JP7438493B2 - lattice wall - Google Patents

lattice wall Download PDF

Info

Publication number
JP7438493B2
JP7438493B2 JP2021117912A JP2021117912A JP7438493B2 JP 7438493 B2 JP7438493 B2 JP 7438493B2 JP 2021117912 A JP2021117912 A JP 2021117912A JP 2021117912 A JP2021117912 A JP 2021117912A JP 7438493 B2 JP7438493 B2 JP 7438493B2
Authority
JP
Japan
Prior art keywords
lattice
members
opening
reinforcing material
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021117912A
Other languages
Japanese (ja)
Other versions
JP2023013600A (en
Inventor
秀丸 清水
心 村上
伸一 稲葉
二朗 ▲高▼野
Original Assignee
学校法人椙山女学園
株式会社三四五建築研究所
タカノホーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人椙山女学園, 株式会社三四五建築研究所, タカノホーム株式会社 filed Critical 学校法人椙山女学園
Priority to JP2021117912A priority Critical patent/JP7438493B2/en
Publication of JP2023013600A publication Critical patent/JP2023013600A/en
Application granted granted Critical
Publication of JP7438493B2 publication Critical patent/JP7438493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 日本建築学会、2020年度日本建築学会大会学術講演梗概集、令和2年7月20日 椙山女学園大学生活科学部生活環境デザイン学科、椙山女学園大学生活科学部生活環境デザイン学科2020年度卒業研究発表梗概集、令和3年1月22日 椙山女学園大学生活科学部生活環境デザイン学科2020年度卒業研究発表会、令和3年1月24日 https://sugiyama-u-sotsuten.com/、https://sugiyama-u-sotsuten.com/wp-content/uploads/2021/02/3755e7a48fd754e7661f6b25d207732c.pdf、令和3年2月 椙山女学園大学大学院生活科学研究科生活環境学専攻2020年度修士研究発表会、令和3年2月16日 https://www.sugiyama-u.ac.jp/univ/academics/g-nutr/life/、https://www.sugiyama-u.ac.jp/univ/assets/docs/mas20_kawamoto.pdf、令和3年2月Application of Article 30, Paragraph 2 of the Patent Act Architectural Institute of Japan, 2020 Architectural Institute of Japan Conference Academic Lecture Abstracts, July 20, 2020 Sugiyama Jogakuen University, Faculty of Life Sciences, Department of Living Environment Design, Sugiyama Jogakuen University Life Sciences Department of Living and Environment Design, 2020 Graduation Research Presentation Summary, January 22, 2021 Sugiyama Jogakuen University, Faculty of Life Sciences, Department of Living and Environment Design, 2020 Graduation Research Presentation, January 24, 2021 https:/ /sugiyama-u-sotsuten. com/, https://sugiyama-u-sotsuten. com/wp-content/uploads/2021/02/3755e7a48fd754e7661f6b25d207732c. pdf, February 2021 Sugiyama Jogakuen University Graduate School of Life Sciences Department of Living Environment 2020 Master's Research Presentation, February 16, 2021 https://www. sugiyama-u. ac. jp/univ/academics/g-nutr/life/, https://www. sugiyama-u. ac. jp/univ/assets/docs/mas20_kawamoto. pdf, February 2021

本発明は、耐力壁として用いられる面格子壁に関する。 The present invention relates to a lattice wall used as a load-bearing wall.

近年、通風や採光を確保できる耐力壁として、面格子壁が注目されている。一般に、面格子壁は、複数の木材(縦材と横材)を相欠き仕口(一対の縦材と横材の対向面にそれぞれ切欠部を形成して相互に嵌め合わせる構造)により接合して構成したものであり、多数の仕口における木材のめり込み挙動によって、大変形時において安定した高耐力を得られる。しかし、加工精度の低さや経年による木材の乾燥収縮により仕口に隙間が生じることが原因となって、小変形時には木材のめり込みが生じず、耐力壁として機能しない。よって、初期剛性が低く設定されており、壁倍率は最大0.9(仕様規定)である。 In recent years, lattice walls have attracted attention as load-bearing walls that can ensure ventilation and lighting. In general, a lattice wall is made by joining multiple pieces of wood (vertical and horizontal members) with a mutually interlocking joint (a structure in which cutouts are formed on the opposing surfaces of a pair of vertical and horizontal members, and they fit together). The structure has a structure in which the wood sinks into the wood at a number of joints, making it possible to obtain a stable and high yield strength even during large deformations. However, due to low machining accuracy and gaps formed in the joints due to drying and shrinkage of the wood over time, the wood does not sink in during small deformations and does not function as a load-bearing wall. Therefore, the initial stiffness is set low, and the wall magnification is 0.9 at maximum (specified).

そこで、本件発明者らは、この初期剛性が低いという課題を解決するものとして、特許文献1に示す面格子壁を提案している。この面格子壁は、仕口の隙間に圧縮木材からなる隙間埋め材を挿入したものであり、隙間埋め材が形状回復することで隙間が埋められ、高い初期剛性が得られるものである。 Therefore, the present inventors have proposed a surface lattice wall shown in Patent Document 1 as a solution to the problem of low initial rigidity. This lattice wall is made by inserting a gap filler made of compressed wood into the gap between the joints, and the gap filler recovers its shape to fill the gap and provide high initial rigidity.

特許第6337257号公報Patent No. 6337257

しかしながら、特許文献1の面格子壁の隙間埋め材は、木材を加熱してからプレス機で圧縮したものであり、こうした加工に手間がかかる点が問題であった。 However, the gap-filling material for the lattice wall of Patent Document 1 is made by heating wood and then compressing it with a press, and the problem is that such processing is time-consuming.

本発明は、このような事情を鑑みたものであり、製造が容易であって、高い初期剛性を有し、小変形時と大変形時の何れにおいても耐力壁として機能する面格子壁を提供することを目的とする。 The present invention has been made in view of these circumstances, and provides a surface lattice wall that is easy to manufacture, has high initial rigidity, and functions as a load-bearing wall both during small deformation and large deformation. The purpose is to

本発明は、交差して組まれた木製の格子材からなり該格子材に囲まれた複数の開口部を有する格子本体と、薄鋼板からなる補強材を備え、一部の前記開口部が、前記補強材が取り付けられて塞がれた補強領域となっており、残りの前記開口部が、前記補強材が取り付けられておらず開口した開口領域となっていることを特徴とする。なお、開口部には、全周を格子材に囲まれた開口部分に加えて、格子本体の周縁部において、格子材とその他の部材とに囲まれた開口部分も含む。また、薄鋼板とは、厚さが3mm以下の鋼板のことをいう。 The present invention includes a lattice main body made of wooden lattice members arranged in a crosswise manner and having a plurality of openings surrounded by the lattice members, and a reinforcing member made of a thin steel plate, and some of the openings are The reinforcing material is attached to form a closed reinforcing area, and the remaining opening is an open area where the reinforcing material is not attached. Note that the opening includes not only an opening portion surrounded by the lattice material on the entire circumference, but also an opening portion surrounded by the lattice material and other members at the peripheral edge of the lattice main body. Moreover, a thin steel plate refers to a steel plate with a thickness of 3 mm or less.

また、本発明は、前記補強材が、前記開口部と同一形状の閉塞部と、該閉塞部の周縁から該閉塞部と直交する向きに延出する固定部を有するものであり、前記閉塞部が前記開口部を塞いでおり、前記固定部が前記開口部を囲む前記格子材の内周面に当接して固定されているものであってもよい。 Further, in the present invention, the reinforcing material has a closing portion having the same shape as the opening, and a fixing portion extending from a peripheral edge of the closing portion in a direction perpendicular to the closing portion, and the reinforcing member has a closing portion having the same shape as the opening. may close the opening, and the fixing portion may be fixed in contact with an inner circumferential surface of the lattice material surrounding the opening.

また、本発明は、前記開口部および前記閉塞部が、多角形状であり、前記閉塞部の各辺から延出する前記固定部が、前記閉塞部に対して同じ向きに延出しており、隣接する前記固定部同士が接合されているものであってもよい。 Further, in the present invention, the opening portion and the closing portion have a polygonal shape, and the fixing portion extending from each side of the closing portion extends in the same direction with respect to the closing portion, and the fixing portion extends in the same direction with respect to the closing portion. The fixing parts may be joined to each other.

また、本発明は、前記補強材が、1枚の薄鋼板を折り曲げて形成されたものであってもよい。 Further, in the present invention, the reinforcing material may be formed by bending a single thin steel plate.

また、本発明は、前記格子材が、垂直向きに延びる縦材と、水平向きに延びる横材からなり、前記縦材と前記横材が直交していて、前記開口部が矩形のものであってもよい。 Further, in the present invention, the lattice member is composed of vertically extending vertical members and horizontally extending horizontal members, the vertical members and the horizontal members are perpendicular to each other, and the opening is rectangular. It's okay.

本発明によれば、開口領域により、通風や採光が確保され、補強領域により、高い耐力が確保される。すなわち、小変形時には、薄鋼板からなる補強材の初期剛性により応答することで高耐力が得られ、大変形時には、格子材同士の接合部分における木材のめり込み挙動に加えて、薄鋼板からなる補強材の靭性により応答することで、高耐力が得られる。よって、小変形時と大変形時の何れにおいても耐力壁として機能するものである。 According to the present invention, ventilation and lighting are ensured by the open area, and high yield strength is ensured by the reinforced area. In other words, when a small deformation occurs, a high yield strength is obtained by responding to the initial stiffness of the reinforcing material made of thin steel plates, and when a large deformation occurs, in addition to the sinking behavior of the wood at the joints between the lattice members, the reinforcing material made of thin steel plates High yield strength can be obtained by responding with toughness. Therefore, it functions as a load-bearing wall both in the case of small deformation and in the case of large deformation.

また、補強材が格子材に当接して固定される固定部を有するものであれば、補強材が格子材に対して確実に固定されるので、耐力壁としてより耐力が高いものとなる。 Moreover, if the reinforcing material has a fixing part that is fixed in contact with the lattice material, the reinforcing material is reliably fixed to the lattice material, so that the load-bearing wall has higher strength.

また、補強材の閉塞部が多角形状であって隣接する固定部同士が接合されているものであれば、補強材が箱形で剛性が高いものとなるので、耐力壁としてより耐力が高いものとなる。 In addition, if the closed part of the reinforcing material is polygonal and adjacent fixed parts are joined, the reinforcing material will be box-shaped and have high rigidity, so it will have a higher resistance as a load-bearing wall. becomes.

また、補強材が1枚の薄鋼板を折り曲げたものであれば、より剛性が高いものとなるとともに、閉塞部と固定部を容易に形成することができる。 Further, if the reinforcing material is made by bending a single thin steel plate, the rigidity will be higher and the closing part and the fixing part can be easily formed.

また、格子材が縦材と横材からなるものであれば、既存の縦横格子に補強材を取り付けることで本発明の面格子壁とすることもできる。 Furthermore, if the lattice material is made up of vertical and horizontal members, the surface lattice wall of the present invention can be obtained by attaching reinforcing materials to the existing vertical and horizontal lattices.

面格子壁の斜視図である。FIG. 3 is a perspective view of a grid wall. 面格子壁の正面図である。FIG. 3 is a front view of a grid wall. (a)は縦材と横材の接合部の説明図であり、(b)は横材と柱の接合部の説明図である。(a) is an explanatory diagram of a joint between a vertical member and a horizontal member, and (b) is an explanatory diagram of a joint between a horizontal member and a column. (a)は補強材の斜視図、(b)は補強材の展開図である。(a) is a perspective view of the reinforcing material, and (b) is a developed view of the reinforcing material. (a)、(b)は補強材の取付方法の説明図である。(a) and (b) are explanatory views of the method of attaching the reinforcing material. 試験体の説明図であり、(a)は試験体A、(b)は試験体B、(c)は試験体Cを示す。FIG. 2 is an explanatory diagram of test specimens, in which (a) shows test specimen A, (b) shows test specimen B, and (c) shows specimen C. 各試験体の荷重変位関係を示すグラフである。It is a graph showing the load-displacement relationship of each test piece. 各試験体の初期剛性の比較を示すグラフである。It is a graph showing a comparison of initial stiffness of each test piece. 変形角1/300radのときの各試験体の包絡線を示すグラフである。It is a graph showing the envelope of each test piece when the deformation angle is 1/300 rad. 各試験体のエネルギ吸収量の比と変形角の関係を示すグラフである。It is a graph showing the relationship between the ratio of energy absorption amount and the deformation angle of each test piece.

以下、本発明の面格子壁の具体的な内容について説明する。なお、以下において上下左右とは、図2に示すように、この面格子壁を正面から見たときの上下左右方向を示すものとする。図1および図2に示すように、この面格子壁は、複数の開口部11を有する木製の格子本体1と、格子本体1の左右に取り付けられた木製の柱12と、格子本体1および柱12の上下に取り付けられた木製の梁13と、薄鋼板からなる補強材2を備え、一部の開口部11が、補強材2が取り付けられて塞がれた補強領域100となっており、残りの開口部11が、補強材2が取り付けられておらず開口した開口領域200となっている。 Hereinafter, specific details of the surface lattice wall of the present invention will be explained. In addition, as shown in FIG. 2, below, up, down, left and right shall refer to the up, down, left and right directions when this grid wall is viewed from the front. As shown in FIGS. 1 and 2, this surface lattice wall includes a wooden lattice body 1 having a plurality of openings 11, wooden pillars 12 attached to the left and right sides of the lattice body 1, and the lattice body 1 and the pillars. It is equipped with wooden beams 13 attached above and below 12 and reinforcing members 2 made of thin steel plates, and a part of the opening 11 becomes a reinforcing area 100 where the reinforcing members 2 are attached and closed. The remaining opening 11 is an open area 200 where the reinforcing material 2 is not attached.

格子本体1は、交差して組まれた格子材3からなるものであって、格子材3は、垂直向きに延びる縦材31と、水平向きに延びる横材32からなる。図1および図2に示す例では、4本の縦材31と、6本の横材32を備えており、縦材31は左右に間隔を空けて配置され、横材32は上下に間隔を空けて配置されている。縦材31同士の間隔と横材32同士の間隔は同じであり、縦材31と横材32に囲まれた開口部11は正方形である。縦材31と横材32は、何れも木製の角材からなり、接合部において互いに直交している。その接合部は、図3(a)に示すように、縦材31と横材32のそれぞれの対向面に断面コ字形の切欠部311,321が形成されていて、切欠部311,321を相互に嵌め合わせるように組まれた相欠き仕口となっている。 The lattice body 1 is made up of lattice members 3 arranged in a crosswise manner, and the lattice members 3 are made up of vertically extending vertical members 31 and horizontally extending horizontal members 32. In the example shown in FIGS. 1 and 2, there are four vertical members 31 and six horizontal members 32, and the vertical members 31 are arranged with intervals left and right, and the horizontal members 32 are arranged with intervals vertically. It is placed empty. The interval between the vertical members 31 and the interval between the horizontal members 32 are the same, and the opening 11 surrounded by the vertical members 31 and the horizontal members 32 is square. The vertical members 31 and the horizontal members 32 are both made of wooden square members, and are orthogonal to each other at the joints. As shown in FIG. 3(a), at the joint, cutouts 311 and 321 each having a U-shaped cross section are formed on the opposing surfaces of the vertical member 31 and the cross member 32, and the cutouts 311 and 321 are mutually connected. It is a two-sided shiguchi that is assembled to fit together.

格子本体1の左右には、柱12が取り付けられている。柱12は、格子材3よりも太い木製の角材からなり、左右に延びる横材32の端部が上下に延びる柱12の側面に当接して接合されている。その接合部は、図3(b)に示すように、横材32の端部にほぞ322が形成され、柱12の側面にほぞ穴121が形成されていて、柱12のほぞ穴121に横材32のほぞ322が挿入されて組まれている。さらに、格子本体1と左右の柱12の上下には、梁13が取り付けられている。梁13は、柱12と同等以上の太さの木製の角材からなり、上下に延びる縦材31と柱12の上端部が上側の梁13の下面に当接して接合されており、縦材31と柱12の下端部が下側の梁13の上面に当接して接合されている。その接合部は、縦材31および柱12の端部にほぞが形成され、梁13の上下面にほぞ穴が形成されていて、梁13のほぞ穴に縦材31および柱12のほぞが挿入されて組まれている(図示省略)。さらに、柱12の上下の端部と梁13とは、ホールダウン金物14により接合されている(図1ではホールダウン金物14について図示省略)。このホールダウン金物14以外に、格子材3、柱12および梁13の接合部において、ネジや釘などの金物は使用されていない。 Pillars 12 are attached to the left and right sides of the lattice body 1. The pillar 12 is made of a wooden square material that is thicker than the lattice material 3, and the ends of the horizontal members 32 extending left and right are joined to the side surfaces of the pillar 12 extending vertically. As shown in FIG. 3(b), at the joint, a tenon 322 is formed at the end of the cross member 32, a mortise hole 121 is formed on the side surface of the column 12, and a mortise hole 121 is formed on the side surface of the column 12. The tenon 322 of the material 32 is inserted and assembled. Further, beams 13 are attached above and below the lattice main body 1 and the left and right pillars 12. The beam 13 is made of a wooden square beam with a thickness equal to or larger than that of the column 12, and the upper end of the column 12 and the vertical beam 31 extending vertically are joined by contacting the lower surface of the upper beam 13. The lower ends of the pillars 12 abut and are joined to the upper surface of the lower beam 13. At the joint, a tenon is formed at the end of the vertical member 31 and the column 12, a mortise is formed on the upper and lower surfaces of the beam 13, and the tenon of the vertical member 31 and the column 12 is inserted into the mortise of the beam 13. (not shown). Furthermore, the upper and lower ends of the pillar 12 and the beam 13 are joined by a hole-down metal fitting 14 (the hole-down metal fitting 14 is not shown in FIG. 1). Other than this hole-down hardware 14, no hardware such as screws or nails is used at the joints between the lattice material 3, columns 12, and beams 13.

なお、格子本体1において、開口部11は、左右の縦材31と上下の横材32に囲まれた開口部分(すなわち、全周を格子材3に囲まれた開口部分)に加えて、格子本体1の周縁部において、縦材31および横材32と、柱12および/または梁13に囲まれた開口部分(すなわち、格子材3とその他の部材とに囲まれた開口部分)も含む。何れの開口部11も同じ大きさの正方形であり、図1および図2に示す例では、35個の開口部11が形成されている。 In addition, in the lattice main body 1, the opening 11 includes the opening portion surrounded by the left and right vertical members 31 and the upper and lower horizontal members 32 (that is, the opening portion surrounded by the lattice material 3 on the entire circumference), The peripheral portion of the main body 1 also includes an opening surrounded by the vertical members 31 and the horizontal members 32, and the pillars 12 and/or beams 13 (that is, an opening surrounded by the lattice members 3 and other members). All openings 11 are squares of the same size, and in the example shown in FIGS. 1 and 2, 35 openings 11 are formed.

補強材2は、薄鋼板からなるものである。なお、薄鋼板とは、厚さが3mm以下の鋼板のことをいう。この補強材2は、図4(a)に示すように、格子本体1の開口部11と同一形状(同じ大きさの正方形)の1枚の平板状の閉塞部21と、閉塞部21の各辺から閉塞部21と直交する向きに延出する4枚の矩形平板状の固定部22を有する。固定部22は何れも閉塞部21に対して同じ向きに延出しており、隣接する固定部22同士が内側から溶接されて接合されている。すなわち、補強材2は、閉塞部21を底面とし、固定部22を四周の側面とする箱形のものである。ただし、固定部22の延出幅(閉塞部21を底面としたときの高さ)は、格子本体1の見込幅(格子材3の太さ)よりも短い。なお、固定部22には、この補強材2を格子材3にビス止めするためのビスを通すビス孔221が形成されている。また、この補強材2は1枚の薄鋼板を折り曲げて形成されたものであり、図4(b)に示すのが、折り曲げる前の状態である。閉塞部21と固定部22の境界は、薄鋼板の折目である。 The reinforcing material 2 is made of a thin steel plate. Note that the thin steel plate refers to a steel plate with a thickness of 3 mm or less. As shown in FIG. 4(a), this reinforcing material 2 includes one plate-shaped closing portion 21 having the same shape (square of the same size) as the opening 11 of the lattice body 1, and each of the closing portions 21. It has four rectangular flat plate-shaped fixing parts 22 extending from the sides in a direction perpendicular to the closing part 21. All of the fixing parts 22 extend in the same direction with respect to the closing part 21, and adjacent fixing parts 22 are welded and joined from the inside. That is, the reinforcing member 2 is box-shaped with the closing portion 21 as the bottom surface and the fixing portions 22 as the four circumferential side surfaces. However, the extension width of the fixing portion 22 (height when the closing portion 21 is the bottom surface) is shorter than the expected width of the lattice main body 1 (thickness of the lattice material 3). Note that the fixing portion 22 is formed with screw holes 221 through which screws for screwing the reinforcing material 2 to the grid material 3 are passed. Moreover, this reinforcing material 2 is formed by bending a single thin steel plate, and the state before bending is shown in FIG. 4(b). The boundary between the closing part 21 and the fixed part 22 is a fold of the thin steel plate.

そして、このように形成された補強材2は、図5に示すように、格子本体1の開口部11に取り付けられている。すなわち、閉塞部21が開口部11と同一形状であって、図5(a)に示すように、閉塞部21が開口部11を塞ぐようにして、補強材2が開口部11に挿入される。この際、閉塞部21が、格子材3の見付面(図5における奥側の面)と面一となる。そして、図5(b)に示すように、上下左右の固定部22が、それぞれ開口部11を囲む格子材3(縦材31と横材32)の内周面に当接しており、ビス222をビス孔221に通して、それぞれの固定部22が当接している格子材3にビス止めして固定される。また、格子本体1の周縁部の開口部11に取り付けられる補強材2は、その固定部22の一部が柱12および/または梁13に当接して固定されている。よって、どの開口部11に取り付けられる補強材2も、その四周の固定部22が、格子材3、柱12または梁13の何れかに固定される。 The reinforcing material 2 thus formed is attached to the opening 11 of the lattice main body 1, as shown in FIG. That is, the closing part 21 has the same shape as the opening 11, and as shown in FIG. 5(a), the reinforcing material 2 is inserted into the opening 11 so that the closing part 21 closes the opening 11. . At this time, the closing portion 21 becomes flush with the facing surface of the lattice material 3 (the surface on the back side in FIG. 5). As shown in FIG. 5(b), the upper, lower, left, and right fixing parts 22 are in contact with the inner peripheral surfaces of the lattice members 3 (vertical members 31 and horizontal members 32) surrounding the opening 11, respectively, and the screws 222 are passed through the screw holes 221, and each fixing part 22 is screwed and fixed to the grid material 3 in contact with it. Further, the reinforcing member 2 attached to the opening 11 at the peripheral edge of the lattice main body 1 is fixed with a part of its fixing part 22 abutting against the column 12 and/or the beam 13. Therefore, the fixing parts 22 around the four peripheries of the reinforcing member 2 attached to any opening 11 are fixed to either the lattice member 3, the pillars 12, or the beams 13.

なお、1つの格子本体1には、1つまたは複数の補強材2が取り付けられるが、補強材2の数は開口部11の数よりも少ない。すなわち、一部の開口部11に補強材2が取り付けられて補強領域100となっており、残りの開口部11には補強材2が取り付けられず開口したままの状態の開口領域200となっている。 Note that one or more reinforcing members 2 are attached to one lattice main body 1, but the number of reinforcing members 2 is smaller than the number of openings 11. In other words, the reinforcing material 2 is attached to some of the openings 11, forming a reinforcing region 100, and the reinforcing material 2 is not attached to the remaining openings 11, forming an open region 200 that remains open. There is.

次に、このように構成された面格子壁の性能を確認する試験について説明する。試験に用いた面格子壁は実物大のものであって、格子本体1を構成する格子材3(縦材31と横材32)は90mm角のスギからなり、1つの開口部11は縦横300mmの正方形である。補強材2は、板厚0.6mmの薄鋼板からなり、閉塞部21は開口部11と同じ縦横300mmの正方形であって、固定部22の延出幅(閉塞部21を底面としたときの高さ)は65mmである。そして、この補強材2を取り付けない面格子壁を試験体A(図6(a))、1つの補強材2を取り付けた面格子壁を試験体B(図6(b))、2つの補強材2を取り付けた面格子壁を試験体C(図6(c))とした。なお、試験体Bにおいて、1つの補強材2は、上から5番目で左から4番目の開口部11に取り付けられている。また、試験体Cにおいて、2つの補強材2は、上から5番目で左から4番目および5番目の開口部11に取り付けられている。 Next, a test to confirm the performance of the grid wall constructed in this way will be explained. The grid wall used in the test was a full-scale one, and the grid members 3 (vertical members 31 and horizontal members 32) constituting the grid body 1 were made of 90 mm square cedar, and each opening 11 was 300 mm in length and width. It is a square. The reinforcing member 2 is made of a thin steel plate with a plate thickness of 0.6 mm, and the closing part 21 has the same square shape as the opening 11, measuring 300 mm in length and width. height) is 65 mm. The lattice wall without this reinforcing material 2 is specimen A (Fig. 6(a)), the lattice wall with one reinforcing material 2 is specimen B (Fig. 6(b)), and the lattice wall with one reinforcing material 2 is specimen B (Fig. 6(b)). The lattice wall to which Material 2 was attached was designated as test specimen C (FIG. 6(c)). In addition, in the test specimen B, one reinforcing member 2 is attached to the opening 11 that is fifth from the top and fourth from the left. In the test specimen C, the two reinforcing members 2 are attached to the openings 11 that are fifth from the top and fourth and fifth from the left.

これらの試験体A~試験体Cに対して、壁試験機により荷重を作用させた。より詳しくは、各試験体の下側の梁13を床面に固定し、上側の梁13に対して左右方向の力を作用させた。加力方法は、左右方向の一方を正方向、他方を負方向として、正負交番3回繰り返し載荷とし、載荷履歴は、変形角(=変位/高さ)を1/450、1/300、1/200、1/150、1/100、1/75、1/50、1/30radとした後、単調載荷に切り替えて引き切ることとした。 A load was applied to these specimens A to C using a wall testing machine. More specifically, the lower beam 13 of each test specimen was fixed to the floor surface, and a force was applied to the upper beam 13 in the left-right direction. The force application method was to repeat the loading three times in positive and negative alternating directions, with one side in the left and right direction being positive and the other being negative, and the loading history was such that the deformation angle (= displacement / height) was 1/450, 1/300, 1 After setting the load to /200, 1/150, 1/100, 1/75, 1/50, and 1/30 rad, it was decided to switch to monotonous loading and cut off.

これらの条件に基づく試験の結果、何れの試験体においても、格子本体1においてほぞの抜けや接合部の隙間の広がりが見られたが、局部的な破壊は生じなかった。一方、補強材2は、閉塞部21の対角線上に×印を描くような波状の変形が生じた。そして、各試験体の荷重変位関係は、図7のグラフのとおりであった。このグラフは、横軸を変形角(rad)、縦軸を荷重(kN)としたものである。これによれば、補強材2の数が増えるほど、各変形角における最大荷重が大きくなっており、耐震性能が向上していることが確認された。また、各試験体の小変形時(変形角が小さい範囲)における荷重変位関係は、図8のグラフのとおりであった。このグラフも、横軸を変形角(rad)、縦軸を荷重(kN)としたものである。これによれば、補強材2の数が増えるほど、曲線の傾きが大きくなっており、すなわち同じ大きさの荷重を受けた際により変形しにくくなっていて、初期剛性が向上していることが確認された。 As a result of tests based on these conditions, in all of the test specimens, omission of tenons and widening of gaps at joints were observed in the lattice body 1, but no local destruction occurred. On the other hand, the reinforcing material 2 was deformed in a wavy manner as if an x mark was drawn on the diagonal of the closed portion 21. The load-displacement relationship of each test specimen was as shown in the graph of FIG. 7. In this graph, the horizontal axis represents the deformation angle (rad) and the vertical axis represents the load (kN). According to this, it was confirmed that as the number of reinforcing materials 2 increased, the maximum load at each deformation angle increased, and the seismic performance improved. Further, the load-displacement relationship of each test specimen at the time of small deformation (in a range where the deformation angle is small) was as shown in the graph of FIG. 8. This graph also shows the deformation angle (rad) on the horizontal axis and the load (kN) on the vertical axis. According to this, as the number of reinforcing members 2 increases, the slope of the curve becomes larger, which means that it becomes more difficult to deform when the same amount of load is applied, and the initial rigidity improves. confirmed.

そして、図8のグラフの変形角1/120radのときの荷重の値に基づいて壁倍率を算出すると、試験体Aが0.8、試験体Bが1.2、試験体Cが1.8となった(なお、壁倍率1倍とは、壁長1mあたり、1.96kNの水平荷重に抵抗できることをいう)。よって、補強材2を1つ増やすごとに、壁倍率が1.5倍に向上することが確認された。 Then, when calculating the wall magnification based on the load value when the deformation angle is 1/120 rad in the graph of FIG. 8, the wall magnification is 0.8 for specimen A, 1.2 for specimen B, and 1.8 for specimen C. (The wall magnification of 1x means that the wall can resist a horizontal load of 1.96 kN per meter of wall length.) Therefore, it was confirmed that each time the number of reinforcement members 2 was increased by one, the wall magnification increased by 1.5 times.

また、図7のグラフにおいて、各試験体についての包絡線に囲まれた部分の面積は、エネルギ吸収量を表す。たとえば、図9のグラフは、変形角1/300radのときの各試験体の包絡線を示すものである(横軸は変位(mm)を示す)。ここで、補強材2を取り付けることによってエネルギ吸収量がどのように変化したのかを確認するため、各変形角における、試験体A(補強材2なし)のエネルギ吸収量に対する、試験体B(補強材2が1つ)と試験体C(補強材2が2つ)のエネルギ吸収量の比を算出した。その結果を示すのが、図10のグラフである。これによれば、概ね変形角が小さいほど、比の値は大きくなっており、かつ試験体Bについての値と試験体Cについての値の差も大きい(試験体Cについての値の方が大きい)。これはすなわち、補強材2により面格子壁の小変形時の初期剛性が向上しており、かつ補強材2の数を増やすことで初期剛性がさらに顕著に向上していることを示している。また、変形角が大きくなると、比の値は小さくなっているが1よりは大きく、かつ試験体Bについての値と試験体Cについての値の差も小さくなっている。すなわち、補強材2が面格子壁の大変形時の靭性能に及ぼす影響は、小変形時の初期剛性に及ぼす影響よりも小さいものであるが、補強材2により面格子壁の大変形時の靭性能もある程度は向上していることを示している。 Furthermore, in the graph of FIG. 7, the area of the portion surrounded by the envelope for each test specimen represents the amount of energy absorbed. For example, the graph in FIG. 9 shows the envelope of each test piece when the deformation angle is 1/300 rad (the horizontal axis shows displacement (mm)). Here, in order to confirm how the energy absorption amount changed by attaching the reinforcement material 2, we compared the energy absorption amount of the specimen B (no reinforcement material 2) with the energy absorption amount of the specimen A (no reinforcement material 2) at each deformation angle. The ratio of the energy absorption amount of specimen C (one piece of reinforcing material 2) and test specimen C (two pieces of reinforcing material 2) was calculated. The graph in FIG. 10 shows the results. According to this, the smaller the deformation angle, the larger the value of the ratio, and the difference between the value for specimen B and the value for specimen C is also larger (the value for specimen C is larger). ). This means that the reinforcing materials 2 improve the initial rigidity of the grid wall during small deformations, and that increasing the number of reinforcing materials 2 further improves the initial rigidity. Further, as the deformation angle increases, the ratio value becomes smaller but larger than 1, and the difference between the value for test specimen B and the value for test specimen C also becomes smaller. In other words, the effect of reinforcing material 2 on the toughness of the face lattice wall during large deformation is smaller than the effect on the initial stiffness during small deformation, but the effect of reinforcing material 2 on the toughness of the face lattice wall during large deformation is smaller than the effect on the initial stiffness when the face lattice wall undergoes large deformation. This shows that the toughness performance is also improved to some extent.

なお、この面格子壁の耐力は、格子材3の各接合部(仕口)のモーメント抵抗と、補強材2のモーメント抵抗の足し合わせによるものであり、モーメントの位置の影響は受けないものである。すなわち、補強材2の数が同じであれば、補強材2を取り付ける開口部11の位置によらず、面格子壁の耐力は同じである。よって、補強材2の配置については、複数の補強材2を組み合わせて図柄や文字を表したり、目線の高さの位置に取り付けることで目隠しにしたりするなど、耐震性能以外の観点に基づいて自在に設定できる。 The strength of this lattice wall is the sum of the moment resistance of each joint (shiguchi) of the lattice material 3 and the moment resistance of the reinforcing material 2, and is not affected by the position of the moment. be. That is, if the number of reinforcing members 2 is the same, the yield strength of the grid wall is the same regardless of the position of the opening 11 to which the reinforcing members 2 are attached. Therefore, the placement of the reinforcing materials 2 is flexible based on viewpoints other than seismic performance, such as combining multiple reinforcing materials 2 to represent designs or letters, or attaching them at eye level to hide them. Can be set to

また、上記の試験のように、面格子壁が受ける荷重がある程度以下の大きさであれば、補強材2が変形しても、格子本体1、柱12および梁13は損傷しない。このような状態であれば、補強材2のみを交換することで、面格子壁を継続して使用することができる。補強材2の交換に際しては、元々補強材2が取り付けられていた開口部11の格子材3などにはビス穴が形成されているので、新たな補強材2を取り付けて確実に固定することができないおそれもあるが、上記のとおり、補強材2の位置は耐震性能に影響しないので、新たな補強材2を元の補強材2とは異なる位置に取り付ければよい。 Further, as in the above test, if the load that the grid wall receives is below a certain level, the grid body 1, columns 12, and beams 13 will not be damaged even if the reinforcing material 2 is deformed. In such a state, the grid wall can be used continuously by replacing only the reinforcing material 2. When replacing the reinforcing material 2, screw holes are formed in the lattice material 3 of the opening 11 where the reinforcing material 2 was originally attached, so it is possible to attach the new reinforcing material 2 and securely fix it. Although it may not be possible, as mentioned above, the position of the reinforcing material 2 does not affect the seismic performance, so it is sufficient to attach the new reinforcing material 2 to a different position from the original reinforcing material 2.

このように構成された本発明の面格子壁によれば、開口領域200により、通風や採光が確保され、補強領域100により、高い耐力が確保される。すなわち、小変形時には、薄鋼板からなる補強材2の初期剛性により応答することで高耐力が得られ、大変形時には、格子材3同士の接合部分における木材のめり込み挙動に加えて、薄鋼板からなる補強材2の靭性により応答することで、高耐力が得られる。よって、小変形時と大変形時の何れにおいても耐力壁として機能するものである。また、補強材2が格子材3、柱12および梁13に当接して固定される固定部22を有するものであり、補強材2が格子材3、柱12および梁13に対して確実に固定されるので、耐力壁としてより耐力が高いものとなる。また、補強材2の閉塞部21が正方形であって隣接する固定部22同士が接合されているので、補強材2が箱形で剛性が高いものとなり、耐力壁としてより耐力が高いものとなる。また、補強材2が1枚の薄鋼板を折り曲げたものなので、より剛性が高いものとなるとともに、閉塞部21と固定部22を容易に形成することができる。なお、既存の縦横格子に薄鋼板からなる補強材2を取り付けることで、本発明の面格子壁とすることもできる。 According to the lattice wall of the present invention configured in this manner, the opening areas 200 ensure ventilation and lighting, and the reinforced areas 100 ensure high yield strength. In other words, when a small deformation occurs, a high yield strength is obtained by responding to the initial rigidity of the reinforcing material 2 made of thin steel plates, and when a large deformation occurs, in addition to the sinking behavior of the wood at the joints between the lattice members 3, the reinforcing material 2 made of thin steel plates High yield strength can be obtained by responding with the toughness of the reinforcing material 2. Therefore, it functions as a load-bearing wall both in the case of small deformation and in the case of large deformation. Further, the reinforcing material 2 has a fixing part 22 that is fixed by coming into contact with the lattice material 3, the pillars 12, and the beams 13, and the reinforcing material 2 is securely fixed to the lattice material 3, the pillars 12, and the beams 13. Therefore, it becomes a load-bearing wall with higher strength. In addition, since the closed part 21 of the reinforcing material 2 is square and the adjacent fixing parts 22 are joined, the reinforcing material 2 is box-shaped and has high rigidity, making it more durable as a load-bearing wall. . Moreover, since the reinforcing material 2 is made by bending one thin steel plate, it has higher rigidity, and the closing part 21 and the fixing part 22 can be easily formed. Note that by attaching reinforcing members 2 made of thin steel plates to an existing vertical and horizontal lattice, the surface lattice wall of the present invention can be obtained.

本発明は、上記の実施形態に限定されるものではなく、発明の趣旨の範囲内で適宜変更できる。たとえば、格子材の太さ、本数、間隔などは、設置場所の状況などに応じて適宜変更できる。また、補強材の数を増やして補強領域を広げれば、より耐震性能が向上し、補強材の数を減らして開口領域を広げれば、より通風・採光性能が向上するものであり、その数も設置場所の状況などに応じて適宜変更できる。さらに、格子材同士の接合部は相欠き仕口のものに限られず、格子材に切欠部が形成されない重ね継手などのものであってもよい。また、縦材同士の間隔と横材同士の間隔が異なっていて、開口部および補強材の閉塞部が長方形となっているものであってもよいし、格子材同士が直角以外の角度で交差していて、開口部および補強材の閉塞部が平行四辺形や菱形となっているものであってもよい。さらに、上記の実施形態では柱と梁がホールダウン金物により接合されているが、木材同士の接合にこのような金物を一切使用しないものであってもよい。また、補強材は、平板状であって格子本体の見付面に固定されるもの、閉塞部と固定部を有するものであって各辺から延出する固定部が閉塞部に対して異なる向きに延出しているもの、閉塞部と固定部が別部材からなり両者が溶接やネジ止めなどの手段により接合されているものなどであってもよい。 The present invention is not limited to the embodiments described above, and can be modified as appropriate within the scope of the spirit of the invention. For example, the thickness, number, spacing, etc. of the grid members can be changed as appropriate depending on the conditions of the installation location. In addition, increasing the number of reinforcing materials and widening the reinforced area will further improve seismic performance, and reducing the number of reinforcing materials and widening the opening area will improve ventilation and lighting performance. It can be changed as appropriate depending on the situation of the installation location. Furthermore, the joints between the lattice materials are not limited to those with phase-cut joints, but may also be joints such as lap joints in which notches are not formed in the lattice materials. Additionally, the spacing between the vertical members and the spacing between the horizontal members may be different, the openings and the closed portions of the reinforcing material may be rectangular, and the lattice members may intersect at angles other than right angles. The opening and the closing portion of the reinforcing material may be in the shape of a parallelogram or a rhombus. Further, in the above embodiments, the columns and beams are joined by hole-down metal fittings, but such metal fittings may not be used at all to join the pieces of wood. In addition, the reinforcing material may be flat plate-shaped and fixed to the facing surface of the lattice body, or may have a blocking part and a fixing part, with the fixing part extending from each side facing in a different direction with respect to the blocking part. The closing part and the fixing part may be made of separate members and both may be joined by means such as welding or screwing.

1 格子本体
2 補強材
3 格子材
11 開口部
21 閉塞部
22 固定部
31 縦材
32 横材
100 補強領域
200 開口領域

1 Lattice main body 2 Reinforcement material 3 Lattice material 11 Opening section 21 Closing section 22 Fixed section 31 Vertical member 32 Horizontal member 100 Reinforcement area 200 Opening area

Claims (5)

交差して組まれた木製の格子材からなり該格子材に囲まれた複数の開口部を有する格子本体と、薄鋼板からなる補強材を備え、
一部の前記開口部が、前記補強材が取り付けられて塞がれた補強領域となっており、残りの前記開口部が、前記補強材が取り付けられておらず開口した開口領域となっていることを特徴とする面格子壁。
A lattice body made of cross-woven wooden lattice members and having a plurality of openings surrounded by the lattice members, and a reinforcing member made of a thin steel plate,
Some of the openings are closed reinforcing areas with the reinforcing material attached, and the remaining openings are open areas where the reinforcing material is not attached. A lattice wall characterized by:
前記補強材は、前記開口部と同一形状の閉塞部と、該閉塞部の周縁から該閉塞部と直交する向きに延出する固定部を有するものであり、
前記閉塞部が前記開口部を塞いでおり、前記固定部が前記開口部を囲む前記格子材の内周面に当接して固定されているものであることを特徴とする請求項1記載の面格子壁。
The reinforcing material has a closing part having the same shape as the opening, and a fixing part extending from the periphery of the closing part in a direction perpendicular to the closing part,
The surface according to claim 1, wherein the closing portion closes the opening, and the fixing portion is fixed in contact with an inner circumferential surface of the lattice material surrounding the opening. lattice wall.
前記開口部および前記閉塞部は、多角形状であり、
前記閉塞部の各辺から延出する前記固定部は、前記閉塞部に対して同じ向きに延出しており、隣接する前記固定部同士が接合されているものであることを特徴とする請求項2記載の面格子壁。
The opening part and the closing part have a polygonal shape,
The fixing portions extending from each side of the closing portion extend in the same direction with respect to the closing portion, and adjacent fixing portions are joined to each other. The lattice wall described in 2.
前記補強材は、1枚の薄鋼板を折り曲げて形成されたものであることを特徴とする請求項2または3記載の面格子壁。 4. The grid wall according to claim 2, wherein the reinforcing material is formed by bending a single thin steel plate. 前記格子材は、垂直向きに延びる縦材と、水平向きに延びる横材からなり、前記縦材と前記横材が直交していて、前記開口部が矩形であることを特徴とする請求項1、2、3または4記載の面格子壁。

1. The lattice member is comprised of vertically extending vertical members and horizontally extending horizontal members, the vertical members and the horizontal members are perpendicular to each other, and the opening is rectangular. , 2, 3 or 4.

JP2021117912A 2021-07-16 2021-07-16 lattice wall Active JP7438493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021117912A JP7438493B2 (en) 2021-07-16 2021-07-16 lattice wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021117912A JP7438493B2 (en) 2021-07-16 2021-07-16 lattice wall

Publications (2)

Publication Number Publication Date
JP2023013600A JP2023013600A (en) 2023-01-26
JP7438493B2 true JP7438493B2 (en) 2024-02-27

Family

ID=85129586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021117912A Active JP7438493B2 (en) 2021-07-16 2021-07-16 lattice wall

Country Status (1)

Country Link
JP (1) JP7438493B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523968Y2 (en) 1991-07-25 1997-01-29 松下電工株式会社 Wall panels
JP2002536574A (en) 1999-02-08 2002-10-29 ロッシュウェイ ピーティワイ.リミッティド Structural members
JP2005320748A (en) 2004-05-07 2005-11-17 Nippon Steel Corp Bearing wall panel for building
JP6337257B2 (en) 2015-09-14 2018-06-06 富山県 Wood connection structure and lattice wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523968Y2 (en) 1991-07-25 1997-01-29 松下電工株式会社 Wall panels
JP2002536574A (en) 1999-02-08 2002-10-29 ロッシュウェイ ピーティワイ.リミッティド Structural members
JP2005320748A (en) 2004-05-07 2005-11-17 Nippon Steel Corp Bearing wall panel for building
JP6337257B2 (en) 2015-09-14 2018-06-06 富山県 Wood connection structure and lattice wall

Also Published As

Publication number Publication date
JP2023013600A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
Nithyadharan et al. Behaviour of cold-formed steel shear wall panels under monotonic and reversed cyclic loading
Kadarningsih et al. Proposals of beam column joint reinforcement in reinforced concrete moment resisting frame: A literature review study
Vayas et al. Innovative dissipative (INERD) pin connections for seismic resistant braced frames
Essa et al. Behavior of roof deck diaphragms under quasistatic cyclic loading
JP7438493B2 (en) lattice wall
Baylor et al. Finite element modelling of castellated timber I-joists
Cohen et al. Seismic evaluation of low-rise reinforced masonry buildings with flexible diaphragms: I. Seismic and quasi-static testing
Maurya Computational simulation and analytical development of buckling resistant steel plate shear wall (BR-SPSW)
JP6813979B2 (en) Structural members
Nicholas Pilot study of a high capacity ductile seismic holdown for cross laminated timber
Zhang et al. Analytical and experimental studies on seismic behavior of deep column-to-beam welded reduced beam section moment connections
JP7196685B2 (en) Bearing walls and wall materials
JP7010486B2 (en) Bearing wall and horizontal structure
JP6313514B1 (en) Bearing wall
Cortes Steel slit panel frames for lateral resistance of buildings
JP2020143502A (en) Bearing wall
Zhang et al. Connection and performance of two-way CLT plates
Garg et al. Sustainability assessment of methods to prevent progressive collapse of RC flat slab buildings
KR100752960B1 (en) Steel wall for developing earthquake resistant performance
JP2012219512A (en) Frame unit
KR102307939B1 (en) Connecting sturcture between column and beam
JP2010116973A (en) Hysteretic damper and wall of wooden structure
Kaijima et al. Parametric Finite Element Contact Analysis for Topologically Interlocking Joinery
Breijinck Behaviour of Timber-Steel Connections with Slotted-In Plates and Steel Dowels Reinforced with Self-Tapping Screws
Nouri Experimental and numerical study of steel-timber composite beam-to-column connections with shear-tabs/double web-angles

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240202

R150 Certificate of patent or registration of utility model

Ref document number: 7438493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150