JP7438074B2 - Method for manufacturing metal-oxide granular film - Google Patents

Method for manufacturing metal-oxide granular film Download PDF

Info

Publication number
JP7438074B2
JP7438074B2 JP2020160319A JP2020160319A JP7438074B2 JP 7438074 B2 JP7438074 B2 JP 7438074B2 JP 2020160319 A JP2020160319 A JP 2020160319A JP 2020160319 A JP2020160319 A JP 2020160319A JP 7438074 B2 JP7438074 B2 JP 7438074B2
Authority
JP
Japan
Prior art keywords
oxide
metal
film
composition
granular film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020160319A
Other languages
Japanese (ja)
Other versions
JP2022053605A (en
Inventor
光教 宮本
孝樹 碓氷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Original Assignee
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd, Citizen Fine Device Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2020160319A priority Critical patent/JP7438074B2/en
Publication of JP2022053605A publication Critical patent/JP2022053605A/en
Application granted granted Critical
Publication of JP7438074B2 publication Critical patent/JP7438074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ファラデー効果を有するグラニュラー構造磁性体薄膜に関するものであり、グラニュラー膜を構成する誘電体マトリックス材料として酸化物を用いる場合の製造方法に関する。 The present invention relates to a granular structured magnetic thin film having a Faraday effect, and relates to a manufacturing method when an oxide is used as a dielectric matrix material constituting the granular film.

ファラデー効果は、磁化した磁性体中を偏光が通過した時に生じる磁気光学効果である。直線偏光が通過した場合には、偏光面の回転(旋光)が生じ、円偏光が通過した場合には、位相の遅れ(または進み)が生じる。 The Faraday effect is a magneto-optical effect that occurs when polarized light passes through a magnetized magnetic material. When linearly polarized light passes through, rotation of the plane of polarization (optical rotation) occurs, and when circularly polarized light passes through, a phase lag (or lead) occurs.

ファラデー効果は、光が磁性体を透過した光に生じる現象であるので、磁性体は観測波長に対して、透明である必要がある。一般的な磁性体は金属であり、例えばFe,Co,Ni,フェライトなどが挙げられる。このような材料は大きなファラデー効果を有するものの、光の吸収が強く、ファラデー効果を利用したデバイスや素子として用いるには不適当である。 The Faraday effect is a phenomenon that occurs when light passes through a magnetic material, so the magnetic material needs to be transparent to the observation wavelength. Common magnetic materials are metals, such as Fe, Co, Ni, and ferrite. Although such materials have a large Faraday effect, they strongly absorb light and are unsuitable for use as devices or elements that utilize the Faraday effect.

ファラデー効果を有し、光を十分に透過できる材料としてYIG(イットリウム鉄ガーネット)結晶や、金属ナノ粒子を誘電体材料に分散したグラニュラー膜(ナノコンポジット含む)などが挙げられる。中でもグラニュラー膜は、比較的簡便に作製することができ、強磁性金属と誘電体マトリックスで構成されるため、様々な材料での組み合わせが可能である。 Examples of materials that have a Faraday effect and can sufficiently transmit light include YIG (yttrium iron garnet) crystals and granular films (including nanocomposites) in which metal nanoparticles are dispersed in a dielectric material. Among them, granular films can be produced relatively easily and are composed of a ferromagnetic metal and a dielectric matrix, so they can be combined with various materials.

グラニュラー膜を構成する強磁性金属としては、磁化が大きい材料が用いられ、誘電体マトリックス材料としては、フッ化物、酸化物、窒化物、硫化物など幅広く用いることができるため、多種の組み合わせが考えられる。磁気効果を利用するデバイスや素子に広く適用可能であり、有望な材料であると考えられる。 A material with high magnetization is used as the ferromagnetic metal that makes up the granular film, and a wide variety of materials such as fluorides, oxides, nitrides, and sulfides can be used as the dielectric matrix material, so a wide variety of combinations are possible. It will be done. It is considered to be a promising material that can be widely applied to devices and elements that utilize magnetic effects.

特開2018-206978号公報JP2018-206978A

グラニュラー膜は、誘電体マトリックス中にナノメートルオーダーの強磁性金属微粒子が分散された構造を持ち、赤外光に対して透明であるとともに,キュリー温度が高く温度特性も良好である。また,グラニュラー膜は面内磁化膜であるため,ファラデー効果を発現する膜面垂直方向の磁化過程は磁化回転が主となり,1GHz以上の強磁性共鳴を有し、DC~高周波まで広帯域な磁気計測に適すると考えられる。 A granular film has a structure in which nanometer-sized ferromagnetic metal particles are dispersed in a dielectric matrix, and is transparent to infrared light and has a high Curie temperature and good temperature characteristics. In addition, since the granular film is an in-plane magnetized film, the magnetization process in the direction perpendicular to the film surface that causes the Faraday effect is mainly magnetization rotation, and it has ferromagnetic resonance of 1 GHz or more, making it suitable for wide-band magnetic measurement from DC to high frequencies. It is considered suitable for

グラニュラー膜の磁気光学効果を最大限に利用する場合、透過率とファラデー効果を最大化することが必要である。近年では、フッ化物系のグラニュラー膜が大きな磁化を有することから、その性能が注目されている。これは、強磁性金属がフッ化化合物を生成しにくいため、磁化が大きくなりやすいことが理由である。 To make the most of the magneto-optic effect of a granular film, it is necessary to maximize the transmittance and Faraday effect. In recent years, fluoride-based granular films have attracted attention because of their large magnetization. The reason for this is that ferromagnetic metals are difficult to generate fluoride compounds, so magnetization tends to increase.

その他、特に酸化物マトリックスを用いたグラニュラー膜では、蒸着法やスパッタ法で薄膜形成する際に、酸素を反応真空槽中に導入しなければならず、酸化物形成と同時に強磁性金属も酸化させてしまい、結果として、磁化は低下し、ファラデー効果が小さくなってしまうという課題があった。 In addition, especially for granular films using an oxide matrix, oxygen must be introduced into the reaction vacuum chamber when forming a thin film by vapor deposition or sputtering, which oxidizes the ferromagnetic metal at the same time as the oxide is formed. As a result, there was a problem that the magnetization decreased and the Faraday effect became smaller.

本発明は、上記課題を鑑みてなされたものであり、酸化物マトリックスを用いた場合でも大きなファラデー効果が得られる金属-酸化物系グラニュラー薄膜の製造方法を提供するものである。 The present invention has been made in view of the above-mentioned problems, and provides a method for producing a metal-oxide granular thin film that can obtain a large Faraday effect even when an oxide matrix is used.

Lを、磁性金属材料とし、MOLet L be a magnetic metal material, MO z を、酸化物誘電体材料としたとき、組成式L-MOWhen used as an oxide dielectric material, the composition formula L-MO z で示される金属-酸化物系グラニュラー膜の製造方法であって、磁性金属材料Lと、酸素欠損した酸化物誘電体材料MOA method for manufacturing a metal-oxide granular film represented by: a magnetic metal material L and an oxygen-deficient oxide dielectric material MO z とを出発原料として用い、支持基板上に、成膜中に酸素導入を行い、組成式LOwas used as a starting material, oxygen was introduced during film formation on a supporting substrate, and the composition formula LO x -MO-MO (z-y)(z-y) 、(LO,(LO x は、酸化した磁性金属、MOis an oxidized magnetic metal, MO (z-y)(z-y) は、化学量論比に満たない組成の酸化物誘電体、組成係数x>0,組成係数y>0)で示されるグラニュラー膜を形成する成膜工程と、成膜工程の後、真空中で加熱処理を行い、組成式L-MOis an oxide dielectric with a composition less than the stoichiometric ratio, a film formation process to form a granular film with a composition coefficient x>0, a composition coefficient y>0), and a film formation process in vacuum after the film formation process. After heat treatment, the composition formula L-MO z で示される金属-酸化物系グラニュラー膜とするアニール工程と、を備えることを特徴とする金属-酸化物系グラニュラー膜の製造方法とする。A method for manufacturing a metal-oxide granular film is characterized by comprising: an annealing step to form a metal-oxide granular film shown in the following.

磁性金属材料Lは、Co,Fe,FeCo合金の少なくとも1つからなり、酸化物誘電体材料MOThe magnetic metal material L is made of at least one of Co, Fe, and FeCo alloy, and the oxide dielectric material MO z は、TiOis TiO 2 ,Ta,Ta 2 O 5 のいずれか1つである金属-酸化物系グラニュラー膜の製造方法とする。A method for producing a metal-oxide granular film which is any one of the following.

前記成膜工程において、酸素導入量を調整し、前記組成係数xおよび前記組成係数yを、x=yとする金属-酸化物系グラニュラー膜の製造方法とする。In the film forming step, the amount of oxygen introduced is adjusted, and the composition coefficient x and the composition coefficient y are set to x=y.

さらに、アニール工程では、酸化した磁性金属LOを、磁性金属Lに還元し、かつ、化学量論比に満たない組成の酸化物誘電体MO(z-y)を、化学量論比を満たす酸化物誘電体MOとする金属-酸化物系グラニュラー膜の製造方法とする。 Furthermore, in the annealing step, the oxidized magnetic metal LO This is a method for manufacturing a metal-oxide granular film using an oxide dielectric MOz .

さらに、アニール工程の加熱温度を、500℃以上とする金属-酸化物系グラニュラー膜の製造方法とする。 Furthermore, the method for manufacturing a metal-oxide granular film is such that the heating temperature in the annealing step is 500° C. or higher.

本発明によれば、磁性金属ナノ粒子と酸化物マトリックスの酸化度を適切に制御することにより、ファラデー効果および透過率を最大化した金属-酸化物系グラニュラー膜の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a metal-oxide granular film that maximizes the Faraday effect and transmittance by appropriately controlling the degree of oxidation of magnetic metal nanoparticles and oxide matrix. .

製造プロセスでの構造変化を示した模式図であり、(a)は、比較例としてのフッ化物系グラニュラー膜の構造変化、(b)は、本発明における酸化物系グラニュラーの構造変化を示す模式図である。FIG. 2 is a schematic diagram showing structural changes in the manufacturing process, in which (a) is a schematic diagram showing a structural change of a fluoride-based granular film as a comparative example, and (b) is a schematic diagram showing a structural change of an oxide-based granular film in the present invention. It is a diagram. 本発明の製造プロセスで、酸素分圧を変更した試料を作製し、アニール工程での透過率変化を示した図である。比較例としてフッ化物系グラニュラー膜を併記した。FIG. 3 is a diagram illustrating changes in transmittance during an annealing process of samples prepared with different oxygen partial pressures in the manufacturing process of the present invention. A fluoride-based granular film is also shown as a comparative example. 本発明の製造プロセスで、酸素分圧を変更した試料を作製し、アニール工程でのファラデー回転角変化を示した図である。比較例としてフッ化物系グラニュラー膜を併記した。FIG. 3 is a diagram illustrating changes in Faraday rotation angle during an annealing process when samples were prepared with different oxygen partial pressures in the manufacturing process of the present invention. A fluoride-based granular film is also shown as a comparative example. 本発明の製造プロセスで、酸素分圧を変更した試料を作製し、アニール工程での性能指数変化を示した図である。比較例としてフッ化物系グラニュラー膜を併記した。FIG. 3 is a diagram showing changes in the figure of merit during an annealing step when samples were prepared with different oxygen partial pressures in the manufacturing process of the present invention. A fluoride-based granular film is also shown as a comparative example.

本実施例で作製した金属-酸化物系グラニュラー膜は、CoとTiを出発材料(蒸着材料)として共蒸着法で薄膜形成している。他にも反応性スパッタなどの気相成長法でも同様に作製可能である。グラニュラー膜は支持基板(本実施例ではホウケイ酸ガラス)上に形成するが、成膜時は350℃以上に加熱し、酸素導入している。 The metal-oxide granular film produced in this example was formed into a thin film by co-evaporation using Co and Ti 3 O 5 as starting materials (evaporation materials). It can also be similarly produced using other vapor phase growth methods such as reactive sputtering. The granular film is formed on a support substrate (borosilicate glass in this example), and during film formation, it is heated to 350° C. or higher and oxygen is introduced.

以下、図面を参照して、本発明における金属-酸化物系グラニュラー膜の製造方法について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ。 The method for manufacturing a metal-oxide granular film according to the present invention will be described below with reference to the drawings. However, the technical scope of the present invention is not limited to these embodiments, but extends to the invention described in the claims and equivalents thereof.

図1は、製造プロセスでの構造変化を示した模式図である。まず、比較例として、CoとMgFの組み合わせにおけるグラニュラー膜の構造変化を、図1(a)を用いて説明する。出発材料はCo顆粒11とMgF顆粒10であり、MgF顆粒10の組成は化学量論比(ストイキオメトリ)となっている。これらから生成するグラニュラー膜は、MgFマトリックス12中にCoナノ粒子13が分散した構造となる。500℃のアニールによって組成に変化は無いが、隣接したCoナノ粒子同士が結合し、粒子が肥大化する。(粒子間距離が広がることと等価)粒子同士の結合は透過率上昇に寄与する。 FIG. 1 is a schematic diagram showing structural changes during the manufacturing process. First, as a comparative example, structural changes in a granular film due to a combination of Co and MgF 2 will be explained using FIG. 1(a). The starting materials are Co granules 11 and MgF 2 granules 10, and the composition of the MgF 2 granules 10 is stoichiometric. The granular film produced from these has a structure in which Co nanoparticles 13 are dispersed in an MgF 2 matrix 12. Although the composition remains unchanged by annealing at 500° C., adjacent Co nanoparticles bond together and the particles become enlarged. (Equivalent to increasing the distance between particles) Bonding between particles contributes to an increase in transmittance.

次に、実施例のCoとTiOの組み合わせにおけるグラニュラー膜の構造変化を、図1(b)を用いて説明する。出発材料は、Co顆粒11とTi顆粒20であり、化学量論比TiOから酸素欠損した組成となっている。このまま真空中で成膜すると、酸素欠損のため強い光吸収が生じ、透過率が著しく低下してしまう。そのため成膜中に酸素導入を行うが、これらの材料から生成するグラニュラー膜はCoOナノ粒子23とTiO(2-y)マトリックス22の組成となる。組成係数x,yについては、成膜中の酸素導入量によって変動する。これを真空中でアニール処理することにより、隣接したCoOナノ粒子同士が結合(粒子の肥大化)するとともに、酸素活性の強いTiの酸化作用によってCoOが、金属Coに還元される。TiO(2-y)はTiO組成に近づき、TiOマトリクス24中にCoナノ粒子13が分散した構造となる。結果として、透過率およびファラデー効果が同時に上昇する。最終的にCo-TiO組成となるように、組成係数x,yを適切な量とすることが望ましい。 Next, structural changes in the granular film due to the combination of Co and TiO 2 in the example will be explained using FIG. 1(b). The starting materials are Co granules 11 and Ti 3 O 5 granules 20, and have a composition in which oxygen is deficient from the stoichiometric ratio of TiO 2 . If the film is formed in vacuum as it is, strong light absorption will occur due to oxygen vacancies, resulting in a significant decrease in transmittance. Therefore, oxygen is introduced during film formation, and the granular film produced from these materials has a composition of CoO x nanoparticles 23 and TiO (2-y) matrix 22. The composition coefficients x and y vary depending on the amount of oxygen introduced during film formation. By annealing this in vacuum, adjacent CoO x nanoparticles bond with each other (particle enlargement), and CoO x is reduced to metal Co by the oxidizing action of Ti, which has strong oxygen activity. TiO (2-y) has a composition close to that of TiO 2 and has a structure in which Co nanoparticles 13 are dispersed in a TiO 2 matrix 24. As a result, the transmittance and the Faraday effect increase simultaneously. It is desirable to set the composition coefficients x and y to appropriate amounts so that the final composition is Co--TiO 2 .

次に、成膜直後の組成係数x,yの関係と、アニールによって生じる効果を説明する。表1は、成膜直後の組成係数x,yの関係と、500℃のアニールによって生じる効果についてまとめた表である。表1に示すように、y=0 and x>>0は、酸素量が過剰な状態で、TiOが化学量論比でCoも酸化した状態である。この状態でアニールするとCoナノ粒子の肥大化だけが起こり、還元されない。結果として、透過率およびファラデー効果上昇は小さい。y>0 and x>yは、酸素量がやや過剰な状態で、アニールによってTiOが化学量論比に変化し飽和するが、Coは還元しきれないファラデー効果上昇が十分ではない。y>0 and x<yは、酸素量がやや不足している状態で、アニールによってCoは還元されるが、TiOが化学量論比に達しないため、光の吸収が残り、透過率上昇が十分ではない。y>0 and x=yは、酸素量が適切な範囲にある状態で、アニールによって、Coは還元され、TiOは化学量論比となるため、透過率およびファラデー効果の上昇が最大となる。 Next, the relationship between the composition coefficients x and y immediately after film formation and the effects caused by annealing will be explained. Table 1 is a table summarizing the relationship between the composition coefficients x and y immediately after film formation and the effects caused by annealing at 500°C. As shown in Table 1, when y=0 and x>>0, the amount of oxygen is excessive and TiO 2 is also oxidized with Co in a stoichiometric ratio. Annealing in this state only causes the Co nanoparticles to enlarge and is not reduced. As a result, the transmittance and Faraday effect increases are small. When y>0 and x>y, the amount of oxygen is slightly excessive, and TiO 2 changes to the stoichiometric ratio by annealing and becomes saturated, but Co is not completely reduced and the Faraday effect is not sufficiently increased. When y>0 and x<y, the amount of oxygen is slightly insufficient, and Co is reduced by annealing, but since TiO 2 does not reach the stoichiometric ratio, light absorption remains and the transmittance increases. is not enough. When y>0 and x=y, the amount of oxygen is in an appropriate range, Co is reduced by annealing, and TiO 2 becomes stoichiometric, so the increase in transmittance and Faraday effect is maximized. .

Figure 0007438074000001
Figure 0007438074000001

ここで、性能指数について説明する。ファラデー効果を利用する素子は、光の透過率(利用効率)が高く、単位磁界当たりのファラデー回転が大きいことが望ましい。従って、次式のように性能指数(FOM:Figure of Merit)を定義している。

Figure 0007438074000002
Figure 0007438074000003

ここで、θFは単位磁界・単位厚さあたりのファラデー回転角、Plossは1550nmの波長における透過損失、T は1550nmにおける透過率である。 Here, the figure of merit will be explained. It is desirable for an element that utilizes the Faraday effect to have high light transmittance (utilization efficiency) and a large Faraday rotation per unit magnetic field. Therefore, a figure of merit (FOM) is defined as shown in the following equation.

Figure 0007438074000002
Figure 0007438074000003

Here, θ F is the Faraday rotation angle per unit magnetic field/unit thickness, P loss is the transmission loss at a wavelength of 1550 nm, and T is the transmittance at 1550 nm.

つまり、組成係数x,yを、適切な量とすることができれば、上記、性能指数が最大化する。 In other words, if the composition coefficients x and y can be set to appropriate values, the above-mentioned figure of merit will be maximized.

図2~4は、本実施例であるCo-TiOグラニュラー膜を蒸着中の酸素分圧(酸素導入量)を1.3E-2Pa~1.9E-2Paの範囲で変更して成膜した場合の、透過率、ファラデー回転角、性能指数のアニール前後の変化を示す図である。比較例としてCo-MgFグラニュラー膜の変化も併記した。比較例のCo-MgFの場合、アニールで組成変動が無く、粒子の肥大化のみが生じる、ファラデー効果はほぼ変化せず、透過率は微増する。一方、Co-TiOグラニュラー膜では、前述したメカニズムによって、透過率とファラデー回転角の両方が上昇する。中でも酸素分圧1.7E-2Paの条件下で、性能指数が最大化しており、y>0 and x=yの条件を満足していると考えられる。 Figures 2 to 4 show that the Co-TiO 2 granular film of this example was formed by changing the oxygen partial pressure (amount of oxygen introduced) during vapor deposition in the range of 1.3E-2Pa to 1.9E-2Pa. FIG. 3 is a diagram showing changes in transmittance, Faraday rotation angle, and figure of merit before and after annealing. As a comparative example, changes in the Co--MgF 2 granular film are also shown. In the case of Co--MgF 2 as a comparative example, there is no compositional change during annealing, only particle enlargement occurs, the Faraday effect remains almost unchanged, and the transmittance slightly increases. On the other hand, in the Co--TiO 2 granular film, both the transmittance and the Faraday rotation angle increase due to the mechanism described above. Among these, the figure of merit is maximized under the condition of oxygen partial pressure of 1.7E-2Pa, and it is considered that the conditions of y>0 and x=y are satisfied.

本実施例では、CoとTiOの組み合わせで作製しているが、磁性ナノ粒子としてはCoの他、FeやFeCo合金、Ni、FeNi合金、Mn、フェライトなど、ファラデー効果を発現する材料であればよく、誘電体材料はTiOの他、ZrOやTa、Alなどのあらゆる酸化物にも適用することができる。 In this example, the magnetic nanoparticles are made from a combination of Co and TiO2 , but in addition to Co, the magnetic nanoparticles may be made of materials that exhibit the Faraday effect, such as Fe, FeCo alloy, Ni, FeNi alloy, Mn, and ferrite. In addition to TiO 2 , the dielectric material may be any oxide such as ZrO 2 , Ta 2 O 5 , Al 2 O 3 or the like.

10 MgF顆粒(出発材料)
11 Co顆粒(出発材料)
12 MgFマトリックス
13 Coナノ粒子
20 Ti顆粒(出発材料)
22 TiO(2-y)マトリックス
23 CoOナノ粒子
24 TiOマトリックス
10 MgF 2 granules (starting material)
11 Co granules (starting material)
12 MgF 2 matrix 13 Co nanoparticles 20 Ti 3 O 5 granules (starting material)
22 TiO (2-y) matrix 23 CoO x nanoparticles 24 TiO 2 matrix

Claims (5)

Lを、磁性金属材料とし、MOLet L be a magnetic metal material, MO z を、酸化物誘電体材料としたとき、組成式L-MOWhen used as an oxide dielectric material, the composition formula L-MO z で示される金属-酸化物系グラニュラー膜の製造方法であって、磁性金属材料Lと、酸素欠損した酸化物誘電体材料MOA method for manufacturing a metal-oxide granular film represented by: a magnetic metal material L and an oxygen-deficient oxide dielectric material MO z とを出発原料として用い、支持基板上に、成膜中に酸素導入を行い、組成式LOwas used as a starting material, oxygen was introduced during film formation on a supporting substrate, and the composition formula LO x -MO-MO (z-y)(z-y) 、(LO,(LO x は、酸化した磁性金属、MOis an oxidized magnetic metal, MO (z-y)(z-y) は、化学量論比に満たない組成の酸化物誘電体、組成係数x>0,組成係数y>0)で示されるグラニュラー膜を形成する成膜工程と、前記成膜工程の後、真空中で加熱処理を行い、組成式L-MOis a film forming process for forming a granular film with an oxide dielectric having a composition less than the stoichiometric ratio, a composition coefficient x>0, a composition coefficient y>0), and after the film forming process, a film is formed in a vacuum. After heat treatment, the composition formula L-MO z で示される金属-酸化物系グラニュラー膜とするアニール工程と、を備えることを特徴とする金属-酸化物系グラニュラー膜の製造方法。A method for manufacturing a metal-oxide granular film, comprising: an annealing step to form a metal-oxide granular film shown in the following. 前記磁性金属材料Lは、Co,Fe,FeCo合金の少なくとも1つからなり、前記酸化物誘電体材料MOThe magnetic metal material L is made of at least one of Co, Fe, and FeCo alloy, and the oxide dielectric material MO z は、TiOis TiO 2 ,Ta,Ta 2 O 5 のいずれか1つであることを特徴とする請求項1記載の金属-酸化物系グラニュラー膜の製造方法。2. The method for producing a metal-oxide granular film according to claim 1, wherein the method is any one of the following. 前記成膜工程において、酸素導入量を調整し、前記組成係数xおよび前記組成係数yを、x=yとすることを特徴とする請求項1または2に記載の金属-酸化物系グラニュラー膜の製造方法。The metal-oxide granular film according to claim 1 or 2, wherein in the film forming step, the amount of oxygen introduced is adjusted, and the composition coefficient x and the composition coefficient y are set to x=y. Production method. 前記アニール工程では、酸化した磁性金属LOIn the annealing step, the oxidized magnetic metal LO x を、磁性金属Lに還元し、かつ、化学量論比に満たない組成の酸化物誘電体MOis reduced to a magnetic metal L, and the oxide dielectric MO has a composition less than the stoichiometric ratio. (z-y)(z-y) を、化学量論比を満たす酸化物誘電体MO, an oxide dielectric MO satisfying the stoichiometric ratio z とすることを特徴とする請求項1~3のいずれか一項に記載の金属-酸化物系グラニュラー膜の製造方法。The method for producing a metal-oxide granular film according to any one of claims 1 to 3, characterized in that: 前記アニール工程の加熱温度を、500℃以上とすることを特徴とする請求項1~4のいずれか一項に記載の金属-酸化物系グラニュラー膜の製造方法。5. The method for producing a metal-oxide granular film according to claim 1, wherein the heating temperature in the annealing step is 500° C. or higher.
JP2020160319A 2020-09-25 2020-09-25 Method for manufacturing metal-oxide granular film Active JP7438074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020160319A JP7438074B2 (en) 2020-09-25 2020-09-25 Method for manufacturing metal-oxide granular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160319A JP7438074B2 (en) 2020-09-25 2020-09-25 Method for manufacturing metal-oxide granular film

Publications (2)

Publication Number Publication Date
JP2022053605A JP2022053605A (en) 2022-04-06
JP7438074B2 true JP7438074B2 (en) 2024-02-26

Family

ID=80996856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160319A Active JP7438074B2 (en) 2020-09-25 2020-09-25 Method for manufacturing metal-oxide granular film

Country Status (1)

Country Link
JP (1) JP7438074B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102816A (en) 2008-09-29 2010-05-06 Hoya Corp Vertical magnetic recording medium
JP2015212409A (en) 2014-05-02 2015-11-26 田中貴金属工業株式会社 Sputtering target and manufacturing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102816A (en) 2008-09-29 2010-05-06 Hoya Corp Vertical magnetic recording medium
JP2015212409A (en) 2014-05-02 2015-11-26 田中貴金属工業株式会社 Sputtering target and manufacturing method of the same

Also Published As

Publication number Publication date
JP2022053605A (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US4837094A (en) Oxygen-containing ferromagnetic amorphous alloy and method of preparing the same
JP6619216B2 (en) Translucent magnetic material
Bando et al. Reactive condensation and magnetic properties of iron oxide films
JP7438074B2 (en) Method for manufacturing metal-oxide granular film
Roulland et al. Promoting the magnetic exchanges in PLD deposited strained films of FeV2O4 thin films
JP2924935B2 (en) Perpendicular magnetization film, multilayer film for perpendicular magnetization film, and method of manufacturing perpendicular magnetization film
WO2023021877A1 (en) Magneto-optical material and production method therefor
JPH01309305A (en) Amorphous oxide magnetic substance and magnetic core and magnetic recording medium
Borrelli et al. Magnetic and optical properties of thin films in the system 1-xFe 3 O 4· xFe 8/3 O 4
JP7337291B2 (en) Magneto-optical material and manufacturing method thereof
JPS6347359A (en) Production of thin cobalt-ferritic spinel film
JPS6347908A (en) Nickel ferrite-system spinel thin film
Han et al. Remarkable improvement of ferroelectric properties and leakage current in BiFeO 3 thin films by nd modification
JP2611843B2 (en) Method for producing garnet fine particle powder
JP2611845B2 (en) Method for producing garnet fine particle powder
JPH0474722A (en) Production of garnet fine powder
JPH0497915A (en) Manufacture of garnet fine particle powder
JPH0582325A (en) Composite oxide magnetic powder and optomagnetic recording medium using the same
JPH0757694B2 (en) Garnet fine powder
JP2611844B2 (en) Method for producing garnet fine particle powder
JP2823098B2 (en) Faraday rotating element
CN113061990A (en) Cobalt oxide-based magnetic oxide thin film and preparation method and application thereof
JPH0791067B2 (en) Method for producing garnet fine particle powder
JPH01152603A (en) Oxide magnetic thin film
JPS6169959A (en) Manufacture of multilayered film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7438074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150