JP7438453B2 - ロボット制御装置、ロボット制御プログラムおよびロボット制御方法 - Google Patents

ロボット制御装置、ロボット制御プログラムおよびロボット制御方法 Download PDF

Info

Publication number
JP7438453B2
JP7438453B2 JP2023508261A JP2023508261A JP7438453B2 JP 7438453 B2 JP7438453 B2 JP 7438453B2 JP 2023508261 A JP2023508261 A JP 2023508261A JP 2023508261 A JP2023508261 A JP 2023508261A JP 7438453 B2 JP7438453 B2 JP 7438453B2
Authority
JP
Japan
Prior art keywords
trajectory
point
target object
robot
branch point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023508261A
Other languages
English (en)
Other versions
JPWO2022201362A1 (ja
JPWO2022201362A5 (ja
Inventor
七星 春尾
卓矢 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022201362A1 publication Critical patent/JPWO2022201362A1/ja
Publication of JPWO2022201362A5 publication Critical patent/JPWO2022201362A5/ja
Application granted granted Critical
Publication of JP7438453B2 publication Critical patent/JP7438453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40371Control trajectory to avoid joint limit as well as obstacle collision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40519Motion, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Description

本開示は、多関節ロボットを始点から終点へ移動させるロボット制御装置、ロボット制御プログラムおよびロボット制御方法に関する。
始点から終点までロボットを動作させる通常のポイントトゥポイント制御において、作業実施中の処理を減らし演算速度を上げるため、ロボット本体および周辺環境に関する制約を考慮した動作指令を作業実施前に生成することがある。また、生産性の向上のため、軌道を作業実施前に生成する際には、動作時間など生産性を定量的に表現する評価値を一定の範囲内に収める軌道を生成することが望ましい。ロボット作業の対象物体の位置および姿勢が固定されていない場合には、対象物体の実際の位置および姿勢に応じて動作軌道を生成する必要がある。全ての制約を満たす動作軌道を生成するには、計算時間がかかるため、すでに生成済みの動作軌道の情報を用いて軌道生成にかかる時間を短縮する取り組みが広く行われている。
特許文献1に記載の技術では、複数の作業領域をある順番で通過して作業を行う動作軌道があらかじめ生成されている場合を想定している。動作軌道は複数の作業領域区間に分割されている。周辺障害物の配置または形状が変化することで、動作軌道の一部が障害物と干渉すると判断された際に、干渉が発生する作業領域区間のみ軌道を再生成している。
特許第6560841号公報
特許文献1では、干渉が発生する特定の作業領域区間の軌道を変更することが可能であるが、変更対象となる区間は障害物との干渉が発生したと判定される区間で固定されている。しかし、対象物体の位置および姿勢が異なるとき、変更対象とする区間を適切に設定しなければ、変更しない区間との接続を考えた際に評価値が許容できる範囲を超えて悪化する場合がある。例えば、事前に生成した軌道よりもロボットの手先を大きく傾ける必要がある場合に、変更対象の区間が短いと、手先の変更動作を待つ待ち時間が必要となり、動作時間が長くなる可能性がある。
本開示は、上記に鑑みてなされたものであり、対象物体の位置および姿勢がばらつく場合においても、評価値が一定の範囲内となる軌道を生成する時間を短縮することが可能なロボット制御装置を得ることを目的としている。
上述した課題を解決し、目的を達成するために、本開示におけるロボット制御装置は、ロボットのエンドエフェクタを始点から終点まで移動させて、対象物体に対して予め設定されたタスクを実行する。ロボット制御装置は、対象物体が取り得る複数の位置および姿勢の組の各々に対応して、参照軌道および分岐点が記憶される記憶部と、タスクの実行時に、対象物体の位置および姿勢を計測する計測部と、計測された対象物体の位置および姿勢に対応する参照軌道および分岐点を記憶部から取得し、計測された対象物体の位置および姿勢を終点に設定し、取得された参照軌道をそのまま使用して始点から分岐点までのロボットの動作軌道である第1の動作軌道を生成し、取得された分岐点から終点までのロボットの動作軌道である第2の動作軌道を生成する個別軌道生成部と、第1の動作軌道および第2の動作軌道を含む動作指令に従ってロボットを駆動制御するロボット制御部と、を備える。参照軌道は、始点から、対象物体が取り得る複数の位置および姿勢の組のうちの一つである第1点までのロボットの動作軌道であって、障害物との干渉を回避でき、かつ評価値が第一の範囲に入ることを満足する動作軌道である。分岐点は、参照軌道上の一点であって、分岐点から第1点までの動作軌道の評価値が第一の範囲とは異なる第二の範囲に入ることを満足するである。
本開示によれば、対象物体の位置および姿勢がばらつく場合においても、評価値が一定の範囲内となる軌道を生成する時間を短縮することが可能となるという効果を奏する。
実施の形態1におけるロボットシステムの構成を示す概念図 実施の形態1における対象物体の平面内の回転ずれを概念的に示す平面図 実施の形態1におけるハンドアプローチの複数の候補を示す概念図 実施の形態1におけるロボット制御装置の全体構成を示すブロック図 実施の形態1における目標集合を説明するための概念図 実施の形態1における目標集合内の位置定義を説明するための図 実施の形態1における対象物体の回転ずれ角が異なる複数のパターンを説明するための図 実施の形態1における対象物体へのハンドアプローチが異なる複数のパターンを説明するための図 実施の形態1における目標集合から個別分岐点記憶部に参照軌道および分岐点を追加する軌道生成部の動作を示すフローチャート 実施の形態1における参照軌道の生成に使用する対象物体の位置の選択例を示す概念図 実施の形態1における参照軌道の生成に使用する対象物体の位置の他の選択例を示す概念図 実施の形態1における参照軌道の生成に使用する対象物体の位置の他の選択例を示す概念図 実施の形態1における参照軌道と分岐点との関係を示す概念図 実施の形態1における分岐点を算出する手順を示すフローチャート 実施の形態1における参照軌道と障害物との関係を示す概念図 実施の形態1における分岐点の選択範囲に関する概念図 実施の形態1における個別軌道生成部による軌道生成の方法を示す概念図 実施の形態1における個別軌道生成部およびロボット制御部の処理手順を示すフローチャート 実施の形態2における個別軌道の生成の動作手順を示すフローチャート 実施の形態2における参照軌道および個別軌道を示す概念図 実施の形態1および実施の形態2にかかるロボット制御装置のハードウェア構成を示すブロック図
以下に、実施の形態にかかるロボット制御装置、ロボット制御プログラムおよびロボット制御方法を図面に基づいて詳細に説明する。
実施の形態1.
図1は、実施の形態1におけるロボットシステム100の構成を示す概念図である。図1に示すように、ロボットシステム100は、複数の軸および複数のアームを有する多関節のロボット101と、ロボット101のアームの先端に装着されているエンドエフェクタ102と、ベルトコンベア103と、外部センサ104とを備えている。ロボット101は、エンドエフェクタ102を始点Psから終点Peまで移動させ、予め設定されたタスクを実行する。終点Peは、固定されておらず、ベルトコンベア103上を流れる対象物体200の位置および姿勢に基づいて定義される。計測部としての外部センサ104は、対象物体200の位置および姿勢を、ロボット101の実動作の直前に入手する。
ベルトコンベア103は、移動速度V[mm/s]をもって一定方向に搬送動作をしており、ベルトコンベア103上には対象物体200を固定する治具が存在しない。このため、対象物体200はロボット101に対する相対位置および姿勢が毎回同じにはならない。
図2は、実施の形態1における対象物体200の平面内の回転ずれを概念的に示す平面図である。また、図3は、実施の形態1におけるハンドアプローチの複数の候補を示す概念図である。
図2では、ベルトコンベア103の積載面を上から見ている。ベルトコンベア103上には対象物体200を固定する機構がないため、対象物体200はベルトコンベア103の積載面の法線ベクトル、ここでは紙面に垂直な方向のベクトルを回転軸として回転ずれが生じる。この回転ずれをベルトコンベア103に対する平面内回転と呼び、その回転角を回転ずれ角と呼ぶ。
対象物体200を不定形物と仮定した際、対象物体200の形状に応じて、エンドエフェクタ102を対象物体200に近づける軌道を適切に選択しなければ、タスクの達成が困難となる場合がある。本実施の形態では、図3に示すように、エンドエフェクタ102を対象物体200に近づける軌道であるハンドアプローチを、エンドエフェクタ102に対し事前に複数用意し、対象物体200の形状からタスクを達成可能なハンドアプローチを一つ選択する。図3では、ハンドアプローチHAおよびハンドアプローチHBを含む2つのハンドアプローチが示されている。
実施の形態1では、ロボット101に対する対象物体200の位置および姿勢のばらつきは、三次元の並進方向の位置ずれと、ベルトコンベア103に対する平面内回転と、エンドエフェクタ102と対象物体200の形状に基づいて選択されるハンドアプローチとを含む3つの要素のセットで一つのパターンとみなす。
図4は、実施の形態1のロボット制御装置の全体構成を示すブロック図である。ロボット制御装置は、周辺装置情報取得部301と、タスク情報取得部302と、目標集合設定部303と、参照軌道生成部304および分岐点指定部305を含む軌道生成部310と、記憶部としての個別分岐点記憶部306と、センサ情報取得部307と、個別軌道生成部308と、ロボット制御部309とを有する。
周辺装置情報取得部301は、ロボット101の周辺装置に関する情報である周辺装置情報を取得する。周辺装置情報は、ベルトコンベア103の移動速度Vである。タスク情報取得部302は、軌道生成を行うタスクに関する情報であるタスク情報を取得する。タスク情報は、少なくとも、使用するエンドエフェクタ102の種類、対象物体200の種類、タスクの目標動作を含む。タスクの目標動作には、対象物体200の把持、配置などが含まれる。
目標集合設定部303は、周辺装置情報取得部301から周辺装置情報であるベルトコンベア103の移動速度Vを取得する。また、目標集合設定部303は、タスク情報取得部302からタスク情報を取得する。
目標集合設定部303は、ベルトコンベア103の移動速度Vと、タスク情報とを用いて対象物体200の存在し得る位置の集合である目標集合201と、目標集合201の内部での対象物体200の存在し得る姿勢と、ハンドアプローチとの組み合わせを算出する。
図5は、実施の形態1における目標集合201を説明するための概念図である。本実施の形態における目標集合201の算出方法について述べる。本実施の形態では、図5に示す目標集合201は、ベルトコンベア103の移動速度Vに基づいて計算される。対象物体200に対するロボット101の動作にかかる時間(動作時間)の上限値をT[s]とおくと、コンベア移動方向の目標集合201の長さは、T×Vと設定できる。また、コンベア移動方向と直交する方向の目標集合201の長さは、例えばベルトコンベア103の幅W[mm]と設定できる。対象物体200に対するロボット101の動作時間とは、例えば、ロボット101が始点Psから終点Peまで移動されて、予め設定されたタスクの実行を終了するまでの時間である。本実施の形態では、コンベア高さ方向のばらつきは考慮していないが、コンベア高さ方向のばらつきを考慮し三次元の目標集合201を生成してもよい。
目標集合201の範囲は、ロボットシステム100のユーザーが想定する作業領域の限界として、ベルトコンベア103の移動速度Vに関係なくユーザーが直接指定してもよい。
次に、目標集合201に含まれる、対象物体200のばらつきパターンの算出方法について述べる。図6は、実施の形態1における目標集合201内の位置定義を説明するための図である。図7は、実施の形態1における対象物体200の回転ずれ角が異なる複数のパターンを説明するための図である。図8は、実施の形態1における対象物体200へのハンドアプローチが異なる複数のパターンを説明するための図である。
図6に示すように、目標集合201内の空間を任意の大きさで複数に分割し、分割された複数のグリッドの各々の中心位置にグリッド点Gを定義する。各グリッド点Gは、自グリッド点の位置を示す位置情報を有している。対象物体200の並進ずれの位置は、グリッド点Gを指定することで規定する。図6では、目標集合201内がマトリックス状にN1(=25)個のグリッドに分割されており、25個のグリッド点Gを有している。図7では、対象物体200の平面内回転の回転ずれ角が異なるN2(=3)個のパターンが示されている。図8では、異なるN3(=3)個のハンドアプローチHA,HB,HCの軌道が示されている。
各グリッド点Gについて、対象物体200の平面内回転の回転ずれ角が異なるN2個のパターンのバリエーションと、ハンドアプローチが異なるN3個のパターンのバリエーションが考えられるため、一つのグリッド点Gに対し、ばらつきパターンは最大N2×N3個存在する。N2,N3に関しては、予め1以上の数を設定しておく。回転ずれ角の刻み量は任意に決定してよい。したがって、目標集合201内には合計N1×N2×N3個の対象物体200のばらつきパターンが設定され、軌道生成部310は、N1×N2×N3個の各ばらつきパターンについて分岐点の算出を行う。
次に、図4に示す軌道生成部310について述べる。軌道生成部310は参照軌道生成部304と、分岐点指定部305とで構成される。
図9は、実施の形態1における目標集合201から個別分岐点記憶部306に参照軌道および分岐点を追加する軌道生成部310の動作を示すフローチャートである。図10は、実施の形態1における参照軌道の生成に使用する対象物体200の位置の選択例を示す概念図である。図11は、実施の形態1における参照軌道の生成に使用する対象物体200の位置の他の選択例を示す概念図である。図12は、実施の形態1における参照軌道の生成に使用する対象物体200の位置の他の選択例を示す概念図である。
まず、参照軌道生成部304は目標集合設定部303で算出された目標集合201と、目標集合201に含まれる対象物体200の全てのばらつきパターンとを読み込む(S101)。
次に、参照軌道生成部304は、複数のばらつきパターンのうち一部のグリッド点Gを持つばらつきパターンを選択し、選択されたばらつきパターンを用いて評価値が第一の範囲内となる参照軌道を生成する(S102)。すなわち、参照軌道生成部304は、既定の始点Psを動作始点とし、目標集合201内の少なくとも一つの特定のばらつきパターンを終点Peとし、任意の軌道生成手法を用いて評価値が第一の範囲内となる参照軌道を生成する。
本実施の形態では、評価値として前述した動作時間を選択する。第一の範囲として、動作時間がT1[s]以内と設定する。したがって、動作時間がT1以内である参照軌道が生成される。なお、評価値として、対象物体200に対するロボット101の動作を繰り返し実行した際のロボット101の予測寿命、対象物体200に対するロボット101の動作を実行した際にロボット101が消費する電力などを使用してもよい。
S102で選択するばらつきパターンは任意に選択してよいが、例えば図10に示すように、目標集合201の中心位置のグリッドのグリッド点Gを位置情報として有するばらつきパターンを選択することが考えられる。また、目標集合201が広範囲にわたる場合は、図11に示すように、目標集合201の中心のグリッドのグリッド点Gのばらつきパターンと、目標集合201の四隅部分にあたるグリッド点Gを位置情報として有するばらつきパターンを選択してもよい。図11の手法では、複数のグリッド点Gが選択されるので、複数の参照軌道が生成される。回転ずれ角については、例えば、N2個のパターンのバリエーションのうちの一つをあらかじめ選択しておく。
また、S102で選択するばらつきパターンは、図12に示すように、目標集合201内で、実際の動作時に発生頻度が最も高かったグリッドG1に含まれるグリッド点を位置情報として持つばらつきパターンを選択してもよい。グリッドG1は、太い線で示している。この選択方法を選ぶと、実動作時に最も発生確率が高いパターンに対し評価値が第一の範囲内に収まる軌道を生成できるため生産性が向上する。
参照軌道を生成するための軌道生成手法として、RRT(Rapidly Exploring Random Trees)などのランダムサンプリング手法、CHOMP(Covariant Hamiltonian Optimization for Motion Planning)などの軌道パラメータ最適化手法、グラフ解法、強化学習手法など公知技術を使用できる。また、これらの手法を組み合わせて使用してもよい。加えて、システムユーザーがマニュアル教示した軌道を使用してもよい。
本実施の形態では、参照軌道の軌道生成に関する制約として、ロボット101の各軸モータの角度制約、角速度制約、角加速度制約、およびロボット101とロボットシステム100に含まれる障害物と衝突しないことを考慮する。したがって、生成された参照軌道は、作業空間内にある障害物との干渉を回避できる軌道である。
次に、目標集合設定部303で算出した各ばらつきパターンについて、分岐点を記録したかどうか確認する(S103)。全てのばらつきパターンについて分岐点を記録した場合は(S103:Yes)、処理を終了する。そうでない場合は(S103:No)、S104へ移る。
分岐点指定部305は、全てのばらつきパターンのうち、まだ分岐点が記録されていないパターンの中から一つを選択する(S104)。
次に、分岐点指定部305は、参照軌道を一本選択する(S105)。参照軌道が一本の場合は、その軌道を選択する。本実施の形態では、図11のように、参照軌道が複数本存在する場合は、対象として選択されたばらつきパターンの位置に対し、一番近い終点Peであるグリッド点Gを持つ参照軌道を選択する。例えば、図11において、最も左側で上から2番目のグリッドがばらつきパターンとして選択された場合は、上左角のグリッドを終点Peとして持つ参照軌道が選択される。同じ近さの複数の参照軌道が存在する場合は、その複数の参照軌道から一つの参照軌道を選択するためのルールを予め設定しておく。
図13は実施の形態1における参照軌道202と分岐点204との関係を示す概念図である。分岐点204と参照軌道202との関係性について述べる。目標集合201内の、参照軌道202以外の終点Peに到達するためのロボット101の動作軌道を個別軌道203と呼ぶ。個別軌道203は、参照軌道202と軌道の一部を共有する。個別軌道203が参照軌道202とは別の軌道となる区間の開始位置を、分岐点204と呼ぶ。すなわち、分岐点204は一本の個別軌道203に対し一点、参照軌道202の中の点から選択される。図13には、障害物205が図示されている。
図14は、実施の形態1における分岐点204を算出する手順を示すフローチャートであり、図9のS106で行う処理の詳細を示すものである。S106では、評価値が第二の範囲内となる分岐点の候補が探索される。図15は、実施の形態1における参照軌道202と障害物205との関係を示す概念図である。図16は、実施の形態1における分岐点204の選択範囲に関する概念図である。
まず、分岐点指定部305による分岐点204の指定処理について述べる。分岐点指定部305は、参照軌道202の中から分岐点204の候補となる動作点を複数抽出する(S201)。分岐点204の候補となる動作点は、ロボット101に設置されたエンドエフェクタ102の位置および姿勢を一意に決定する状態量の組で表される。本実施の形態では、ロボット101の各軸モータの角度の組で、分岐点204の候補となる動作点を表す。このとき参照軌道202は、ロボット101の各軸モータの角度の組に始点Psを時刻0と置いたときの時刻ラベルを付与したデータの集合で構成される。
次に、本実施の形態における、分岐点204の候補となる動作点を含む参照軌道202の区間について述べる。参照軌道202は、前述したように、作業空間内にある障害物205との干渉を回避できる軌道である。参照軌道202の早い段階で分岐点204を指定し、個別軌道203の終点Peまでの残り部分を生成しようとすると、考慮すべき障害物205の数が多くなり、個別軌道203の生成に時間がかかる。このため、可能な限り障害物205が回避された段階で、分岐点204から個別軌道203へ軌道を分岐させることが望ましい。
例えば、図15に示すように、作業空間に存在する障害物205の外周に一定の距離Lでマージンを取った仮障害物206を設定する。距離Lは任意に指定してよい。分岐点204の候補となる区間は、参照軌道202を終点Pe側から始点Ps側にさかのぼった際に、仮障害物206と衝突する点Px1までの区間C1とする。すなわち、参照軌道202のうち、仮障害物206に対しエンドエフェクタ102と、ロボット本体との干渉が発生しない区間の中から分岐点204が選択される。ロボット本体は、ロボット101のエンドエフェクタ102以外の部分のことを指す。
また、選択したばらつきパターンの位置が、参照軌道202の終点Peよりも始点Psに近い場合は、参照軌道202の終点Pe付近に分岐点204を指定すると、分岐点204から選択したばらつきパターンの位置まで、個別軌道203が引き返す可能性があり、評価値の値が悪化する恐れがある。このため、図16に示すように、参照軌道202の終点Peと、選択したばらつきパターンの位置Px2との間の範囲dに対応する、参照軌道202上の区間C2に含まれる動作点を分岐点204の候補から除外する。
次に、分岐点指定部305は、全ての分岐点204の候補について、個別軌道203の評価値を計算したか否かを確認する(S202)。分岐点指定部305は、全ての分岐点204の候補について、個別軌道203の評価値を計算していない場合(S202:No)、S201で抽出した分岐点204の複数の候補の中から一点選択する(S203)。そして、分岐点指定部305は、選んだ分岐点204の一つの候補から、S104で選択された一つのばらつきパターンの位置までの軌道である個別軌道203を生成する(S204)。ここで、分岐点指定部305は、この個別軌道203の生成の際、後述する個別軌道生成部308で行われる個別軌道203の生成と同じ手法を用いる。分岐点指定部305は、S204で生成された個別軌道203の評価値の値を計算する(S205)。
図17は、実施の形態1における個別軌道生成部308による軌道生成の方法を示す概念図である。分岐点指定部305も、図17と同様に処理によって、個別軌道203を生成する。以下、個別軌道203の生成方法について述べる。本実施の形態では、関節補間手法を用いて分岐点204以降の軌道を生成する。関節補間手法は、個別軌道203を生成するための第1の演算の一つである。
図17は、ロボット101の軸数が2個の場合について示した概念図であるが、2個以上の軸数についても同様の手法を適用できる。図17では、軸1の指令角速度のタイムチャートおよび軸2の指令角速度のタイムチャートが示されている。図17において、ktは加速時間を示し、gtは減速時間を示し、ttが定速時間を示している。
まず、個別軌道生成部308は、ロボット101の各軸モータが出力可能な最高速度に対して、分岐点204から終点Peである選択された一つのばらつきパターンの位置までの角度変化量が最大となる軸を選択する。この角度変化量が最大となる軸のことを、本実施の形態では代表軸j´と呼ぶ。図17によれば、軸1の角度変化量が軸2の角度変化量より大きいので、軸1が代表軸j´となる。代表軸j´は、複数の軸j(j=1,2,…)から式(1)を満たす軸jを選択する。ここで、θsjは分岐点204における軸jの角度、θGjは終点Peである選択された一つのばらつきパターンの位置における軸jの角度、v_maxは軸jのモータが実現できる最高速度であるとする。式(1)の右辺は、軸jの角度変化量が、軸jのモータの実現できる最高速度v_maxに対しどの程度の大きさにあるかを示している。
Figure 0007438453000001
代表軸である軸j´(j´=1)の軌道上での最高速度vj´maxはvj´max=v_maxj´とする。このとき、代表軸j´以外の軸jのモータの動作中の最高速度vjmaxを、式(2)のように仮置きする。式(2)において、(θGj-θsj)は代表軸j´以外の軸jの角度変化量を示し、(θGj´-θsj´)は、代表軸j´の角度変化量を示している。
Figure 0007438453000002
仮置きした各軸の動作中の最高速度vjmaxと、各軸の分岐点204での角速度vj、各軸の終点Peでの角速度vjと、ロボット101の速度制約、加速度制約とから加速時間ktおよび減速時間gtが決定される。加速時間ktおよび減速時間gtが決定されると、代表軸j´に関する以下の式(3)を定速時間ttについて解くことで定速時間ttが決定される。式(3)では、便宜上、式(3)中の各記号に´を付すことを省略している。
Figure 0007438453000003
式(3)をvjmaxについて解くことで、仮置きした代表軸j´以外の軸jの最高速度vjmaxを決定する。以上の計算によって、ロボット101に含まれる全ての軸について、分岐点204以降の角速度指令値が求められる。したがって、角速度指令値を時刻で積分することで、分岐点204以降の動作点と時刻ラベルとの組が計算できる。
分岐点指定部305は、このようにして、分岐点204の複数の候補の中から選択された一つの分岐点204から、S104で選択された一つのばらつきパターンの位置までの軌道である個別軌道203を生成した後(S204)、生成された個別軌道の評価値を計算する(S205)。次に、分岐点指定部305は、計算された評価値の値が、第二の範囲内か否かを確認する(S206)。本実施の形態では、第二の範囲として動作時間T2[s]以内と設定する。T2>T1と設定する。第二の範囲は、第一の範囲より広い範囲が設定される。
分岐点指定部305は、評価値が第二の範囲内にある場合は(S206:Yes)、選択した分岐点を正式な分岐点として指定する(S108)。評価値が第二の範囲内に入っていない場合は(S206:No)、手順は、S202に戻る。手順がS202に戻ると、S201で抽出された分岐点204の複数の候補のなかの他の候補が選択され、その後、S202~S206の処理が実行されることで、選択された他の候補の個別軌道203の評価値が第二の範囲内になるか否かが判定される。このようにして、S202~S206の処理が繰り返されることにより、個別軌道203の評価値が第二の範囲内になる分岐点204が得られる。
また、S202~S206の処理が繰り返された後、S202の判断がYesとなった場合は、S201で抽出された分岐点204の複数の候補が全て、第二の範囲から逸脱しないという条件を満たしていないことになる。このような場合、手順はS107に移行される。S107では、S102で生成された参照軌道202以外の参照軌道202を新たに生成し、参照軌道202に追加する。具体的には、S104で選択されたばらつきパターンと異なるばらつきパターンを選択し、新たに選択されたばらつきパターンを用いて評価値が第一の範囲内となる参照軌道202を生成する(S107)。そして、新たに生成された参照軌道202を用いてS202~S206の処理が繰り返されることで、評価値が第二の範囲内にある分岐点204が決定される。
S108で分岐点204が指定されると、分岐点指定部305は、S104で選択されたばらつきパターンと、S105で選択された参照軌道202またはS107で追加された参照軌道202と、S108で指定された分岐点204とをセットにして、個別分岐点記憶部306に記録する(S109)。すなわち、分岐点指定部305は、ばらつきパターンと、参照軌道202と、分岐点204とのセットである軌道セットデータを個別分岐点記憶部306に記録する。
個別分岐点記憶部306への記録が終了すると、手順はS103に移行される。S103では、目標集合設定部303で算出された全てのばらつきパターンについて分岐点204を記録したか否かが判定される。分岐点204が記録されていないばらつきパターンが残っている場合は、軌道生成部310は、S103~S109の処理、S201~S206の処理を繰り返し実行することで、全てのばらつきパターンについての分岐点204を個別分岐点記憶部306に記録する。
図18は、実施の形態1における個別軌道生成部308およびロボット制御部309の処理手順を示すフローチャートである。ロボット制御部309は、ロボット101での実作業時、個別分岐点記憶部306の記録情報を用いてロボット101の動作指令を生成する。
まず、センサ情報取得部307は、外部センサ104を用いて、対象物体200の実際の位置、姿勢、および形状を測定する(S301)。また、個別軌道生成部308は、タスク情報取得部302からエンドエフェクタ102の種類と対象物体200の種類を取得し、周辺装置情報取得部301からベルトコンベア103の移動速度Vを取得する。個別軌道生成部308は、対象物体200の形状およびタスク情報から、ハンドアプローチを選択する。
次に、個別軌道生成部308は、個別分岐点記憶部306から、対象物体200の実際の位置および姿勢に最も近いばらつきパターンを有する軌道セットデータを読み出す。そして、個別軌道生成部308は、読み出した軌道セットデータに含まれる参照軌道202および分岐点204を取り出す(S302)。
つぎに、個別軌道生成部308は、S301で取得した対象物体200の実際の位置および姿勢を終点Pe´として、取り出した分岐点204から、終点Pe´までの個別軌道を生成する(S303)。個別軌道の生成の際は、図17を用いて説明した手法が用いられる。個別軌道生成部308は、始点PsからS302で取り出された分岐点204までの軌道については、S302で取り出された参照軌道202をそのまま使用する。始点Psから分岐点204までの軌道が請求の範囲の第1の動作軌道に対応し、分岐点204から終点Pe´までの軌道が請求の範囲の第2の動作軌道に対応する。
最後に、個別軌道生成部308は、生成された分岐点204から終点Pe´までの個別軌道と、始点Psから分岐点204までの区間の参照軌道202とを含む動作指令をロボット制御部309に送信する(S304)。ロボット制御部309は、受信した動作指令に従ってロボット101を駆動する。これによって、ロボット101は、エンドエフェクタ102を始点Psから終点Peまで移動させ、対象物体200に対し予め設定されたタスクを実行する。
このように実施の形態1によれば、始点Psから分岐点204までは、障害物205との干渉を回避できかつ評価値が第一の範囲に入ることを満足する動作軌道である参照軌道202をそのまま使用して動作軌道が生成され、分岐点から対象物体200までは、対象物体200の実際の位置および姿勢に合わせて動作軌道が生成されるため、対象物体200の位置および姿勢がばらつく場合においても、評価値が一定の範囲内となる軌道を計算するための時間を短縮することが可能となり、生産性を向上させることができる。
また、実施の形態1によれば、個別軌道203を生成する際に評価値が一定の範囲内に収まるように分岐点204が選定される。このため、生成される軌道は一定の生産性を保証することができる。また、実施の形態1によれば、参照軌道202に含まれる動作点のうち、軌道周辺の障害物205の外周に一定の距離Lでマージンを取った仮障害物206に対し干渉が発生しない動作点の中から分岐点204の候補を選ぶようにしている。このため、個別軌道203の生成時に考慮すべき障害物205の数が減るため、個別軌道203の生成にかかる時間が短縮できる。
また、実施の形態1によれば、対象物体200の想定されるばらつきにハンドアプローチの違いも含めているため、対象物体200のばらつきに対応してエンドエフェクタ102の操作も含めてタスクを効率よく達成することができる。また、実施の形態1によれば、参照軌道202内に個別軌道203の評価値が指定の範囲内に収まるような分岐点204が無い場合に、参照軌道202を新たに生成し追加することで、目標集合201内の全てのばらつきパターンに対し動作軌道を生成することを保証できる。
実施の形態2.
実施の形態1では、目標集合201に含まれる対象物体200の全てのばらつきパターンに対し、参照軌道202および分岐点204を別々に設定した。これに対し、実施の形態2では、目標集合201に含まれる全てのばらつきパターンに対し、参照軌道202および分岐点204を1つ設定する。すなわち、実施の形態2では、1つの参照軌道202および1つの分岐点204は、全てのばらつきパターンで共用される。
図19は、実施の形態2における個別軌道203の生成の動作手順を示すフローチャートである。図20は、実施の形態2における参照軌道202および個別軌道203を示す概念図である。実施の形態2では、ロボットシステム100は、実施の形態1と同じものを使用する。また、目標集合設定部303、参照軌道生成部304も実施の形態1と同じ処理を実行する。
図20に示すように、実施の形態2では、目標集合201に含まれる対象物体200の全てのばらつきパターンに対し、1つの参照軌道202および1つの分岐点204を有している。したがって、実施の形態2では、始点Psから分岐点204までの区間では、参照軌道202がそのまま使用され、分岐点204から実際の終点Peまでの区間では、分岐点204から実際の終点Peまでの個別軌道が実際の終点Peの位置、姿勢に応じて生成される。例えば、実際の終点Peが左上の角部であれば、個別軌道203-Cが生成され、実際の終点Peが左下の角部であれば、個別軌道203-Dが生成され、実際の終点Peが右上の角部であれば、個別軌道203-Aが生成され、実際の終点Peが右下の角部であれば、個別軌道203-Bが生成される。
以下、図19に従って、1つの参照軌道202および1つの分岐点204を生成するための手順を説明する。まず、目標集合設定部303は、実施の形態1と同様にして、目標集合設定部303で算出された目標集合201と、目標集合201に含まれる対象物体200の全てのばらつきパターンを読み込む(S401)。
次に、参照軌道生成部304は、複数のばらつきパターンのうち一部のグリッド点Gを持つばらつきパターンを選択し、選択されたばらつきパターンを終点Peとし、既定の始点Psを動作始点とし、実施の形態1と同様にして、任意の軌道生成手法を用いて評価値が第一の範囲内となる参照軌道202を生成する(S402)。軌道の評価値は実施の形態1と同様に動作時間とする。
軌道生成手法として、RRTなどのランダムサンプリング手法、CHOMPなどの軌道パラメータ最適化手法、グラフ解法、強化学習手法などの公知技術を使用できる。また、これらの手法を組み合わせて使用してもよい。加えて、システムユーザーがマニュアル教示した軌道を使用してもよい。
次に、分岐点指定部305は、分岐点204の候補となる点を参照軌道202の動作点のなかから指定する(S403)。分岐点204を選択する対象となる区間は、図14~図16を用いて説明したように、実施の形態1と同じ手法を採用する。
次に、分岐点指定部305は、目標集合201の全てのばらつきパターンに対し、S403で指定した分岐点204を使用する場合の個別軌道203の評価値を計算したかどうか確認する(S404)。未計算のばらつきパターンがある場合は(S404:No)、未計算のばらつきパターンの中から一つ選択し、個別軌道203の評価値を計算する(S405)。各個別軌道203の評価値の計算方法は、実施の形態1と同様とする。全てのばらつきパターンに対し、評価値を計算し終わった場合は(S404:Yes)、S406に移る。
次に、分岐点指定部305は、S403で選択された分岐点の候補に対し、全てのばらつきパターンの評価値の期待値を計算する(S406)。
評価値の期待値の計算方法としては、例えば、全てのばらつきパターンの評価値の等価平均を採用する。また、目標集合201の中央部のばらつきパターンに対応する個別軌道203の評価値の重みが、目標集合201の外側周辺のばらつきパターンに対応する個別軌道203の評価値の重みより、高くなるような重み付き平均としてもよい。さらに、実際の生産ラインでの各ばらつきパターンの発生回数に基づき期待値を計算してもよい。
分岐点指定部305は、計算された評価値の期待値が、第二の範囲内に入っているか否かを確認する(S407)。第二の範囲として、動作時間がT2[s]以内(T2>T1)とする。評価値の期待値が第二の範囲内に入っている場合は(S407:Yes)、S409へ移行する。評価値の期待値が第二の範囲内に入っていない場合は(S407:No)、参照軌道202の中に分岐点204の候補となる他の点が残っているか確認する(S408)。候補が残っている場合は(S408:Yes)、S403に戻り別の分岐点204の候補を設定する。候補が残っていない場合は(S408:No)、S409へ移行する。なお、実施の形態2では、S407の判断の際に、第二の範囲より広い第三の範囲を設定してもよい。
S409においては、分岐点指定部305は、分岐点204を一つ選択し、参照軌道202とセットにして個別分岐点記憶部306に追加する。本実施の形態では評価値の期待値すなわち動作時間の期待値が最小となる分岐点204を選択する。個別分岐点記憶部306には、一組の分岐点204と参照軌道202とが記憶されることになる。
ロボット101での実作業時は、個別分岐点記憶部306は、個別分岐点記憶部306に記憶された一組の分岐点204と参照軌道202とを用いて、図18で説明したのと同様にして、ロボット101の動作軌道を生成する。まず、外部センサ104を用いて、対象物体200の実際の位置、姿勢、および形状が測定される。つぎに、個別分岐点記憶部306から、一組の分岐点204と参照軌道202とが取り出される。つぎに、対象物体200の実際の位置および姿勢を終点Pe´として、取り出した分岐点204から、終点Pe´までの個別軌道が、図17を用いて説明した手法を用いて生成される。始点Psから分岐点204までの軌道については、参照軌道202をそのまま採用する。その後、生成された分岐点204から終点Pe´までの個別軌道と、始点Psから分岐点204までの区間の参照軌道202とを含む動作指令に基づいて、ロボット101が駆動される。
このように実施の形態2によれば、複数のばらつきパターンに対し参照軌道202と分岐点204との組を一組のみ設定するため、個別分岐点記憶部306に記憶されるデータ量が削減できる。また、実施の形態2によれば、参照軌道202内の候補から評価値の期待値が最小になる点が分岐点204として選定されるため、実施の形態1と同様に、生成される軌道は一定の生産性を保証する。ただし、対象物体200のばらつきパターンごとに分岐点204が指定される実施の形態1と比較すると、個々のばらつきパターンに対する個別軌道の生産性は低下する可能性がある。
ここで、図4に示したロボット制御装置のハードウェア構成について説明する。図21は、実施の形態1および実施の形態2にかかるロボット制御装置のハードウェア構成を示すブロック図である。
ロボット制御装置は、図21に示した演算装置404および記憶装置405を含むハードウェア構成406によって実現することができる。演算装置404の例は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)またはシステムLSI(Large Scale Integration)である。記憶装置405の例は、RAM(Random Access Memory)またはROM(Read Only Memory)である。
ロボット制御装置は、演算装置404が、記憶装置405で記憶されている、ロボット制御装置の動作を実行するためのプログラムを読み出して実行することで実現される。また、このプログラムは、ロボット制御装置の手順または方法をコンピュータに実行させるものであるともいえる。
記憶装置405は、分岐点204および参照軌道202を記憶する。記憶装置405は、演算装置404が各種処理を実行する際の一時メモリにも使用される。
演算装置404が実行するプログラムは、インストール可能な形式または実行可能な形式のファイルで、コンピュータが読み取り可能な記憶媒体に記憶されてコンピュータプログラムプロダクトとして提供されてもよい。また、演算装置404が実行するプログラムは、インターネットなどのネットワーク経由でロボット制御装置に提供されてもよい。
また、ロボット制御装置は専用のハードウェアで実現してもよい。また、ロボット制御装置の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、目標集合設定部303、参照軌道生成部304、分岐点指定部305および個別分岐点記憶部306をコンピュータに実行させ、センサ情報取得部307、個別軌道生成部308およびロボット制御部309をロボットコントローラに実行させてもよい。
以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
100 ロボットシステム、101 ロボット、102 エンドエフェクタ、103 ベルトコンベア、104 外部センサ、200 対象物体、201 目標集合、202 参照軌道、203 個別軌道、204 分岐点、205 障害物、206 仮障害物、301 周辺装置情報取得部、302 タスク情報取得部、303 目標集合設定部、304 参照軌道生成部、305 分岐点指定部、306 個別分岐点記憶部、307 センサ情報取得部、308 個別軌道生成部、309 ロボット制御部、310 軌道生成部、404 演算装置、405 記憶装置、406 ハードウェア構成、Pe 終点、Ps 始点。

Claims (15)

  1. ロボットのエンドエフェクタを始点から終点まで移動させて、対象物体に対して予め設定されたタスクを実行するロボット制御装置であって、
    前記対象物体が取り得る複数の位置および姿勢の組の各々に対応して、参照軌道および分岐点が記憶される記憶部と、
    前記タスクの実行時に、前記対象物体の位置および姿勢を計測する計測部と、
    計測された前記対象物体の位置および姿勢に対応する前記参照軌道および前記分岐点を前記記憶部から取得し、計測された前記対象物体の位置および姿勢を前記終点に設定し、取得された前記参照軌道を使用して前記始点から前記分岐点までの前記ロボットの動作軌道である第1の動作軌道を生成し、取得された前記分岐点から前記終点までの前記ロボットの動作軌道である第2の動作軌道を生成する個別軌道生成部と、
    前記第1の動作軌道および前記第2の動作軌道を含む動作指令に従って前記ロボットを駆動制御するロボット制御部と、
    を備え、
    前記参照軌道は、前記始点から、前記対象物体が取り得る複数の位置および姿勢の組のうちの一つである第1点までの前記ロボットの動作軌道であって、障害物との干渉を回避でき、かつ評価値が第一の範囲に入ることを満足する動作軌道であり、
    前記分岐点は、前記参照軌道上の一点であって、前記分岐点から前記第1点までの動作軌道の前記評価値が前記第一の範囲とは異なる第二の範囲に入ることを満足するである
    ことを特徴とするロボット制御装置。
  2. 前記対象物体が取り得る複数の位置および姿勢の組の集合を目標集合に設定する目標集合設定部と、
    前記目標集合に含まれる前記対象物体の少なくとも一つの位置および姿勢の組を選択し、選択した前記対象物体の位置および姿勢の組に基づいて前記参照軌道を生成する参照軌道生成部と、
    生成された前記参照軌道上から前記分岐点の複数の候補点を抽出し、抽出された複数の候補点から前記第1点までの複数の動作軌道のなかから前記評価値が前記第二の範囲に入る動作軌道を選択し、選択された動作軌道に対応する候補点を前記第1点に対応する分岐点に決定する第1の処理を、前記対象物体が取り得る複数の位置および姿勢の組の全てについて実行して、前記対象物体が取り得る位置および姿勢の組毎に、前記分岐点を算出し、算出された分岐点および生成された前記参照軌道を前記記憶部に記憶する分岐点指定部と、
    を備えることを特徴とする請求項1に記載のロボット制御装置。
  3. 前記参照軌道生成部は、前記対象物体が取り得る複数の位置および姿勢の組に共通の一つの参照軌道を生成することを特徴とする請求項2に記載のロボット制御装置。
  4. 前記参照軌道生成部は、前記目標集合の中心位置に前記一つの参照軌道を設定することを特徴とする請求項3に記載のロボット制御装置。
  5. 前記参照軌道生成部は、前記ロボットの実際の動作時に発生頻度が最も高かった位置に前記一つの参照軌道を設定することを特徴とする請求項3に記載のロボット制御装置。
  6. 前記参照軌道生成部は、前記対象物体が取り得る位置および姿勢の組に応じて異なる前記第1点に前記参照軌道を設定することを特徴とする請求項2に記載のロボット制御装置。
  7. 前記参照軌道生成部は、前記評価値が前記第二の範囲に入る条件を満たす前記分岐点が存在しない場合に、新たな参照軌道を生成することを特徴とする請求項2に記載のロボット制御装置。
  8. 前記記憶部は、前記対象物体が取り得る複数の位置および姿勢の組の各々に対応して、前記参照軌道、前記分岐点および前記対象物体へのハンドアプローチの軌道の組を記憶することを特徴とする請求項1に記載のロボット制御装置。
  9. ロボットのエンドエフェクタを始点から終点まで移動させて、対象物体に対して予め設定されたタスクを実行するロボット制御装置であって、
    前記対象物体が取り得る複数の位置および姿勢の組に対し共通する一つの参照軌道および一つの分岐点が記憶される記憶部と、
    前記タスクの実行時に、前記対象物体の位置および姿勢を計測する計測部と、
    前記記憶部から前記参照軌道および前記分岐点を取得し、計測された前記対象物体の位置および姿勢を前記終点に設定し、前記取得された参照軌道を使用して前記始点から前記分岐点までの前記ロボットの動作軌道である第1の動作軌道を生成し、取得された前記分岐点から前記終点までの前記ロボットの動作軌道である第2の動作軌道を生成する個別軌道生成部と、
    前記第1の動作軌道および前記第2の動作軌道を含む動作指令に従って前記ロボットを駆動制御するロボット制御部と、
    を備え、
    前記参照軌道は、前記始点から、前記対象物体が取り得る複数の位置および姿勢の組のうちの一つである第1点までの前記ロボットの動作軌道であって、障害物との干渉を回避でき、かつ評価値が第一の範囲に入ることを満足する動作軌道であり、
    前記分岐点は、前記参照軌道上の一点であって、前記分岐点から前記対象物体が取り得る複数の位置および姿勢の組までの複数の動作軌道の前記評価値の平均が前記第一の範囲とは異なる第二の範囲に入ることを満足するである
    ことを特徴とするロボット制御装置。
  10. 前記対象物体が取り得る複数の位置および姿勢の集合を目標集合に設定する目標集合設定部と、
    前記目標集合に含まれる前記対象物体の一つの位置および姿勢の組を選択し、選択した前記対象物体の位置および姿勢の組に基づいて前記参照軌道を生成する参照軌道生成部と、
    生成された前記参照軌道上から前記分岐点の複数の候補点を抽出し、抽出された複数の候補点のうちの1つの候補点から前記対象物体が取り得る複数の位置および姿勢の組までの複数の動作軌道の前記評価値の平均を求める第2の処理を、全ての候補点について実行し、前記複数の候補点のうちの前記評価値の平均が前記第二の範囲に入る候補点を前記分岐点に決定し、前記決定された分岐点および前記参照軌道を前記記憶部に記憶する分岐点指定部と、
    を備えることを特徴とする請求項9に記載のロボット制御装置。
  11. 前記評価値の平均は、前記目標集合の中央部の前記評価値の重みが、前記目標集合の外側周辺の前記評価値の重みより、高くなる重み付き平均であることを特徴とする請求項10に記載のロボット制御装置。
  12. 前記分岐点指定部は、前記参照軌道のうち、前記障害物の外周に一定の距離でマージンを取った仮障害物に対し前記エンドエフェクタとロボット本体との干渉が発生しない区間の中から前記分岐点を選ぶことを特徴とする請求項2または請求項10に記載のロボット制御装置。
  13. 前記評価値は、前記ロボットの動作時間であることを特徴とする請求項1から請求項12の何れか一つに記載のロボット制御装置。
  14. ロボットのエンドエフェクタを始点から終点まで移動させて、対象物体に対して予め設定されたタスクを実行するロボット制御プログラムであって、
    前記対象物体が取り得る複数の位置および姿勢の組の各々に対応して、参照軌道および分岐点を記憶部に記憶するステップと、
    前記タスクの実行時に、前記対象物体の位置および姿勢を計測するステップと、
    計測された前記対象物体の位置および姿勢に対応する前記参照軌道および前記分岐点を前記記憶部から取得し、計測された前記対象物体の位置および姿勢を前記終点に設定し、取得された前記参照軌道を使用して前記始点から前記分岐点までの前記ロボットの動作軌道である第1の動作軌道を生成し、取得された前記分岐点から前記終点までの前記ロボットの動作軌道である第2の動作軌道を生成するステップと、
    前記第1の動作軌道および前記第2の動作軌道を含む動作指令に従って前記ロボットを駆動制御するステップと、
    をコンピュータに実行させ、
    前記参照軌道は、前記始点から、前記対象物体が取り得る複数の位置および姿勢の組のうちの一つである第1点までの前記ロボットの動作軌道であって、障害物との干渉を回避でき、かつ評価値が第一の範囲に入ることを満足する動作軌道であり、
    前記分岐点は、前記参照軌道上の一点であって、前記分岐点から前記第1点までの動作軌道の前記評価値が前記第一の範囲とは異なる第二の範囲に入ることを満足するである
    ことを特徴とするロボット制御プログラム。
  15. ロボットのエンドエフェクタを始点から終点まで移動させて、対象物体に対して予め設定されたタスクを実行するロボット制御方法であって、
    前記対象物体が取り得る複数の位置および姿勢の組の各々に対応して、参照軌道および分岐点を記憶部に記憶するステップと、
    前記タスクの実行時に、前記対象物体の位置および姿勢を計測するステップと、
    計測された前記対象物体の位置および姿勢に対応する前記参照軌道および前記分岐点を前記記憶部から取得し、計測された前記対象物体の位置および姿勢を前記終点に設定し、取得された前記参照軌道を使用して前記始点から前記分岐点までの前記ロボットの動作軌道である第1の動作軌道を生成し、取得された前記分岐点から前記終点までの前記ロボットの動作軌道である第2の動作軌道を生成するステップと、
    前記第1の動作軌道および前記第2の動作軌道を含む動作指令に従って前記ロボットを駆動制御するステップと、
    を備え、
    前記参照軌道は、前記始点から、前記対象物体が取り得る複数の位置および姿勢の組のうちの一つである第1点までの前記ロボットの動作軌道であって、障害物との干渉を回避でき、かつ評価値が第一の範囲に入ることを満足する動作軌道であり、
    前記分岐点は、前記参照軌道上の一点であって、前記分岐点から前記第1点までの動作軌道の前記評価値が前記第一の範囲とは異なる第二の範囲に入ることを満足するである
    ことを特徴とするロボット制御方法。
JP2023508261A 2021-03-24 2021-03-24 ロボット制御装置、ロボット制御プログラムおよびロボット制御方法 Active JP7438453B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012254 WO2022201362A1 (ja) 2021-03-24 2021-03-24 ロボット制御装置、ロボット制御プログラムおよびロボット制御方法

Publications (3)

Publication Number Publication Date
JPWO2022201362A1 JPWO2022201362A1 (ja) 2022-09-29
JPWO2022201362A5 JPWO2022201362A5 (ja) 2023-06-29
JP7438453B2 true JP7438453B2 (ja) 2024-02-26

Family

ID=83396544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023508261A Active JP7438453B2 (ja) 2021-03-24 2021-03-24 ロボット制御装置、ロボット制御プログラムおよびロボット制御方法

Country Status (4)

Country Link
JP (1) JP7438453B2 (ja)
CN (1) CN116997441A (ja)
DE (1) DE112021007395T5 (ja)
WO (1) WO2022201362A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103481A (ja) 2001-09-28 2003-04-08 Honda Motor Co Ltd 多関節ロボットの姿勢適正化方法および適正化装置
JP2007237334A (ja) 2006-03-08 2007-09-20 Toyota Motor Corp ロボットハンドによる把持制御方法
JP2013193194A (ja) 2012-03-22 2013-09-30 Toyota Motor Corp 軌道生成装置、移動体、軌道生成方法及びプログラム
WO2018092860A1 (ja) 2016-11-16 2018-05-24 三菱電機株式会社 干渉回避装置
WO2018143003A1 (ja) 2017-01-31 2018-08-09 株式会社安川電機 ロボットパス生成装置及びロボットシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103481A (ja) 2001-09-28 2003-04-08 Honda Motor Co Ltd 多関節ロボットの姿勢適正化方法および適正化装置
JP2007237334A (ja) 2006-03-08 2007-09-20 Toyota Motor Corp ロボットハンドによる把持制御方法
JP2013193194A (ja) 2012-03-22 2013-09-30 Toyota Motor Corp 軌道生成装置、移動体、軌道生成方法及びプログラム
WO2018092860A1 (ja) 2016-11-16 2018-05-24 三菱電機株式会社 干渉回避装置
WO2018143003A1 (ja) 2017-01-31 2018-08-09 株式会社安川電機 ロボットパス生成装置及びロボットシステム

Also Published As

Publication number Publication date
DE112021007395T5 (de) 2024-03-21
JPWO2022201362A1 (ja) 2022-09-29
WO2022201362A1 (ja) 2022-09-29
CN116997441A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US20200139547A1 (en) Teaching device, teaching method, and robot system
CN109382820B (zh) 干扰判定方法、干扰判定系统以及存储介质
US6341243B1 (en) Intelligent system for generating and executing a sheet metal bending plan
JP6576255B2 (ja) ロボット軌道生成方法、ロボット軌道生成装置、および製造方法
EP1681607B1 (en) Bending apparatus comprising means for performing setup operations
JP5144785B2 (ja) ロボットの着目部位と周辺物との干渉を予測する方法及び装置
US9827675B2 (en) Collision avoidance method, control device, and program
JP5025598B2 (ja) 干渉チェック制御装置および干渉チェック制御方法
JP2023513841A (ja) 産業ロボット用の衝突回避モーション計画方法
JP2016027951A (ja) ロボット装置の制御方法、およびロボット装置
US20210174227A1 (en) Machine learning apparatus, control device, machining system, and machine learning method for learning correction amount of workpiece model
JP2019135076A (ja) 軌道生成方法および軌道生成装置
US20190351550A1 (en) Interference determination apparatus for articulated robot, interference determination method for articulated robot, interference determination program for articulated robot, and path planning apparatus
JP4667764B2 (ja) 経路設定方法
JP2015066668A (ja) ロボットの教示点調整方法、ロボットの設置位置算出方法、ロボットシステム、プログラム及び記録媒体
JP2019193975A (ja) ロボット軌道生成方法、ロボット軌道生成装置、および製造方法
JP7438453B2 (ja) ロボット制御装置、ロボット制御プログラムおよびロボット制御方法
JP6825026B2 (ja) 情報処理装置、情報処理方法及びロボットシステム
JP2016159406A (ja) ロボット制御装置、ロボット制御方法及びロボットシステム
JP5629883B2 (ja) 形状測定装置、形状測定方法及び形状測定プログラム
US20010024098A1 (en) Numerical control apparatus
JP7180696B2 (ja) 制御装置、制御方法およびプログラム
JP7401682B2 (ja) ロボットシステム
JP7436675B2 (ja) ロボット制御装置
JP7351672B2 (ja) 移動経路生成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7438453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150