してユーザに回答を提供する。
いくつかの局面の技術的利点は、チャットボットなどの改善された自律型エージェントや、従来の統計ベースのアプローチに勝る改善された検索エンジン性能を含む。従来の統計キーワードベースのアプローチは、(i)質問のトピックに対処していないか、または、(ii)質問と回答との間の修辞学的合致に対処していない。そのため、既存の自律型エージェントの解決策はユーザの質問に対して、規定されただけの応答または制限された応答しか実行することができない。このような解決策は、回答が質問に対して十分に応答できているかどうかを判断することができない。
たとえば、この明細書中に記載されるいくつかの局面はコミュニケーション用談話ツリーを用いる。コミュニケーション用談話ツリーは、修辞情報をコミュニケーション行動と組合わせる。コミュニケーション行動を識別するラベルを組込むことにより、基本談話単位(elementary discourse unit:EDU)の単純な修辞関係および構文よりも豊富な特
徴セットに関して、コミュニケーション用談話ツリーの学習を行なうことができる。この
ような特徴セットであれば、分類などの追加の技術を用いて、質問と回答または要求・応答ペアとの間の修辞学的合致のレベルを判断することができ、これにより、自動化エージェントを改善させることができる。こうすることで、コンピューティングシステムは、質問および他のメッセージに知的に回答することができる自律型エージェントを可能にする。
特定の定義
「修辞構造理論(rhetorical structure theory)」は、この明細書中において用いら
れる場合、談話の一貫性の分析を可能にし得る論理基礎を提供した調査および研究の分野である。
「談話ツリー」または「DT(discourse tree)」は、この明細書中において用いられる場合、センテンスの一部をなすセンテンスについての修辞関係を表現する構造を指している。
「修辞関係」、「修辞関係性」、「一貫性関係」または「談話関係」は、この明細書中において用いられる場合、談話のうち2つのセグメントが互いに如何に論理的に接続されているかを述べている。修辞関係の例は詳述、対比および属性を含む。
「センテンスフラグメント」または「フラグメント」は、この明細書中において用いられる場合、センテンスの残りから分割することができるセンテンスの一部である。フラグメントは基本談話単位である。たとえば、「Dutch accident investigators say that evidence points to pro-Russian rebels as being responsible for shooting down the plane(オランダの事故調査員は、証拠が、飛行機の撃墜をロシア支持派の反乱分子によるものであると示唆していると述べている)」というセンテンスの場合、2つのフラグメントは、「Dutch accident investigators say that evidence points to pro-Russian rebels」および「as being responsible for shooting down the plane」である。フラグメ
ントは動詞を含み得るが、必ずしも動詞を含んでいる必要はない。
「シグネチャ」または「フレーム」は、この明細書中において用いられる場合、フラグメントにおける動詞の特性を指している。各々のシグネチャは1つ以上の主題役割を含み得る。たとえば、「Dutch accident investigators say that evidence points to pro-Russian rebels」というフラグメントの場合、動詞は「say」であり、動詞「say」をこの
ように特別に使用している場合のシグネチャは「エージェント動詞トピック」であり得る。この場合、「investigators」はエージェントであり、「evidence」はトピックである
「主題役割」は、この明細書中において用いられる場合、1つ以上の単語の役割を記述するのに用いられるシグネチャの構成要素を指している。上述の例に続いて、「エージェント」および「トピック」は主題役割である。
「核性(nuclearity)」は、この明細書中において用いられる場合、どのテキストセグメント、フラグメントまたはスパンが書き手の目的の中心により近いかを指している。核はより中心的なスパンであり、衛星はそれほど中心的ではない。
「一貫性(coherency)」は、この明細書中において用いられる場合、2つの修辞関係
をともにリンクするものを指している。
「コミュニケーション動詞(communicative verb)」は、この明細書中において用いられる場合、コミュニケーションを示す動詞である。たとえば、「否定する(deny)」とい
う動詞はコミュニケーション動詞である。
「コミュニケーション行動」は、この明細書中において用いられる場合、1以上のエージェントによって実行される行動、およびエージェントの主題を記述するものである。
図1は、一局面に従った例示的な修辞学的分類環境を示す。図1は、修辞学的分類コンピューティングデバイス101、入力された質問130、出力された質問150、データネットワーク104、サーバ160およびモバイルデバイス170を示す。修辞学的分類コンピューティングデバイス101は、修辞学的分類アプリケーション102、回答データベース105、修辞学的合致分類部120およびトレーニングデータ125のうち1つ以上を含む。修辞学的分類アプリケーション102は、質問コミュニケーション用談話ツリー110、回答コミュニケーション用談話ツリー110のうち1つ以上を含む。
モバイルデバイス170は、携帯電話、スマートフォン、タブレット、ラップトップ、スマートウォッチなどの如何なるモバイルデバイスであってもよい。モバイルデバイス170は、データネットワーク104を介してサーバ160または修辞学的分類コンピューティングデバイス101と通信する。このようにして、モバイルデバイス170は、たとえばユーザから、サーバ160または修辞学的分類コンピューティングデバイス101に質問171を提供することができる。一例においては、修辞学的分類コンピューティングデバイス101は、好適な回答172を判断し、回答172をデータネットワーク104を介してモバイルデバイス170に提供する。
データネットワーク104は、如何なるパブリックネットワーク、プライベートネットワーク、有線ネットワーク、無線ネットワーク、ワイドエリアネットワーク、ローカルエリアネットワーク、またはインターネットであってもよい。
一例においては、修辞学的分類アプリケーション102は、チャットを介して受取った質問に回答する。より具体的には、修辞学的分類アプリケーション102は、チャットなどの単一の質問または一連の質問であり得る入力された質問130を受取る。修辞学的分類アプリケーション102は、質問コミュニケーション用談話ツリー110を作成し、1つ以上の候補回答を選択する。回答は、データネットワーク104を介して通信することで回答データベース105などの既存のデータベースまたはサーバ160から取得することができる。サーバ160は公共または専用のインターネットサーバであってもよく、たとえば、ユーザの質問および回答のための公共のデータベースなどであってもよい。
修辞学的分類アプリケーション102は、候補回答から、最も好適な回答を決定する。この明細書中にさらに説明されるように、さまざまな方法を用いることができる。一局面においては、修辞学的分類アプリケーション102は、各候補回答ごとに候補回答コミュニケーション用談話ツリーを作成し、質問コミュニケーション用談話ツリー110を各候補談話ツリーと比較し得る。修辞学的分類アプリケーション102は、質問コミュニケーション用談話ツリーと候補回答コミュニケーション用談話ツリーとの間の最適な一致を識別する。修辞学的分類アプリケーション102は、次いで、最適なコミュニケーション用談話ツリーからテキストについてのデータベースにアクセスするかまたは問合せを行う。修辞学的分類アプリケーション102は、次いで、第2のコミュニケーション用談話ツリーに関連付けられたテキストをモバイルデバイスに送る。
別の局面においては、修辞学的分類アプリケーション102は、各々の候補回答ごとに回答コミュニケーション用談話ツリー111を作成する。修辞学的分類アプリケーション102は、次いで、各々の候補回答ごとに、質問130および候補回答を含む質問・回答ペアを作成する。
修辞学的分類アプリケーション102は、修辞学的合致分類部120などの予測モデルに質問・回答ペアを提供する。トレーニングされた修辞学的合致分類部120を用いることで、修辞学的分類アプリケーション102は、質問・回答ペアが一致のしきい値レベルを上回っているかどうかを判断する(たとえば、回答が質問に対処しているかどうかを示す)。そうでない場合、修辞学的分類アプリケーション102は、適切な回答が見つかるまで質問および異なる回答を含む追加のペアを分析し続ける。コミュニケーション用談話ツリーを用いることにより、質問と応答との間の修辞学的合致およびコミュニケーション行動が正確にモデル化され得る。
修辞学的分類アプリケーション102は回答を出力された回答150として提供する。たとえば、図1に示されるように、修辞学的分類アプリケーション102によって実現されるエージェントは、大声で歌うことについて二人のユーザが討論しているチャット履歴に応答して、「here is my own personal list of songs(ここに私自身の個人的な歌の
リストがあります)」というテキストを提供した。
修辞学構造理論および談話ツリー
言語学は言語についての科学的研究である。たとえば、言語学は、センテンス(構文)の構造、たとえば、主語-動詞-目的語、センテンス(セマンティックス)の意味、たとえば、「dog bites man(犬が人を噛む)」に対して「man bites dog(人が犬を噛む)」、さらに、話し手が会話中に行うこと、すなわち、談話分析またはセンテンスの範囲を超えた言語の分析、を含み得る。
談話の理論上の基礎(修辞構造理論(Rhetoric Structure Theory:RST))は、Mann、WilliamおよびThompson、Sandraによる「Rhetorical structure theory: A Theory of
Text organization」(Text-Interdisciplinary Journal for the Study of Discourse
)8(3):243-281: 1988)によるものであり得る。プログラミング言語理論の構文およびセマンティックスが現代のソフトウェアコンパイラの可能化に如何に役立ったのかと同様に、RSTは談話の分析の可能化に役立った。より具体的には、RSTは、構造ブロックを少なくとも2つのレベルで想定している。2つのレベルは、核性および修辞関係などの第1のレベルと、構造またはスキーマの第2のレベルとを含む。談話パーサーまたは他のコンピュータソフトウェアは、テキストを談話ツリーにパース(構文解析)することができる。
修辞構造理論は、テキストの部分間の関係に依存して、テキストの論理的構成(書き手によって用いられる構造)をモデル化する。RSTは、談話ツリーを介してテキストの階層型の接続された構造を形成することによって、テキスト一貫性をシミュレートする。修辞関係は、同等のクラスおよび下位のクラスに分割される。これらの関係は、2つ以上のテキストスパンにわたって維持されるので、一貫性を実現する。これらのテキストスパンを基本談話単位(EDU)と称する。センテンス中の節およびテキスト中のセンテンスは、著者によって論理的に接続される。所与のセンテンスの意味は前のセンテンスおよび次のセンテンスの意味と関係がある。節同士の間のこの論理関係はテキストの一貫性構造と称される。RSTは、ツリー状の談話構造、談話ツリー(discourse tree:DT)に基づいた、談話について最も普及している理論のうちの1つである。DTの葉部は、EDU(連続する原子的なテキストスパン)に対応する。隣接するEDUは、より高いレベルの談話単位を形成する一貫性関係(たとえば、属性、シーケンス)によって接続されている。これらの単位は、さらに、この関係リンクにも従属する。関係によってリンクされたEDUは、さらに、それぞれの相対的重要性に基づいて区別される。核は関係の核心部分であり、衛星は周辺部分である。上述したように、正確な要求・応答ペアを判断するために、トピックおよび修辞学的合致がともに分析される。話し手がフレーズまたはセンテンスな
どの質問に回答するとき、話し手の回答はこの質問のトピックに対処していなければならない。質問が暗示的に形成されている場合、メッセージのシードテキストを介することで、トピックを維持するだけでなくこのシードについての一般化された認識状態とも一致するような適切な回答が期待される。
修辞関係
上述したように、この明細書中に記載されるいくつかの局面はコミュニケーション用談話ツリーを用いている。修辞関係はさまざまな方法で説明することができる。たとえば、MannおよびThompsonは23の実現可能な関係について記載している。C. Mann, William &
Thompson, Sandra(1987)(「Mann and Thompson」)による「Rhetorical Structure Theory: A Theory of Text Organization)がある。他のいくつかの関係も実現可能である。
Figure 0007439038000001
いくつかの経験的研究は、大多数のテキストが核-衛星関係を用いて構築されていることを前提としている。MannおよびThompsonを参照されたい。しかしながら、他の関係は、核の有限選択を伴わない。このような関係の例を以下に示す。
Figure 0007439038000002
図2は、一局面に従った談話ツリーの例を示す。図2は談話ツリー200を含む。談話ツリーは、テキストスパン201、テキストスパン202、テキストスパン203、関係210、および関係228を含む。図2における数は3つのテキストスパンに対応する。図3は、1、2、3と番号付けられた3つのテキストスパン付きの以下のテキスト例に相当する。
1.ホノルル(ハワイ)はハワイの歴史に関する2017年の会議の開催地になるだろう(Honolulu, Hawaii will be site of the 2017 Conference on Hawaiian History)。。
2.米国およびアジアから200人の歴史家が参加することが期待される(It is expected that 200 historians from the U.S. and Asia will attend)。
3.会議はポリネシア人がハワイまでどのように航海したかに関する(The conference
will be concerned with how the Polynesians sailed to Hawaii)。
たとえば、関係210または詳述は、テキストスパン201とテキストスパン202との間の関係を記載する。関係228は、テキストスパン203とテキストスパン204との間の関係(詳述)を示す。示されるように、テキストスパン202および203はテキストスパン201をさらに詳述している。上述の例においては、読み手に会議を通知することが目的であると想定すると、テキストスパン1が核である。テキストスパン2および3は、会議に関するより多くの詳細を提供する。図2において、水平方向に並んだ数(たとえば1-3、1、2、3)は、(場合によってはさらに別のスパンで構成された)テキストのスパンをカバーしており、垂直な線は核または複数の核を示している。曲線は修辞関係(詳述)を表わしており、矢印の方向は衛星から核を指している。テキストスパンのみが、核としてではなく衛星として機能する場合、衛星を削除しても依然としてテキストには一貫性が残るだろう。図2から核を削除する場合、テキストスパン2および3を理解することが困難になる。
図3は、一局面に従った談話ツリーのさらなる例を示す。図3は、構成要素301および302、テキストスパン305~307、関係310、および関係328を含む。関係310は、構成要素306と構成要素305との間、および構成要素307と構成要素305との間の関係310(可能化)を示す。図3は以下のテキストスパンを指している、
1.新しい技術報告の要約は、現在、簡略版辞典付近の蔵書の雑誌領域にあります(The new Tech Report abstracts are now in the journal area of the library near the abridged dictionary)。
2.閲覧に興味のある方はご署名ださい(Please sign your name by any means that you would be interested in seeing)。
3.登録の最終日は5月31日です(Last day for sign-ups is 31 May)。
図から分かるように、関係328は、エンティティ307とエンティティ306との関係、すなわち可能化、を示している。図3は、複数の核を入れ子状にすることができるが、最も核性のある1つのテキストスパンだけが存在することを例示している。
談話ツリーの構築
談話ツリーはさまざまな方法を用いて生成することができる。DTボトムアップ(DT bottom up)を構築するための方法の単純な例は以下のとおりである:
(1)以下の(a)および(b)によって談話テキストを複数単位に分割する。
(a)単位サイズが分析の目的に応じて変わる可能性がある。
(b)典型的には単位は節である。
(2)各々の単位およびそれぞれの隣接単位を検査する。それらの間に関係が保たれているか?
(3)関係が保たれている場合、その関係に印を付ける。
(4)関係が保たれていない場合、その単位はより高いレベルの関係の境界にある可能性がある。より大きな単位(スパン)同士の間に保たれている関係に注目する。
(5)テキスト中のすべての単位が把握されるまで続ける。
MannおよびThompsonはまた、スキーマ・アプリケーションと呼ばれるブロック構造の構築の第2のレベルを記載している。RSTにおいては、修辞関係が、テキスト上に直接マッピングされず、それらはスキーマ・アプリケーションと呼ばれる構造上に適合され、これらはさらにテキストに適合される。スキーマ・アプリケーションは、(図4によって示されるような)スキーマと呼ばれる、より単純な構造に由来している。各々のスキーマは、テキストの特定の単位が如何にしてより小さなテキスト単位に分解されるかを示している。修辞構造ツリーまたはDTは、スキーマ・アプリケーションの階層システムである。スキーマ・アプリケーションは、いくつかの連続するテキストスパンをリンクさせ、複雑なテキストスパンを作成する。複雑なテキストスパンはさらに、より高レベルのスキーマ・アプリケーションによってリンクされ得る。RSTの主張によれば、すべての一貫した談話の構造を単一の修辞構造ツリーによって記述することができ、その最上位のスキーマによって談話全体を包含するスパンが作成される。
図4は、一局面に従った例示的なスキーマを示す。図4は、ジョイントスキーマが、核から成るが衛星を含まないアイテムのリストであることを示す。図4はスキーマ401~406を示す。スキーマ401は、テキストスパン410とテキストスパン428との状況関係を示す。スキーム402は、テキストスパン420とテキストスパン421とのシーケンス関係、およびテキストスパン421とテキストスパン422とのシーケンス関係を示す。スキーマ403は、テキストスパン430とテキストスパン431との対比関係を示す。スキーマ404は、テキストスパン440とテキストスパン441とのジョイント関係を示す。スキーマ405は、450と451との動機づけ関係、および452と451との可能化関係を示す。スキーマ406は、テキストスパン460とテキストスパン462とのジョイント関係を示す。ジョイント方式の一例が、以下の3つのテキストスパンに関して図4に示される。
1.本日、ニューヨーク首都圏における天候は部分的に晴天となるでしょう(Skies will be partly sunny in the New York metropolitan area today)。
2.温度は華氏80度半ばで湿度はより高くなるでしょう(It will be more humid, with temperatures in the middle 80’s)。
3.今晩、おおむね曇りとなり、華氏65度から70度と低温になるでしょう(Tonight will be mostly cloudy, with the low temperature between 65 and 70)。
図2~図4は、談話ツリーをいくつかのグラフで表示しているが、他の表現も可能である。
図5は、一局面に従った階層型バイナリツリーのノードリンク表現を示す。図5から分かるように、DTの葉部は基本談話単位(EDU)と呼ばれる、連続するが重複しないテキストスパンに相当する。隣接するEDU同士は、関係(たとえば詳述、属性…)によって接続されており、関係によって接続されるより大きな談話単位を形成している。「RSTにおける談話分析は2つのサブタスクを含む。談話セグメンテーションはEDUを識別するタスクであり、談話構文解析は、談話単位をラベル付けされたツリーにリンクするタスクである。」Joty, Shafiq RおよびGiuseppe Carenini, Raymond T Ng,およびYashar Mehdad(2013年)による、「Combining intra-and multi-sentential rhetorical parsing for document-level discourse analysis」(ACL (1), pages 486-496)を参照さ
れたい。
図5は、ツリー上の葉部または終端ノードであるテキストスパンを示しており、図6に示されるテキスト全体に現われる順序で番号付けされている。図5はツリー500を含む。ツリー500は、たとえばノード501~507を含む。ノードは関係性を示す。ノードは、ノード501などの非終端ノードまたはノード502~507などの終端ノードである。図から分かるように、ノード503および504はジョイントの関係性によって関連づけられている。ノード502、505、506および508は核である。点線は、ブランチまたはテキストスパンが衛星であることを示している。これらの関係は灰色のボックスにおけるノードである。
図6は、一局面に従った、図5における表現についての例示的なインデントされたテキストエンコーディングを示す。図6はテキスト600をおよびテキストシーケンス602~604を含む。テキスト600は、コンピュータプログラミングにより適用し易い態様で表わされている。テキストシーケンス602はノード502に対応する。シーケンス603はノード503に対応する。シーケンス604はノード504に対応する。図6においては、「N」は核を示し、「S」は衛星を示す。
談話パーサの例
自動的な談話セグメンテーションはさまざまな方法で実行することができる。たとえば、或るセンテンスを想定すると、セグメンテーションモデルは、センテンスにおける各々の特定のトークンの前に境界が挿入されるべきであるかどうかを予測することによって、複合的な基本談話単位の境界を識別する。たとえば、1つのフレームワークは、センテンス内の各トークンを連続的に独立して考慮に入れる。このフレームワークにおいては、セグメンテーションモデルは、トークンによってセンテンストークンをスキャンし、サポートベクトルマシンまたはロジスティック回帰などの二進法分類を用いて、検査されているトークンの前に境界を挿入することが適切であるかどうかを予測する。別の例においては、タスクは連続的にラベル付けする際の問題である。テキストが基本談話単位にセグメント化されると、センテンスレベルの談話構文解析を実行して談話ツリーを構築することができる。機械学習技術を用いることができる。
本発明の一局面においては、構成要素の構文に依拠するCoreNLPProcessorおよび依存性構文を用いるFastNLPProcessorという2つの修辞構造理論(RST)談話パーサが用いられる。Surdeanu, Mihai & Hicks, Thomas & Antonio Valenzuela-Escarcega, Marcoによ
る「Two Practical Rhetorical Structure Theory Parsers」(2015)を参照された
い。
加えて、上述の2つの談話パーサ、すなわち、CoreNLPProcessorおよびFastNLPProcessorは、自然言語処理(Natural Language Processing:NLP)を構文解析に用いる。た
とえば、Stanford CoreNLPは、会社、人々などの名前であろうとなかろうとスピーチの部分である複数単語の基本形状を提示し、日付、時間および数値量を標準化し、フレーズおよび構文依存の点からセンテンスの構造に印を付け、どの名詞句が同じエンティティを指しているかを示す。実際には、RSTは依然として、談話の多くの場合に機能し得る理論であるが、場合によっては機能しない可能性もある。どんなEDUが一貫したテキスト中にあるか、すなわち、どんな談話セグメンタが用いられているか、どんな関係のインベントリが用いられているか、EDUのためにどんな関係が選択されているか、トレーニングおよびテストのために用いられるドキュメントのコーパス、さらには、どんなパーサが用いられているか、を含むがこれらに限定されない多くの変数が存在している。このため、たとえば、Surdeanu他による上述の論文「Two Practical Rhetorical Structure Theory Parsers」においては、どのパーサがよりよい性能を与えるかを判断するために、特化さ
れたメトリクスを用いて特定のコーパス上でテストを実行しなければならない。このため、予測可能な結果をもたらすコンピュータ言語パーサとは異なり、談話パーサ(およびセグメンタ)は、トレーニングおよび/またはテストのテキストコーパスに応じて、予測不可能な結果をもたらす可能性がある。したがって、談話ツリーは、予測可能な技術(たとえば、コンパイラ)と(たとえば、どの組合わせが所望の結果をもたらし得るかを判断するのに実験が必要となる化学のような)予測不可能な技術とを混合したものとなる。
談話分析が如何に優れているかを客観的に判断するために、たとえば、Daniel Marcuの「The Theory and Practice of Discourse Parsing and Summarization」(MIT Press)
(2000)によるPrecision/Recall/F1(精度/再現度/F1)測定基準などの一連の
メトリクスが用いられている。精度または肯定的な予測値は検索されたインスタンス中の関連するインスタンスのごく一部であるとともに、(感度としても公知である)再現度は、関連するインスタンスの総量にわたって検索された関連するインスタンスのごく一部である。したがって、精度および再現度はともに、関連性についての理解および基準に基づいている。写真中の犬を認識するためのコンピュータプログラムが12匹の犬および何匹かの猫を含む写真中に8匹の犬を識別すると想定する。識別された8匹の犬のうち、5匹は実際に犬(真陽性)であるが残りは猫(擬陽性)である。プログラムの精度は5/8であり、その再現度は5/12である。検索エンジンが30ページを戻すがそのうち20ページしか関連しておらず、追加の関連する40ページを戻してこなかった場合、その精度は20/30=2/3であり、その再現度は20/60=1/3である。したがって、この場合、精度は「検索結果がどれくらい有用であるか」であり、再現度は、「結果はどれくらい完全であるか」である。F1スコア(F-スコアまたはF-基準)はテストの精度の基準である。それは、スコアを計算するためにテストの精度および再現度の両方を考慮に入れる。F1=2x(精度x再現度)/(精度+再現度))であり、精度と再現度との調和平均である。F1スコアは、1(完全な精度および再現度)でその最適値に達し、0で最悪値に達する。
自律型エージェントまたはチャットボット
人Aと人Bとの間の会話は談話の一形式である。たとえば、FaceBook(登録商標)メッセンジャ、WhatsApp(登録商標)、Slack(登録商標)、SMSなどのアプリケーション
が存在し、AとBとの間の会話は、典型的には、より従来型の電子メールおよび音声会話に加えて、メッセージを介するものであってもよい。(知的なボットまたは仮想アシスタントなどと称されることもある)チャットボットは、「知的な」マシンであって、たとえば、人Bと置き換わって、2人の人同士の間の会話をさまざまな程度に模倣する。究極の
目的の一例としては、人Aは、Bが人であるかまたはマシンであるかどうか区別できないようにすることである(1950年にAlan Turingによって開発されたチューリング(Turning)テスト)。談話分析、機械学習を含む人工知能および自然言語処理は、チューリングテストに合格するという長期目標に向かって大きく発展してきた。当然ながら、コンピュータにより、莫大なデータのリポジトリを検索および処理して、予測的分析を含めるようにデータに対して複雑な分析を行うことも次第に可能になってきており、長期目標は、人のようなチャットボットとコンピュータとを組合わせることである。
たとえば、ユーザは、会話のやり取りによってインテリジェント・ボット・プラットホームと対話することができる。会話型ユーザインターフェイス(user interface:UI)と呼ばれるこの対話は、ちょうど2人の人の間で交わされるようなエンドユーザとチャットボットとの間のダイアログである。これは、エンドユーザがチャットボットに「Hello
(こんにちは)」と発言し、チャットボットが「Hi(やあ)」と返答し、さらにチャットボットが用件が何かをユーザに尋ねる、という程度に単純であり得るか、または、1つの口座から別の口座に送金するなどの銀行業務チャットボットによる業務処理上の対話であり得るか、または、休暇バランスをチェックするなどのHRチャットボットでの情報のやり取り、もしくは、返品を如何に処理するかなどの小売りチャットボットでのFAQへの質問であり得る。他のアプローチと組み合わされた自然言語処理(NLP)および機械学習(machine learning:ML)アルゴリズムを用いて、エンドユーザの意図を分類することができる。高レベルの意図はエンドユーザが達成したいこと(たとえば、勘定残高を得て購入する)である。意図は、本質的には、バックエンドが実行すべき作業の単位に入力された顧客のマッピングである。したがって、チャットボットでユーザによって発せられたフレーズに基づいて、これらは、たとえば、残高照会、送金および支出の追跡のための特定の別個の使用事例または作業単位に対してマッピングされるものであり、エンドユーザが自然言語で入力する自由なテキストエントリからどの作業単位がトリガされなければならないかをチャットボットがサポートして解決することができるはずであるすべての「使用事例」である。
AIチャットボットに人のように応答させるための根本的な原理は、人の脳が要求を策定して理解することができるとともに、さらに、マシンよりもはるかに優れた人の要求に対して優れた応答を返すことができる点にある。したがって、人Bが模倣される場合、チャットボットの要求/応答は著しく改善されていなければならない。そうすると、この問題の最初の部分は、人の脳が要求を如何に策定して理解するかである。模倣のためにモデルが用いられる。RSTおよびDTは、これを実行する形式的かつ反復可能な方法を可能にする。
高レベルでは、典型的には、2つのタイプの要求がある。具体的には、(1)何らかの行動を実行するようにとの要求、および(2)情報についての要求(たとえば質問)である。第1のタイプは、作業単位が作成される応答を有する。第2のタイプは、質問に対する応答(すなわち、たとえば、優れた回答)を有する。回答は、たとえばいくつかの局面において、広範囲な知識ベースから、または、インターネットもしくはイントラネットまたは他の公的または私的に利用可能なデータソースを探索することによって最適な既存の回答に一致させることから、回答を構築するAIの形を取り得る。
コミュニケーション用談話ツリーおよび修辞学的分類器
本開示の局面はコミュニケーション用談話ツリーを構築するとともに、コミュニケーション用談話ツリーを用いて、要求または質問の修辞構造が回答に合致しているかどうかを分析する。より具体的には、この明細書中に記載される局面は、要求・応答ペアの表現を作成し、これらの表現を学習し、ペアを有効なペアまたは無効なペアのクラスに関連づける。このような態様で、自律型エージェントはユーザから質問を受取り、たとえば複数の
回答を検索することによって質問を処理し、複数の回答の中から最適な回答を判断して、ユーザに対して回答を提供することができる。
より具体的には、テキストの言語特徴を表現するために、この明細書中に記載される局面は、修辞関係および発話動作(またはコミュニケーション行動)を用いる。修辞関係は、典型的には談話ツリーから得られるセンテンスの部分同士の関係性である。発話動作は、VerbNetなどの動詞リソースからの動詞として得られる。修辞関係およびコミュニケーション行動の両方を用いることによって、この明細書中に記載される複数の局面は、有効な要求・応答ペアを正確に認識することができる。そうするために、複数の局面は、質問の構文構造を回答の構文構造と相互に関連付ける。当該構造を用いることにより、より優れた回答を決定することができる。
たとえば、或る人が特定の特徴を備えたアイテムを販売したいと希望していることを示す表示を自律型エージェントがこの人から受け取った場合、この自律型エージェントは、当該特徴を含んでいるだけではなく購入する意図も示している検索結果を提供するはずである。このような態様で、自律型エージェントはユーザの意図を判断した。同様に、自律型エージェントが特定のアイテムについての情報を共有するようにとの要求を或る人から受取った場合、検索結果は、推薦を受け取る意図を含んでいるはずである。或る人がトピックに関する意見について自律型エージェントに質問する場合、自律型エージェントは、別の意見を求めるのではなく、主題に関する意見を共有する。
要求および応答のペアの分析
図7は、一局面に従った、財産税に関する要求例についての例示的なDTを示す。ノードラベルは関係であり、矢印付きの線は衛星を指している。核は実線である。図7は以下のテキストを示す。
要求:「My husbands’ grandmother gave him his grandfather’s truck. She signed the title over but due to my husband having unpaid fines on his license, he was not able to get the truck put in his name. I wanted to put in my name and paid the property tax and got insurance for the truck. By the time it came to sending off the title and getting the tag, I didn't have the money to do so. Now, due to circumstances, I am not going to be able to afford the truck. I went to the insurance place and was refused a refund. I am just wondering that since I am not going to have a tag on this truck, is it possible to get the property tax
refunded?(私の夫の祖母が彼に彼の祖父のトラックを与えました。彼女は所有権を譲
渡しましたが、私の夫には自身の免許に対する未払いの罰金があったため、彼はトラックを自身の名義に入れることができませんでした。私は自分の名義に入れたかったので、財産税を納付し、トラック用の保険に入りました。所有権を取り寄せて識別票を得るときには、私はそうするだけのお金を持っていませんでした。現在、状況によっては、私はトラックを所有するだけの余裕がなくなるでしょう。私は保険代理店を訪れましたが、払い戻しは拒否されました。私は、このトラックに識別票を付けることができないのであれば、財産税を払い戻してもらうことができるのではないかと考えています)」。
応答:「The property tax is assessed on property that you own. Just because you chose to not register it does not mean that you don't own it, so the tax is not refundable. Even if you have not titled the vehicle yet, you still own it within the boundaries of the tax district, so the tax is payable. Note that all states give you a limited amount of time to transfer title and pay the use tax. If you apply late, there will be penalties on top of the normal taxes and fees.
You don't need to register it at the same time, but you absolutely need to titl
e it within the period of time stipulated in state law(財産税は、あなたが所有する財産に課されるものです。あなたがそれを登録しないことを選択しただけですので、これは、あなたがそれを所有していないことを意味するものではありません。したがいまして、税を払い戻すことはできません。あなたがまだ乗物の権利を得ていないとしても、あなたは依然として課税区画の境界内に当該乗物を所有していますので、税金を払わなくてはなりません。なお、いずれの州においても、所有権の譲渡および利用税の納付のためにあなたに与えられている時間には制限があることに留意してください。あなたの申請が遅れた場合には、普通税および通常料金に加えて罰金が課されることになるでしょう。あなたは、乗物を同時に登録する必要はありませんが、州の法律で規定された期間内に確実にその権利を得る必要があります)」
図7から分かるように、上述のテキストを分析することにより、以下の結果が得られる。「My husbands’ grandmother gave him his grandfather’s truck」は、「I wanted to put in my name」、「and paid the property tax」、および「and got insurance for the truck」という表現によって詳述される「having unpaid fines on his license, he was not able to get the truck put in his name」によって詳述される「She signed the title over but due to my husband」という表現によって詳述される。
「My husbands’ grandmother gave him his grandfather’s truck. She signed the
title over but due to my husband having unpaid fines on his license, he was not
able to get the truck put in his name. I wanted to put in my name and paid the
property tax and got insurance for the truck.」は、「it came to sending off the
title」によって詳述される「By the time」と対比される「to do so」によって詳述さ
れる「I didn't have the money」によって詳述される。
「My husbands’ grandmother gave him his grandfather’s truck. She signed the
title over but due to my husband having unpaid fines on his license, he was not
able to get the truck put in his name. I wanted to put in my name and paid the
property tax and got insurance for the truck. By the time it came to sending off the title and getting the tag, I didn't have the money to do so」は、「I went
to the insurance place」および「and was refused a refund」によって詳述される「I
am not going to be able to afford the truck」によって詳述される「Now, due to circumstances,」と対比される。
「My husbands’ grandmother gave him his grandfather’s truck. She signed the
title over but due to my husband having unpaid fines on his license, he was not
able to get the truck put in his name. I wanted to put in my name and paid the
property tax and got insurance for the truck. By the time it came to sending off the title and getting the tag, I didn't have the money to do so. Now, due to
circumstances, I am not going to be able to afford the truck. I went to the insurance place and was refused a refund.」は、「I am just wondering that since I am not going to have a tag on this truck, is it possible to get the property tax
refunded?」で詳述されている。
「I am just wondering」は、「since I am not going to have a tag on this truck
」という条件を有する「is it possible to get the property tax refunded?」と同じ
単位である「that」に属している。
以上のように、トピックの主な主題は「自動車に対する財産税」である。質問は、一方では、すべての所有物は課税可能であるというのに対して、他方では、所有権がいくらか不完全であるという矛盾を含んでいる。好適な応答により、質問のトピックに対処すると
ともに矛盾を明確にしなければならない。このために、応答者は、登録状態に関係なく所有されるものすべてに関して税金を納付する必要性についてさらに強い請求を行なっている。この例は、Yahoo(登録商標)!Answersの評価ドメインから得られる肯定的なトレーニングセットの一要素である。トピックの主な主題は「自動車に対する財産税」である。質問は、一方では、所有物はすべて課税可能であるのに対して、他方では、所有権はいくらか不完全であるという矛盾を含んでいる。好適な回答/応答により、質問のトピックに対処するとともに矛盾を明確にしなければならない。読み手は、質問が対比の修辞関係を含んでいるので、納得させるために同様の関係で回答をこの質問と一致させなければならないことに気付き得る。他の場合には、この回答はその分野のエキスパートでない人々にとっても不完全に見えるだろう。
図8は、本発明の特定の局面に従った、図7に表わされた質問についての例示的な応答を示す。中心核は、「that you own」によって詳述される「The property tax is assessed on property」である。「The property tax is assessed on property that you own
」はまた、「Just because you chose to not register it does not mean that you don't own it, so the tax is not refundable. Even if you have not titled the vehicle yet, you still own it within the boundaries of the tax district, so the tax is
payable. Note that all states give you a limited amount of time to transfer title and pay the use tax」によって詳述される核である。
核である「The property tax is assessed on property that you own. Just because
you chose to not register it does not mean that you don't own it, so the tax is
not refundable. Even if you have not titled the vehicle yet, you still own it within the boundaries of the tax district, so the tax is payable. Note that all
states give you a limited amount of time to transfer title and pay the use tax.」は、「If you apply late,」という条件付きの「there will be penalties on top of the normal taxes and fees」によって詳述される。これは、さらに、「but you absolutely need to title it within the period of time stipulated in state law」および「You don't need to register it at the same time」という対比によって詳述される。
図7のDTと図8のDTとを比較することで、応答(図8)を要求(図7)と如何に適切に一致させるかを判断することが可能となる。本発明のいくつかの局面においては、上述のフレームワークは、DT間の要求/応答および修辞学的合致についてDTを判断するために、少なくとも部分的に用いられる。
別の例において、「What does The Investigative Committee of the Russian Federation do(ロシア連邦の調査委員会が何を行なったのか」という質問は、たとえば、公式の回答または実際の回答という少なくとも2つの回答を有する。
図9は、一局面に従った公式の回答についての談話ツリーを示す。図9に示されるように、公式回答または声明は、「The Investigative Committee of the Russian Federation is the main federal investigating authority which operates as Russia's Anti-corruption agency and has statutory responsibility for inspecting the police forces, combating police corruption and police misconduct, is responsible for conducting investigations into local authorities and federal governmental bodies.(ロシア連邦の調査委員会は主たる連邦捜査機関であって、ロシアの汚職防止機関として機能するとともに、警察を監査して警察の汚職および警察の違法行動を根絶するための法定上の責任を有しており、地方自治体および連邦行政体の調査を行なう責任を負っている)」と述べている。
図10は、一局面に従った未処理の回答についての談話ツリーを示す。図10に示されるように、別の、場合によってはより正直な回答は以下のとおりである。「Investigative Committee of the Russian Federation is supposed to fight corruption. However,
top-rank officers of the Investigative Committee of the Russian Federation are charged with creation of a criminal community. Not only that, but their involvement in large bribes, money laundering, obstruction of justice, abuse of power, extortion, and racketeering has been reported. Due to the activities of these officers, dozens of high-profile cases including the ones against criminal lords had been ultimately ruined.(ロシア連邦の調査委員会は汚職と戦うよう想定されてい
る。しかしながら、ロシア連邦の調査委員会のトップランクの高官は、犯罪集団の設立の役割を担っている。それだけでなく、これらの高官らが大規模な賄賂、マネーロンダリング、司法妨害、職権乱用、恐喝およびゆすりに関与していることが報告されてきた。これらの職員の活動により、犯罪の大物に関する事例を含むとともに注目を集めた数十の事例は最終的に台無しにされた。」
回答の選択は文脈に依存する。修辞構造は、「公式の(official)」、「政治的に正しい(politically correct)」テンプレートベースの回答と、「実際の(actual)」、「
未処理の(raw)」、「現場からの報告(reports from the field)」または「論争の的
となる(controversial)」回答とを区別することを可能にする(図9および図10を参
照されたい)。時として、質問自体は、どのカテゴリの回答が期待されているかについてのヒントを与えることができる。質問が、第2の意味を持たない類事実または定義的性質をもつ質問として策定されている場合、第1のカテゴリーの回答が適している。他の場合には、質問が、「それが実際に何であるかを私に伝える」という意味を有する場合、第2のカテゴリが適している。一般に、質問から修辞構造を抽出した後、同様の修辞構造、一致した修辞構造、または補足的な修辞構造を有するであろう適切な回答を選択することはより容易である。
公式の回答は、テキストが含む可能性のある議論の点から見て中立的である詳述およびジョイントに基づいている(図を参照)。同時に、未処理の回答は対比関係を含んでいる。エージェントが行うと予想されるものについてのフレーズと、このエージェントが行ったと判明したことについてのフレーズとのこの関係が抽出される。
要求・応答ペアの分類
修辞学的分類アプリケーション102は、回答データベース105または公共のデータベースから得られる回答などの所与の回答または応答が、所与の質問または要求に応答したものであるかどうかを判断することができる。より特定的には、修辞学的分類アプリケーション102は、要求と応答との間で、(i)関連性または(ii)修辞学的合致のうち一方または両方を判断することによって、要求と応答のペアが正確であるかまたは不正確であるかを分析する。修辞学的合致は、直交的に処理することができる関連性を考慮に入れることなく、分析することができる。
修辞学的分類アプリケーション102は、さまざまな方法を用いて、質問・回答ペア間の類似性を判断することができる。たとえば、修辞学的分類アプリケーション102は、個々の質問と個々の回答との間の類似性のレベルを判断することができる。代替的には、修辞学的分類アプリケーション102は、質問および回答を含む第1のペアと質問および回答を含む第2のペアとの間の類似性の基準を判断することができる。
たとえば、修辞学的分類アプリケーション102は、一致する回答または一致しない回答を予測するようにトレーニングされた修辞学的合致分類部120を用いる。修辞学的分類アプリケーション102は一度に2つのペア、たとえば<q1,a1>および<q2,a2>、を処理することができる。修辞学的分類アプリケーション102は、q1をq2
と比較し、a1をa1と比較して、組合わされた類似性スコアを生成する。このような比較は、既知のラベルが付いた別の質問/回答ペアからの距離を評価することによって、未知の質問/回答ペアが正しい回答を含んでいるか否かを判断することを可能にする。特に、ラベル無しのペア<q2,a2>は、q2およびa2によって共有される単語または構造に基づいた正確さを「推測する」のではなく、q2とa2がともに、このような単語または構造を根拠として、ラベル付きのペア<q2,a2>のうちの対応するそれぞれの構成要素q2およびa2と比較することができるように、処理することができる。このアプローチは、ドメインに依存することなく回答を分類することを目標としているので、質問と回答と間の構造上の一体性しか活用することができず、回答の「意味」を活用することができない。
一局面においては、修辞学的分類アプリケーション102は、トレーニングデータ125を用いて、修辞学的合致分類部120をトレーニングする。このような態様で、修辞学的合致分類部120は、質問および回答のペア同士の類似性を判断するようにトレーニングされる。これは分類の問題である。トレーニングデータ125は肯定的なトレーニングセットおよび否定的なトレーニングセットを含み得る。トレーニングデータ125は、肯定的なデータセットにおける一致する要求・応答ペアと、否定的なデータセットにおける任意であるかまたは関連性もしくは適切さがより低い要求・応答ペアとを含む。肯定的なデータセットに関して、回答または応答が質問について適切であるかどうかを示す別個の受諾基準を備えたさまざまなドメインが選択される。
各々のトレーニングデータセットは1セットのトレーニングペアを含む。各々のトレーニングセットは、質問を表現する質問コミュニケーション用談話ツリーと、回答を表現するとともに質問と回答との間の予想される相補性のレベルを表現する回答コミュニケーション用談話ツリーを含む。反復プロセスを用いることにより、修辞学的分類アプリケーション102は、トレーニングペアを修辞学的合致分類部120に提供して、モデルから相補性のレベルを受取る。修辞学的分類アプリケーション102は、特定のトレーニングペアについて、判断された相補性のレベルと予想される相補性のレベルとの間の相違を判断することによって、損失関数を計算する。修辞学的分類アプリケーション102は、損失関数に基づいて、損失関数を最小限にするように分類モデルの内部パラメータを調整する。
受諾基準はアプリケーションに応じて異なる可能性がある。たとえば、受諾基準は、コミュニティ質問回答、自動化された質問回答、自動化された顧客サポートシステム、手動による顧客サポートシステム、ソーシャルネットワークコミュニケーション、ならびに、調査と苦情などの製品についての経験に関する消費者などの個々人による書込みに関しては低い可能性がある。RR受諾基準は、科学技術文書、専門の新聞雑誌、FAQ形式の健康および法律に関する文書、「stackoverflow」などの専門のソーシャルネットワークに
おいては、高い可能性がある。
コミュニケーション用談話ツリー(CDT)
修辞学的分類アプリケーション102は、コミュニケーション用談話ツリーを作成し、分析し、比較することができる。コミュニケーション用談話ツリーは、修辞情報を発話動作構造と組合わせるように設計されている。CDTは、コミュニケーション行動についての表現でラベル付けされた円弧を含む。コミュニケーション行動を組合わせることにより、CDTは、RST関係およびコミュニケーション行動のモデリングを可能にする。CDTはパース交錯の縮図である。Galitsky、B. Ilvovsky、D. Kuznetsov SOによる「Rhetoric Map of an Answer to Compound Queries Knowledge Trail Inc. ACL 2015,681-686(Galitsky(2015))を参照されたい。パース交錯は、センテンスについてのパースツリーを1つのグラフにおけるセンテンスの単語と部分との談話レベル関係と組合わせたも
のである。発話動作を識別するラベルを組込むことにより、コミュニケーション用談話ツリーの学習が、基本談話単位(EDU)の構文および適正な修辞関係よりもより豊富な特徴セットにわたって実行可能となる。
一例においては、民間航空機であるマレーシア航空会社17便の撃墜の原因に関して3つの当事者間でなされた議論が分析される。やり取りされている議論のRST表現が構築される。この例においては、3つの相争っているエージェントであるオランダの調査員、ロシア連邦の調査委員会および自称ドニエツク人民共和国が問題に関する彼らの意見を交換している。この例が示している論争の的になっている対立においては、各々の当事者が皆それぞれの相手方を非難する恐れがある。より説得力があるように思わせるために、各々の当事者は自身の請求を行うだけではなく、相手方の請求を拒絶するように応答を策定している。この目的を達成するために、各々の当事者は、相手方の請求のスタイルおよび談話と一致させるよう試みる。
図11は、一局面に従った、第1のエージェントの請求についてのコミュニケーション用談話ツリーを示す。図11は、以下のテキストを表わすコミュニケーション用談話ツリー100を示す。「Dutch accident investigators say that evidence points to pro-Russian rebels as being responsible for shooting down plane. The report indicates
where the missile was fired from and identifies who was in control of the territory and pins the downing of MH17 on the pro-Russian rebels.(オランダの事故調査員は、証拠が、飛行機の撃墜をロシア支持派の反乱分子によるものであると示唆していると述べている。この報告書は、ミサイルが発射された場所を示しており、誰が領域を制圧していたかを識別し、MH17の撃墜の責任をロシア支持派の反乱分子に負わせている。)」
図11から分かるように、CDTの非終端ノードは修辞関係であり、終端ノードは、これらの関係の主題である基本談話単位(フレーズ、センテンスフラグメント)である。CDTのいくつかの円弧は、行動者であるエージェント、およびこれらの行動の主題(やり取りされていること)を含むコミュニケーション行動についての表現でラベル付けされている。たとえば、(左側の)詳細関係についての核ノードは、say(Dutch, evidence)でラベル付けされており、衛星は、responsible(rebels, shooting down)でラベル付けされている。これらのラベルは、EDUの主題がevidence(証拠)およびshooting down(
撃墜)であることを表すように意図されたものではなく、このCDTと他のものとの間の類似性を見出す目的でこのCDTを他のものと一致させるように意図されている。この場合、コミュニケーション用談話の情報を提供するのではなく修辞関係によってこれらのコミュニケーション行動を単にリンクさせることは、あまりに制限され過ぎていて、やり取りされている物およびその方法についての構造を表わすことができない。同じ修辞関係または調整された修辞関係を有するべきというRRペアについての要件は弱すぎるため、ノード同士を一致させることに加えて円弧に関するCDTラベル同士を合致させることが必要となる。
このグラフの真っ直ぐなエッジは構文関係であり、湾曲した円弧は、前方照応、同じエンティティ、サブエンティティ、修辞関係およびコミュニケーション行動などの談話関係である。このグラフは、単なる個々のセンテンスについてのパースツリーの組合わせよりもはるかに豊富な情報を含んでいる。CDTに加えて、パース交錯は、単語、関係、フレーズおよびセンテンスのレベルで一般化することができる。発話行動は、それぞれの発話動作およびそれらの主題に関与するエージェントを表わす論理述語である。論理述語の議論は、VerbNetなどのフレームワークによって提案されるように、それぞれの意味役割に従って形成される。Karin Kipper、Anna Korhonen、Neville Ryant、Martha Palmerによる「A Large-scale Classification of English Verbs」(Language Resources and
Evaluation Journal, 42(1), 21-40,Springer Netherland, 2008)を参照されたい。お
よび/または、Karin Kipper Schuler、Anna Korhonen、Susan W. Brownによる「VerbNet overview, extensions, mappings and apps」(Tutorial, NAACL-HLT: 2009, Boulder,
Colorado)を参照されたい。
図12は、一局面に従った、第2のエージェントの請求についてのコミュニケーション用談話ツリーを示す。図12は、以下のテキストを表わすコミュニケーション用談話ツリー1200を示す。「The Investigative Committee of the Russian Federation believes that the plane was hit by a missile, which was not produced in Russia. The committee cites an investigation that established the type of the missile.(ロシア連邦の調査委員会は、飛行機がロシアで生産されたものではないミサイルによって攻撃されたと信じている。委員会は、ミサイルの種類を立証した調査を引用している。)」
図13は、一局面に従った、第3のエージェントの請求についてのコミュニケーション用談話ツリーを示す。図13は、以下のテキストを表わすコミュニケーション用談話ツリー1300を示す。「Rebels, the self-proclaimed Donetsk People's Republic, deny that they controlled the territory from which the missile was allegedly fired. It became possible only after three months after the tragedy to say if rebels controlled one or another town.(反乱分子である自称ドニエツク人民共和国は、彼らが、ミサイルが発射されたと主張されている領域を制圧していたことを否定している。反乱分子が或る町または別の町を制圧していたかどうかは、悲劇の後に3か月経った後にしか発表することができなかった。)」
コミュニケーション用談話ツリー1100~1300から分かるように、応答は任意ではない。応答は、元のテキストと同じエンティティについて述べている。たとえば、コミュニケーション用談話ツリー1200および1300はコミュニケーション用談話ツリー1100に関係している。応答は、これらのエンティティについての、かつこれらのエンティティの行動についての、推定および感情との不合致を裏づけしている。
より具体的には、関与するエージェントの返答は、第1のシードメッセージのコミュニケーション用談話を反映させる必要がある。単純な観察結果として、第1のエージェントが自身の請求を伝えるための属性を用いるので、他のエージェントは、その一式に従って、彼ら自身の属性を提供するかもしくは支持者の属性の有効性を攻撃するかまたはこれらの両方を行う。シードメッセージのコミュニケーション構造を如何にして連続メッセージに保持する必要があるかについて、広くさまざまな特徴を捕らえるために、それぞれのCDTのペアを学習することができる。
要求・応答の合致を検証するためには、談話関係または発話動作(コミュニケーション行動)だけではしばしば不十分である。図11~図13に示される例からから分かるように、エージェント間の対話の談話構造および対話の種類は有用である。しかしながら、対話のドメイン(たとえば、軍事衝突もしくは政治)またはこれらの対話の主題(つまりエンティティ)を分析する必要はない。
修辞関係およびコミュニケーション行動の表現
抽象的な構造同士の間の類似性を演算するために、2つのアプローチがしばしば用いられる。(1)これらの構造を数値空間で表わすとともに類似性を数として表す(統計学習アプローチ);または、(2)数値空間ではなくツリーおよびグラフなどの構造表現を用いて、最大の共通サブ構造として類似性を表現する。最大の共通サブ構造として類似性を表わすことは一般化と称される。
コミュニケーション行動を学習することは、議論の表現および理解を助ける。計算用動詞レキシコンは、行動についてのエンティティの取得をサポートするとともに、それらの意味を示すためにルールベースの形式を提供するのを助ける。動詞は、記載されているイ
ベントのセマンティックスとともに、そのイベントにおける関与者間の関係情報を表わして、その情報をエンコードする構文構造を投影している。動詞、特にコミュニケーション行動動詞は極めて変動し易く、豊富な範囲の意味論的挙動を表示することができる。これに応じて、動詞分類は、学習システムが、コアの意味論的特性を共有している動詞をグループごとに組織化することによって、この複雑さに対処することを助ける。
VerbNetはこのような1レキシコンであって、各々のクラス内における動詞の意味論的役割および構文的パターン特徴を識別するとともに、構文的パターンとクラスのうちすべてのメンバについて推論することができる基礎をなす意味論的関係との間のつながりを明確にする。Karin Kipper、Anna Korhonen、Neville RyantおよびMartha Palmerに
よる「Language Resources and Evaluation」(Vol.42, No. 1 (March 2008) 21)を参
照されたい。クラスについての各々の構文フレームまたは動詞シグネチャは、イベントのコースにわたるイベント関与者間の意味論的関係を詳しく述べる、対応する意味論的表現を有する。
たとえば、「楽しませる(amuse)」という動詞は、驚かせる(amaze)、怒らせる(anger)、何らかの感情を喚起する(arouse)、邪魔する(disturb)、いらいらさせる(irritate)などの議論(意味論的役割)の同様の構造を有する同様の動詞のクラスタの一部である。これらのコミュニケーション行動の議論の役割は、Experiencer(経験者)(通
常、生きている実体)、Stimulus(刺激)およびResult(結果)である。各々の動詞は、この動詞が如何にセンテンスまたはフレーム内に現れているかについての構文特徴によって区別される意味のクラスを有し得る。たとえば、「amuse」のためのフレームは、以下
のとおり、以下の主要な名詞句(NP)、名詞(N)、コミュニケーション行動(V)、動詞句(VP)、副詞(ADV)を用いている。
NP V NP。例:「教師は子供たちを楽しませた(The teacher amused the children)」。構文:Stimulus V Experiencer。節:amuse(Stimulus, E, Emotion, Experiencer), cause(Stimulus, E), emotional_state(Result(E), Emotion, Experiencer)。
NP V ADV-Middle:例:「Small children amuse quickly(小さな子供たちは
直ちに楽しむ)」。構文:Experiencer V ADV。節:amuse(Experiencer, Prop):-, property(Experiencer, Prop), adv(Prop)。
NP V NP-PRO-ARB。例「The teacher amused(教師は楽しんだ)」。構文:Stimulus V. amuse(Stimulus, E, Emotion, Experiencer): cause(Stimulus, E), emotional_state(Result(E), Emotion, Experiencer)。
NPcause V NP。例「The teacher's dolls amused the children(教師の人形は子供を楽しませた)」。構文:Stimulus <+genitive>('s) V Experiencer。 amuse(Stimulus, E, Emotion, Experiencer): cause(Stimulus, E), emotional_state(during(E), Emotion, Experiencer)。
NP V NP ADJ。例「This performance bored me totally(この性能は私を
完全にうんざりさせた)」。構文:Stimulus V Experiencer Result。amuse(Stimulus, E, Emotion, Experiencer)。cause(Stimulus,E), emotional_state(result(E), Emotion, Experiencer), Pred(result(E), Experiencer)。
コミュニケーション行動は複数のクラスタに特徴付けることができる。たとえば、述語的な補足語を備えた動詞(appoint(指定する)、characterize(特徴付ける)、dub(名称を付ける)、declare(宣言する)、conjecture(推測する)、masquerade(変装する
)、orphan(孤児にする)、captain(キャプテンを務める)、consider(考慮する)、classify(分類する));知覚動詞(see(見る)、sight(観測する)、peer(凝視する
));精神状態の動詞(amuse(楽しませる)、admire(賞賛する)、marvel(驚嘆する
)、appeal(アピールする));要望の動詞(want(欲する)、long(切望する));判断動詞(judgment(判断));評価の動詞(assess(評価する)、estimate(推定する));探索の動詞(hunt(狩る)、search(探索する)、stalk(忍び寄る)、investigate(調査する)、rummage(くまなく探す)、ferret(狩り出す));社会的対話の動詞(correspond(応答する)、marry(結婚する)、meet(会う)、battle(戦う));コミュニケーションの動詞(transfer(message)((メッセージを)伝達する)、inquire(照会する)、interrogate(尋問する)、tell(伝える)、態様(speaking:発話)、talk(
話す)、chat(閑談する)、say(言う)、complain(苦情を訴える)、advise(助言す
る)、confess(告白する)、lecture(講義する)、overstate(誇張する)、promise(約束する));回避動詞(avoid(回避する));測定動詞(register(記録する)、cost(費用がかかる)、fit(適合させる)、price(値をつける)、bill(請求する));
相動詞(begin(開始する)、complete(完成する)、continue(継続する)、stop(止
まる)、establish(確立する)、sustain(維持する))がある。
この明細書中に記載される局面は、統計学習モデルに勝る利点を備えている。統計的な解決策とは対照的に、分類システムを用いる局面は、(修辞学的合致などの)目的の特徴をもたらすと判断される動詞または動詞状構造を提供することができる。たとえば、統計機械学習モデルは、解釈を困難にする可能性のある類似性を数として表わす。
要求・応答ペアの表現
要求・応答ペアを表現することは、或るペアに基づいた分類ベースの動作を促進する。一例においては、要求・応答ペアはパース交錯として表わすことができる。パース交錯は、1つのグラフにおけるセンテンスの単語と部分との間の談話・レベル関係を用いて、2つ以上のセンテンスについてのパースツリーを表わしたものである。Galitsky(2015)を参照されたい。質問と回答との間の話題の類似性は、パース交錯の共通のサブグラフとして表わすことができる。共通のグラフノードの数が多ければ多いほど、類似性は高くなる。
図14は、一局面に従ったパース交錯を示す。図14は、要求1401についてのパースツリーと対応する応答1402についてのパースツリーとを含むパース交錯1400を示す。
パースツリー1401が表している質問は以下のとおりである。「I just had a baby and it looks more like the husband I had my baby with. However it does not look
like me at all and I am scared that he was cheating on me with another lady and
I had her kid. This child is the best thing that has ever happened to me and I
cannot imagine giving my baby to the real mom.(私は赤ん坊を出産したところで、
夫との間にできたこの赤ん坊が夫により似ているように思えます。でも、赤ん坊は私に全く似ておらず、彼が私を裏切って別の女性と浮気してできた彼女の子供を世話しているのではないかと脅えています。この子供はこれまでに私の身に起こったことのうち最良のことなので、私は本当の母親に赤ん坊を譲り渡すことは想像できません。)」
応答1402が表わす応答は以下のとおりである。「Marital therapists advise on dealing with a child being born from an affair as follows. One option is for the husband to avoid contact but just have the basic legal and financial commitments. Another option is to have the wife fully involved and have the baby fully integrated into the family just like a child from a previous marriage.(結婚に関するセラピストは、ある情事から生まれてきた子供への対処について以下のように助言してい
ます。1つのオプションは、夫との接触を避けて、基本的な法的および財政的義務だけを果たさせることです。別のオプションは、妻に十分に関与させて、赤ん坊を前の結婚からできた子供のように家族に完全に溶け込ませることです)」。
図14は、テキストのパラグラフについての言語情報を表わすための貪欲なアプローチを表わす。このグラフの真っ直ぐなエッジは構文関係であり、湾曲した円弧は、前方照応、同じエンティティ、サブエンティティ、修辞関係およびコミュニケーション行動などの談話関係である。実線の円弧は、同じエンティティ/サブエンティティ/前方照応関係についてのものであり、点線の円弧は修辞関係およびコミュニケーション行動についてのものである。真っ直ぐなエッジにある楕円形のラベルは構文関係を示している。補題はノードのための箱内に書かれており、補題形式はノードの右側に書かれている。
パース交錯1400は単なる個々のセンテンスについてのパースツリーの組合わせよりはるかに豊富な情報を含んでいる。構文関係についてのエッジおよび談話関係についての円弧に沿ったこのグラフによるナビゲーションは、他のパース交錯と一致させてテキスト類似性評価タスクを実行するために所与のパース交錯を意味論的に等価な形式に変換することを可能にする。パラグラフの完全な形式上の表現を形成するために、可能な限り多くのリンクが表わされる。談話円弧の各々は、潜在的な一致になり得るパースフレーズのペアを生成する。
シード(要求)と応答との間のトピックの類似性はパース交錯の共通のサブグラフとして表わされる。これらは接続されたクラウドとして視覚化される。共通のグラフノードの数が多ければ多いほど、類似性は高くなる。修辞学的合致については、共通のサブグラフは、所与のテキストにある場合には、大きくする必要がない。しかしながら、シードおよび応答の修辞関係およびコミュニケーション行動が相互に関連付けられて、対応関係が必要となる。
コミュニケーション行動についての一般化
2つのコミュニケーション行動AとAとの間の類似性は、AとAとの間で共通である特徴を所有する抽象動詞として規定される。2つの動詞の類似性を抽象動詞のような構造として定義することにより、修辞学的合致の評価などの帰納的学習タスクがサポートされる。一例においては、agree(合致する)およびdisagree(合致しない)という共
通の2つの動詞間の類似性を以下のように一般化することができる。agree ^ disagree =
verb(Interlocutor, Proposed_action, Speaker)。この場合、Interlocutor(対話)は、Proposed_actionをSpeaker(話し手)に提案した人であって、この人に対してSpeaker
が自身の応答を伝えている。さらに、proposed_actionは、要求または提案を受諾するか
または拒絶する場合にSpeakerが実行するであろう行動であり、Speakerは、特定の行動が提案された対象の人であって、なされた要求または提案に応える人である。
さらに別の例においては、agree(合致する)とexplain(説明する)という動詞間の類似性は以下のとおりとなる:agree ^ explain = verb(Interlocutor, *, Speaker)。コ
ミュニケーション行動の主題はコミュニケーション行動の文脈において一般化されているが、他の「物理的な」行動では一般化されない。したがって、局面は、対応する主題とともにコミュニケーション行動の個々の発生を一般化する。
加えて、ダイアログを表わすコミュニケーション行動のシーケンスは、同様のダイアログの他のこのようなシーケンスと比較することができる。このような態様で、ダイアログの動的な談話構造と同様に個々のコミュニケーション行動の意味も(修辞関係によって反映されるその静的構造とは対照的に)表現される。一般化は各レベルで起こる複合的な構造的表現である。コミュニケーション行動の補題は、補題で一般化されており、その意味
的役割はそれぞれの意味的役割で一般化されている。
コミュニケーション行動は、ダイアログまたは対立の構造を示すために、テキストの著者によって用いられる。Searle, J. R.(1969)による「Speech acts: an essay in the philosophy of language」(Cambridge University Press)を参照されたい。主題は、これらの行動の文脈において一般化されており、他の「物理的な」行動では一般化されない。したがって、コミュニケーション行動の個々の出現は、それらの主題およびそれらのペアでも談話「ステップ」として一般化される。
VerbNetなどの動詞フレームと一致させる観点からも、コミュニケーション行動の一般化について考察することができる。コミュニケーション用リンクは、テキストにおける単一のエージェントよりも、参加(または言及)により関連付けられた談話構造を反映している。リンクは、コミュニケーション行動についての単語(人の伝達意図を暗示的に示す動詞または多数の単語)を接続するシーケンスを形成する。
コミュニケーション行動は、行動者と、それら行動者に対して働きかける1つ以上のエージェントと、この行動の特徴を記述するフレーズとを含む。コミュニケーション行動は、形式の機能として記載することができる:動詞(エージェント、主題、原因)。この場合、動詞は、関与するエージェント同士の間における何らかのタイプの対話(たとえば、explain(説明する)、confirm(確認する)、remind(思い出させる)、disagree(合致しない)、deny(否定する)など)を特徴付ける。主題は、伝えられた情報または記載された目的語を指す。原因は、主題についての動機づけまたは説明を指す。
シナリオ(ラベル付きの有向グラフ)は、パース交錯G=(V,A)のサブグラフである。この場合、V={action、action、…action}は、コミュニケーション行動に対応する頂点の有限集合であり、Aは、以下のように分類されるラベル付きの円弧(順序付けされた頂点のペア)の有限集合である。
各々の円弧action、action∈Asequenceは、同じ主題(たとえばs=sまたはさまざまな主題)を参照する2つの行動v、ag、s、cおよびv、ag、s、cに対応している。各々の円弧action、action∈Acauseは、actionの原因がactionの主題または原因と対立していることを示すactionとactionとの攻撃関係に対応している。
エージェント同士の間の対話のシナリオに関連付けられたパース交錯のサブグラフはいくつかの顕著な特徴を有する。たとえば、(1)すべての頂点は時間で順序づけられており、このため、(最初の頂点および終端の頂点を除いた)すべての頂点には1つの入来する円弧および1つの外向き円弧が存在する。(2)Asequenceの円弧の場合、最大でも1つの入来する円弧および1つの外向き円弧だけが許容される。(3)Acause円弧の場合、入来する多くの円弧だけでなく、所与の頂点からの多くの外向き円弧も存在し得る。関与する頂点は、異なるエージェントまたは同じエージェント(つまりこのエージェントが自分自身と矛盾している場合)に関連付けられてもよい。パース交錯とそれらのコミュニケーション行動との間の類似性を演算するために、誘導されたサブグラフ、円弧の同様のラベルと同じ構成を有するサブグラフおよび頂点の厳密な対応関係が分析される。
以下の類似性は、パース交錯のコミュニケーション行動の円弧を分析することによって存在する。(1)T2からの主題付き別のコミュニケーション行動に対する、T1からの主題付き1つのコミュニケーション行動(コミュニケーション行動の円弧は用いられない)、および、(2)T2からの別のペアのコミュニケーション行動と比較される、T1か
らの主題付きの1ペアのコミュニケーション行動(コミュニケーション行動の円弧が用いられる)。
2つの異なるコミュニケーション行動の一般化はそれらの属性に基づいている。Galitsky他(2013)を参照されたい。図14に関連付けて説明した例から分かるように、T1からの1つのコミュニケーション行動、すなわちcheating(husband, wife, another lady)は、T2からの第2のコミュニケーション行動、すなわちavoid(husband, contact(husband, another lady)と比較することができる。一般化の結果、communicative_action(husband,*)となり、これにより、所与のエージェント(= husband)がQにおいてCAの
主題として言及される場合に、彼(彼女)がAにおける(場合によっては別の)CAの主題でもあるべきという形式の制約がAに対して導入される。2つのコミュニケーション行動は常に一般化することができるが、これはそれらの主題の場合には該当しない。それらの一般化の結果が空である場合、これらの主題を備えたコミュニケーション行動の一般化の結果も空となる。
RST関係の一般化
談話ツリー同士の間のいくつかの関係は一般化することができ、同じタイプの関係(対照などの表示関係、条件などの主題関係、およびリストなどの多核の関係)を表わす円弧などは一般化することができる。核または核によって示される状況は、「N」によって示される。衛星または衛星によって示される状況は、「S」によって示される。「W」は書き手を示す。「R」は読み手(聞き手)を示す。状況は、提案、完了した行動または進行中の行動、ならびにコミュニケーション行動および状態(beliefs(信念)、desires(要望)、approve(承認する)、explain(説明する)、reconcile(和解させる)などを含
む)である。上述のパラメータによる2つのRST関係の一般化は以下のように表わされる:
rst1(N1,S1,W1,R1) ^ rst2(N2,S2,W2,R2)=
(rst1 ^ rst2)(N1 ^ N2,S1 ^ S2,W1 ^ W2,R1 ^ R2).
N1、S1、W1、R1におけるテキストはフレーズとして一般化される。たとえば、rst1 ^ rst2は以下のように一般化することができる。(1)relation_type(rst1)!= relation_type(rst2)である場合、一般化は空である。(2)その他の場合には、修辞関係のシグネチャがセンテンスとして一般化される。
sentence(N1,S1,W1,R1) ^ sentence(N2,S2,W2,R2)
Iruskieta、Mikel、Iria da CunhaおよびMaite Taboadaによる「A qualitative comparison method for rhetorical structures: identifying different discourse structures in multilingual corpora」(Lang Resources & Evaluation. June 2015, Volume 49, Issue 2)を参照されたい。
たとえば、the meaning of rst-background ^ rst-enablement= (S increases the ability of R to comprehend an element in N) ^ (R comprehending S increases the ability of R to perform the action in N) = increase-VB the-DT ability-NN of-IN R-NN to-IN。
また、rst-background ^ rst-enablementの関係はさまざまであるので、RST関係部
分は空である。次いで、それぞれのRST関係の動詞的定義である表現が一般化される。たとえば、各々の単語ごとに、またはエージェントなどの単語についてのプレースホルダに関して、この単語(そのPOSを備える)は、その単語が各々の入力されたフレーズにおいて同じであれば保持され、その単語がこれらのフレーズ間で異なっていればその単語を除外する。結果として生ずる表現は、形式的に取得される2つの異なるRST関係の定義間で共通の意味として解釈することができる。
図14に示される質問と回答との間の2つの円弧が、RST関係「RST-対比」に基づいた一般化インスタンスを示す。たとえば、「I just had a baby」は、「it does not
look like me」とのRST-対比であり、さらには、「have the basic legal and financial commitments」とのRST-対比である「husband to avoid contact」に関連して
いる。上記から分かるように、回答は、質問の動詞句に類似している必要はないが、質問および回答の修辞構造は類似している。回答内のすべてのフレーズが必ずしも質問におけるフレーズと一致するとは限らない。たとえば、一致しないフレーズは、質問におけるフレーズに関連する回答内のフレーズとの特定の修辞関係を有している。
コミュニケーション用談話ツリーの構築
図15は、一局面に従った、コミュニケーション用談話ツリーを構築するための例示的なプロセスを示す。修辞学的分類アプリケーション102はプロセス1500を実現することができる。上述のように、コミュニケーション用談話ツリーは改善された検索エンジン結果を可能にする。
ブロック1501では、プロセス1500はフラグメントを含むセンテンスにアクセスするステップを含む。少なくとも1つのフラグメントは動詞および複数の単語を含む。各々の単語は、フラグメント内における複数の単語の役割を含む。各々のフラグメントは基本談話単位である。たとえば、修辞学的分類アプリケーション102は、図13に関連付けて記載されるように、「Rebels, the self-proclaimed Donetsk People's Republic, deny that they controlled the territory from which the missile was allegedly fired」などのセンテンスにアクセスする。
上述の例に続けて、修辞学的分類アプリケーション102は、センテンスがいくつかのフラグメントを含んでいると判断する。たとえば、第1のフラグメントは、「Rebels, …, deny」である。第2のフラグメントは「that they controlled the territory」である。第3のフラグメントは、「from which the missile was allegedly fired」である。各々のフラグメントは、動詞(たとえば、第1のフラグメントについての「deny」および第2のフラグメントについての「controlled」)を含んでいる。ただし、フラグメントは動詞を含んでいる必要はない。
ブロック1502では、プロセス1500は、センテンスフラグメント間の修辞関係を表わす談話ツリーを生成するステップを含む。談話ツリーは複数ノードを含む。各々の非終端ノードは、センテンスフラグメントのうちの2つのセンテンスフラグメント間の修辞関係を表わし、談話ツリーの複数ノードのうちの各終端ノードはセンテンスフラグメントのうちの1つに関連付けられている。
上述の例に続けて、修辞学的分類アプリケーション102は図13に示されるような談話ツリーを生成する。たとえば、第3のフラグメントである「from which the missile was allegedly fired」は、「that they controlled the territory」を詳述している。第2のフラグメントおよび第3のフラグメントはともに、起こった(すなわち、反乱分子が領域を制圧していないのでその攻撃は反乱分子ではあり得なかった)ことの属性に関係している。
ブロック1503においては、プロセス1500は多数の動詞シグネチャにアクセスするステップを含む。たとえば、修辞学的分類アプリケーション102は、たとえばVerbNetからの動詞のリストにアクセスする。各々の動詞は、フラグメントの動詞と一致するかまたはフラグメントの動詞と関係がある。たとえば、第1のフラグメントの場合、動詞は「deny」である。したがって、修辞学的分類アプリケーション102は、動詞「de
ny」に関係のある動詞シグネチャのリストにアクセスする。
上述のとおり、各々の動詞シグネチャは、フラグメントの動詞および主題役割の1つ以上を含んでいる。たとえば、シグネチャは、名詞句(NP)、名詞(N)、コミュニケーション行動(V)、動詞句(VP)または副詞(ADV)のうち1つ以上を含む。主題役割は、動詞と関連する単語との関係を記述している。たとえば、「The teacher amused the children」は、「small children amuse quickly」とは異なるシグネチャを有する。
第1のフラグメントである動詞「deny」の場合、修辞学的分類アプリケーション102は、フレームのリスト、または、「deny」に一致する動詞についての動詞シグネチャにアクセスする。リストは「NP V NP to be NP」、「NP V that S」、および「NP V NP」である。
各々の動詞シグネチャは主題役割を含む。主題役割は、センテンスフラグメントにおける動詞の役割を指している。修辞学的分類アプリケーション102は、各々の動詞シグネチャにおける主題役割を判断する。例示的な主題役割は、「actor」(行動者)、「agent」(エージェント)、「asset」(アセット)、「attribute」(属性)、「beneficiary
」(受益者)、「cause」(原因)、「location destination source」(位置宛先送信元)、「destination」(宛先)、「source」(源)、「location」(位置)、「experiencer」(経験者)、「extent」(程度)、「instrument」(器具)、「material and product」(材料および製品)、「material」(材料)、「product」(製品)、「patient」(患者)、「predicate」(述語)、「recipient」(受取側)、「stimulus」(刺激)、「theme」(テーマ)、「time」(時間)または「topic」(トピック)を含む。
ブロック1504において、プロセス1500は、動詞シグネチャのうちの各動詞シグネチャごとに、フラグメントにおける単語の役割と一致するそれぞれのシグネチャの主題役割の数を判断するステップを含む。第1のフラグメントの場合、修辞学的分類アプリケーション102は、動詞「deny」が「agent」、「verb」および「theme」という3つの役割しか持たないと判断する。
ブロック1505において、プロセス1500は、最多数の一致を有する特定の動詞シグネチャに基づいて動詞シグネチャから特定の動詞シグネチャを選択するステップを含む。たとえば、図13を再び参照すると、第1のフラグメントである「the rebels deny that they controlled the territory」における「deny」は、動詞シグネチャdeny「NP V NP」に一致しており、「control」はcontrol(rebels, territory)に一致している。動詞シグネチャは入れ子状にされており、結果として、「deny(rebel, control(rebel, territory))」という入れ子状にされたシグネチャが得られる。
要求・応答の表現
要求・応答ペアは、単独でまたはペアとして分析することができる。一例において、要求・応答ペアをつなぎ合わせることができる。つなぎ合わせの際に、修辞学的合致は、連続するメンバー間だけでなく、3つのメンバー間および4タプルのメンバー間でも保持されると予想される。談話ツリーは要求・応答ペアのシーケンスを表すテキストのために構築することができる。たとえば、顧客苦情のドメインにおいては、要求および応答は、苦情を申し立てた顧客の観点から見て同じテキスト内にある。顧客苦情テキストは、要求および応答テキスト部分に分割することができ、次いで、肯定的なデータセットおよび否定的なデータセットのペアを形成することができる。一例においては、支持者についてのすべてのテキストおよび相手方についてのすべてのテキストが組合わされる。以下の各パラグラフのうちの第1のセンテンスは(3つのセンテンスを含むであろう)要求部分を形成することとなり、各パラグラフの第2のセンテンスは、(この例においては3つのセンテンスを含むであろう)応答部分を形成することとなる。
図16は、一局面に従った、談話ツリーおよびシナリオグラフを示す。図16は、談話ツリー1601およびシナリオグラフ1602を示す。談話ツリー1601は以下の3つのセンテンスに対応する。
(1)私は、(私が預金した後に記入した)私の小切手が不渡りになったことを説明した。顧客サービス代表は、預金を処理するのに通常いくらか時間がかかることを認めた(I explained that my check bounced (I wrote it after I made a deposit). A customer service representative accepted that it usually takes some time to process the
deposit.)。
(2)私は、1か月前に同様の状況で超過引出し料金を不当に請求されたことを思い出した。彼らは、超過引出し料金が私の口座情報に開示されていたのでそれが不当であったことを否定した(I reminded that I was unfairly charged an overdraft fee a month ago in a similar situation. They denied that it was unfair because the overdraft
fee was disclosed in my account information.)。
(3)私は彼らの料金に同意せず、この料金が私の口座に返却されることを希望した。彼らは、この時点で何も行うことができないこと、および、私が口座規則をより綿密に調べる必要があることを説明した(I disagreed with their fee and wanted this fee deposited back to my account. They explained that nothing can be done at this point
and that I need to look into the account rules closer.)。
図16における談話ツリーから分かるように、テキストが対話または説明を表わしているかどうか判断することは判定が困難であるかもしれない。したがって、パース交錯のコミュニケーション行動の円弧を分析することによって、テキスト間の暗黙的な類似性を発見することができる。たとえば、一般的な条件では、
(1)第2のツリーからの主題付きの別のコミュニケーション行動に対する、第1のツリーからの主題付きの1つのコミュニケーション行動(コミュニケーション行動の円弧は用いられていない)。
(2)第2のツリーからの別のペアのコミュニケーション行動に対する、第1のツリーからの主題付きの1ペアのコミュニケーション行動(コミュニケーション行動の円弧が用いられている)。
たとえば、上述の例においては、cheating(husband, wife, another lady) ^ avoid(husband, contact(husband, another lady))の一般化は、我々にcommunicative_action(husband, *)を提供し、これにより、所与のエージェント(=husband)がQにおいてCAの
主題として言及される場合、彼(彼女)がAにおける(場合によっては別の)CAの主題でもあるべきという形式の制約がAに対して導入される。
CAの主題を表す単語の意味を扱うために、ある単語を、「word2vector」モデルなどのベクトルモデルに適用することができる。より具体的には、コミュニケーション行動の主題間の一般化を演算するために、以下の規則を用いることができる:subject1=subject2であれば、subject1^subject2 = <subject1, POS(subject1), 1>である。こ
の場合、主題は残ってままであり、スコアは1である。その他の場合、主題が同じpart-of-speech(POS)を有する場合、subject1^subject2 = <*, POS(subject1), word2vecDistance(subject1^subject2)>となる。ここで、「*」は、補題がプレースホルダであることを示しており、スコアはこれらの単語間のword2vec距離である。POSが異なっている場合、一般化は空のタプルであるとともに、さらに一般化されない可能性もある。
要求・応答ペアのための分類設定
従来の検索では、基準線として、要求・応答ペア間の一致は、単語出現頻度に対する逆文書頻度(term frequency-inverse document frequency)の略であるTF*IDFなど
のキーワード統計の観点から測定することができる。検索の関連性を改善させるために、このスコアは、アイテム人気度、アイテム位置または分類学ベースのスコア(Galitsky(2015))によって強化される。検索も、機械学習フレームワークにおける経路の再ランク付け問題として策定することができる。特徴空間は、要求・応答ペアを要素として含んでおり、分離超平面は、この特徴空間を正確なペアと不正確なペアとに分割する。したがって、検索の問題は、ReqとRespとの間の類似性としてローカルな方法で、または要求・応答ペア間の類似性によって、グローバルな学習方法で策定することができる。
要求と応答との間の一致を判断するための他の方法も実現可能である。第1の例においては、修辞学的分類アプリケーション102は、ReqおよびRespについての特徴を抽出し、これらの特徴をカウントとして比較して、スコアがクラスを示し得るようにスコアリング関数を導入する(不正確なペアの場合には低いスコア、正確なペアの場合には高いスコアとなる)。
第2の例においては、修辞学的分類アプリケーション102は、ReqおよびRespについての表現を互いと比較して、比較結果についてのスコアを割当てる。同様に、スコアはクラスを示すだろう。
第3の例においては、修辞学的分類アプリケーション102は、ペアであるReqおよびResp<Req,Resp>についての表現を、トレーニングセットの要素として構築する。修辞学的分類アプリケーション102は、次いで、すべてのこのような要素<Req,Resp>の特徴空間において学習を実行する。
図17は、一局面に従った、要求・応答ペアの形成を示す。図17は、要求・応答ペア1701、要求ツリー(または目的語)1702および応答ツリー1703を示す。<Req,Resp>の目的語を形成するために、修辞学的分類アプリケーション102は、要求についての談話ツリーと応答についての談話ツリーとをルートRRと組合わせて単一のツリーにする。修辞学的分類アプリケーション102は、次いで、目的語を正確な(高い合致度の)カテゴリーと不正確な(低合致度の)カテゴリーとに分類する。
最隣接グラフをベースにした分類
CDTが構築されると、テキストにおける議論を識別するために、修辞学的分類アプリケーション102は、肯定的なクラスについてのCDTと比較された類似性を演算し、それがその否定的なクラスについてのCDTのセットに達するほどに低いことを検証する。CDT間の類似性は最大共通サブCDTによって規定される。
一例においては、
Figure 0007439038000003
からの頂点ラベルおよびエッジラベルを備えたCDT(V,E)の順序付けされたセットGが構築される。Gからのラベル付けされたCDT Γは、複数ペアをなす形式((V,l),(E,b))の1ペアである。この場合、Vは1セットの頂点であり、Eは1セッ
トのエッジであり、
Figure 0007439038000004
は、頂点にラベルを割当てる関数であり、b:E→Λは、エッジにラベルを割当てる関数である。同一のラベルが付された同形のツリーは識別されない。
順序は以下のように規定される。2つのCDTに関して、Gから、Γ:=((V1,l1),(E1,b1))およびΓ:=((V2,l2),((E2,b2))となり、さらに、そのΓは、1対1のマッピングφ:V→V1が存在する場合、ΓまたはΓ≦Γを支配している(かまたは、ΓはΓのサブCDTである)。このため、これは、
Figure 0007439038000005
を考慮に入れるとともに、(2)
Figure 0007439038000006
の下で適合することとなる。
この定義は、「より大きな」CDT Gから「より小さな」CDT Gに至る場合に、一致した頂点同士のラベルの類似性(「弱まり」)の計算を考慮に入れている。
ここで、X^Y=Zによって示されるCDT XおよびCDT Yのペアの類似性CDT Zは、XおよびYのすべての含有-最大共通サブCDTのセットであり、それらの各々は、一致させるために以下の追加条件を満たしている。具体的には、(1)CDT XおよびCDT Yからの2つの頂点は同じRST関係を示さなければならない。(2)Zからの各々の共通サブCDTは、XおよびYにおけるのと同じVerbNetシグネチャを備えた少なくとも1つのコミュニケーション行動を含む。
この定義は、いくつかのグラフの一般化を発見できるように容易に拡張される。グラフセットXおよびYのペアについての包摂の順序は、当然、XμY:=X*Y=Xとして規
定される。
図18は、一局面に従った、最大の共通サブコミュニケーション用談話ツリーを示す。ツリーが反転されており、円弧のラベルが一般化されていることに留意されたい。コミュニケーション行動site()は、コミュニケーション行動say()で一般化される。前者のCA
委員会の第1の(エージェント)議論は後者のCAオランダ人の第1の議論で一般化される。同じ動作が、CA同士のこのペアについての第2の議論に適用される: investigator ^ evidence。
CDT Uは肯定的なクラスに属しているため、(1)Uは肯定的な例Rで(空でない共通サブCDTを有する)と類似するとともに、(2)如何なる否定的な例Rの場合であっても、Uが、
Figure 0007439038000007
と類似している場合には、U*RμU*Rとなる。
この条件は、類似性の基準を導入するものであって、クラスに割り当てられるようにするために、未知のCDT Uと肯定的なクラスから最も近接しているCDTとの間の類似性が、Uと各々の否定的な例との間の類似性よりも高くなるはずであることを述べている。条件2は、肯定的な例Rが存在しており、このため、するRがない場合には、U*RμRを有すること、すなわち、肯定的な例のこの一般化に対する反例が存在しないこと、を示唆している。
CDTのための交錯カーネル学習
ストリング、パースツリーおよびパース交錯についてのツリーカーネル学習は、最近になって確立された研究分野である。パースツリーカーネルは、2つのインスタンス間の談話類似性の基準として共通のサブツリーの数をカウントする。ツリーカーネルはJoty、ShafiqおよびA. MoschittiによりDTに関して規定された「Discriminative Reranking of Discourse Parses Using Tree Kernels」(Proceedings of EMNLP; 2014)である。さら
に、Wang、W., Su, J., & Tan, C. L.(2010)による「Kernel Based Discourse Relation Recognition with Temporal Ordering Information」(In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics)も参照されたい。(談話関係認識のためにツリーカーネルの特別な形式を使用している)。交錯カーネルは、コミュニケーション行動についての情報によってDTカーネルを増強することによって、CDTに関して規定される。
CDTは、各々のサブツリータイプの整数カウントのベクトルVによって(その先祖を考慮に入れることなく)表わすことができる:
V(T)=(タイプ1のサブツリーの#,…,タイプIのサブツリーの#,…,タイプnのサブツリーの#)。この結果、異なるサブツリーの数がそのサイズでは指数関数的になるので、次元性が非常に高くなる。したがって、特徴ベクトル
Figure 0007439038000008
を直接用いることは、計算上、実行不可能である。計算上の問題を解決するために、ツリーカーネル関数を導入して、上述の高次元ベクトル間のドット積を効率的に計算する。2つのツリーセグメントCDT1およびCDT2があると想定して、ツリーカーネル関数が以下のとおり規定される:
K(CDT1,CDT2)=<V(CDT1),V(CDT2)>=ΣiV(CDT1
)[i],V(CDT2)[i]=Σn1Σn2 Σi Ii(n1)Ii(n2)
この場合、n1∈N1およびn2∈N2であり、N1およびN2は、それぞれ、CDT1およびCDT2におけるすべてのノードのセットである。
Ii(n)はインジケータ関数である。
Ii(n)={タイプiのサブツリーがノードにおけるルートで起こる場合には1であり、他の場合には0である}。K(CDT1,CDT2)は、ツリー構造に対する畳み込みカーネルのインスタンスであり(CollinsおよびDuffy;2002年)、回帰的定義によって演算することができる。
Δ(n1,n2)=ΣI Ii(n1)Ii(n2)
ここで、n1およびn2に同じPOSタグが割り当てられるかまたはそれらの子供が異なるサブツリーである場合にはΔ(n1,n2)=0となる。
それ以外の場合、n1およびn2がともにPOSタグである(前終端ノードである)場合、Δ(n1,n2)=1xλとなる。
その他の場合、以下のとおりである。
Figure 0007439038000009
この場合、ch(n,j)はノードnのj番目の子供であり、nc(n)はnの子供の数であり、λ(0<λ<1)は、カーネル値をサブツリーサイズに対してそれほど変動させないようにするための腐食要因となる。加えて、再帰的なルール(3)が保持される。なぜなら、同じ子供たちに2つのノードがあると想定すると、これら子供たちを用いて共通サブツリーを構築するとともに、さらなる子孫の共通サブツリーを構築することができるからである。パースツリーカーネルは、2つのインスタンス間の構文的な類似性基準として共通サブツリーの数をカウントする。
図19は、一局面に従った、コミュニケーション用談話ツリーのためのカーネル学習フォーマットでツリーを示す。
ラベルとしてのコミュニケーション行動についての項は、RST関係についてのそれぞれのノードに加えられるツリーに変換される。終端ノードのためのラベルとしてのEDUについてのテキストに関しては、フレーズ構造だけが保持される。終端ノードは、パースツリーフラグメントではなくフレーズタイプのシーケンスでラベル付けされる。
ラベルA(B,C(D))が付けられた、ノードXから終端EDUノードYまでの修辞関係円弧がある場合、サブツリーA-B→(C-D)がXに付加される。
修辞学的合致分類部の実現
修辞学的合致分類部120は、コミュニケーション用談話ツリーを用いることにより、質問および回答などの2つのセンテンス間の相補性を判断することができる。図20は、一局面に従った、修辞学的合致分類部を実現するのに用いられる例示的なプロセスを示す。図20は、修辞学的分類アプリケーション102によって実現することができるプロセス2000を示す。上述のように、修辞学的合致分類部120はトレーニングデータ125でトレーニングされる。
修辞学的合致分類部120は、質問および回答の両方についてのコミュニケーション用談話ツリーを判断する。たとえば、修辞学的合致分類部120は、質問171または質問130などの質問から質問コミュニケーション用談話ツリー110を構築するとともに、候補回答から回答コミュニケーション用談話ツリー111を構築する。
ブロック2001においては、プロセス2000は、質問センテンスに関して、質問ルートノードを含む質問コミュニケーション用談話ツリーを判断するステップを含む。質問センテンスは明確な質問、要求またはコメントであり得る。修辞学的分類アプリケーション102は、質問130から質問コミュニケーション用談話ツリー110を作成する。図13および図15に関連付けて説明された例を用いて、例示的な質問センテンスは、「are rebels responsible for the downing of the flight」である。修辞学的分類アプリケーション102は、図15に関連付けて記載されるプロセス1500を用いることができる。例示的な質問は「elaborate(詳述する)」のルートノードを有する。
ブロック2002において、プロセス2000は、回答センテンスに関して、第2のコミュニケーション用談話ツリーを判断するステップを含む。この場合、回答コミュニケーション用談話ツリーは回答ルートノードを含む。上述の例に続けて、修辞学的分類アプリケーション102は、図13に示されるように、ルートノード「詳述する」も有するコミュニケーション用談話ツリー111を作成する
ブロック2003において、プロセス2000は、質問ルートノードおよび回答ルートノードが同一であることを識別することによって、コミュニケーション用談話ツリーを関連付けるステップを含む。修辞学的分類アプリケーション102は、質問コミュニケーション用談話ツリー110および回答コミュニケーション用談話ツリー111が同一のルートノードを有すると判断する。結果として得られる関連付けられたコミュニケーション用談話ツリーが図17に示されており、「要求・応答ペア」としてラベル付けされ得る。
ブロック2004において、プロセス2000は、マージされた談話ツリーに予測モデルを適用することによって、質問コミュニケーション用談話ツリーと回答コミュニケーション用談話ツリーとの間の相補性のレベルを演算するステップを含む。
修辞学的合致分類部は機械学習技術を用いる。一局面においては、修辞学的分類アプリケーション102は修辞学的合致分類部120をトレーニングして用いる。たとえば、修辞学的分類アプリケーション102は、肯定的なクラスおよび否定的なクラスの要求・応答ペアを規定する。肯定的なクラスは、修辞学的に正確な要求・応答ペアを含んでおり、否定的なクラスは関連しているが修辞学的に異種の要求・応答ペアを含んでいる。
各々の要求・応答ペアごとに、修辞学的分類アプリケーション102は、各々のセンテンスをパースして、センテンスフラグメントについての動詞シグネチャを取得することによってCDTを構築する。
修辞学的分類アプリケーション102は、関連付けられたコミュニケーション用談話ツリーペアを修辞学的合致分類部120に提供する。修辞学的合致分類部120は、相補性のレベルを出力する。
ブロック2005においては、プロセス2000は、相補性のレベルがしきい値を上回っていると判断したことに応じて、質問センテンスと回答センテンスとを補足的なものとして識別するステップを含む。修辞学的分類アプリケーション102は、質問・回答ペアが十分に補足的であるかどうかを判断するために相補性のしきい値レベルを用いることができる。たとえば、分類スコアがしきい値よりも大きい場合、修辞学的分類アプリケーション102は、回答を回答172または回答150として出力することができる。代替的には、修辞学的分類アプリケーション102は、回答を廃棄し、回答データベース105または別の候補回答のための公共データベースにアクセスして、必要に応じてプロセス2000を繰り返し得る。
一局面においては、修辞学的分類アプリケーション102が同一指示(co-reference)を得る。さらなる局面においては、修辞学的分類アプリケーション102はエンティティおよびサブエンティティまたは下位語リンク(hyponym link)を得る。下位語は、単語に適用可能な一般的用語または上位の用語よりも具体的な意味をもつ単語である。たとえば、「スプーン」は「刃物類」の下位語である。
別の局面においては、修辞学的分類アプリケーション102は交錯カーネル学習を表現に適用する。交錯カーネル学習は、たとえば、ブロック2004において、分類ベースの学習の代わりに行うことができる。修辞学的分類アプリケーション102は要求・応答ペアのパースツリーのためのパース交錯ペアを構築する。修辞学的分類アプリケーション102は、要求・応答ペアについての談話ツリーペアを得るために談話を構文解析する。修辞学的分類アプリケーション102は、談話ツリー要求・応答およびパースツリー要求・応答の基本談話単位を整合させる。修辞学的分類アプリケーション102は、談話ツリー要求・応答の基本談話単位とパースツリー要求・応答の基本談話単位とをマージする。
一局面においては、修辞学的分類アプリケーション102はword2vectorモデルによってテキスト類似性評価を改善させる。
さらなる局面においては、修辞学的分類アプリケーション102は、質問コミュニケーション用談話ツリー110に対応するセンテンス、または回答コミュニケーション用談話ツリーに対応するセンテンスをモバイルデバイス170などのデバイスに送る。修辞学的分類アプリケーション102からの出力は、検索クエリ、データベース照合または他のシステムへの入力として用いることができる。このような態様で、修辞学的分類アプリケーション102は検索エンジンシステムと一体化することができる。
図21は、一局面に従った、投稿に関してコメントするチャットボットを示す。図21は、チャット2100、ユーザメッセージ2101~2104およびエージェント応答2105を示す。エージェント応答2105は、修辞学的分類アプリケーション102によって実現することができる。図示のとおり、エージェント応答2105は、メッセージ2101~2104のスレッドに対する適切な回答を識別した。
図22は、一局面に従った、投稿に関してコメントするチャットボットを示す。図22は、チャット2200、ユーザメッセージ2201~2205およびエージェント応答2206を示す。図22は、ユーザ1からの3つのメッセージ、具体的には2201、2203および2205と、ユーザ2からの2つのメッセージ、具体的には2202および2204とを示す。エージェント応答2206は、修辞学的分類アプリケーション102によって実現することができる。図示のとおり、エージェント応答2106は、メッセージ2201~2204のスレッドに対する適切な回答を識別した。
図21および図22において示される特徴は、修辞学的分類コンピューティングデバイス101によって実現することができるか、または、修辞学的分類コンピューティングデバイス101に質問130を提供して、修辞学的分類コンピューティングデバイス101から回答150を受取る装置によって実現することができる。
RR合致およびRR不合理性についての付加的なルール
以下は、RR合致を実施するために制約を導入する構造ルールの例である:
1.ReqおよびRespはともに、同じ感情極性を有する(要求が肯定的であれば、応答も同様に肯定的であるはずであり、逆の場合も同様である)。
2.ReqおよびRespはともに論理的な議論を有している。
合理的に理由付けされた場合には、要求および応答は完全に一致するだろう。合理的なエージェントは、関連性があるとともに質問の修辞表現と一致するであろう回答を提示するだろう。しかしながら、実際の世界においては、すべての応答が十分に合理的であるとは限らない。認識のバイアスについての調査団体は、合理性または好適な判断の基準から体系的に逸脱する可能性のある特定の方法で思考する人の傾向を調査している。
対応関係バイアスは、人々が、質問に応答する際に、自分以外の人について観察される挙動に関して個性ベースの説明を過剰に強調する傾向である。Baumeister, R. F. & Bushman, B. J.による「Social psychology and human nature」(International Edition: 2010)を参照されたい。同時に、問合せに返答する人々は、同じ挙動に対する状況に応じ
た影響の役割および力を過少に強調する。
確認バイアスは、質問に回答する人々の先入観を確認するようなやり方で情報を探索するかまたは解釈する傾向である。彼らは、彼らの見解を支持しない情報を信用しない可能性がある。確認バイアスは認知的不協和の概念と関係がある。これにより、個々人は、自身の見解を再確認する情報を探索することによって矛盾を減らすこともある。
アンカリングは、決定を下す際に、情報の一特性または一部分に極めて大きく依存しすぎることまたは「アンカーする」ことにつながる。
利用可能性ヒューリスティックは、我々に、記憶内においてイベントの起こる見込みをより大きな「可用性」で過大評価させるものであって、これは、記憶がどれほど最近のものであるかによって、または、記憶が如何に異常にまたは感情的に変更され得るかによって、影響を受ける可能性がある。
バンドワゴン効果に従うと、人々は、他の多くの人々が同じことを実行する(または信じる)ことを信じて質問に回答する。
信念バイアスは、議論の論理強度についての誰かの評価が結論の信用性によって偏らされる効果である。
バイアス盲点は、他の人々に対するバイアスよりも自分に対するバイアスを少なくして自身を見つめる傾向、または、自分自身よりも他人をより高い認識バイアスで識別することができる傾向である。
評価
テストデータの第1のドメインはYahoo!Answersからの質問・回答ペアに由来している。質問と回答とのセットが広範囲なトピックでペアになっている。440万人のユーザの質問のセットのうち、2つを超えるセンテンスを含む20000の質問が選択されている。大多数の質問に対する回答は適正に詳述されているため、フィルタリングは回答に適用されなかった。1つの質問当たり複数の回答があり、最良の回答に印が付けられている。質問・最良回答のペアを肯定的なトレーニングセットの要素としてみなし、質問-その他回答を否定的なトレーニングセットの要素としてみなしている。否定的なセットを導き出すために、異なっているがいくらか関連している質問に対する回答を任意に選択するか、または、質問からクエリを形成して、ウェブ検索結果から回答を得た。
我々の第2のデータセットはソーシャルメディアを含む。我々は、主としてFacebook(登録商標)上の投稿から要求・応答ペアを抽出した。我々は、さらに、雇用に関係するLinkedIn.comとvk.comとの会話のうちより小さな部分を用いた。ソーシャルドメインにおいては、記述の基準がかなり低い。テキストの粘着性は非常に制限されており、論理的構造
および関連性がしばしば欠けている。著者は、数年にわたり、自身のアカウントと、APIを介して利用可能な公のFacebookアカウントとから、トレーニングセットを形成した(記述時には、メッセージを得るためのFacebook APIの書込みは不可能である)。加えて、我々は、エンロン(Enron)データセットからの860個の電子メールスレッドを用いた
。さらに、我々は、人のユーザホストの代わりに自動的に投稿を生成するエージェントの投稿に対する手動応答のデータを集めた。Galitsky B.、Dmitri Ilvovsky、 Nina LebedevaおよびDaniel Usikovによる「Improving Trust in Automation of Social Promotion: AAAI Spring Symposium on The Intersection of Robust Intelligence and Trust in Autonomous Systems; Stanford, CA 2014)(「Galitsky 2014」)を参照されたい。さまざまなソーシャルネットワークソースから4000のペアを形成した。
第3のドメインは顧客苦情である。典型的な苦情に関して、不満を示す顧客は、製品およびサービスに関する自身の問題と、さらに、顧客がこれらの問題を如何に会社に伝えるようと試みたか、および会社がそれに如何に応答したかについてのプロセスとを記載している。苦情は、しばしば、製品故障を誇張するとともに相手方の行動を不当で不適切であると表現するといった偏見を持って書かれている。同時に、苦情を申し立てる人々は、説得力があり一貫した論理的に矛盾のない方法で苦情を記載しようと試みる(「Galitsky 2014」)。したがって、苦情は、要求と応答との間の合致率が高いドメインとして機能す
る。ユーザの苦情と会社の応答との間の合致を(このユーザがどのように記載するかに応じて)査定する目的で、我々は、10年にわたってplanetfeedback.comから670の苦情を集めた。
第4のドメインはジャーナリストによるインタビューである。通常、専門のジャーナリストによるインタビューの記載は、質問と回答との一致する水準が非常に高くなるような方法で書かれている。また、我々は、datran.com、allvoices.com、huffingtonpost.com
などのようなソースから専門ジャーナリストおよび市民ジャーナリストによる1200の寄稿を集めた。
データ収集を促進するために、我々はクローラーを設計した。クローラーは、サイトの特定のセットを検索し、ウェブページをダウンロードし、候補テキストを抽出し、この候補テキストを質問もしくは要求に対する応答フォーマットに準拠していることを確認するものである。次いで、それぞれのペアのテキストが形成される。この検索は、ウェブおよびニュースのドメインにおけるBing Azure Search Engine APIによって実現される。
有効な回答および無効な回答の認識
回答分類の精度を表1に示す。各々の行は特定の方法を表わす。方法についての各クラスが灰色の領域に示されている。
表1:評価結果
Figure 0007439038000010
最高精度がジャーナリズムおよびコミュニティー回答ドメインにおいて達成されており、最低精度が顧客苦情およびソーシャル社会ネットワークにおいて達成されていることが分かる。我々は、方法を確定させる精度が高ければ高いほど、ReqとRespとの間の合致レベルがより高くなり、これに応じて、応答者の適正能力がより高くなると結論付けることができる。
アプローチの決定論的ファミリ(中間の2行、ローカルなRR類似性ベースの分類)は、SVM TKよりも低い約9%を実行する。これは、ReqとResとpの間の類似性が、実質的には、RR合致を示すRRペアの特定の構造ほど重要でないことを示している。これは、ReqとRespとの間の合致を個人ベースで査定できないことを意味している。我々は、DT(Req)がDT(Resp)に非常に類似していることを必要とする場合、我々が得られる精度は適正であるものの再現度が極めて低くなるだろう。DTからCDTまで進展させたとしてもほんの1%~2%しか役に立たない。なぜなら、コミュニケーション行動が要求を構成したり応答を形成したりするという主な役割を果たさないからである。
アプローチの統計的ファミリ(下5行、ツリーカーネル)に関して、談話データ(RR-DTについてのSVM TK)のうち最も豊富なソースが、RR類似性ベースの分類とほぼ同じである最高の分類精度を与える。RSTおよびCAについてのSVM TK(十分なパースツリー)はより多くの言語データを含んでいたが、そのうちのいくらかの部分(構文的である可能性が最も高い)は余分であって、制限されたトレーニングセットについての結果がより劣ったものとなる。感情および討論などのTK下で付加的な特徴を用いても役に立たない。ほとんどの場合、これらの特徴がRR-CDT特徴に由来するものであって、それら自体では分類精度に寄与するものではない可能性が高い。
CDTに基づいたアプローチのTKファミリを採用することにより、DTを正確なものおよび不正確なものとして分類する際に達成される精度に匹敵する精度が得られる。修辞学的な構文解析タスクにおいて、最先端技術のシステムが過去数年にわたって激しい競争にさらされて、80%を超える精度を導き出した。
決定性ファミリにおける直接的な分析アプローチの機能はやや弱い。これは、より数多くのより複雑な特徴構造が必要であることを意味しており、修辞関係のタイプを単にカウントして考慮に入れるだけでは、RRが互いに如何に合致しているかを判断するのに不十分である。2つのRRペアが同じタイプおよびカウントの修辞関係さらにはコミュニケーション行動も有する場合、これらは依然として、大多数の事例における逆のRR合致クラスに属することができる。
CDTについての最隣接ペアの学習ではCDTについてのSVM TKより精度が低くなるが、前者によって与えられるサブツリーの興味深い例は、討論に典型的なものであって、類事実データ中で共有されるものである。CDTサブツリーの前者グループの数は、当然はるかに多くなる。残念ながら、SVM TKアプローチは、RR合致問題が如何に正確に解決されるかを説明する助けにはならず、単に最終スコアリングおよびクラスラベルを示すだけである。コミュニケーション行動なしで応答中に論理的な議論を表わすこともできるが、稀である(この観察は我々のデータによって裏付けされている)。
評価ドメインにおけるRR合致の測定
認識精度の評価の観点から、我々は、前述のサブセクションにおいて最適な方法を得た。ここで、この方法を確定させて、我々は、我々の評価ドメインにおけるRR合致を測定することとなる。さらに、我々は、最適な方法によって提供される一般的な合致の合計が
、如何に、感情、論理的討論、トピックおよびキーワード関連性などの個々の合致基準と相互に関連付けられているかを示すだろう。我々がトレーニングセットにラベル付けするための我々の最適なアプローチ(RR-CDTについてのSVM TK)を用いる場合、そのサイズは劇的に大きくなり得るとともに、我々は、さまざまなドメインにおけるRR合致の興味深い特性を探究することができる。我々は、従前の評価よりも大きなデータセットに関するRR合致についてのいくつかの直観的な特徴の寄与を発見するだろう。
このサブセクションにおいて、我々は、RRペア有効性認識フレームワークが、任意の要求と応答との間の合致の基準として機能し得ることを証明することを意図している。さらに、この認識フレームワークは、さまざまな特徴が如何に強固にRRペア有効性と相互に関連付けられているかを査定することができる。
認識精度の評価から、我々は、RRペアが有効であるか否かを認識するための最適な方法を得た。ここで、この認識方法を確定させて、我々は、我々の評価ドメインにおいてRR合致を測定し、さらに、最適な方法によって提供される一般的な合致の合計が、如何に、感情、論理的討論、トピックおよびキーワード関連性などの個々の合致基準と相互に関連付けられているかを推測するだろう。我々がトレーニングセットにラベル付けするための我々の最適なアプローチ(RR-CDTについてのSVM TK)を用いる場合、そのサイズは劇的に大きくなり得るとともに、我々は、さまざまなドメインにおけるRR合致の興味深い特性を探究することができる。我々は、従前の評価よりも大きなデータセット上に、RR合致のうちいくつかの直観的な特徴の寄与を発見するだろう。我々は、認識精度(%、表2)として、上述の評価の肯定的なトレーニングデータセット上のみで、特徴ごとに、この合致を測定するだろう。再現度および否定的なデータセットが合致の査定には不要であることに留意されたい。
表2:4つのドメインにおける要求と応答との間の合致の基準(%)
Figure 0007439038000011
たとえば、我々は、bag-of-words(単語の袋)アプローチによって演算されるようなトピックによる合致によって判断されるRRペアが、RR-CDT分類についてのSVM TKに従って、顧客苦情のドメインにおける有効なRRペアであるという観察の精度を64.3%と評価する。
感情による合致は、RRペアにおける適切な感情合致の寄与を示す。感情ルールは、特に、RRの極性が同じである場合、要求が何を述べているかを応答が確認するべきであることを含んでいる。反対に、極性が逆の場合、要求が求めているものを応答は攻撃するべきである。論理的討論による合致は、応答が要求中の請求と合致していない適切なコミュニケーション談話を必要とする。
このデータは、支持者が言っていることと相手方が如何に応答しているかとの間の言語的合致の性質を解明することの助けとなる。有効なダイアログ談話の場合、すべての合致特徴は存在する必要があるとは限らない。しかしながら、これらの特徴のうちほとんどが合致しない場合、所与の回答が無効で不適切であるとみなされるべきであり、別の回答が選択されるべきである。表2は、さまざまなドメインにおいて、どの特徴をどの程度、ダイアログのサポートに用いなければならないかを我々に示している。したがって、提案された技術は、書込み品質および顧客サポート品質査定の自動化手段としての役割を果たすことができる。
チャットボットアプリケーション
ソーシャルプロモーションのための会話エージェント(Conversational Agent for Social Promotion:CASP)は、彼または彼女についてのコミュニケーションを促進して
管理するために人であるそのホストの代わりに機能する、シミュレートされた人格として提供されるエージェントである。Galitsky B., Dmitri Ilvovsky, Nina LebedevaおよびDaniel Usikovによる「Improving Trust in Automation of Social Promotion」(AAAI Spring Symposium on The Intersection of Robust Intelligence and Trust in Autonomous Systems; Stanford, CA 2014)がある。CASPは、他人のメッセージ、ブログ、フォーラム、画像および映像上でニュースを共有したりコメントしたりするなどの、ソーシャルネットワーク上のさほど重要でない活動であるルーチンから、そのホストである人を救済するものである。ソーシャルプロモーションのための会話エージェントは発展しているが、信頼を失う可能性もある。ウェブから掘り出された返答をフィルタリングするRRペア合致に焦点を合わせたCASPの性能全体が評価される。
人々は、FacebookおよびLinkedInなどのソーシャルネットワークシステム上に、平均で、200人~300人の友人または接点を持っている。この多数の友人と積極的な関係を維持するために、これら友人らが投稿したりコメントしたりするものを読むのに1週間に数時間が必要となる。実際には、人々は、10人~20人の最も親しい友人、家族および同僚との関係しか維持しておらず、残りの友人との連絡をとるのは非常に稀である。それほど親しくないこれらの友人は、ソーシャルネットワーク関係が放棄されたと感じる。しかしながら、ソーシャルネットワークのすべてのメンバーとの積極的な関係を維持することは、仕事関連から個人的なことに至るまで生活の多くの局面にとって有益である。ソーシャルネットワークのユーザは、彼らに興味を持っていて、彼らのことを気にかけており、したがって、彼らの生活内のイベントに反応して、彼らが投稿したメッセージに応答することを、彼らの友人らに知らせるものと予想されている。したがって、ソーシャルネットワークのユーザは、ソーシャルネットワーク上で関係を維持するためにかなりの時間を当てる必要があるが、しばしばその時間がないこともある。親しい友人および家族のためには、ユーザは依然として手入力を用いて社交的に活動するだろう。ネットワークの残りについては、彼らは提案されているソーシャルプロモーション用のCASPを用いるだろ
う。
CASPは、ユーザのチャット、ブログおよびフォーラムに関するユーザの投稿、ショッピングサイトに対するコメントを追跡して、購入判断に関連するウェブドキュメントおよびそれらの断片情報を提案する。このために、テキストの部分を引用し、検索エンジンクエリ生成し、Bingなどの検索エンジンAPIに対してそれを実行させて、シードメッセージと無関係であると判断された検索結果をフィルタリングして除去する必要がある。最後のステップは、CASPの堅実な機能にとって重要であり、修辞学的空間における関連性が乏しければ、その空間における信頼の損失につながるだろう。したがって、RR合致の正確な査定はCASPを正常に使用するのに重要である。
CASPは、或る人のコミュニケーションをその人のために促進して管理するためにその人のホストの代わりに機能する、シミュレートされた人格として提供される(図21~図22)。エージェントは、他人のメッセージ、ブログ、フォーラム、画像および映像上でニュースを共有したりコメントしたりするなどの、ソーシャルネットワーク上のさほど重要でない活動であるルーチンから、そのホストである人を救済するように設計されている。シミュレートされた人格のための大多数のアプリケーションドメインとは異なり、そのソーシャルパートナーは、彼らがニュース、世論および最新情報を自動化エージェントと交換することを必ずしも認識しているわけではない。我々は、CASPの修辞学的合致と、いくつかのFacebookアカウント内のその仲間の精神状態についての推理とを用いて実験を行った。我々は、それと通信する人のユーザに関係する精神状態に関する推論についてのその性能および精度を評価する。会話システムに関して、ユーザは、当該システムがユーザらの行動に適切に反応し、当該システムが返答したものが意味をなしていると感じる必要がある。水平なドメインおいてこれを達成するために、有意義な方法でメッセージを交換することができるように、言語情報を十分に活用する必要がある。
CASPは、シード(人によって書き込まれた投稿)を入力するとともに、当該シードが形成するメッセージを出力する。当該メッセージは、ウェブ上で探し出された内容を、入力された投稿に関連するように調整することによって形成される。この関連性は、内容の点から見た適切さと、RR合致または精神状態合致の点から見た適切さとに基づいている(たとえば、それは、質問に対する質問、より多くの質問を求める推薦投稿に対する回答、などによって回答する)。
図21および図22は、投稿に関してコメントするチャットボットを例示する。
我々は、内容および精神状態の両方に関連性がない場合に、人のユーザがCASPおよび自身のホストに対する信頼をどれほど失うのかを評価する。システム有用性の点から見て中間パラメータである修辞学的関連性を評価する代わりに、我々は、ユーザが、修辞学的に関連性がなく不適当な投稿によって悩まされている場合に当該ユーザがどれほどCASPに対する信頼を失うかを査定する。
表3:信頼損失シナリオについての評価結果
Figure 0007439038000012
表3において、我々は、CASPの失敗に対するユーザの許容性の結果を示す。何回かの失敗の後に、友人らは信頼を失い、苦情を申し立て、友だちリストから削除し、他人との信頼を損失したことについての否定的な情報を共有し、さらには、CASPで有効にされている友人を友だちリストから削除するように他の友人らに奨励する。セルにおける値は、信頼が失われたそれぞれのイベントが起こった場合における修辞学的関連性が損なわれた投稿の平均数を示している。これらの関連性を損なった投稿は、この査定実施の1か
月内に起こったものであり、我々は、これらの投稿の発生の相対的頻度についての値は得ていない。各ユーザ毎に、平均して100の投稿に対して応答があった(シード投稿当たり1~4)。
さまざまなドメインに応じて、ユーザがCASPに対する信頼を失うシナリオが異なっていることが分かる。情報がそれほど重要ではない旅行およびショッピングのようなドメインの場合、関連性を損なうことに対する許容性は比較的高い。
逆に、仕事関連、私生活のような個人の好みなどの、より深刻に解釈されるドメインにおいては、ユーザは、CASPが機能しないことに対してより敏感であり、そのさまざまな形の信頼がより速やかに損われてしまう。
すべてのドメインに関して、投稿が複雑になるのに応じて、許容性はゆっくりと低下する。ユーザの認識は、内容またはそれらの期待の点では関係なく、CASPによるより短くて単一のセンテンスまたはフレーズ投稿と比べて、より長いテキストの方が、より低下する。
アルゴリズムの自然言語記述のドメイン
形式クエリまたはコマンド言語に対して自然言語をマップできることは、データベースなどの多くのコンピューティングシステムに対するよりユーザフレンドリーなインターフェイスの開発にとって重要である。しかしながら、それらの形式言語の同等物とペアにされるセンテンスのコーパスからこのようなセマンティックパーサを学習する問題に対処している調査は相対的にほとんどない。Kate、Rohit、Y. W. WongおよびR. Mooneyによる「Learning to transform natural to formal languages」(AAAI,2005)がある。さらに、我々の知る限りでは、このような調査は談話レベルでは行なわれなかった。自然言語(natural language:NL)を完全な形式言語に変換することを学習することにより、複合型のコンピューティングおよびAIシステムに対するNLインターフェイスをより容易に開発することができる。
40年以上前に、「構造化プログラミング(structured programming)」の概念を考案したオランダのコンピュータ科学者であるダイクストラ(Dijkstra)は、以下のように述べている。「私は、我々の母国語(それがオランダ語、英語、米語、フランス語、ドイツ語、またはスワヒリ語であろうと)でプログラミングされるべきマシンが、それらマシンが用いるであろうものと同じくらい途方もなく難解なものになっているのではないかと疑問に思っている。」。この先見者は明らかに正しかった。すなわち、プログラミング言語の専門性および高精度は、コンピューティングおよびコンピュータにおける極めて大きな進歩を可能にしたものでもある。ダイクストラは、プログラミング言語の発明を数学的な象徴体系の発明と比較している。ダイクストラは以下のようにも述べている。「形式コードを用いる義務を負担とみなすのではなく、我々は、形式コードを用いる利便性を特権とみなすべきである。これら形式コードのおかげで、児童らは、天才だけが達成することができたことを初期に学ぶことができるのである」。しかし、40数年後、我々は、典型的な産業用途において占められている量のコード(サポートして開発するのが恐ろしいほどの数千万および数億行ものコード)に行き詰ったままである。「コード自体は最適な記述である」という言い回しは一種の悪い冗談となった。
プログラムの自然言語記述は、テキスト修辞学が特殊であるとともに記述間の合致は不可欠である分野である。我々は、アルゴリズム記述をソフトウェアコードにマップする共通の修辞学的表現およびドメイン特有の表現に注目するだろう。
図23は、一局面に従った、アルゴリズムテキストについての談話ツリーを示す。我々
は、以下のテキストおよびそのDT(図23)を有する。
1)任意のピクセルp1を発見する。
2)すべてのピクセルが128未満となるようにこのピクセルp1が属する凸状エリアa_offを発見する。
3)選択されたエリアの境界が128を超えるピクセルをすべて有していることを検証する。
4)上述の検証が成功した場合、肯定的な結果で停止する。その他の場合には、128未満であるすべてのピクセルをa_offに加える。
5)a_offのサイズがしきい値未満であることをチェックする。次に、2に進む。その他の場合には、否定的な結果で停止する。
我々は、ここで、特定のセンテンスを論理形式に変換して、さらにソフトウェアコード表現に変換する方法を示す。いくつかの修辞関係は、個々のセンテンスの翻訳の結果得られた記述を組合わせるのに役立つ。
選択されたエリアの境界が128を超えるピクセルをすべて有していることを検証する。
図24は、一局面に従った注釈付きセンテンスを示す。1-1~1-3の擬似コードの注釈付きディコンストラクションに関して、図24を参照されたい。
すべての定数を変数に変換することで、我々は、自由変数の数を最小限にして、表現を同時に過剰抑制しないよう試みる。連結された(エッジによってリンクされた)矢印は、同じ定数値(ピクセル)が、論理プログラミングの規則に従って、等しい変数(ピクセル)にマップされることを示している。これを実現するために、我々は、自由変数を制約することを必要とする述語を加える(単項)。
1-4)自由変数を抑制する述語を追加する。
epistemic_action(verify) & border(Area) & border(Pixel) & above(Pixel, 128) & area(Area)
ここで、我々は、すべてを定量化するために明瞭な表現を構築する必要があるが、この特定の場合には、我々はループ構造を用いるので、使用されないだろう。
図25は、一局面に従った注釈付きセンテンスを示す。1-5~2-3の擬似コードの注釈付きディコンストラクションに関して、図25を参照されたい。
最終的に、我々は以下を有することとなる。
2-3)結果として得られるコードフラグメント
Figure 0007439038000013
関連作業
談話分析は、質問に対する回答ならびにテキストの要約および一般化において限られた数のアプリケーションを有しているが、我々は、自動的に構築された談話ツリーのアプリケーションを発見していない。我々は、2つのエリアであるダイアログ管理とダイアログゲームとに対する談話分析のアプリケーションに関連する調査を列挙する。これらのエリアは、本提案が意図されているのと同じ問題に適用される可能性がある。これらの提案はともに、一連の論理ベースのアプローチだけでなく、分析ベースおよび機械学習ベースのアプローチも有している。
ダイアログの管理および質問に対する回答
質問および回答が論理的に関連している場合、それらの修辞構造の合致はそれほど重要ではなくなる。
De Boniは、真理の論理的証拠ではなく論理的関連性の証拠によって質問に対する回答
の適切さを判断する方法を提案した。De BoniおよびMarcoによる「Using logical relevance for question answering」(Journal of Applied Logic, Volume 5, Issue 1, March
2007, Pages 92-103)を参照されたい。我々は、論理的関連性を、回答が質問に関して
絶対的に真であるかまたは誤りであるとみなされるべきではなく適切さをスライド的に変動させてより柔軟に真であるとみなされるべきであるという考えとして、定義している。さらに、回答の源が不完全であるか一貫性がないかまたはエラーを含んでいる場合であっても、回答の適切性について厳格に推論することが可能となる。著者は、回答が実際に特定の質問に対する回答であるという論理的証拠を捜し求めるために、測定された単純化を用いることにより、制約を緩和した形式で、論理的関連性を如何に実現することができるか示している。
CDTの我々のモデルは、単一構造での一般的な修辞情報と発話動作情報とを組合わせるよう試みている。発話動作が或る種の実際的な力の有用な特徴付けをもたらす一方で、特にダイアログシステムを構築する際のより近年の作業は、このコア概念を著しく拡張し、発言によって実行できるより多くの種類の会話関数をモデル化している。結果として豊富になった動作はダイアログ動作と呼ばれる。Jurafsky、DanielおよびMartin, James H.(2000年)による「Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition」(Upper
Saddle River, NJ, Prentice Hall)を参照されたい。会話動作に対する彼らのマルチレベルアプローチにおいては、TraumおよびHinkelmanは、会話の一貫性および内容の両方を保証するのに必要な4レベルのダイアログ動作を識別する。Traum、David R.およびJames
F. Allen(1994年)による「Discourse obligations in dialogue processing)」
(In Proceedings of the 32nd annual meeting on Association for Computational Lin
guistics (ACL '94). Association for Computational Linguistics, Stroudsburg, PA, USA, 1-8)を参照されたい。4レベルの会話動作は、方向転換動作、理由付け動作、コア発話動作および討論動作である。
Q/Aの論理的および哲学的な基礎に関する調査は、数十年にわたって行なわれてきたが、小規模な制限されたドメインおよびシステムに焦点を合わせたものであって、産業環境において使用するには限界があることが判明した。言語学および数理論理学において開発された「being an answer to(に対する回答であること)」という論理的証拠についての考えは、実際のシステム内の限定的な適用可能性を有するものとして提示されてきた。汎用の(「オープンドメイン」)作業システムを生成することを目的とした最新の応用研究は、Text Retrieval Conference(TREC)Q/Aトラックによって与えられる標準
的な評価フレームワークで提供されるシステムによって実証されたように、情報抽出と検索とを組み合わせる比較的単純なアーキテクチャに基づいている。
SperberおよびWilson(1986)は、特定の回答が質問に関連していることを「証明
する(prove)」ために必要とされる労力の量に応じて、回答の関連性を判断した。この
ルールは、関連性の基準として修辞学用語によって策定することができる。回答が質問に一致していることを証明するのに必要な修辞関係の仮定性が低ければ低いほど、回答の関連性はより高くなる。必要とされる労力は、必要とされる予備的知識の量、テキストからの推論または仮定の観点から測定され得る。より管理し易い基準を提供するために、我々は、制約または修辞関係が、質問の策定方法から除外され得る方法に焦点を合わせることによって問題を単純化することを提案する。言いかえれば、我々は、回答を証明するために、質問が如何に単純化され得るかを評価する。結果として得られるルールは以下のように策定される。回答の関連性は、証明されるべき回答についての質問からどれだけ多くの修辞制約が除外されなければならないかによって判断される。除外されなければならない修辞学的制約が少なければ少ないほど、回答の関連性は高くなる。
修辞関係の発見がQ/Aにおいて如何に役立つかについての調査のコーパスは非常に制限されている。Kontosが紹介したシステムは、生物医学システムのモデルを提案する「基本」テキストと、このモデルをサポートする実験の発見を提示している論文の要約部分との間の修辞関係の活用を可能にした。Kontos、John、Ioanna Malagardi、John Peros(2016)による「Question Answering and Rhetoric Analysis of Biomedical Texts in the AROMA System」(未出版原稿)を参照されたい。
隣接するペアは、別々の話者によって生成されるとともに第1の部分および第2の部分として順序づけられた隣接する発言のペアとして規定される。特定のタイプの第1の部分は特定のタイプの第2の部分を必要とする。これらの制約のうちのいくつかは、発言間の依存性についてのより多くの事例をカバーするため削除される可能性もある。Popescu-Belis、Andreiによる「Dialogue Acts: One or More Dimensions?」(Tech Report ISSCO Working paper n.62. 2005)を参照されたい。
隣接するペアは、本来、関係があるが、ラベル(「第1の部分」,「第2の部分」,「無し」)に分解され得るものであって、場合によっては、ペアのうち別のメンバーを指すポインタで増強され得る。頻繁に遭遇する観察される種類の隣接ペアは以下を含む。要求/提示/招待→受諾/拒絶(request / offer / invite → accept / refuse);査定→
合致/非合致(assess → agree / disagree);非難→否定/許可(blame → denial / admission);質問→回答(question → answer);謝罪→軽視(apology → downplay);感謝→歓迎(thank → welcome);挨拶→挨拶(greeting → greeting)。Levinson、Stephen C(2000年)による「Presumptive Meanings; The Theory of Generalized Conversational implicature」(Cambridge, MA: The MIT Press)を参照されたい。
修辞関係は、隣接ペアと同様に、孤立状態での発言と非発言との関係に関する関係性概念である。しかしながら、発言が1つの関係のみにおける核に対する衛星であるとすれば、関係のラベルを発言に割当てることが可能となる。これにより、ダイアログ構造の深い分析が強く必要とされることとなる。RSTにおける修辞関係の数は、(GroszおよびSidner(1986年))によって用いられる「制圧する(dominates)」クラスおよび「満足感を優先する」クラスから100を超えるタイプに至る範囲にわたっている。一貫性関係は、テキスト内の修辞構造を表わす代替的方法である。Scholman、Merel、Jacqueline Evers-Vermeul、Ted Sandersによる「Categories of coherence relations in discourse annotation」(Dialogue & Discourse; Vol 7, No 2 (2016))を参照されたい。
テキストの情報構造を活用すると予想されている多くのクラスのNLPアプリケーションが存在する。DTは非常に有用なテキスト要約であり得る。テキストセグメントの特徴についての情報は、Sparck-Jonesによって1995年に提案された核-衛星関係とセグメント間の関係の構造とに基づいて、正確で一貫性のある概要を形成するように考慮されなければならない。Sparck Jones, Kによる「Summarising: analytic framework, key component, experimental method, in Summarising Text for Intelligent Communication」
(Ed. B. Endres-Niggemeyer, J. Hobbs and K. Sparck Jones; Dagstuhl Seminar Report 79 (1995))を参照されたい。ルートノードから開始する詳述関係のうち最も重要なセ
グメント同士を組合わせることによって、最も多くの情報を与える概要を生成することができる。DTはマルチドキュメントの概要に用いられてきた。Radev、Dragomir R.、Hongyan JingおよびMalgorzata Budzikowska(2000年)による「Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and
user studies」(In Proceedings of the 2000 NAACL-ANLP Workshop on Automatic summarization - Volume 4))を参照されたい。
主たる難題が一貫性である自然言語生成の問題においては、テキストのうち抽出されたフラグメントを一貫した方法で組織化するために、テキストの情報構造に依存することができる。テキストの一貫性を測定する方法は、エッセイの自動的評価の際に用いることができる。DTがテキスト一貫性を捕捉することができるので、エッセイの柔軟な談話構造を用いて、エッセイの文体および品質を査定することができる。Bursteinは、テキスト一貫性を評価したエッセイ査定のための半自動的方法を記載した。Burstein、Jill C.、Lisa Braden-Harder、Martin S. Chodoro、Bruce A. Kaplan、Karen Kukich、Chi Lu、Donald A. RockおよびSusanne Wolff(2002年)を参照されたい。
2003年にengioにおいて提案されたニューラルネットワーク言語モデルは、ニュー
ラルネットワークの入力を形成するためにいくつかの先行する単語ベクトルの連結を用いて、次の単語を予測しようと試みる。Bengio、Yoshua、Rejean Ducharme、Pascal VincentおよびChristian Janvin(2003年)による「A neural probabilistic language model」(J. Mach. Learn. Res. 3 (March 2003), 1137-1155)を参照されたい。結果は以下のとおりである。具体的には、モデルがトレーニングされた後、単語ベクトルは、センテンスおよびドキュメントの分散表現の意味論的に同様の単語が同様のベクトル表現を有するように、ベクトル空間にマップされる。この種類のモデルは、潜在的に談話関係で動作し得るが、我々がツリーカーネル学習のために供給するほどに豊富な言語情報を供給するのは困難である。フレーズレベルまたはセンテンスレベルの表現を達成するために単語レベルを越えるようにword2vecモデルを拡張する調査のコーパスが存在する。たとえば、単純なアプローチは、ドキュメントにおけるすべての単語の重み付け平均(単語ベクトルの重み付けされた平均)を用いており、bag-of-wordsのアプローチが行うのと同様の語順を損なってしまう。より高度化なアプローチでは、マトリックス・ベクトル演算を用いて、センテンスのパースツリーによって与えられる順序で単語ベクトル
を組合わせている。R. Socher、C. D. ManningおよびA. Y. Ng(2010年)による「Learning continuous phrase representations and syntactic parsing with recursive neural networks」(In Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop)を参照されたい。パースツリーを用いて単語ベクトルを組
合わせることは、構文解析に依存しているので、センテンスのみに対して作用することが明らかにされた。
ダイアログシステムのためのポリシー学習に対する多くの初期アプローチは、小さな状態空間および動作セットを用いており、制限されたポリシー学習実験(たとえば、確認のタイプまたはイニシアチブのタイプ)のみに集中されていた。コミュニケータデータセット(Walker他(2001年))は、人・マシン間のダイアログの利用可能な最大コーパスであり、さらにダイアログコンテキストで注釈が付けられていた。このコーパスは、ダイアログマネージャをトレーニングしたりテストしたりするために広範囲にわたって用いられていたが、目的地の都市などの限られた数の属性に関しては、飛行機旅行ドメインにおけるダイアログを要求する情報に制限されている。同時に、この作業においては、我々は、さまざまな性質からなる要求・応答ペアの広範囲なコーパスに依拠していた。
Reichman(1985年)は、発言の発話動作を認識するための従来の方法に関して、形式的記述および会話の動きの拡張遷移ネットワーク(Augmented Transition Network:ATN)モデルを提供している。著者は、動詞前の「please」、法助動詞、韻律、参照、手掛かりフレーズなどの修辞学的構文解析のために現在用いられているものと同様の言語マーカーの分析を用いている(たとえば、「Yes, but…(はいそうです。ですが…)」(副次的議論譲歩および対抗議論);「Yes, and…(はいそうです。ですので…)」(議論の合致およびさらなるサポート);「No(いいえ)」および「Yes(はい)」(非合致/合
致);「Because …(ので)」(サポート)、ならびに他の発話内の標識)。Reichman R.(1985年)による「Getting computers to talk like you and me: discourse context, focus and semantics (an ATN model)」(Cambridge, Mass. London: MIT Press.)を参照されたい。
複合的なクエリに対する候補回答としてのテキスト用のDTを想定して、このDTにおけるクエリキーワードの有効性および無効性の発生についてのルールシステムが提案されている。Galisky(2015年)を参照されたい。クエリに対して有効な回答とするため
に、そのキーワードは、この回答の一連の基本談話単位が核-衛星関係によって十分に順序づけられてつなげられるように、当該一連の基本談話単位において発生する必要がある。クエリのキーワードが回答の衛星談話単位においてのみ起こる場合、回答は無効であるかもしれない。
ダイアログゲーム
任意の会話においては、典型的には、質問の後に回答が続くか、または、回答できないことまたは回答の拒否についての何らかの明瞭な記述が続く。会話の意図的な空間についての以下のモデルがある。エージェントBによる質問が発生すると、エージェントAは、回答を見つけ出すためにエージェントBの目的を認識し、協調するためにBに回答を伝える目的を採用する。Aは、次いで、目的を達成することによって回答を生成することを計画する。これは、単純な事例における手際のよい説明を提供しているが、協調性のために強い仮定を必要とする。エージェントAはエージェントBの目的を彼女自身の目的として採用しなければならない。結果として、これは、彼女が回答を知らない場合またはBの目的を受理するのに彼女の準備ができていない場合に、なぜAが発言しているかを説明していない。
LitmanおよびAllenは、ドメインレベルに加えて談話レベルで意図的な分析を導入して
、談話レベルでの1セットの従来のマルチエージェント行動を想定した。Litman、D. L. およびAllen, J. F.(1987年)による「A plan recognition model for subdialogues in conversation」(Cognitive Science, 11:163-2)を参照されたい。他には、連帯の意図などの社会的な意図的構造を用いてこの種類の挙動を説明しようと試みるものもあった。Cohen P. R.およびLevesque, H. J.(1990年)による「Intention is choice with commitment」(Artificial Intelligence, 42:213-261)を参照されたい。また、Grosz、Barbara J.およびSidner、Candace L.(1986)による「Attentions, Intentions and the Structure of Discourse」(Computational Linguistics, 12(3), 175- 204)を参照されたい。これらの説明がいくつかの談話現象をより十分に説明するのに役立っているが、これらの説明は、依然として、ダイアログの一貫性を説明するために強い協調性を必要としているものの、高レベルの相互の目的をサポートしない場合にエージェントが動作する理由についての簡単な説明を提供していない。
見知らぬ人が或る人に接近して、「余分なお金を持っていますか?(Do you have spare coins?)」尋ねると想像する。彼らが以前に会ったことがないので、連帯の意図また
は共有される計画がある可能性は低い。純粋に戦略的観点から、エージェントは、見知らぬ人の目的が満たされるかどうかに興味を持つ可能性はない。しかし、典型的には、エージェントはこのような状況で応答するだろう。したがって、Q/Aの説明は話者の意図の認識を越えるはずである。質問が話者の目的の証拠を提供する以上のことをするとともに、対話者の目的を採用する以上の何かが、質問に対する応答の策定に関与している。
Mannは、共通のコミュニケーション対話をコード化する、ダイアログゲームと呼ばれることもある談話レベル行動のライブラリを提案した。Mann、WilliamおよびSandra Thompson(1988年)による「Rhetorical structure theory: Towards a functional theory
of text organization」(Text-Interdisciplinary Journal for the Study of Discourse, 8(3):243- 281)を参照されたい。協調的にするために、エージェントは、常にこれ
らのゲームのうちの1つに参加していなければならない。そのため、質問が尋ねられる場合、一定数の活動(すなわち質問によって導入されたもの)だけが協調的な応答となる。ゲームは、一貫性についての優れた説明を提供するが、ダイアログゲームを実行するためにエージェントが互いの意図を認識することが依然として必要となる。結果として、この作業は、意図的な見解の特殊な事例として捉えることができる。この分離のせいで、エージェントらは、各エージェントが実行しているタスクに対する協調を想定する必要はないが、意図および協調を会話レベルで認識する必要がある。どのような目的が会話の協調性を動機付けるのかは説明されないままである。
CoulthardおよびBrazilは、複数の応答が応答および新しい開始の両方についての2重
の役割を果たすことができることを示唆した:Initiation ^ (Re-Initiation) ^ Response ^(Follow-up)。Coulthard R. M.およびBrazil D.(1979年)による「Exchange structure」(Discourse analysis monographs no. 5.:Birmingham: The University of Birmingham, English Language Research)を参照されたい。交換は2~4つの発言で構成され得る。さらに、フォローアップ自体がフォローアップされ得る。オープニングの動きは、しばしば、交換の開始を示しているが、これは、次の動きのタイプを制限するものではない。最後に、フォローアップを必要としないクロージングの動きが起こることがある。これらの観察結果がそれらの式に加えられると、以下で終わりとなる:
(Open) ^ Initiation ^ (Re-Initiation) ^ Response ^ (Feedback) ^(Follow-up) ^ (Close)
これは、ここで、2から7以上の交換から得られるものであれば何にでも対処することができる。
図26は、一局面に従ったダイアログの談話動作を示す。Tsui(1994)は3部分か
らなるトランザクションに従った談話動作を特徴とする。開始、応答およびフォローアップについての選択のための彼女のシステムは、図26において、上部、中間部および下部に対応して示されている。
図27は、一局面に従った対話の談話動作を示す。
有効なRRペアに対する無効なRRペアの分類問題はまた、質問に対する回答および自動化されたダイアログサポートを超える完全なダイアログ生成のタスクに適用可能である。Popescuは、人とコンピュータとのダイアログのための自然言語ジェネレータの論理ベ
ースの修辞学的構造の構成要素を提示した。Popescu、Vladimir、Jean Caelen、Corneliu
Burileanuによる「Logic-Based Rhetorical Structuring for Natural Language Generation in Human-Computer Dialogue」(Lecture Notes in Computer Science Volume 4629
, pp 309-317, 2007)を参照されたい。実際的な局面および文脈上の局面は、ドメイン
およびアプリケーション依存の情報を提供するとともに完全に形式化されたタスクオントロジーで構造化されたタスクコントローラとのやりとりの際に考慮に入れられる。計算の実現可能性および一般性の目的を達成するために、談話オントロジーが構築され、修辞関係についての制約を導入するいくつかの公理が提案されてきた。
たとえば、トピック(α)のセマンティックスを指定する公理が以下のとおり与えられる。
Figure 0007439038000014
この場合、K(α)は、発言αのセマンティックスを論理的に表わす節である。
発言のトピックについての概念は、ここでは、ドメインオントロジーにおける目的語のセットの観点から規定されており、発言内においてさだめられた態様で参照されている。したがって、発言間のトピック関係は、タスクコントローラによって対処されるタスク/ドメイン・オントロジーを用いて演算される。
このようなルールのインスタンスとして、以下を考慮に入れることができる。
Figure 0007439038000015
この場合、t+は「future and 『new』」である。
修辞関係および討論
しばしば、質問と回答とをリンクする主な手段は論理的討論である。この研究で学習しようと試みたRST関係と討論関係との間には明らかなつながりがある。方向付けられた関係、サポート、攻撃、詳細および方向付けられていないシーケンス関係という4つのタイプの関係がある。サポートと攻撃との関係は論争的な関係であって、関連する作業から
既知となっている。Peldszus,A.およびStede, M.(2013年)による「From Argument
Diagrams to Argumentation Mining in Texts」(A Survey. Int. J of Cognitive Informatics and Natural Intelligence 7(1), 1-31))を参照されたい。後者の2つはRSTにおいて用いられる談話関係に対応している。討論シーケンス関係はRSTにおける「シーケンス(Sequence)」に対応しており、討論詳細関係は、おおむね、「背景」および「詳細」に対応している。
討論詳細関係は重要であるが、それは、科学技術出版物において、多くの場合、何らかの背景事項(たとえば、用語の定義)が全体的な討論の理解にとって重要であるからである。議論構成要素Respと別の議論構成要素Reqとの間のサポート関係は、RespがReqをサポート(推論、証明)していることを示している。同様に、RespとReqとの攻撃関係は、RespがReqを攻撃(制限、反駁)している場合には注釈が付けられる。RespがReqの詳細であるとともに、より多くの情報を与えるかまたは論争による理由付けなしにReqに記載されているものを定義している場合には、詳細関係が用いられる。最後に、構成要素が相互に属しており、組み合わされたときにだけ意味をなす場合、すなわち、構成要素がマルチセンテンス議論構成要素を形成する場合、我々は、(ReqまたはResp内の)2つの議論構成要素をシーケンス関係とリンクさせる。
我々は、SVM TKを用いることで、討論のないテキストスタイルおよびさまざまな形式の討論を含むテキストスタイルを含む、広範囲のテキストスタイル(Galitsky(2015年))同士を区別することができることに気付いた。各々のテキストスタイルおよびジャンルは、活用されるとともに自動的に学習されるその固有の修辞構造を有する。テキストスタイルとテキスト語いとの間の相関性がいくらか低いので、キーワード統計情報だけを考慮に入れる従来の分類アプローチでは、複雑な事例においては精度が欠ける可能性があった。我々はまた、言語対象に属するものおよび文献ドメイン内のメタ言語などのやや抽象的なクラスへのテキスト分類を実行するとともに、プロプライエタリ設計ドキュメントへのスタイルベースのドキュメント分類を実行した。Galitsky, B、Ilvovsky, D.およびKuznetsov SOによる「Rhetoric Map of an Answer to Compound Queries」(Knowledge Trail Inc. ACL 2015, 681-686)を参照されたい。有効な顧客の苦情に対する無効な
顧客の苦情についてのドメインにおけるテキスト保全性の評価(苦情を言う人の不機嫌さを示す、まとまりのない討論の流れを含むもの)は、感情プロフィール情報と比べて修辞構造情報がより強く寄与することを示している。RSTパーサによって得られる談話構造はテキスト保全性の査定を実行するのに十分であるのに対して、感情プロフィールベースのアプローチは、はるかに弱い結果を示しており、修辞構造を強固に補完するものではない。
広範囲な研究のコーパスはRSTパーサのみに向けられたものであるが、実際のNLP問題に関するRST構文解析結果を如何に活用するかについての調査は、内容の生成、要約および検索に限られている(Jansen他;2014年)。これらのパーサによって得られるDTは、テキストをフィルタリングまたは構築するためにルールベースで直接用いることができない。したがって、学習は、DTの暗示的な特性を活用することが必要とされる。この研究は、我々の知る限りでは、談話ツリーおよびそれらの拡張部分を、一般的なオープンドメインの質問応答、チャットボット、ダイアログ管理およびテキスト構造のために採用している先駆的研究である。
ダイアログチャットボットシステムは、ユーザのコミュニケーションの意図を理解して一致させることができ、これらの意図で推論し、ユーザ自身のそれぞれのコミュニケーション意図を構築し、ユーザに伝えられるべき実際の言語でこれらの意図をポピュレートする必要がある。それら自体の談話ツリーはこれらのコミュニケーションの意図についての表現を提供するものでない。この研究において、我々は、従来の談話ツリーで構築された
コミュニケーション用談話ツリーを導入したが、これらは、一方では、最近では大規模に生成することができ、他方では、ダイアログの記述的な発言レベルモデルを構成することができる。コミュニケーション用談話ツリーの機械学習によってダイアログを処理することにより、我々が、広範囲のダイアログタイプの協調モードおよび対話タイプ(プランニング、実行、およびインタリーブされたプラニングとその実行)をモデル化することが可能となった。
統計的な計算学習アプローチは、手動のルールベースのハンドコーディングアプローチに勝るいくつかの主要な潜在的利点をダイアログシステム開発に提供する。
・データ駆動型の開発サイクル;
・場合によっては最適な行動ポリシー;
・応答の選択のためのより正確なモデル;
・目に見えない状態への一般化の可能性;
・産業に関する開発および配備コストの削減。
帰納的学習結果をカーネルベースの統計的学習と比較すると、同じ情報に依拠することにより、我々が、いずれかのアプローチで行うよりもより簡潔な特徴エンジニアリングを実行することが可能となった。
RSTパーサに関する文献の広範囲なコーパスは、結果として得られるDTが実際のNLPシステムにおいて如何に採用され得るかについての問題に対処していない。RSTパーサは、大抵、対象となる特徴のその表現性ではなく人によって注釈付けされたテストセットとの合致に関して評価される。この作業においては、我々は、DTの解釈に焦点を合わせるとともに、事実の中立的な列挙ではなく合致または非合致を示す形式でこれらを表現する方法を探った。
ダイアログ内の所与のメッセージの後に如何に次のメッセージが続くかについての合致の基準を提供するために、我々はCDTを用いた。CDTは、ここでは、コミュニケーション行動のためのラベルを、代用したVerbNetフレームの形で含んでいる。我々は、正確な要求・応答および質問・回答のペアに対する不正確な要求・応答および質問・回答のペアを示す談話特徴を調査した。我々は、正確なペアを認識するために2つの学習フレームワークを用いた。2つの学習フレームワークは、すなわち、グラフとしてのCDTの決定論的な最隣接学習およびCDTのツリーカーネル学習である。この場合、すべてのCDTサブツリーの特徴空間はSVM学習の対象となる。
肯定的なトレーニングセットは、Yahoo Answers、ソーシャルネットワーク、Enron電子メールを含む企業の会話、顧客の苦情、およびジャーナリストによるインタビューから得られた正確なペアから構築された。対応する否定的なトレーニングセットは、要求と応答との間の関連類似性が高くなるように、関連するキーワードを含んださまざまな任意の要求および質問についての応答を添えることによって作成された。その評価によれば、弱い要求・応答合致のドメインにおける事例のうち68%~79%、および強い合致のドメインにおける事例のうち80%~82%において有効なペアを認識することができる。これらの精度は自動化された会話をサポートするのに必須である。これらの精度は、談話ツリー自体を有効または無効として分類するベンチマークタスクに匹敵するとともに、類事実の質問・回答システムに匹敵している。
我々は、この研究が質問応答サポートのために自動的に構築された談話ツリーを活用する最初の研究であると信じている。従来の研究は、系統的に収集し、説明可能に学習し、リバースエンジニアを行い、互いに比較するのが困難である特定の顧客談話モデルおよび
特徴を用いていた。我々は、CDTの形式で修辞構造を学習することが、複雑な質問への回答、チャットボットおよびダイアログ管理をサポートするための主要なデータソースであると結論付ける。
図28は、上記局面のうちの1つを実現するための分散型システム2800を示す簡略図である。例示された局面においては、分散型システム2800は、1つ以上のネットワーク2810を介して、ウェブブラウザ、プロプライエタリクライアント(たとえばオラクルフォーム)などのクライアントアプリケーションを実行して動作させるように構成される1つ以上のクライアントコンピューティングデバイス2802、2804、2806および2808を含む。サーバ2812は、ネットワーク2810を介してリモートクライアントコンピューティングデバイス2802、2804、2806および2808と通信可能に結合されてもよい。
さまざまな局面においては、サーバ2812は、システムの構成要素のうち1つ以上によって提供される1つ以上のサービスまたはソフトウェアアプリケーションを実行するように適合されてもよい。サービスまたはソフトウェアアプリケーションは非仮想環境および仮想環境を含み得る。仮想環境は、2次元または3次元(three-dimensional:3D)
表現、ページベースの論理的環境などであろうとなかろうと、仮想イベント、トレードショー、シミュレータ、クラスルーム、購買商品取引および企業活動のために用いられるものを含み得る。いくつかの局面においては、これらのサービスは、ウェブベースのサービスもしくはクラウドサービスとして、またはソフトウェア・アズ・ア・サービス(Software as a Service:SaaS)モデルのもとで、クライアントコンピューティングデバイ
ス2802,2804,2806および/または2808のユーザに供給されてもよい。そして、クライアントコンピューティングデバイス2802,2804,2806および/または2808を動作させるユーザは、1つ以上のクライアントアプリケーションを利用して、サーバ2812と相互作用して、これらの構成要素によって提供されるサービスを利用し得る。
図に示されている構成では、システム2800のソフトウェアコンポーネント2818,2820および2822は、サーバ2812上に実装されるように示されている。また、他の局面においては、システム2800の構成要素のうちの1つ以上および/またはこれらの構成要素によって提供されるサービスは、クライアントコンピューティングデバイス2802,2804,2806および/または2808のうちの1つ以上によって実現されてもよい。その場合、クライアントコンピューティングデバイスを動作させるユーザは、1つ以上のクライアントアプリケーションを利用して、これらの構成要素によって提供されるサービスを使用し得る。これらの構成要素は、ハードウェア、ファームウェア、ソフトウェア、またはそれらの組合せで実現されてもよい。分散型システム2800とは異なり得るさまざまな異なるシステム構成が可能であることが理解されるべきである。したがって、図に示されている局面は、局面のシステムを実現するための分散型システムの一例であり、限定的であるよう意図されたものではない。
クライアントコンピューティングデバイス2802,2804,2806および/または2808は、手持ち式携帯機器(たとえばiPhone(登録商標)、携帯電話、iPad(登録商標)、計算タブレット、パーソナルデジタルアシスタント(personal digital assistant:PDA))またはウェアラブル装置(たとえばグーグルグラス(登録商標)ヘッドマウントディスプレイ)であってもよく、当該装置は、マイクロソフト・ウィンドウズ(登録商標)・モバイル(登録商標)などのソフトウェアを実行し、および/または、iOS、ウィンドウズ・フォン、アンドロイド、ブラックベリー10、パームOSなどのさまざまなモバイルオペレーティングシステムを実行し、インターネット、eメール、ショート・メッセージ・サービス(short message service:SMS)、ブラックベリ
ー(登録商標)、または使用可能な他の通信プロトコルである。クライアントコンピューティングデバイスは、汎用パーソナルコンピュータであってもよく、当該汎用パーソナルコンピュータは、一例として、マイクロソフトウィンドウズ(登録商標)、アップルマッキントッシュ(登録商標)および/またはリナックス(登録商標)オペレーティングシステムのさまざまなバージョンを実行するパーソナルコンピュータおよび/またはラップトップコンピュータを含む。クライアントコンピューティングデバイスは、ワークステーションコンピュータであってもよく、当該ワークステーションコンピュータは、たとえばGoogle Chrome OSなどのさまざまなGNU/リナックスオペレーティングシステムを含むがこれらに限定されるものではないさまざまな市販のUNIX(登録商標)またはUNIXライクオペレーティングシステムのうちのいずれかを実行する。代替的には、または付加的には、クライアントコンピューティングデバイス2802,2804,2806および2808は、シン・クライアントコンピュータ、インターネットにより可能なゲーミングシステム(たとえばキネクト(登録商標)ジェスチャ入力装置を備えるかまたは備えないマイクロソフトXボックスゲーム機)、および/または、ネットワーク2810を介して通信が可能なパーソナルメッセージング装置などのその他の電子装置であってもよい。
例示的な分散型システム2800は、4個のクライアントコンピューティングデバイスを有するように示されているが、任意の数のクライアントコンピューティングデバイスがサポートされてもよい。センサを有する装置などの他の装置が、サーバ2812と相互作用してもよい。
分散型システム2800におけるネットワーク2810は、さまざまな市販のプロトコルのうちのいずれかを用いてデータ通信をサポートすることができる、当業者になじみのある任意のタイプのネットワークであってもよく、当該プロトコルは、TCP/IP(伝送制御プロトコル/インターネットプロトコル)、SNA(システムネットワークアーキテクチャ)、IPX(インターネットパケット交換)、アップルトークなどを含むが、これらに限定されるものではない。単に一例として、ネットワーク2810は、イーサネット(登録商標)、トークンリングなどに基づくものなどのローカルエリアネットワーク(LAN)であってもよい。ネットワーク2810は、広域ネットワークおよびインターネットであってもよい。ネットワーク2810は、仮想ネットワークを含んでいてもよく、当該仮想ネットワークは、仮想プライベートネットワーク(virtual private network:
VPN)、イントラネット、エクストラネット、公衆交換電話網(public switched telephone network:PSTN)、赤外線ネットワーク、無線ネットワーク(たとえば米国電
気電子学会(Institute of Electrical and Electronics:IEEE)802.28の一
連のプロトコル、ブルートゥース(登録商標)および/またはその他の無線プロトコルのうちのいずれかのもとで動作するネットワーク)、および/またはこれらの任意の組合せ、および/または他のネットワークを含むが、これらに限定されるものではない。
サーバ2812は、1つ以上の汎用コンピュータ、専用サーバコンピュータ(一例として、PC(パーソナルコンピュータ)サーバ、UNIX(登録商標)サーバ、ミッドレンジサーバ、メインフレームコンピュータ、ラックマウント式サーバなどを含む)、サーバファーム、サーバクラスタ、またはその他の適切な構成および/または組合せで構成され得る。サーバ2812は、仮想オペレーティングシステムを実行する1つ以上の仮想マシン、または仮想化を含む他のコンピューティングアーキテクチャを含み得る。論理記憶装置の1つ以上のフレキシブルプールは、サーバのための仮想記憶デバイスを維持するように仮想化することができる。仮想ネットワークは、ソフトウェア定義型ネットワーキングを用いて、サーバ2812によって制御することができる。さまざまな局面においては、サーバ2812は、上記の開示に記載されている1つ以上のサービスまたはソフトウェアアプリケーションを実行するように適合され得る。たとえば、サーバ2812は、本開示
の局面に係る上記の処理を実行するためのサーバに対応してもよい。
サーバ2812は、上記のもののうちのいずれか、および、任意の市販のサーバオペレーティングシステムを含むオペレーティングシステムを実行し得る。また、サーバ2812は、ハイパーテキスト転送プロトコル(hypertext transport protocol:HTTP)サーバ、ファイル転送プロトコル(file transfer protocol:FTP)サーバ、共通ゲートウェイインターフェース(common gateway interface:CGI)サーバ、JAVA(登録商標)サーバ、データベースサーバなどを含むさまざまな付加的サーバアプリケーションおよび/または中間層アプリケーションのうちのいずれかを実行し得る。例示的なデータベースサーバは、オラクル社(Oracle)、マイクロソフト社(Microsoft)、サイベース
社(Sybase)、IBM社(International Business Machines)などから市販されている
ものを含むが、これらに限定されるものではない。
いくつかの実現例では、サーバ2812は、クライアントコンピューティングデバイス2802,2804,2806および2808のユーザから受取ったデータフィードおよび/またはイベント更新を分析および統合するための1つ以上のアプリケーションを含み得る。一例として、データフィードおよび/またはイベント更新は、1つ以上の第三者情報源および連続的なデータストリームから受信されるTwitter(登録商標)フィード、Facebook(登録商標)更新またはリアルタイム更新を含み得るが、これらに限定されるもの
ではなく、センサデータアプリケーション、金融ティッカ、ネットワーク性能測定ツール(たとえばネットワークモニタリングおよびトラフィック管理アプリケーション)、クリックストリーム分析ツール、自動車交通モニタリングなどに関連するリアルタイムイベントを含み得る。また、サーバ2812は、クライアントコンピューティングデバイス2802,2804,2806および2808の1つ以上の表示装置を介してデータフィードおよび/またはリアルタイムイベントを表示するための1つ以上のアプリケーションを含み得る。
また、分散型システム2800は、1つ以上のデータベース2814および2816を含み得る。データベース2814および2816は、さまざまな場所に存在し得る。一例として、データベース2814および2816の1つ以上は、サーバ2812にローカルな(および/または存在する)非一時的な記憶媒体に存在していてもよい。代替的に、データベース2814および2816は、サーバ2812から遠く離れていて、ネットワークベースまたは専用の接続を介してサーバ2812と通信してもよい。一組の局面においては、データベース2814および2816は、記憶領域ネットワーク(storage-area network:SAN)に存在していてもよい。同様に、サーバ2812に起因する機能を実行するための任意の必要なファイルが、サーバ2812上にローカルに、および/または、リモートで適宜格納されていてもよい。一組の局面においては、データベース2814および2816は、SQLフォーマットコマンドに応答してデータを格納、更新および検索するように適合された、オラクル社によって提供されるデータベースなどのリレーショナルデータベースを含み得る。
図29は、本開示の一局面に係る、一局面のシステムの1つ以上の構成要素によって提供されるサービスをクラウドサービスとして供給することができるシステム環境2900の1つ以上の構成要素の簡略化されたブロック図である。示されている局面においては、システム環境2900は、クラウドサービスを提供するクラウドインフラストラクチャシステム2902と相互作用するようにユーザによって使用され得る1つ以上のクライアントコンピューティングデバイス2904,2906および2908を含む。クライアントコンピューティングデバイスは、クラウドインフラストラクチャシステム2902によって提供されるサービスを使用するためにクラウドインフラストラクチャシステム2902と相互作用するようにクライアントコンピューティングデバイスのユーザによって使用さ
れ得る、ウェブブラウザ、専有のクライアントアプリケーション(たとえばオラクルフォームズ)または他のアプリケーションなどのクライアントアプリケーションを動作させるように構成され得る。
図に示されているクラウドインフラストラクチャシステム2902が図示されている構成要素とは他の構成要素を有し得ることが理解されるべきである。さらに、図に示されている局面は、本発明の局面を組込むことができるクラウドインフラストラクチャシステムの一例に過ぎない。いくつかの他の局面においては、クラウドインフラストラクチャシステム2902は、図に示されているものよりも多いまたは少ない数の構成要素を有していてもよく、2つ以上の構成要素を組合せてもよく、または構成要素の異なる構成または配置を有していてもよい。
クライアントコンピューティングデバイス2904,2906および2908は、2802,2804,2806および2808について上記したものと類似のデバイスであってもよい。
例示的なシステム環境2900は3個のクライアントコンピューティングデバイスを有するように示されているが、任意の数のクライアントコンピューティングデバイスがサポートされてもよい。センサなどを有する装置などの他の装置が、クラウドインフラストラクチャシステム2902と相互作用してもよい。
ネットワーク2910は、クライアント2904,2906および2908とクラウドインフラストラクチャシステム2902との間のデータの通信およびやりとりを容易にし得る。各々のネットワークは、ネットワーク2810について上記したものを含むさまざまな市販のプロトコルのうちのいずれかを用いてデータ通信をサポートすることができる、当業者になじみのある任意のタイプのネットワークであってもよい。
クラウドインフラストラクチャシステム2902は、サーバ2812について上記したものを含み得る1つ以上のコンピュータおよび/またはサーバを備え得る。
特定の局面においては、クラウドインフラストラクチャシステムによって提供されるサービスは、オンラインデータ記憶およびバックアップソリューション、ウェブベースのeメールサービス、ホスト型オフィススイートおよびドキュメントコラボレーションサービス、データベース処理、管理技術サポートサービスなどの、クラウドインフラストラクチャシステムのユーザがオンデマンドで利用可能な多数のサービスを含み得る。クラウドインフラストラクチャシステムによって提供されるサービスは、そのユーザのニーズを満たすように動的にスケーリング可能である。クラウドインフラストラクチャシステムによって提供されるサービスの具体的なインスタンス化は、本明細書では「サービスインスタンス」と称される。一般に、インターネットなどの通信ネットワークを介してクラウドサービスプロバイダのシステムからユーザが利用可能な任意のサービスは、「クラウドサービス」と称される。通常、パブリッククラウド環境では、クラウドサービスプロバイダのシステムを構成するサーバおよびシステムは、顧客自身のオンプレミスサーバおよびシステムとは異なっている。たとえば、クラウドサービスプロバイダのシステムがアプリケーションをホストしてもよく、ユーザは、インターネットなどの通信ネットワークを介してオンデマンドで当該アプリケーションを注文および使用してもよい。
いくつかの例では、コンピュータネットワーククラウドインフラストラクチャにおけるサービスは、ストレージ、ホスト型データベース、ホスト型ウェブサーバ、ソフトウェアアプリケーションへの保護されたコンピュータネットワークアクセス、またはクラウドベンダによってユーザに提供されるかもしくはそうでなければ当該技術分野において公知の
他のサービスを含み得る。たとえば、サービスは、インターネットを介したクラウド上のリモートストレージへのパスワードによって保護されたアクセスを含み得る。別の例として、サービスは、ネットワーク化された開発者による私的使用のためのウェブサービスベースのホスト型リレーショナルデータベースおよびスクリプト言語ミドルウェアエンジンを含み得る。別の例として、サービスは、クラウドベンダのウェブサイト上でホストされるeメールソフトウェアアプリケーションへのアクセスを含み得る。
特定の局面においては、クラウドインフラストラクチャシステム2902は、セルフサービスの、サブスクリプションベースの、弾性的にスケーラブルな、信頼性のある、高可用性の、安全な態様で顧客に配信される一連のアプリケーション、ミドルウェアおよびデータベースサービス提供品を含み得る。このようなクラウドインフラストラクチャシステムの一例は、本譲受人によって提供されるオラクルパブリッククラウドである。
時としてビッグデータとも称される大量のデータは、インフラストラクチャシステムによって、多数のレベルにおいて、および異なるスケールでホストおよび/または操作され得る。このようなデータが含み得るデータセットは、非常に大型で複雑であるので、典型的なデータベース管理ツールまたは従来のデータ処理アプリケーションを用いて処理するのが困難になる可能性がある。たとえば、テラバイトのデータはパーソナルコンピュータまたはそれらのラックベースの対応物を用いて格納、検索取得および処理することが難しいかもしれない。このようなサイズのデータは、最新のリレーショナルデータベース管理システムおよびデスクトップ統計ならびに視覚化パッケージを用いて機能させるのが困難である可能性がある。それらは、データを許容可能な経過時間内に捕捉しキュレーションし管理し処理するよう、一般的に用いられるソフトウェアツールの構造を超えて、何千ものサーバコンピュータを動作させる大規模並列処理ソフトウェアを必要とし得る。
大量のデータを視覚化し、トレンドを検出し、および/または、データと相互作用させるために、分析者および研究者は極めて大きいデータセットを格納し処理することができる。平行にリンクされた何十、何百または何千ものプロセッサがこのようなデータに対して作用可能であり、これにより、このようなデータを表示し得るか、または、データに対する外力をシミュレートし得るかもしくはそれが表しているものをシミュレートし得る。これらのデータセットは、データベースにおいて編制されたデータ、もしくは構造化モデルに従ったデータ、および/または、非体系的なデータ(たとえば電子メール、画像、データブロブ(バイナリ大型オブジェクト)、ウェブページ、複雑なイベント処理)などの構造化されたデータを必要とする可能性がある。目標物に対してより多くの(またはより少数の)コンピューティングリソースを比較的迅速に集中させるために局面の能力を強化することにより、ビジネス、政府関係機関、研究組織、私人、同じ目的をもった個々人もしくは組織のグループ、または他のエンティティからの要求に基づいて大量のデータセット上でタスクを実行するために、クラウドインフラストラクチャシステムがより良好に利用可能となる。
さまざまな局面においては、クラウドインフラストラクチャシステム2902は、クラウドインフラストラクチャシステム2902によって供給されるサービスへの顧客のサブスクリプションを自動的にプロビジョニング、管理および追跡するように適合され得る。クラウドインフラストラクチャシステム2902は、さまざまなデプロイメントモデルを介してクラウドサービスを提供し得る。たとえば、クラウドインフラストラクチャシステム2902が、(たとえばオラクル社によって所有される)クラウドサービスを販売する組織によって所有され、一般大衆またはさまざまな産業企業がサービスを利用できるパブリッククラウドモデルのもとでサービスが提供されてもよい。別の例として、クラウドインフラストラクチャシステム2902が単一の組織のためだけに運営され、当該組織内の1つ以上のエンティティにサービスを提供し得るプライベートクラウドモデルのもとでサ
ービスが提供されてもよい。また、クラウドインフラストラクチャシステム2902およびクラウドインフラストラクチャシステム2902によって提供されるサービスが、関連のコミュニティ内のいくつかの組織によって共有されるコミュニティクラウドモデルのもとでクラウドサービスが提供されてもよい。また、2つ以上の異なるモデルの組合せであるハイブリッドクラウドモデルのもとでクラウドサービスが提供されてもよい。
いくつかの局面においては、クラウドインフラストラクチャシステム2902によって提供されるサービスは、ソフトウェア・アズ・ア・サービス(Software as a Service:
SaaS)カテゴリ、プラットフォーム・アズ・ア・サービス(Platform as a Service
:PaaS)カテゴリ、インフラストラクチャ・アズ・ア・サービス(Infrastructure as a Service:IaaS)カテゴリ、またはハイブリッドサービスを含むサービスの他の
カテゴリのもとで提供される1つ以上のサービスを含み得る。顧客は、サブスクリプションオーダーによって、クラウドインフラストラクチャシステム2902によって提供される1つ以上のサービスをオーダーし得る。次いで、クラウドインフラストラクチャシステム2902は、顧客のサブスクリプションオーダーでサービスを提供するために処理を実行する。
いくつかの局面においては、クラウドインフラストラクチャシステム2902によって提供されるサービスは、アプリケーションサービス、プラットフォームサービスおよびインフラストラクチャサービスを含み得るが、これらに限定されるものではない。いくつかの例では、アプリケーションサービスは、SaaSプラットフォームを介してクラウドインフラストラクチャシステムによって提供されてもよい。SaaSプラットフォームは、SaaSカテゴリに分類されるクラウドサービスを提供するように構成され得る。たとえば、SaaSプラットフォームは、一体化された開発およびデプロイメントプラットフォーム上で一連のオンデマンドアプリケーションを構築および配信するための機能を提供し得る。SaaSプラットフォームは、SaaSサービスを提供するための基本的なソフトウェアおよびインフラストラクチャを管理および制御し得る。SaaSプラットフォームによって提供されるサービスを利用することによって、顧客は、クラウドインフラストラクチャシステムで実行されるアプリケーションを利用することができる。顧客は、顧客が別々のライセンスおよびサポートを購入する必要なく、アプリケーションサービスを取得することができる。さまざまな異なるSaaSサービスが提供されてもよい。例としては、大規模組織のための販売実績管理、企業統合およびビジネスの柔軟性のためのソリューションを提供するサービスが挙げられるが、これらに限定されるものではない。
いくつかの局面においては、プラットフォームサービスは、PaaSプラットフォームを介してクラウドインフラストラクチャシステムによって提供されてもよい。PaaSプラットフォームは、PaaSカテゴリに分類されるクラウドサービスを提供するように構成され得る。プラットフォームサービスの例としては、組織(オラクル社など)が既存のアプリケーションを共有の共通アーキテクチャ上で統合することを可能にするサービス、および、プラットフォームによって提供される共有のサービスを活用する新たなアプリケーションを構築する機能を挙げることができるが、これらに限定されるものではない。PaaSプラットフォームは、PaaSサービスを提供するための基本的なソフトウェアおよびインフラストラクチャを管理および制御し得る。顧客は、顧客が別々のライセンスおよびサポートを購入する必要なく、クラウドインフラストラクチャシステムによって提供されるPaaSサービスを取得することができる。プラットフォームサービスの例としては、オラクルJavaクラウドサービス(Java Cloud Service:JCS)、オラクルデータベースクラウドサービス(Database Cloud Service:DBCS)などが挙げられるが、これらに限定されるものではない。
PaaSプラットフォームによって提供されるサービスを利用することによって、顧客
は、クラウドインフラストラクチャシステムによってサポートされるプログラミング言語およびツールを利用することができ、デプロイされたサービスを制御することもできる。いくつかの局面においては、クラウドインフラストラクチャシステムによって提供されるプラットフォームサービスは、データベースクラウドサービス、ミドルウェアクラウドサービル(たとえばオラクルフージョンミドルウェアサービス)およびJavaクラウドサービスを含み得る。一局面においては、データベースクラウドサービスは、組織がデータベースリソースをプールしてデータベースクラウドの形態でデータベース・アズ・ア・サービスを顧客に供給することを可能にする共有のサービスデプロイメントモデルをサポートし得る。ミドルウェアクラウドサービスは、クラウドインフラストラクチャシステムにおいてさまざまなビジネスアプリケーションを開発およびデプロイするために顧客にプラットフォームを提供し得るともに、Javaクラウドサービスは、クラウドインフラストラクチャシステムにおいてJavaアプリケーションをデプロイするために顧客にプラットフォームを提供し得る。
さまざまな異なるインフラストラクチャサービスは、クラウドインフラストラクチャシステムにおけるIaaSプラットフォームによって提供されてもよい。インフラストラクチャサービスは、ストレージ、ネットワークなどの基本的な計算リソース、ならびに、SaaSプラットフォームおよびPaaSプラットフォームによって提供されるサービスを利用する顧客のための他の基礎的な計算リソースの管理および制御を容易にする。
また、特定の局面においては、クラウドインフラストラクチャシステム2902は、クラウドインフラストラクチャシステムの顧客にさまざまなサービスを提供するために使用されるリソースを提供するためのインフラストラクチャリソース2930を含み得る。一局面においては、インフラストラクチャリソース2930は、PaaSプラットフォームおよびSaaSプラットフォームによって提供されるサービスを実行するための、サーバ、ストレージおよびネットワーキングリソースなどのハードウェアの予め一体化された最適な組合せを含み得る。
いくつかの局面においては、クラウドインフラストラクチャシステム2902におけるリソースは、複数のユーザによって共有され、デマンドごとに動的に再割り振りされてもよい。また、リソースは、異なる時間帯にユーザに割り振られてもよい。たとえば、クラウドインフラストラクチャシステム2930は、第1の時間帯におけるユーザの第1の組が規定の時間にわたってクラウドインフラストラクチャシステムのリソースを利用することを可能にし得るとともに、異なる時間帯に位置するユーザの別の組への同一のリソースの再割り振りを可能にし得ることによって、リソースの利用を最大化することができる。
特定の局面においては、クラウドインフラストラクチャシステム2902のさまざまな構成要素またはモジュール、および、クラウドインフラストラクチャシステム2902によって提供されるサービス、によって共有されるいくつかの内部共有サービス2932が提供され得る。これらの内部共有サービスは、セキュリティおよびアイデンティティサービス、インテグレーションサービス、企業リポジトリサービス、企業マネージャサービス、ウイルススキャンおよびホワイトリストサービス、高可用性・バックアップおよび回復サービス、クラウドサポートを可能にするためのサービス、eメールサービス、通知サービス、ファイル転送サービスなどを含み得るが、これらに限定されるものではない。
特定の局面においては、クラウドインフラストラクチャシステム2902は、クラウドインフラストラクチャシステムにおけるクラウドサービス(たとえばSaaSサービス、PaaSサービスおよびIaaSサービス)の包括的管理を提供し得る。一局面においては、クラウド管理機能は、クラウドインフラストラクチャシステム2902によって受信された顧客のサブスクリプションをプロビジョニング、管理および追跡などするための機
能を含み得る。
一局面においては、図に示されるように、クラウド管理機能は、オーダー管理モジュール2920、オーダーオーケストレーションモジュール2922、オーダープロビジョニングモジュール2924、オーダー管理および監視モジュール2926、ならびにアイデンティティ管理モジュール2928などの1つ以上のモジュールによって提供され得る。これらのモジュールは、汎用コンピュータ、専用サーバコンピュータ、サーバファーム、サーバクラスタ、またはその他の適切な構成および/もしくは組み合わせであり得る1つ以上のコンピュータおよび/またはサーバを含み得るか、またはそれらを用いて提供され得る。
例示的な動作2934において、クライアントデバイス2904,2906または2908などのクライアントデバイスを用いる顧客は、クラウドインフラストラクチャシステム2902によって提供される1つ以上のサービスを要求し、クラウドインフラストラクチャシステム2902によって供給される1つ以上のサービスのサブスクリプションについてオーダーを行うことによって、クラウドインフラストラクチャシステム2902と対話し得る。特定の局面においては、顧客は、クラウドユーザインターフェース(User Interface:UI)、すなわちクラウドUI2929、クラウドUI2914および/またはクラウドUI2916にアクセスして、これらのUIを介してサブスクリプションオーダーを行い得る。顧客がオーダーを行ったことに応答してクラウドインフラストラクチャシステム2902によって受信されたオーダー情報は、顧客と、顧客がサブスクライブする予定のクラウドインフラストラクチャシステム2902によって提供される1つ以上のサービスとを特定する情報を含み得る。
オーダーが顧客によって行われた後、オーダー情報は、クラウドUI2929,2914および/または2916を介して受信される。
動作2936において、オーダーは、オーダーデータベース2918に格納される。オーダーデータベース2918は、クラウドインフラストラクチャシステム2918によって動作させられるとともに他のシステム要素と連携して動作させられるいくつかのデータベースのうちの1つであってもよい。
動作2938において、オーダー情報は、オーダー管理モジュール2920に転送される。いくつかの例では、オーダー管理モジュール2920は、オーダーの確認および確認時のオーダーの予約などのオーダーに関連する請求書発行機能および会計経理機能を実行するように構成され得る。
動作2940において、オーダーに関する情報は、オーダーオーケストレーションモジュール2922に通信される。オーダーオーケストレーションモジュール2922は、顧客によって行われたオーダーについてのサービスおよびリソースのプロビジョニングをオーケストレートするためにオーダー情報を利用し得る。いくつかの例では、オーダーオーケストレーションモジュール2922は、オーダープロビジョニングモジュール2924のサービスを用いてサブスクライブされたサービスをサポートするためにリソースのプロビジョニングをオーケストレートし得る。
特定の局面においては、オーダーオーケストレーションモジュール2922は、各々のオーダーに関連付けられるビジネスプロセスの管理を可能にし、ビジネス論理を適用してオーダーがプロビジョニングに進むべきか否かを判断する。動作2942において、新たなサブスクリプションについてのオーダーを受信すると、オーダーオーケストレーションモジュール2922は、リソースを割り振って当該サブスクリプションオーダーを満たす
のに必要とされるそれらのリソースを構成するための要求をオーダープロビジョニングモジュール2924に送る。オーダープロビジョニングモジュール2924は、顧客によってオーダーされたサービスについてのリソースの割り振りを可能にする。オーダープロビジョニングモジュール2924は、クラウドインフラストラクチャシステム2900によって提供されるクラウドサービスと、要求されたサービスを提供するためのリソースをプロビジョニングするために使用される物理的実装層との間にあるレベルの抽象化を提供する。したがって、オーダーオーケストレーションモジュール2922は、サービスおよびリソースが実際に実行中にプロビジョニングされるか、事前にプロビジョニングされて要求があったときに割振られる/割当てられるのみであるかなどの実装の詳細から切り離すことができる。
動作2944において、サービスおよびリソースがプロビジョニングされると、提供されたサービスの通知が、クラウドインフラストラクチャシステム2902のオーダープロビジョニングモジュール2924によってクライアントデバイス2904,2906および/または2908上の顧客に送られ得る。
動作2946において、顧客のサブスクリプションオーダーが、オーダー管理および監視モジュール2926によって管理および追跡され得る。いくつかの例では、オーダー管理および監視モジュール2926は、使用される記憶量、転送されるデータ量、ユーザの数、ならびにシステムアップ時間およびシステムダウン時間の量などのサブスクリプションオーダーにおけるサービスについての使用統計を収集するように構成され得る。
特定の局面においては、クラウドインフラストラクチャシステム2900は、アイデンティティ管理モジュール2928を含み得る。アイデンティティ管理モジュール2928は、クラウドインフラストラクチャシステム2900におけるアクセス管理および認可サービスなどのアイデンティティサービスを提供するように構成され得る。いくつかの局面においては、アイデンティティ管理モジュール2928は、クラウドインフラストラクチャシステム2902によって提供されるサービスを利用したい顧客についての情報を制御し得る。このような情報は、このような顧客のアイデンティティを認証する情報と、それらの顧客がさまざまなシステムリソース(たとえばファイル、ディレクトリ、アプリケーション、通信ポート、メモリセグメントなど)に対してどのアクションを実行することを認可されるかを記載する情報とを含み得る。また、アイデンティティ管理モジュール2928は、各々の顧客についての説明的情報、ならびに、どのようにしておよび誰によってこの説明的情報がアクセスおよび変更され得るかについての説明的情報の管理を含み得る。
図30は、本発明のさまざまな局面を実現することができる例示的なコンピュータシステム3000を示す。システム3000は、上記のコンピュータシステムのうちのいずれかを実現するために使用され得る。図に示されているように、コンピュータシステム3000は、バスサブシステム3002を介していくつかの周辺サブシステムと通信する処理ユニット3004を含む。これらの周辺サブシステムは、処理加速ユニット3006と、I/Oサブシステム3008と、記憶サブシステム3018と、通信サブシステム3024とを含み得る。記憶サブシステム3018は、有形のコンピュータ読取可能な記憶媒体3022と、システムメモリ3010とを含む。
バスサブシステム3002は、コンピュータシステム3000のさまざまな構成要素およびサブシステムに、意図されたように互いに通信させるための機構を提供する。バスサブシステム3002は、単一のバスとして概略的に示されているが、バスサブシステムの代替的な局面は、複数のバスを利用してもよい。バスサブシステム3002は、メモリバスまたはメモリコントローラ、周辺バス、およびさまざまなバスアーキテクチャのうちの
いずれかを使用するローカルバスを含むいくつかのタイプのバス構造のうちのいずれかであってもよい。たとえば、このようなアーキテクチャは、IEEE P3086.1標準に合わせて製造されたメザニンバスとして実現可能な、業界標準アーキテクチャ(Industry Standard Architecture:ISA)バス、マイクロチャネルアーキテクチャ(Micro Channel Architecture:MCA)バス、拡張ISA(Enhanced ISA:EISA)バス、ビデオ・エレクトロニクス・スタンダーズ・アソシエーション(Video Electronics Standards Association:VESA)ローカルバスおよび周辺機器相互接続(Peripheral Component Interconnect:PCI)バスを含み得る。
1つ以上の集積回路(たとえば従来のマイクロプロセッサまたはマイクロコントローラ)として実現可能な処理ユニット3004は、コンピュータシステム3000の動作を制御する。処理ユニット3004には、1つ以上のプロセッサが含まれ得る。これらのプロセッサは、単一コアまたはマルチコアのプロセッサを含み得る。特定の局面においては、処理ユニット3004は、各々の処理ユニットに含まれる単一コアまたはマルチコアのプロセッサを有する1つ以上の独立した処理ユニット3032および/または3034として実現されてもよい。また、他の局面においては、処理ユニット3004は、2つのデュアルコアプロセッサを単一のチップに組み入れることによって形成されるクアッドコア処理ユニットとして実現されてもよい。
さまざまな局面においては、処理ユニット3004は、プログラムコードに応答してさまざまなプログラムを実行し得るとともに、同時に実行される複数のプログラムまたはプロセスを維持し得る。任意の所与の時点において、実行されるべきプログラムコードのうちのいくつかまたは全ては、プロセッサ3004および/または記憶サブシステム3018に存在し得る。好適なプログラミングを通じて、プロセッサ3004は、上記のさまざまな機能を提供し得る。また、コンピュータシステム3000は、加えて、デジタル信号プロセッサ(digital signal processor:DSP)、特殊用途プロセッサなどを含み得る処理加速ユニット3006を含み得る。
I/Oサブシステム3008は、ユーザインターフェイス入力装置と、ユーザインターフェイス出力装置とを含み得る。ユーザインターフェイス入力装置は、キーボード、マウスまたはトラックボールなどのポインティング装置、タッチパッドまたはタッチスクリーンを含んでいてもよく、これらは、音声コマンド認識システム、マイクロホンおよび他のタイプの入力装置とともに、ディスプレイ、スクロールホイール、クリックホイール、ダイアル、ボタン、スイッチ、キーパッド、オーディオ入力装置に組込まれている。ユーザインターフェイス入力装置は、たとえば、ジェスチャおよび話されたコマンドを用いてナチュラルユーザインターフェースを介してユーザがマイクロソフトXbox(登録商標)360ゲームコントローラなどの入力装置を制御して入力装置と対話することを可能にするマイクロソフトキネクト(登録商標)モーションセンサなどのモーション検知および/またはジェスチャ認識装置を含み得る。また、ユーザインターフェイス入力装置は、ユーザから眼球運動(たとえば撮影および/またはメニュー選択を行っている間の「まばたき」)を検出して、当該眼球ジェスチャを入力装置への入力として変換するグーグルグラス(登録商標)まばたき検出器などの眼球ジェスチャ認識装置を含み得る。また、ユーザインターフェイス入力装置は、ユーザが音声コマンドを介して音声認識システム(たとえばSiri(登録商標)ナビゲータ)と対話することを可能にする音声認識検知装置を含み得る。
また、ユーザインターフェイス入力装置は、三次元(3D)マウス、ジョイスティックまたはポインティングスティック、ゲームパッドおよびグラフィックタブレット、およびスピーカなどのオーディオ/ビジュアル装置、デジタルカメラ、デジタルカムコーダ、携帯型メディアプレーヤ、ウェブカム、画像スキャナ、指紋スキャナ、バーコードリーダ3
Dスキャナ、3Dプリンタ、レーザレンジファインダ、および視線検出装置を含み得るが、これらに限定されるものではない。また、ユーザインターフェイス入力装置は、たとえば、コンピュータ断層撮影、磁気共鳴画像化、位置発光断層撮影、医療用超音波検査装置などの医療用画像化入力装置を含み得る。また、ユーザインターフェイス入力装置は、たとえばMIDIキーボード、デジタル楽器などのオーディオ入力装置を含み得る。
ユーザインターフェイス出力装置は、ディスプレイサブシステム、表示灯、またはオーディオ出力装置などの非視覚的ディスプレイなどを含み得る。ディスプレイサブシステムは、陰極線管(cathode ray tube:CRT)、液晶ディスプレイ(liquid crystal display:LCD)またはプラズマディスプレイを使用するものなどのフラットパネルディスプレイ、投影装置、タッチスクリーンなどであってもよい。一般に、「出力装置」という用語の使用は、コンピュータシステム3000からの情報をユーザまたは他のコンピュータに出力するための全ての実現可能なタイプの装置および機構を含むよう意図されている。たとえば、ユーザインターフェイス出力装置は、モニタ、プリンタ、スピーカ、ヘッドホン、自動車のナビゲーションシステム、プロッタ、音声出力装置およびモデムなどの、テキスト、グラフィックスおよびオーディオ/ビデオ情報を視覚的に伝えるさまざまな表示装置を含み得るが、これらに限定されるものではない。
コンピュータシステム3000は、現在のところシステムメモリ3010内に位置しているように示されているソフトウェア要素を備える記憶サブシステム3018を備え得る。システムメモリ3010は、処理ユニット3004上でロード可能および実行可能なプログラム命令と、これらのプログラムの実行中に生成されるデータとを格納し得る。
コンピュータシステム3000の構成およびタイプに応じて、システムメモリ3010は、揮発性(ランダムアクセスメモリ(random access memory:RAM)など)であってもよく、および/または、不揮発性(リードオンリメモリ(read-only memory:ROM)、フラッシュメモリなど)であってもよい。RAMは、典型的には、処理ユニット3004が直ちにアクセス可能なデータおよび/またはプログラムモジュール、および/または、処理ユニット3004によって現在動作および実行されているデータおよび/またはプログラムモジュールを収容する。いくつかの実現例では、システムメモリ3010は、スタティックランダムアクセスメモリ(static random access memory:SRAM)または
ダイナミックランダムアクセスメモリ(dynamic random access memory:DRAM)などの複数の異なるタイプのメモリを含み得る。いくつかの実現例では、始動中などにコンピュータシステム3000内の要素間で情報を転送することを助ける基本ルーチンを含む基本入力/出力システム(basic input/output system:BIOS)が、典型的にはROM
に格納され得る。一例としておよび非限定的に、システムメモリ3010は、クライアントアプリケーション、ウェブブラウザ、中間層アプリケーション、リレーショナルデータベース管理システム(relational database management system:RDBMS)などを含
み得るアプリケーションプログラム3012、プログラムデータ3014およびオペレーティングシステム3016も示す。一例として、オペレーティングシステム3016は、マイクロソフトウィンドウズ(登録商標)、アップルマッキントッシュ(登録商標)および/もしくはリナックスオペレーティングシステムのさまざまなバージョン、さまざまな市販のUNIX(登録商標)もしくはUNIXライクオペレーティングシステム(さまざまなGNU/リナックスオペレーティングシステム、Google Chrome(登録商標)OSなどを含むが、これらに限定されるものではない)、ならびに/または、iOS、ウィンドウズ(登録商標)フォン、アンドロイド(登録商標)OS、ブラックベリー(登録商標)10OSおよびパーム(登録商標)OSオペレーティングシステムなどのモバイルオペレーティングシステムを含み得る。
また、記憶サブシステム3018は、いくつかの局面の機能を提供する基本的なプログ
ラミングおよびデータ構造を格納するための有形のコンピュータ読取可能な記憶媒体を提供し得る。プロセッサによって実行されたときに上記の機能を提供するソフトウェア(プログラム、コードモジュール、命令)が記憶サブシステム3018に格納され得る。これらのソフトウェアモジュールまたは命令は、処理ユニット3004によって実行され得る。また、記憶サブシステム3018は、本発明に従って使用されるデータを格納するためのリポジトリを提供し得る。
また、記憶サブシステム3000は、コンピュータ読取可能な記憶媒体3022にさらに接続可能なコンピュータ読取可能な記憶媒体リーダ3020を含み得る。ともにおよび任意には、システムメモリ3010と組合せて、コンピュータ読取可能な記憶媒体3022は、コンピュータ読取可能な情報を一時的および/または永久に収容、格納、送信および検索するための記憶媒体に加えて、リモートの、ローカルの、固定されたおよび/または取外し可能な記憶装置を包括的に表わし得る。
コードまたはコードの一部を含むコンピュータ読取可能な記憶媒体3022は、当該技術分野において公知のまたは使用される任意の適切な媒体を含み得る。当該媒体は、情報の格納および/または送信のための任意の方法または技術において実現される揮発性および不揮発性の、取外し可能および取外し不可能な媒体などであるが、これらに限定されるものではない記憶媒体および通信媒体を含む。これは、RAM、ROM、電子的消去・プログラム可能ROM(electronically erasable programmable ROM:EEPROM)、フラッシュメモリもしくは他のメモリ技術、CD-ROM、デジタル多用途ディスク(digital versatile disk:DVD)、または他の光学式記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置もしくは他の磁気記憶装置、または他の有形のコンピュータ読取可能な媒体などの有形の一時的なコンピュータ読取可能な記憶媒体を含み得る。また、これは、データ信号、データ送信などの無形の一時的なコンピュータ読取可能な媒体、または、所望の情報を送信するために使用可能であるとともに計算システム3000によってアクセス可能である他の任意の媒体を含み得る。
一例として、コンピュータ読取可能な記憶媒体3022は、取外し不可能な不揮発性磁気媒体から読取るまたは当該媒体に書込むハードディスクドライブ、取外し可能な不揮発性磁気ディスクから読取るまたは当該ディスクに書込む磁気ディスクドライブ、ならびに、CD ROM、DVDおよびブルーレイ(登録商標)ディスクまたは他の光学式媒体などの取外し可能な不揮発性光学ディスクから読取るまたは当該ディスクに書込む光学式ディスクドライブを含み得る。コンピュータ読取可能な記憶媒体3022は、ジップ(登録商標)ドライブ、フラッシュメモリカード、ユニバーサルシリアルバス(universal serial bus:USB)フラッシュドライブ、セキュアデジタル(secure digital:SD)カード、DVDディスク、デジタルビデオテープなどを含み得るが、これらに限定されるものではない。また、コンピュータ読取可能な記憶媒体3022は、フラッシュメモリベースのSSD、企業向けフラッシュドライブ、ソリッドステートROMなどの不揮発性メモリに基づくソリッドステートドライブ(solid-state drive:SSD)、ソリッドステート
RAM、ダイナミックRAM、スタティックRAMなどの揮発性メモリに基づくSSD、DRAMベースのSSD、磁気抵抗RAM(magnetoresistive RAM:MRAM)SSD、およびDRAMとフラッシュメモリベースのSSDとの組合せを使用するハイブリッドSSDを含み得る。ディスクドライブおよびそれらの関連のコンピュータ読取可能な媒体は、コンピュータ読取可能な命令、データ構造、プログラムモジュールおよび他のデータをコンピュータシステム3000に提供し得る。
通信サブシステム3024は、他のコンピュータシステムおよびネットワークとのインターフェイスを提供する。通信サブシステム3024は、他のシステムからデータを受信したり、コンピュータシステム3000から他のシステムにデータを送信するためのイン
ターフェイスの役割を果たす。たとえば、通信サブシステム3024は、コンピュータシステム3000がインターネットを介して1つ以上の装置に接続することを可能にし得る。いくつかの局面においては、通信サブシステム3024は、(たとえば3G、4GまたはEDGE(enhanced data rates for global evolution)などの携帯電話技術、高度データネットワーク技術を用いて)無線音声および/またはデータネットワークにアクセスするための無線周波数(radio frequency:RF)トランシーバコンポーネント、WiF
i(IEEE802.28ファミリ標準または他のモバイル通信技術またはそれらの任意の組合せ)、全地球測位システム(global positioning system:GPS)レシーバコン
ポーネント、および/または、他のコンポーネントを含み得る。いくつかの局面においては、通信サブシステム3024は、無線インターフェイスに加えて、または無線インターフェイスの代わりに、有線ネットワーク接続(たとえばイーサネット)を提供し得る。
また、いくつかの局面においては、通信サブシステム3024は、コンピュータシステム3000を使用し得る1人以上のユーザを代表して、構造化されたおよび/または構造化されていないデータフィード3026、イベントストリーム3028、イベント更新3030などの形態で入力通信を受信し得る。
一例として、通信サブシステム3024は、ツイッター(登録商標)フィード、フェースブック(登録商標)更新、リッチ・サイト・サマリ(Rich Site Summary:RSS)フ
ィードなどのウェブフィードなどのデータフィード3026をリアルタイムでソーシャルメディアネットワークおよび/または他の通信サービスのユーザから受信し、および/または、1つ以上の第三者情報源からリアルタイム更新を受信するように構成され得る。
加えて、通信サブシステム3024は、連続的なデータストリームの形態でデータを受信するように構成され得る。当該データは、連続的である場合もあれば本質的に明確な端部をもたない状態で境界がない場合もあるリアルタイムイベントのイベントストリーム3028および/またはイベント更新3030を含み得る。連続的なデータを生成するアプリケーションの例としては、たとえばセンサデータアプリケーション、金融ティッカ、ネットワーク性能測定ツール(たとえばネットワークモニタリングおよびトラフィック管理アプリケーション)、クリックストリーム分析ツール、自動車交通モニタリングなどを含み得る。
また、通信サブシステム3024は、構造化されたおよび/または構造化されていないデータフィード3026、イベントストリーム3028、イベント更新3030などを、コンピュータシステム3000に結合された1つ以上のストリーミングデータソースコンピュータと通信し得る1つ以上のデータベースに出力するように構成され得る。
コンピュータシステム3000は、手持ち式携帯機器(たとえばiPhone(登録商標)携帯電話、iPad(登録商標)計算タブレット、PDA)、ウェアラブル装置(たとえばグーグルグラス(登録商標)ヘッドマウントディスプレイ)、PC、ワークステーション、メインフレーム、キオスク、サーバラックまたはその他のデータ処理システムを含むさまざまなタイプのうちの1つであってもよい。
コンピュータおよびネットワークの絶え間なく変化し続ける性質のために、図に示されているコンピュータシステム3000の説明は、特定の例として意図されているに過ぎない。図30に示されているシステムよりも多くのまたは少ない数の構成要素を有する多くの他の構成が可能である。たとえば、ハードウェア、ファームウェア、(アプレットを含む)ソフトウェア、または組合せにおいて、カスタマイズされたハードウェアが使用されてもよく、および/または、特定の要素が実装されてもよい。さらに、ネットワーク入力/出力装置などの他のコンピューティングデバイスへの接続が利用されてもよい。本明細
書中に提供される開示および教示に基づいて、当業者は、さまざまな局面を実現するための他の手段および/または方法を理解するであろう。
上述の明細書では、本発明の局面は、その具体的な局面を参照して記載されているが、本発明はこれに限定されるものではないことを当業者は認識するであろう。上述の発明のさまざまな特徴および局面は、個々にまたは一緒に使用されてもよい。さらに、局面は、明細書のより広い精神および範囲から逸脱することなく、本明細書に記載されているものを越えたいくつもの環境およびアプリケーションでも利用可能である。したがって、明細書および図面は、限定的ではなく例示的なものとみなされるべきである。

Claims (8)

  1. コミュニケーション用談話ツリーを分析することによって2つのセンテンスのペアの相補性を判断するための、コンピュータによって実現される方法であって、
    質問センテンスについて、前記質問センテンスに含まれるセンテンスフラグメント間の修辞関係に基づいて、質問ルートノードを含む質問コミュニケーション用談話ツリーを生成するステップを含み、前記質問コミュニケーション用談話ツリーは、動詞であるコミュニケーション行動を含む談話ツリーであり、前記方法はさらに、
    回答センテンスについて、前記回答センテンスに含まれるセンテンスフラグメント間の修辞関係に基づいて、回答コミュニケーション用談話ツリーを生成するステップを含み、前記回答コミュニケーション用談話ツリーは回答ルートノードを含み、前記方法はさらに、
    前記質問ルートノードの修辞関係および前記回答ルートノードの修辞関係が同一であると識別することにより、前記コミュニケーション用談話ツリーをマージするステップと、
    前記マージされたコミュニケーション用談話ツリーに、前記質問センテンスおよび前記回答センテンスの相補性のレベルを判断するようにトレーニングされた予測モデルを適用することによって、前記質問コミュニケーション用談話ツリーと前記回答コミュニケーション用談話ツリーとの間の相補性のレベルを演算するステップと、
    前記相補性のレベルがしきい値を上回っていると判断することに応じて、前記質問センテンスおよび前記回答センテンスを相補的であると識別するステップとを含む、方法。
  2. 前記質問ルートノードと前記回答ルートノードとを接続する付加的なコミュニケーション用談話ツリーを作成することによって、前記質問コミュニケーション用談話ツリーと前記回答コミュニケーション用談話ツリーとを関連付けるステップをさらに含む、請求項1に記載の方法。
  3. 前記予測モデルは、2つのコミュニケーション用談話ツリーのサブツリーの相補性のレベルを判断するために、カーネル法を用いた機械学習アルゴリズムでトレーニングされる、請求項1または2に記載の方法。
  4. 前記予測モデルは、一致するものまたは一致しないものとして識別される2つのコミュニケーション用談話ツリー間の相補性のレベルを判断するようにトレーニングされたニューラルネットワーク機械学習アルゴリズムである、請求項1~3のいずれかに記載の方法。
  5. 前記マージされた談話ツリーは第1のコミュニケーション用談話ツリーであり、前記方法はさらに、
    複数のコミュニケーション用談話ツリーから前記第1のコミュニケーション用談話ツリーと第2のコミュニケーション用談話ツリーとの間の最適な一致を識別するステップと、
    前記第2のコミュニケーション用談話ツリーに関連付けられたテキストにアクセスするステップと、
    前記第2のコミュニケーション用談話ツリーに関連付けられたテキストをモバイルデバイスに送信するステップとを含む、請求項1~4のいずれかに記載の方法。
  6. (i)前記質問センテンスまたは(ii)前記回答センテンスを検索結果としてモバイルデバイスに送信するステップをさらに含む、請求項1~5のいずれかに記載の方法。
  7. 請求項1~6のいずれか1項に記載の方法をコンピュータに実行させるためのプログラム。
  8. 請求項7に記載の前記プログラムを格納するメモリと、
    前記プログラムを実行するプロセッサとを含む、システム。
JP2021206038A 2017-05-10 2021-12-20 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化 Active JP7439038B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023069723A JP7546096B6 (ja) 2017-05-10 2023-04-21 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762504377P 2017-05-10 2017-05-10
US62/504,377 2017-05-10
PCT/US2018/031890 WO2018208979A1 (en) 2017-05-10 2018-05-09 Enabling rhetorical analysis via the use of communicative discourse trees
JP2019561757A JP7086993B2 (ja) 2017-05-10 2018-05-09 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019561757A Division JP7086993B2 (ja) 2017-05-10 2018-05-09 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023069723A Division JP7546096B6 (ja) 2017-05-10 2023-04-21 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Publications (2)

Publication Number Publication Date
JP2022050439A JP2022050439A (ja) 2022-03-30
JP7439038B2 true JP7439038B2 (ja) 2024-02-27

Family

ID=62386977

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2019561757A Active JP7086993B2 (ja) 2017-05-10 2018-05-09 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
JP2021206038A Active JP7439038B2 (ja) 2017-05-10 2021-12-20 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
JP2022092790A Active JP7515537B2 (ja) 2017-05-10 2022-06-08 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
JP2023069723A Active JP7546096B6 (ja) 2017-05-10 2023-04-21 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
JP2024028881A Pending JP2024081640A (ja) 2017-05-10 2024-02-28 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019561757A Active JP7086993B2 (ja) 2017-05-10 2018-05-09 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2022092790A Active JP7515537B2 (ja) 2017-05-10 2022-06-08 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
JP2023069723A Active JP7546096B6 (ja) 2017-05-10 2023-04-21 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
JP2024028881A Pending JP2024081640A (ja) 2017-05-10 2024-02-28 コミュニケーション用談話ツリーの使用による修辞学的分析の可能化

Country Status (5)

Country Link
US (4) US10796102B2 (ja)
EP (1) EP3622412A1 (ja)
JP (5) JP7086993B2 (ja)
CN (1) CN110612525B (ja)
WO (1) WO2018208979A1 (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10810368B2 (en) * 2012-07-10 2020-10-20 Robert D. New Method for parsing natural language text with constituent construction links
US12019981B2 (en) * 2017-03-13 2024-06-25 Arizona Board Of Regents On Behalf Of The University Of Arizona Method and system for converting literature into a directed graph
US10599885B2 (en) 2017-05-10 2020-03-24 Oracle International Corporation Utilizing discourse structure of noisy user-generated content for chatbot learning
US11386274B2 (en) 2017-05-10 2022-07-12 Oracle International Corporation Using communicative discourse trees to detect distributed incompetence
US11373632B2 (en) 2017-05-10 2022-06-28 Oracle International Corporation Using communicative discourse trees to create a virtual persuasive dialogue
US12001804B2 (en) 2017-05-10 2024-06-04 Oracle International Corporation Using communicative discourse trees to detect distributed incompetence
US11586827B2 (en) 2017-05-10 2023-02-21 Oracle International Corporation Generating desired discourse structure from an arbitrary text
US11615145B2 (en) 2017-05-10 2023-03-28 Oracle International Corporation Converting a document into a chatbot-accessible form via the use of communicative discourse trees
JP7086993B2 (ja) 2017-05-10 2022-06-20 オラクル・インターナショナル・コーポレイション コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
US11960844B2 (en) 2017-05-10 2024-04-16 Oracle International Corporation Discourse parsing using semantic and syntactic relations
US10679182B2 (en) * 2017-05-17 2020-06-09 International Business Machines Corporation System for meeting facilitation
US11100144B2 (en) 2017-06-15 2021-08-24 Oracle International Corporation Data loss prevention system for cloud security based on document discourse analysis
US10902738B2 (en) * 2017-08-03 2021-01-26 Microsoft Technology Licensing, Llc Neural models for key phrase detection and question generation
US11620566B1 (en) * 2017-08-04 2023-04-04 Grammarly, Inc. Artificial intelligence communication assistance for improving the effectiveness of communications using reaction data
CN111226245A (zh) * 2017-08-18 2020-06-02 Isms解决方案有限责任公司 基于计算机的用于分析协定的学习系统
CN117114001A (zh) 2017-09-28 2023-11-24 甲骨文国际公司 基于命名实体的解析和识别确定跨文档的修辞相互关系
US11809825B2 (en) 2017-09-28 2023-11-07 Oracle International Corporation Management of a focused information sharing dialogue based on discourse trees
US11107006B2 (en) * 2017-12-05 2021-08-31 discourse.ai, Inc. Visualization, exploration and shaping conversation data for artificial intelligence-based automated interlocutor training
US11341422B2 (en) * 2017-12-15 2022-05-24 SHANGHAI XIAOl ROBOT TECHNOLOGY CO., LTD. Multi-round questioning and answering methods, methods for generating a multi-round questioning and answering system, and methods for modifying the system
US11537645B2 (en) 2018-01-30 2022-12-27 Oracle International Corporation Building dialogue structure by using communicative discourse trees
JP6818706B2 (ja) * 2018-02-13 2021-01-20 日本電信電話株式会社 情報提供装置、情報提供方法、およびプログラム
JP6973157B2 (ja) * 2018-02-16 2021-11-24 日本電信電話株式会社 議論構造拡張装置、議論構造拡張方法、及びプログラム
EP3769238A4 (en) * 2018-03-19 2022-01-26 Coffing, Daniel L. PROCESSING OF ARGUMENTS AND PROPOSITIONS IN NATURAL LANGUAGE
JP7258047B2 (ja) 2018-05-09 2023-04-14 オラクル・インターナショナル・コーポレイション 収束質問に対する回答を改善するための仮想談話ツリーの構築
US11455494B2 (en) 2018-05-30 2022-09-27 Oracle International Corporation Automated building of expanded datasets for training of autonomous agents
CN110580335B (zh) * 2018-06-07 2023-05-26 阿里巴巴集团控股有限公司 用户意图的确定方法及装置
JP7185489B2 (ja) * 2018-10-30 2022-12-07 株式会社日立システムズ リソース割り当て方法およびリソース割り当てシステム
CN111177328B (zh) * 2018-11-12 2023-04-28 阿里巴巴集团控股有限公司 问答匹配系统和方法及问答处理设备和介质
US20200151583A1 (en) * 2018-11-13 2020-05-14 Capital One Services, Llc Attentive dialogue customer service system and method
US20200184016A1 (en) * 2018-12-10 2020-06-11 Government Of The United States As Represetned By The Secretary Of The Air Force Segment vectors
CN109710746A (zh) * 2018-12-28 2019-05-03 北京猎户星空科技有限公司 信息处理方法、装置及电子设备
CN109977407A (zh) * 2019-03-27 2019-07-05 北京信息科技大学 一种基于词嵌入的书面语篇多层次差异分析方法
US11501233B2 (en) * 2019-05-21 2022-11-15 Hcl Technologies Limited System and method to perform control testing to mitigate risks in an organization
US11487945B2 (en) * 2019-07-02 2022-11-01 Servicenow, Inc. Predictive similarity scoring subsystem in a natural language understanding (NLU) framework
US11645513B2 (en) * 2019-07-03 2023-05-09 International Business Machines Corporation Unary relation extraction using distant supervision
US11449682B2 (en) 2019-08-29 2022-09-20 Oracle International Corporation Adjusting chatbot conversation to user personality and mood
KR20210044559A (ko) * 2019-10-15 2021-04-23 삼성전자주식회사 출력 토큰 결정 방법 및 장치
US11556698B2 (en) * 2019-10-22 2023-01-17 Oracle International Corporation Augmenting textual explanations with complete discourse trees
US11580298B2 (en) 2019-11-14 2023-02-14 Oracle International Corporation Detecting hypocrisy in text
US11501085B2 (en) 2019-11-20 2022-11-15 Oracle International Corporation Employing abstract meaning representation to lay the last mile towards reading comprehension
US11775772B2 (en) * 2019-12-05 2023-10-03 Oracle International Corporation Chatbot providing a defeating reply
US11521611B2 (en) * 2019-12-19 2022-12-06 Palo Alto Research Center Incorporated Using conversation structure and content to answer questions in multi-part online interactions
CN111259162B (zh) * 2020-01-08 2023-10-03 百度在线网络技术(北京)有限公司 对话交互方法、装置、设备和存储介质
US11636270B2 (en) * 2020-01-29 2023-04-25 Adobe Inc. Methods and systems for generating a semantic computation graph for understanding and grounding referring expressions
US11847420B2 (en) 2020-03-05 2023-12-19 Oracle International Corporation Conversational explainability
US11741308B2 (en) 2020-05-14 2023-08-29 Oracle International Corporation Method and system for constructing data queries from conversational input
US11550605B2 (en) * 2020-06-30 2023-01-10 Kasisto, Inc. Building and managing cohesive interaction for virtual assistants
CN112035628B (zh) * 2020-08-03 2024-07-09 北京小米松果电子有限公司 对话数据清洗方法、装置及存储介质
CN112632286A (zh) * 2020-09-21 2021-04-09 北京合享智慧科技有限公司 一种文本属性特征的识别、分类及结构分析方法及装置
US12106054B2 (en) * 2020-10-12 2024-10-01 Oracle International Corporation Multi case-based reasoning by syntactic-semantic alignment and discourse analysis
CN112256849B (zh) * 2020-10-20 2024-02-13 深圳前海微众银行股份有限公司 模型训练方法、文本检测方法、装置、设备和存储介质
US11928437B2 (en) * 2021-02-02 2024-03-12 Oracle International Corporation Machine reading between the lines
CN112732888A (zh) * 2021-04-01 2021-04-30 中国人民解放军国防科技大学 一种基于图推理模型的答案预测方法及装置
CN113590744B (zh) * 2021-06-30 2024-05-24 中山大学 一种面向可解释的情感溯源方法
US11928109B2 (en) * 2021-08-18 2024-03-12 Oracle International Corporation Integrative configuration for bot behavior and database behavior
CN113609840B (zh) * 2021-08-25 2023-06-16 西华大学 一种汉语法律判决摘要生成方法及系统
WO2023137545A1 (en) * 2022-01-20 2023-07-27 Verb Phrase Inc. Systems and methods for content analysis
EP4270403A1 (en) * 2022-04-25 2023-11-01 Fujitsu Limited Health metric and diagnosis determination
CN116432752B (zh) * 2023-04-27 2024-02-02 华中科技大学 一种隐式篇章关系识别模型的构建方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153673A1 (en) 2007-10-10 2011-06-23 Raytheon Bbn Technologies Corp. Semantic matching using predicate-argument structure

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696853B1 (fr) * 1992-10-12 1994-12-23 Bull Sa Procédé d'aide à l'optimisation d'une requête d'un système de gestion, de base de données relationnel et procédé d'analyse syntaxique en résultant.
US8725493B2 (en) * 2004-01-06 2014-05-13 Neuric Llc Natural language parsing method to provide conceptual flow
US5930392A (en) * 1996-07-12 1999-07-27 Lucent Technologies Inc. Classification technique using random decision forests
US6181909B1 (en) 1997-07-22 2001-01-30 Educational Testing Service System and method for computer-based automatic essay scoring
US6112168A (en) 1997-10-20 2000-08-29 Microsoft Corporation Automatically recognizing the discourse structure of a body of text
US20070294229A1 (en) 1998-05-28 2007-12-20 Q-Phrase Llc Chat conversation methods traversing a provisional scaffold of meanings
US7152031B1 (en) * 2000-02-25 2006-12-19 Novell, Inc. Construction, manipulation, and comparison of a multi-dimensional semantic space
JP2001167087A (ja) * 1999-12-14 2001-06-22 Fujitsu Ltd 構造化文書検索装置,構造化文書検索方法,構造化文書検索用プログラム記録媒体および構造化文書検索用インデックス作成方法
US20010053968A1 (en) 2000-01-10 2001-12-20 Iaskweb, Inc. System, method, and computer program product for responding to natural language queries
CN1465018A (zh) * 2000-05-11 2003-12-31 南加利福尼亚大学 机器翻译技术
US6961692B1 (en) * 2000-08-01 2005-11-01 Fuji Xerox Co, Ltd. System and method for writing analysis using the linguistic discourse model
US6731307B1 (en) 2000-10-30 2004-05-04 Koninklije Philips Electronics N.V. User interface/entertainment device that simulates personal interaction and responds to user's mental state and/or personality
US7519529B1 (en) 2001-06-29 2009-04-14 Microsoft Corporation System and methods for inferring informational goals and preferred level of detail of results in response to questions posed to an automated information-retrieval or question-answering service
US7127208B2 (en) * 2002-01-23 2006-10-24 Educational Testing Service Automated annotation
US7305336B2 (en) * 2002-08-30 2007-12-04 Fuji Xerox Co., Ltd. System and method for summarization combining natural language generation with structural analysis
US20040133579A1 (en) * 2003-01-06 2004-07-08 Richard Gordon Campbell Language neutral syntactic representation of text
US20040148170A1 (en) 2003-01-23 2004-07-29 Alejandro Acero Statistical classifiers for spoken language understanding and command/control scenarios
US7359860B1 (en) 2003-02-27 2008-04-15 Lumen Vox, Llc Call flow object model in a speech recognition system
JP2004295834A (ja) * 2003-03-28 2004-10-21 Csk Corp 文字発話記録の分析装置、分析方法および分析プログラム、情報群の分析装置、分析方法および分析プログラム
US7139764B2 (en) * 2003-06-25 2006-11-21 Lee Shih-Jong J Dynamic learning and knowledge representation for data mining
WO2005017698A2 (en) * 2003-08-11 2005-02-24 Educational Testing Service Cooccurrence and constructions
US7610190B2 (en) * 2003-10-15 2009-10-27 Fuji Xerox Co., Ltd. Systems and methods for hybrid text summarization
US7551552B2 (en) 2003-10-17 2009-06-23 Microsoft Corporation Method for providing guaranteed distributed failure notification
US9646107B2 (en) * 2004-05-28 2017-05-09 Robert T. and Virginia T. Jenkins as Trustee of the Jenkins Family Trust Method and/or system for simplifying tree expressions such as for query reduction
US7698267B2 (en) * 2004-08-27 2010-04-13 The Regents Of The University Of California Searching digital information and databases
JP4654776B2 (ja) 2005-06-03 2011-03-23 富士ゼロックス株式会社 質問応答システム、およびデータ検索方法、並びにコンピュータ・プログラム
US8700404B1 (en) 2005-08-27 2014-04-15 At&T Intellectual Property Ii, L.P. System and method for using semantic and syntactic graphs for utterance classification
US20070073533A1 (en) * 2005-09-23 2007-03-29 Fuji Xerox Co., Ltd. Systems and methods for structural indexing of natural language text
US20070136284A1 (en) * 2005-12-12 2007-06-14 Sbc Knowledge Ventures Lp Method for constructing and repurposing rhetorical content
US7827028B2 (en) * 2006-04-07 2010-11-02 Basis Technology Corporation Method and system of machine translation
US10796093B2 (en) 2006-08-08 2020-10-06 Elastic Minds, Llc Automatic generation of statement-response sets from conversational text using natural language processing
US7925678B2 (en) 2007-01-12 2011-04-12 Loglogic, Inc. Customized reporting and mining of event data
US7840556B1 (en) * 2007-07-31 2010-11-23 Hewlett-Packard Development Company, L.P. Managing performance of a database query
US8306967B2 (en) 2007-10-02 2012-11-06 Loglogic, Inc. Searching for associated events in log data
US8812323B2 (en) 2007-10-11 2014-08-19 Agency For Science, Technology And Research Dialogue system and a method for executing a fully mixed initiative dialogue (FMID) interaction between a human and a machine
US8463594B2 (en) * 2008-03-21 2013-06-11 Sauriel Llc System and method for analyzing text using emotional intelligence factors
US9646078B2 (en) 2008-05-12 2017-05-09 Groupon, Inc. Sentiment extraction from consumer reviews for providing product recommendations
US8935152B1 (en) * 2008-07-21 2015-01-13 NetBase Solutions, Inc. Method and apparatus for frame-based analysis of search results
US8874443B2 (en) * 2008-08-27 2014-10-28 Robert Bosch Gmbh System and method for generating natural language phrases from user utterances in dialog systems
US7937386B2 (en) 2008-12-30 2011-05-03 Complyon Inc. System, method, and apparatus for information extraction of textual documents
US20100169359A1 (en) * 2008-12-30 2010-07-01 Barrett Leslie A System, Method, and Apparatus for Information Extraction of Textual Documents
US8712759B2 (en) * 2009-11-13 2014-04-29 Clausal Computing Oy Specializing disambiguation of a natural language expression
US8478581B2 (en) * 2010-01-25 2013-07-02 Chung-ching Chen Interlingua, interlingua engine, and interlingua machine translation system
CA2789158C (en) 2010-02-10 2016-12-20 Mmodal Ip Llc Providing computable guidance to relevant evidence in question-answering systems
US20110231353A1 (en) 2010-03-17 2011-09-22 James Qingdong Wang Artificial intelligence application in human machine interface for advanced information processing and task managing
US20150205489A1 (en) 2010-05-18 2015-07-23 Google Inc. Browser interface for installed applications
US9449080B1 (en) 2010-05-18 2016-09-20 Guangsheng Zhang System, methods, and user interface for information searching, tagging, organization, and display
CN101957812A (zh) * 2010-09-21 2011-01-26 上海大学 基于事件本体的动词语义信息提取方法
WO2012040356A1 (en) 2010-09-24 2012-03-29 International Business Machines Corporation Providing question and answers with deferred type evaluation using text with limited structure
US8930391B2 (en) * 2010-12-29 2015-01-06 Microsoft Corporation Progressive spatial searching using augmented structures
US11222052B2 (en) 2011-02-22 2022-01-11 Refinitiv Us Organization Llc Machine learning-based relationship association and related discovery and
US8701019B2 (en) 2011-03-24 2014-04-15 Facebook, Inc. Presenting question and answer data in a social networking system
US20120290509A1 (en) 2011-05-13 2012-11-15 Microsoft Corporation Training Statistical Dialog Managers in Spoken Dialog Systems With Web Data
US8694303B2 (en) 2011-06-15 2014-04-08 Language Weaver, Inc. Systems and methods for tuning parameters in statistical machine translation
NL2007180C2 (en) 2011-07-26 2013-01-29 Security Matters B V Method and system for classifying a protocol message in a data communication network.
US20130046757A1 (en) * 2011-08-17 2013-02-21 Microsoft Corporation Indicating relationship closeness between subsnippets of a search result
SG188994A1 (en) * 2011-10-20 2013-05-31 Nec Corp Textual entailment recognition apparatus, textual entailment recognition method, and computer-readable recording medium
US11410072B2 (en) 2011-10-21 2022-08-09 Educational Testing Service Computer-implemented systems and methods for detection of sentiment in writing
US20130151347A1 (en) 2011-12-09 2013-06-13 Robert Michael Baldwin Structured Questions in a Social Networking System
WO2013091075A1 (en) * 2011-12-20 2013-06-27 Soschen Alona Natural language processor
EP2836920A4 (en) * 2012-04-09 2015-12-02 Vivek Ventures Llc PROCESSING CLASSIFIED INFORMATION AND SEARCH USING A BRIDGE BETWEEN STRUCTURED AND UNSTRUCTURED DATABASES
CA2865184C (en) 2012-05-15 2018-01-02 Whyz Technologies Limited Method and system relating to re-labelling multi-document clusters
US9336297B2 (en) 2012-08-02 2016-05-10 Paypal, Inc. Content inversion for user searches and product recommendations systems and methods
US20140122083A1 (en) 2012-10-26 2014-05-01 Duan Xiaojiang Chatbot system and method with contextual input and output messages
US9152623B2 (en) * 2012-11-02 2015-10-06 Fido Labs, Inc. Natural language processing system and method
US9037464B1 (en) 2013-01-15 2015-05-19 Google Inc. Computing numeric representations of words in a high-dimensional space
WO2014182820A2 (en) * 2013-05-07 2014-11-13 Haley Paul V System for knowledge acquisition
US9317260B2 (en) * 2013-08-09 2016-04-19 Vmware, Inc. Query-by-example in large-scale code repositories
US9292490B2 (en) * 2013-08-16 2016-03-22 International Business Machines Corporation Unsupervised learning of deep patterns for semantic parsing
CN103530281B (zh) * 2013-10-15 2016-06-22 苏州大学 一种论元抽取方法和系统
CN104598445B (zh) * 2013-11-01 2019-05-10 腾讯科技(深圳)有限公司 自动问答系统和方法
US20150134325A1 (en) 2013-11-14 2015-05-14 Avaya Inc. Deep Language Attribute Analysis
US10019716B1 (en) 2013-11-21 2018-07-10 Google Llc Method for feedback submission resolution
US20150149461A1 (en) * 2013-11-24 2015-05-28 Interstack, Inc System and method for analyzing unstructured data on applications, devices or networks
US9471874B2 (en) * 2013-12-07 2016-10-18 International Business Machines Corporation Mining forums for solutions to questions and scoring candidate answers
US9514098B1 (en) 2013-12-09 2016-12-06 Google Inc. Iteratively learning coreference embeddings of noun phrases using feature representations that include distributed word representations of the noun phrases
CN105873753B (zh) 2013-12-20 2018-12-14 艾利丹尼森公司 聚酯-三聚氰胺涂料和包括其的标签
US9817721B1 (en) 2014-03-14 2017-11-14 Sanmina Corporation High availability management techniques for cluster resources
US9946985B2 (en) 2014-04-15 2018-04-17 Kofax, Inc. Touchless mobile applications and context-sensitive workflows
US10664558B2 (en) * 2014-04-18 2020-05-26 Arria Data2Text Limited Method and apparatus for document planning
US9582501B1 (en) * 2014-06-16 2017-02-28 Yseop Sa Techniques for automatic generation of natural language text
EP3143248A4 (en) 2014-07-11 2018-01-24 Halliburton Energy Services, Inc. Evaluation tool for concentric wellbore casings
US20160026608A1 (en) 2014-07-22 2016-01-28 Nuance Communications, Inc. Method and Apparatus for Generating Multimodal Dialog Applications by Analyzing Annotated Examples of Human-System Conversations
US9619513B2 (en) * 2014-07-29 2017-04-11 International Business Machines Corporation Changed answer notification in a question and answer system
US20160055240A1 (en) 2014-08-22 2016-02-25 Microsoft Corporation Orphaned utterance detection system and method
US20160071517A1 (en) 2014-09-09 2016-03-10 Next It Corporation Evaluating Conversation Data based on Risk Factors
US9720626B2 (en) 2014-09-19 2017-08-01 Netapp Inc. Cluster configuration information replication
US9559993B2 (en) 2014-10-02 2017-01-31 Oracle International Corporation Virtual agent proxy in a real-time chat service
CN104484411B (zh) * 2014-12-16 2017-12-22 中国科学院自动化研究所 一种基于词典的语义知识库的构建方法
US10019437B2 (en) * 2015-02-23 2018-07-10 International Business Machines Corporation Facilitating information extraction via semantic abstraction
US9875296B2 (en) 2015-03-25 2018-01-23 Google Llc Information extraction from question and answer websites
US20160292153A1 (en) * 2015-03-31 2016-10-06 International Business Machines Corporation Identification of examples in documents
WO2017066208A1 (en) 2015-10-12 2017-04-20 Ehrlich Wesen & Dauer, Llc Network resource crawler with multiple user-agents
EP3341933A1 (en) 2015-10-21 2018-07-04 Google LLC Parameter collection and automatic dialog generation in dialog systems
US10147051B2 (en) 2015-12-18 2018-12-04 International Business Machines Corporation Candidate answer generation for explanatory questions directed to underlying reasoning regarding the existence of a fact
WO2017112813A1 (en) * 2015-12-22 2017-06-29 Sri International Multi-lingual virtual personal assistant
US11042702B2 (en) * 2016-02-04 2021-06-22 International Business Machines Corporation Solving textual logic problems using a statistical approach and natural language processing
WO2017145466A1 (ja) 2016-02-26 2017-08-31 ソニー株式会社 情報処理システム、クライアント端末、情報処理方法、および記録媒体
US10489509B2 (en) 2016-03-14 2019-11-26 International Business Machines Corporation Personality based sentiment analysis of textual information written in natural language
CN106445911B (zh) * 2016-03-18 2022-02-22 苏州大学 一种基于微观话题结构的指代消解方法及系统
US20170277993A1 (en) 2016-03-22 2017-09-28 Next It Corporation Virtual assistant escalation
US20170286390A1 (en) 2016-04-04 2017-10-05 Contextors Ltd. Dynamic and automatic generation of interactive text related objects
US10706044B2 (en) 2016-04-06 2020-07-07 International Business Machines Corporation Natural language processing based on textual polarity
CN105955956B (zh) * 2016-05-05 2019-01-22 中国科学院自动化研究所 一种汉语隐式篇章关系识别方法
CN106021224B (zh) * 2016-05-13 2019-03-15 中国科学院自动化研究所 一种双语篇章标注方法
US11721356B2 (en) 2016-08-24 2023-08-08 Gridspace Inc. Adaptive closed loop communication system
US11715459B2 (en) 2016-08-24 2023-08-01 Gridspace Inc. Alert generator for adaptive closed loop communication system
US11601552B2 (en) 2016-08-24 2023-03-07 Gridspace Inc. Hierarchical interface for adaptive closed loop communication system
CN106502981B (zh) * 2016-10-09 2019-01-11 广西师范大学 基于词性、句法和词典的比喻修辞句自动分析与判定方法
CN106649768B (zh) * 2016-12-27 2021-03-16 北京百度网讯科技有限公司 基于深度问答的问答澄清方法和装置
CN106682194B (zh) * 2016-12-29 2020-05-22 北京百度网讯科技有限公司 基于深度问答的答案定位方法及装置
CA3055379C (en) 2017-03-10 2023-02-21 Eduworks Corporation Automated tool for question generation
US10599885B2 (en) 2017-05-10 2020-03-24 Oracle International Corporation Utilizing discourse structure of noisy user-generated content for chatbot learning
JP7086993B2 (ja) 2017-05-10 2022-06-20 オラクル・インターナショナル・コーポレイション コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
US11373632B2 (en) 2017-05-10 2022-06-28 Oracle International Corporation Using communicative discourse trees to create a virtual persuasive dialogue
US11586827B2 (en) 2017-05-10 2023-02-21 Oracle International Corporation Generating desired discourse structure from an arbitrary text
US10679011B2 (en) 2017-05-10 2020-06-09 Oracle International Corporation Enabling chatbots by detecting and supporting argumentation
US11386274B2 (en) 2017-05-10 2022-07-12 Oracle International Corporation Using communicative discourse trees to detect distributed incompetence
US11100144B2 (en) 2017-06-15 2021-08-24 Oracle International Corporation Data loss prevention system for cloud security based on document discourse analysis
US10839161B2 (en) 2017-06-15 2020-11-17 Oracle International Corporation Tree kernel learning for text classification into classes of intent
US10289974B1 (en) 2017-06-23 2019-05-14 Noble Systems Corporation Establishing a target handle time for a communication in a contact center
US11176325B2 (en) 2017-06-26 2021-11-16 International Business Machines Corporation Adaptive evaluation of meta-relationships in semantic graphs
US10628528B2 (en) 2017-06-29 2020-04-21 Robert Bosch Gmbh System and method for domain-independent aspect level sentiment detection
US10817578B2 (en) 2017-08-16 2020-10-27 Wipro Limited Method and system for providing context based adaptive response to user interactions
US20190103111A1 (en) 2017-10-03 2019-04-04 Rupert Labs Inc. ( DBA Passage AI) Natural Language Processing Systems and Methods
US20190163756A1 (en) 2017-11-29 2019-05-30 International Business Machines Corporation Hierarchical question answering system
US11023684B1 (en) 2018-03-19 2021-06-01 Educational Testing Service Systems and methods for automatic generation of questions from text
US10628219B2 (en) 2018-06-11 2020-04-21 Oracle International Corporation Fuzzy management of high-volume concurrent processes
US11509770B2 (en) 2018-09-25 2022-11-22 International Business Machines Corporation Live agent recommendation for a human-robot symbiosis conversation system
US11409961B2 (en) 2018-10-10 2022-08-09 Verint Americas Inc. System for minimizing repetition in intelligent virtual assistant conversations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110153673A1 (en) 2007-10-10 2011-06-23 Raytheon Bbn Technologies Corp. Semantic matching using predicate-argument structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Boris Galitsky,Matching parse thickets for open domain question answering,Data & Knowledge Engineering,2016年12月09日,Vol.107,Pages 24-50

Also Published As

Publication number Publication date
US10796102B2 (en) 2020-10-06
EP3622412A1 (en) 2020-03-18
US11775771B2 (en) 2023-10-03
US20180329879A1 (en) 2018-11-15
JP2023100719A (ja) 2023-07-19
CN110612525A (zh) 2019-12-24
CN110612525B (zh) 2024-03-19
JP7546096B6 (ja) 2024-10-02
US10853581B2 (en) 2020-12-01
WO2018208979A1 (en) 2018-11-15
JP2022050439A (ja) 2022-03-30
JP2024081640A (ja) 2024-06-18
JP7086993B2 (ja) 2022-06-20
US20210049329A1 (en) 2021-02-18
JP7546096B2 (ja) 2024-09-05
US20180329880A1 (en) 2018-11-15
JP2020522044A (ja) 2020-07-27
JP2022122999A (ja) 2022-08-23
JP7515537B2 (ja) 2024-07-12
US11694037B2 (en) 2023-07-04
US20200380214A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7439038B2 (ja) コミュニケーション用談話ツリーの使用による修辞学的分析の可能化
US11783126B2 (en) Enabling chatbots by detecting and supporting affective argumentation
US11748572B2 (en) Enabling chatbots by validating argumentation
US11373632B2 (en) Using communicative discourse trees to create a virtual persuasive dialogue
US10679011B2 (en) Enabling chatbots by detecting and supporting argumentation
US11386274B2 (en) Using communicative discourse trees to detect distributed incompetence
US10599885B2 (en) Utilizing discourse structure of noisy user-generated content for chatbot learning
JP7447019B2 (ja) コミュニケーション用談話ツリーを用いる、説明の要求の検出
US11960844B2 (en) Discourse parsing using semantic and syntactic relations
US12001804B2 (en) Using communicative discourse trees to detect distributed incompetence
JP2023531345A (ja) 改善された談話構文解析

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7439038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150