JP7436969B2 - Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries - Google Patents

Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries Download PDF

Info

Publication number
JP7436969B2
JP7436969B2 JP2019192989A JP2019192989A JP7436969B2 JP 7436969 B2 JP7436969 B2 JP 7436969B2 JP 2019192989 A JP2019192989 A JP 2019192989A JP 2019192989 A JP2019192989 A JP 2019192989A JP 7436969 B2 JP7436969 B2 JP 7436969B2
Authority
JP
Japan
Prior art keywords
negative electrode
hard carbon
carbon
electrode material
carbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192989A
Other languages
Japanese (ja)
Other versions
JP2021066629A (en
Inventor
正坤 謝
国清 官
喜岩 岳
志俊 武
曉弘 吉田
和治 関
里提 阿布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIKU CHEMICAL CO., LTD.
Hirosaki University NUC
Original Assignee
JIKU CHEMICAL CO., LTD.
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIKU CHEMICAL CO., LTD., Hirosaki University NUC filed Critical JIKU CHEMICAL CO., LTD.
Priority to JP2019192989A priority Critical patent/JP7436969B2/en
Publication of JP2021066629A publication Critical patent/JP2021066629A/en
Application granted granted Critical
Publication of JP7436969B2 publication Critical patent/JP7436969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、生物材料由来のハードカーボン、負極材料、負極、及びアルカリイオン電池に関する。 The present invention relates to hard carbon derived from biological materials, negative electrode materials, negative electrodes, and alkaline ion batteries.

ナトリウム元素は地球上豊富に存在しており、ナトリウムイオン電池は低コスト化が期待できることから、リチウムイオン電池の魅力的な代替品として研究されている。ナトリウムイオン電池の商業的成功を妨げている重要な問題の一つは、適切な負極材料がまだ見つかっていないことにある。ナトリウムイオン電池の負極材料としてグラファイト系の高結晶性炭素材料が使用されているが、グラファイトへのNaの吸蔵は困難で、電気化学活性をほとんど示さない。一方、非結晶質炭素を負極材とした場合に、Na系において電気化学活性を有することが報告されており、特にハードカーボン材料は有力な候補であることが報告されているが、エネルギー密度が低いため、高い性能を得ることが課題になっている。近年、Baiらはハードカーボンへのナトリウムの挿入と貯蔵メカニズムについて研究し(非特許文献1)、ハードカーボン材料の高電位傾斜容量(high-potential sloping capacity)は、材料の構造欠陥サイトまたはヘテロ原子へのNa+イオンの吸着とその後のプラトー領域でのグラフェンシート間のインターカレーションと、プラトー端での細孔表面へのわずかな堆積に関連していることを明らかにした。 The element sodium is abundant on earth, and sodium ion batteries are being researched as an attractive alternative to lithium ion batteries because they can be expected to be lower in cost. One of the key problems hindering the commercial success of sodium-ion batteries is that suitable negative electrode materials have not yet been found. Graphite-based highly crystalline carbon materials are used as negative electrode materials for sodium ion batteries, but it is difficult to absorb Na into graphite, and they exhibit almost no electrochemical activity. On the other hand, it has been reported that when amorphous carbon is used as a negative electrode material, it has electrochemical activity in the Na system, and hard carbon materials in particular are reported to be promising candidates, but the energy density is Therefore, obtaining high performance has become a challenge. In recent years, Bai et al. have studied the insertion and storage mechanism of sodium into hard carbon (Non-Patent Document 1), and found that the high-potential sloping capacity of hard carbon materials is due to the formation of structural defect sites or heteroatoms in the material. It was revealed that the adsorption of Na+ ions on the nanoparticles is associated with subsequent intercalation between graphene sheets in the plateau region and slight deposition on the pore surface at the plateau edge.

一方で、Liuらは、ニンニクをナトリウムイオン負極の炭素源として使用し、ニンニクを1300℃で炭化した後、得られた負極が1Ag-1で100mAhg-1の容量を有したこと、またその初期クーロン効率が約50.7%に達したことを報告している(非特許文献2)。 On the other hand, Liu et al. used garlic as a carbon source for a sodium ion negative electrode and found that after carbonizing the garlic at 1300 °C, the obtained negative electrode had a capacity of 100 mAhg -1 at 1Ag -1 and that its initial It has been reported that the coulombic efficiency reached approximately 50.7% (Non-Patent Document 2).

Chenらは、前駆体としてスクロースを使用し、500℃で処理して炭素ミクロ球を製造した。この炭素ミクロ球を負極材料として使用した場合に、1Ag-1で50サイクル数後にも83mAhg-1の容量を達成したことを報告している(非特許文献3)。 Chen et al. used sucrose as a precursor and processed it at 500°C to produce carbon microspheres. It has been reported that when these carbon microspheres were used as a negative electrode material, a capacity of 83 mAhg -1 was achieved even after 50 cycles at 1Ag -1 (Non-Patent Document 3).

生物材料を用いて、電極の放電容量を増大させることができる負極材を製造できれば有用である。 It would be useful if a negative electrode material capable of increasing the discharge capacity of an electrode could be manufactured using biological materials.

Advanced Energy Materials, 2018, 1703217Advanced Energy Materials, 2018, 1703217 ACS Sustainable Chemistry&Engineering 2019, 7, 12188-12199ACS Sustainable Chemistry&Engineering 2019, 7, 12188-12199 Journal of Materials Chemistry A, 2014, 2, 1263-1267Journal of Materials Chemistry A, 2014, 2, 1263-1267

本発明は、上記に鑑みてなされたものであり、電極の放電容量を増大させる負極材料を製造することができるハードカーボン、該ハードカーボンからなる負極材料、該負極材料からなる負極、並びに該負極を備えたアルカリイオン電池を提供することを目的とする。 The present invention has been made in view of the above, and provides a hard carbon that can produce a negative electrode material that increases the discharge capacity of an electrode, a negative electrode material made of the hard carbon, a negative electrode made of the negative electrode material, and the negative electrode. The purpose of the present invention is to provide an alkaline ion battery with the following features.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、熟成させた生物材料を負極材料を構成する多孔質炭素材料の原料として用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors discovered that the above object could be achieved by using an aged biological material as a raw material for the porous carbon material that constitutes the negative electrode material. The invention was completed.

本発明は、以下に記載の実施形態を包含する。 The present invention encompasses the embodiments described below.

項1.熟成させた生物材料の炭化物からなる略球形の多孔質ハードカーボン。 Item 1. Roughly spherical porous hard carbon made of aged carbonized biological material.

項2.粒径100nm~10μmの略球形のハードカーボン粒子を含む項1に記載のハードカーボン。 Item 2. Item 2. The hard carbon according to item 1, which contains approximately spherical hard carbon particles with a particle size of 100 nm to 10 μm.

項3.前記生物材料が植物である項1又は2に記載のハードカーボン。 Item 3. Item 3. The hard carbon according to item 1 or 2, wherein the biological material is a plant.

項4.項1~3のいずれかに記載のハードカーボンからなる負極材料。 Item 4. Item 3. A negative electrode material made of hard carbon according to any one of Items 1 to 3.

項5.項4に記載の負極材料を成形してなる負極。 Item 5. A negative electrode formed by molding the negative electrode material according to item 4.

項6.項5に記載の負極を備えたアルカリイオン電池。 Item 6. Item 5. An alkaline ion battery comprising the negative electrode according to item 5.

項7.熟成させた生物材料を炭化することを含む、熟成させた生物材料からの略球形のハードカーボンの製造方法。 Section 7. A method for producing substantially spherical hard carbon from aged biological material, the method comprising carbonizing the aged biological material.

本発明のハードカーボンによれば、電極の放電容量を増大させる負極材料を製造することができる。よって、かかる負極材料からなる負極を備えたアルカリイオン電池の放電容量を増大させることができる。 According to the hard carbon of the present invention, it is possible to produce a negative electrode material that increases the discharge capacity of the electrode. Therefore, the discharge capacity of an alkaline ion battery equipped with a negative electrode made of such a negative electrode material can be increased.

本発明の一実施形態の負極の製造プロセス。A manufacturing process for a negative electrode according to an embodiment of the present invention. 電池の組み立てを示す略分解斜視図。FIG. 2 is a schematic exploded perspective view showing the assembly of a battery. (A)GT-C炭素材と(B)GC-C炭素材の走査電子顕微鏡(SEM)写真。Scanning electron microscope (SEM) photographs of (A) GT-C carbon material and (B) GC-C carbon material. GT-C炭素材とGC-C炭素材のX線回折分析のグラフ。Graph of X-ray diffraction analysis of GT-C carbon material and GC-C carbon material. GT-C炭素材及びGC-C炭素材を用いた場合のサイクル数に対するナトリウムイオン電池の放電容量を示すグラフ。(A)電解質がNaPF6及び(B)電解液がNaOTf。A graph showing the discharge capacity of a sodium ion battery with respect to the number of cycles when using GT-C carbon material and GC-C carbon material. (A) The electrolyte is NaPF 6 and (B) the electrolyte is NaOTf. GT-C炭素材及びGC-C炭素材を用いた場合のサイクル数に対するリチウムイオン電池の放電容量を示すグラフ。Graph showing the discharge capacity of a lithium ion battery with respect to the number of cycles when GT-C carbon material and GC-C carbon material are used.

(ハードカーボン)
本発明の一態様のハードカーボンは、熟成させた生物材料の炭化物からなる略球形の多孔質ハードカーボンである。
(hard carbon)
The hard carbon of one embodiment of the present invention is a substantially spherical porous hard carbon made of a carbide of an aged biological material.

本明細書において、「略球形」とは、ハードカーボンの一つの粒子の粒子径がどこを測定しても同一という数学的に純粋な球形でなくてよく、走査電子顕微鏡(SEM)で観察した場合に全体形状が球形と認識できれば足りることを指す。 In this specification, "approximately spherical" does not have to be a mathematically pure spherical shape in which the particle diameter of one hard carbon particle is the same no matter where it is measured, and it does not have to be a mathematically pure spherical shape in which the particle diameter of one hard carbon particle is the same no matter where it is measured. In this case, it is sufficient if the overall shape can be recognized as spherical.

本明細書において、「ハードカーボン」とは、難黒鉛化性炭素材料とも言い、グラファイト結晶構造が発達しにくい高分子を焼成して得られる炭素材料であって、非晶質構造を有する炭素材料を指す。ハードカーボンは、炭素を含む材料である生物材料を炭化処理することにより得られる。 In this specification, "hard carbon" is also referred to as a non-graphitizable carbon material, and is a carbon material obtained by firing a polymer in which a graphite crystal structure is difficult to develop, and is a carbon material having an amorphous structure. refers to Hard carbon is obtained by carbonizing biological materials that contain carbon.

本明細書において、「熟成」とは、人為的に又は天然を問わず、生物材料の製造又は収穫後に、生物材料の構成成分である有機物が酵素の作用により分解又は変化されるように、一定期間保持する作用を指し、(1)食品自体がもつ酵素作用によるものと、(2)微生物の酵素作用による熟成である発酵とを含む。生物材料は、製造又は収穫直後の生物材料とは風味が異なる程度に十分に熟成させることが好ましい。生物材料を保持する期間は限定されないが、通常、一週間以上である。 As used herein, "aging" refers to a period of time, whether artificially or naturally, that occurs after production or harvesting of a biological material so that the organic matter that is a component of the biological material is decomposed or changed by the action of enzymes. It refers to the effect of preserving the food for a period of time, and includes (1) the effect of the enzymatic action of the food itself, and (2) fermentation, which is the ripening of the food by the enzymatic action of microorganisms. Preferably, the biological material is sufficiently matured to have a different flavor than the biological material immediately after production or harvest. The period of time the biological material is retained is not limited, but is usually one week or more.

一実施形態では、「熟成させた生物材料」は、外部から微生物を加えず、食品自体がもつ酵素作用により熟成させた生物材料である。別の実施形態では、「熟成させた生物材料」は、外部から人為的に加えた微生物(酵母、乳酸菌、酢酸菌、納豆菌など)が有する酵素の作用により発酵させた生物材料である。さらに別の実施形態では、「熟成させた生物材料」は、外部から人為的に微生物を加えず、空気中の又は生物材料が有する微生物(酵母、乳酸菌、酢酸菌、納豆菌など)が有する酵素の作用により発酵させた生物材料である。また、「熟成」は腐敗とは区別され、「熟成させた生物材料」は、人を初めとする動物が食べられるものであることが好ましい。そのような熟成させた生物材料は、食品加工の分野における公知の方法により製造してもよいし、市販のものを利用してもよい。一実施形態において、熟成させた生物材料は、熟成前の生物材料に比べて、生物材料における糖類、つまり単糖類及び二糖類の量の質量比が増大しており、熟成前の生物材料の当該質量比に比べて2倍以上、好ましくは5倍以上である。 In one embodiment, "aged biological material" is biological material that has been aged by the enzymatic action of the food itself without the addition of external microorganisms. In another embodiment, the "aged biological material" is a biological material that is fermented by the action of enzymes possessed by microorganisms (yeast, lactic acid bacteria, acetic acid bacteria, natto bacteria, etc.) that are artificially added from the outside. In yet another embodiment, "aged biological material" refers to enzymes contained in microorganisms (yeast, lactic acid bacteria, acetic acid bacteria, natto bacteria, etc.) in the air or in the biological material, without artificially adding microorganisms from the outside. It is a biological material fermented by the action of Furthermore, "aging" is distinguished from spoilage, and "aged biological material" is preferably one that can be eaten by animals including humans. Such aged biological materials may be produced by methods known in the food processing field, or commercially available materials may be used. In one embodiment, the aged biological material has an increased mass ratio of the amount of sugars, i.e. monosaccharides and disaccharides, in the biological material compared to the unaged biological material; The mass ratio is 2 times or more, preferably 5 times or more.

窒素(N)、リン(P)、硫黄(S)、及びホウ素(B)からなる群から選択される少なくとも一つを含有する生物材料は、アルカリイオン電池用の負極材料として使用する点で、ハードカーボンに適した炭素資源である。 A biological material containing at least one selected from the group consisting of nitrogen (N), phosphorus (P), sulfur (S), and boron (B) is used as a negative electrode material for an alkaline ion battery. It is a carbon resource suitable for hard carbon.

生物材料は、好ましくは植物である。N、S元素を多く含む好ましい植物の例としては、稲わら. 麦わら、もみ殻、木、草、ニンニク、柿、茶、大豆などが挙げられるが、それらに限定されない。一実施形態において、熟成させた生物材料は、稲わら. 麦わら、もみ殻、木、草ニンニク、柿、茶葉、大豆などを発酵させたバイオマスである。 The biological material is preferably a plant. Examples of preferred plants containing a large amount of N and S elements include, but are not limited to, rice straw, wheat straw, rice husk, wood, grass, garlic, persimmon, tea, and soybean. In one embodiment, the aged biological material is fermented biomass such as rice straw, wheat straw, rice husk, wood, grass, garlic, persimmon, tea leaves, soybean, etc.

ハードカーボンの製造工程の例を説明する。生物材料を必要に応じて皮をむき、適切な大きさに切断した後、水熱法で予備炭化する。予備炭化の温度は限定されないが、120-220℃が好ましく、150-200℃がより好ましく、160-190℃が最も好ましい。予備炭化の時間は限定されないが、4-48時間が好ましく、12-40時間がより好ましく、20-30時間が最も好ましい。 An example of a hard carbon manufacturing process will be explained. After peeling the biological material as necessary and cutting it into appropriate sizes, it is pre-carbonized using a hydrothermal method. Although the temperature of preliminary carbonization is not limited, it is preferably 120-220°C, more preferably 150-200°C, and most preferably 160-190°C. The pre-carbonization time is not limited, but is preferably 4-48 hours, more preferably 12-40 hours, and most preferably 20-30 hours.

次に、生物材料を予備炭化した後、粉砕して、予備炭化材を必要に応じて賦活処理する。賦活処理はガス賦活や薬品賦活であってよい。ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素などと接触反応させることにより活性炭を得る方法である。 Next, after preliminarily carbonizing the biological material, it is pulverized, and the preliminarily carbonized material is activated if necessary. The activation treatment may be gas activation or chemical activation. The gas activation method is a method of obtaining activated carbon by contacting and reacting with water vapor, carbon dioxide, oxygen, etc. at high temperatures.

薬品賦活法は、加熱炭化処理後の原料に公知の賦活薬品を含浸させ、アルゴン等の不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水および酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、例えば、塩化亜鉛、水酸化ナトリウム、水酸化カリウムなどが挙げられる。 The chemical activation method is a method in which activated carbon is obtained by impregnating the raw material after heating carbonization treatment with a known activating chemical and heating it in an inert gas atmosphere such as argon to cause dehydration and oxidation reactions of the activating chemical. be. Examples of the activating chemicals include zinc chloride, sodium hydroxide, potassium hydroxide, and the like.

次に、賦活処理した炭化材を焼成する。焼成温度は限定されないが、500-1400℃が好ましく、650-900℃がより好ましく、700-850℃が最も好ましい。焼成時間は、0.5-6時間が好ましく、1-4時間がより好ましく、2-3時間が最も好ましい。得られた材料を酸溶液で徹底的に洗浄して不純物を除去し、続いて中性pHに達するまで蒸留水で洗浄する。酸溶液中の酸は強酸であることが好ましく、塩酸であることがより好ましい。最後に、材料を無水エタノールで洗浄し、100℃で乾燥させる。ここで、ハードカーボンが得られる。 Next, the activated carbonized material is fired. The firing temperature is not limited, but is preferably 500-1400°C, more preferably 650-900°C, and most preferably 700-850°C. The firing time is preferably 0.5-6 hours, more preferably 1-4 hours, and most preferably 2-3 hours. The resulting material is thoroughly washed with acid solution to remove impurities, followed by distilled water until a neutral pH is reached. The acid in the acid solution is preferably a strong acid, more preferably hydrochloric acid. Finally, the material is washed with absolute ethanol and dried at 100 °C. Here, hard carbon is obtained.

ハードカーボンは、粒径100nm~10μmの略球形のハードカーボン粒子を含むことが好ましい。一実施形態では、ハードカーボンは、各粒子が粒径1000nm~9μmである複数の略球形のハードカーボン粒子を含む。別の実施形態では、ハードカーボンは、平均粒径3000nm~8μmの複数の略球形のハードカーボン粒子を含む。平均粒径とは、SEMにて測定した20個のハードカーボン粒子の直径の平均値を指す。別の実施形態では、ハードカーボンは、各粒子が粒径1μm~10μmである複数の略球形のハードカーボン粒子からなる部分と、それとは別のハードカーボンが集積した部分であって、かかるハードカーボンの積み重ねにより複数の細孔が形成された部分とを有する。また別の実施形態では、ハードカーボンは、平均粒径1μm~10μmである複数の略球形のハードカーボン粒子からなる部分と、それとは別のハードカーボンが集積した部分であって、かかるハードカーボンの積み重ねにより複数の細孔が形成された部分とを有する。さらに別の実施形態では、ハードカーボンは、各粒子が粒径4μm~7μmである複数の略球形のハードカーボン粒子からなる部分と、それとは別のハードカーボンが集積した部分であって、かかるハードカーボンの積み重ねにより複数の細孔が形成された部分とを有する。また別の実施形態では、ハードカーボンは、平均粒径5μm~6μmである複数の略球形のハードカーボン粒子からなる部分と、それとは別のハードカーボンが集積した部分であって、かかるハードカーボンの積み重ねにより複数の細孔が形成された部分とを有する。 The hard carbon preferably includes approximately spherical hard carbon particles with a particle size of 100 nm to 10 μm. In one embodiment, the hard carbon includes a plurality of generally spherical hard carbon particles, each particle having a particle size of 1000 nm to 9 μm. In another embodiment, the hard carbon includes a plurality of generally spherical hard carbon particles having an average particle size of 3000 nm to 8 μm. The average particle size refers to the average value of the diameters of 20 hard carbon particles measured by SEM. In another embodiment, the hard carbon is an accumulation of a plurality of substantially spherical hard carbon particles each having a particle size of 1 μm to 10 μm, and another hard carbon, the hard carbon It has a part in which a plurality of pores are formed by stacking. In another embodiment, the hard carbon is a part consisting of a plurality of roughly spherical hard carbon particles having an average particle size of 1 μm to 10 μm, and a part where another hard carbon is accumulated, and the hard carbon is It has a portion in which a plurality of pores are formed by stacking. In yet another embodiment, the hard carbon is a part consisting of a plurality of substantially spherical hard carbon particles each having a particle size of 4 μm to 7 μm, and another part where hard carbon is accumulated, It has a portion in which a plurality of pores are formed by stacking carbon. In another embodiment, the hard carbon is a part consisting of a plurality of substantially spherical hard carbon particles having an average particle size of 5 μm to 6 μm, and a part where other hard carbon is accumulated, and the hard carbon is It has a portion in which a plurality of pores are formed by stacking.

また、上記複数の略球形のハードカーボン粒子は、観察されるハードカーボン全体に対し、観察表面占有比率50%を超えることが好ましく、60%以上がより好ましく、70%以上がより好ましく、80%以上がより好ましい。 Further, the plurality of approximately spherical hard carbon particles preferably have an observation surface occupation ratio of more than 50%, more preferably 60% or more, more preferably 70% or more, and 80% of the entire hard carbon observed. The above is more preferable.

(負極材料)
本発明の一態様の負極材料は、上記ハードカーボンからなる。一実施形態では、負極材料は、上記ハードカーボンのみから形成される。別の実施形態では、負極材料は、上記ハードカーボンと、該ハードカーボンとは異なる添加剤とを含む組成物から形成される。添加剤としては、バインダー、導電剤などが挙げられる。バインダーは、複数のモノマー構成単位が重合した重合体であることが好ましい。例えば、以下のバインダーの1つまたは複数であることがであることができる:水系バインダー、例えば、カルボキシメチルセルロース(carboxymethylcellulose、CMC)、ポリアクリル酸(polyacrylicacid、PAA)、スチレンブタジエンゴム(styrene-butadienerubber、SBR)など、溶剤系バインダー、例えば、PEO(ポリ(エチレンオキシド))や、PVDF(ポリ(フッ化ビニリデン))など。導電剤としては、カーボンブラックや、アセチレンブラック(acetyleneblack)、ケッチェンブラック(Ketjenblack)、カーボンナノチューブなどが挙げられる。
(Negative electrode material)
A negative electrode material according to one embodiment of the present invention is made of the hard carbon described above. In one embodiment, the negative electrode material is formed solely from the hard carbon described above. In another embodiment, the negative electrode material is formed from a composition including the hard carbon described above and an additive different from the hard carbon. Examples of additives include binders and conductive agents. The binder is preferably a polymer formed by polymerizing a plurality of monomer constituent units. For example, it can be one or more of the following binders: water-based binders, such as carboxymethylcellulose (CMC), polyacrylic acid (PAA), styrene-butadiene rubber, SBR), solvent-based binders such as PEO (poly(ethylene oxide)) and PVDF (poly(vinylidene fluoride)). Examples of the conductive agent include carbon black, acetylene black, Ketjenblack, and carbon nanotubes.

(負極)
本発明の一態様の負極すなわちアノードは、上記負極材料を成形してなる。
(Negative electrode)
A negative electrode, that is, an anode according to one embodiment of the present invention is formed by molding the above negative electrode material.

負極材料を、その用途に応じて、シート状(板状)、円筒状などの任意の形状に成形し、負極を作製する。負極材料がシート状である場合、シートの輪郭を円形、楕円形、矩形などの任意の形にすることができる。 The negative electrode material is formed into any shape, such as a sheet (plate) or a cylinder, depending on its use, to produce a negative electrode. When the negative electrode material is in the form of a sheet, the outline of the sheet can be made into any shape such as circular, oval, or rectangular.

例えば、上述のハードカーボン、バインダー、導電剤などを溶媒(例えばN-メチル-2-ピロリドン)に分散させ、得られたスラリーをフィルムアプリケーターを使用して集電体(例えばCu箔)に塗布し、乾燥することにより、集電体上にフィルム又はシート状の負極を構成することができる。 For example, the hard carbon, binder, conductive agent, etc. mentioned above are dispersed in a solvent (for example, N-methyl-2-pyrrolidone), and the resulting slurry is applied to a current collector (for example, Cu foil) using a film applicator. By drying, a film or sheet-like negative electrode can be formed on the current collector.

(アルカリイオン電池)
本発明の一態様のアルカリイオン電池は、上記負極、正極すなわちカソード、セパレータ、及び電解質又は電解液を備える。アルカリイオン電池は、ナトリウムイオン電池であることもできるし、リチウムイオン電池であることもできる。
(alkaline ion battery)
An alkaline ion battery according to one embodiment of the present invention includes the above negative electrode, positive electrode, that is, a cathode, a separator, and an electrolyte or electrolytic solution. Alkaline ion batteries can be either sodium ion batteries or lithium ion batteries.

負極は、例えば負極活物質、導電補助材としての導電剤、及びバインダーを含む組成物である負極材料を集電体に積層することにより製造される。本発明のハードカーボンは負極活物質として機能するため、かかるハードカーボンを負極材料に使用することができる。 The negative electrode is manufactured by laminating, for example, a negative electrode material, which is a composition containing a negative electrode active material, a conductive agent as a conductive auxiliary material, and a binder, on a current collector. Since the hard carbon of the present invention functions as a negative electrode active material, such hard carbon can be used as a negative electrode material.

正極は、例えば正極活物質、導電補助材としての導電剤、及びバインダーを含む組成物である正極材料を集電体に積層することにより製造される。 The positive electrode is manufactured by laminating, for example, a positive electrode material, which is a composition containing a positive electrode active material, a conductive agent as a conductive auxiliary material, and a binder, on a current collector.

正極活物質として、ナトリウムイオン電池では、Co、Mn、Cr、V、Ti及びFeからなる群から選択される1種以上の遷移金属元素を含有するナトリウム-遷移金属複合酸化物等を使用することができる。正極活物質の例として、下記の1つまたは複数が挙げられるがこれらに限定されない:LiFePO4,LiCoO2、LiNixMnyCo O2(0.3≦x≦0.95,0.025≦y≦0.4,0.025≦z≦0.4) 、LiNi1-y-zCoyAlzO2(0.05≦y≦0.15,0<z≦0.05)、LiMn2O4、 LiMPO4(M=Co,Ni)、Li2FePO4F、V2O5、 LiXV3O8(1.5<x≦5.5) 、Li1-XVOPO4(0.5≦x≦0.92) 、LiFeMO4(M=Mn,Si) 、Na3V2(PO4)3、Na2MnP2O7、NaFePO4、Na3MnZr(PO4)3 In sodium ion batteries, sodium-transition metal composite oxides containing one or more transition metal elements selected from the group consisting of Co, Mn, Cr, V, Ti, and Fe may be used as the positive electrode active material. I can do it. Examples of positive electrode active materials include, but are not limited to, one or more of the following: LiFePO 4 , LiCoO 2 , LiNi x Mn y Co O 2 (0.3≦x≦0.95,0.025≦y≦0.4,0.025≦ z≦0.4), LiNi 1-yz Co y Al z O 2 (0.05≦y≦0.15,0<z≦0.05), LiMn 2 O 4 , LiMPO 4 (M=Co,Ni), Li 2 FePO 4 F, V 2 O 5 , LiXV 3 O 8 (1.5<x≦5.5), Li 1-X VOPO 4 (0.5≦x≦0.92), LiFeMO 4 (M=Mn,Si), Na 3 V 2 (PO 4 ) 3 , Na 2 MnP 2 O 7 , NaFePO 4 , Na 3 MnZr(PO 4 ) 3 .

正極活物質として、リチウム電池では、Co、Ni, 及びMnからなる群から選択される1種以上の遷移金属元素を含有するリチウムと繊維金属との複合酸化物又はLiFePO4を初めとするリン酸鉄などを使用することができる。 In lithium batteries, the positive electrode active material is a composite oxide of lithium and fiber metal containing one or more transition metal elements selected from the group consisting of Co, Ni, and Mn, or a phosphoric acid such as LiFePO4 . Iron etc. can be used.

負極及び正極の導電剤として、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウィスカー、炭素繊維、天然黒鉛、人造黒鉛、カーボンナノ粒子、カーボンナノチューブ、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル及びこれらの混合物からなる群から選択される1種以上の導電剤を使用することができる。 Carbon black, Ketjenblack, acetylene black, carbon whiskers, carbon fibers, natural graphite, artificial graphite, carbon nanoparticles, carbon nanotubes, titanium oxide, ruthenium oxide, aluminum, nickel, and mixtures thereof as conductive agents for negative and positive electrodes. One or more conductive agents selected from the group consisting of:

負極及び正極のバインダーとして、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、及びエチレン-アクリル酸共重合体からなる群から選択される1種以上のバインダーを使用することができる。 As a binder for the negative electrode and positive electrode, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, fluororubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoroethylene Propylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoro Ethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE) , one or more selected from the group consisting of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, and ethylene-acrylic acid copolymer binder can be used.

セパレータは、電池用の公知のセパレータ材料を用いて製造することもできるし、市販品を利用することもできる。セパレータ材料の例としては、下記の1つまたは複数が挙げられるがこれらに限定されない:グラスファイバー(GF、glassfiber)、ポリオレフィン(polyolefin)、(例えばポリプロピレン(PP、polypropylene)、ポリエチレン(PE、polyethylene)、ポリエチレンテレフタレート(PET)、ポリアミド(PA、polyamide)(例えばポリ(m-フェニレンイソフタルアミド)(PMIA、poly(m-phenyleneisophthalamide))、ポリイミド(PI、polyimide)、ポリベンゾオキサゾール(PBO、polybenzoxazole)、セルロース、またはそれらの複合材料。 The separator can be manufactured using a known separator material for batteries, or a commercially available product can be used. Examples of separator materials include, but are not limited to, one or more of the following: glass fiber (GF), polyolefin (polyolefin), (e.g. polypropylene (PP), polyethylene (PE)). , polyethylene terephthalate (PET), polyamide (PA, polyamide) (e.g. poly(m-phenyleneisophthalamide) (PMIA, poly(m-phenyleneisophthalamide)), polyimide (PI, polyimide), polybenzoxazole (PBO, polybenzoxazole), Cellulose or composite materials thereof.

電解質は、アルカリイオン電池用の公知の電解質であってよく、下記の1つまたは複数が挙げられるがこれらに限定されない:固体電解質、ゲル状電解質、液体電解質、及び極性溶媒に溶解したリチウム塩(またはナトリウム塩など)(例えば炭酸エチレン(EC)および炭酸ジエチル(DEC)に添加したLiPF6またはNaPF6など)、ジエチレングリコールジメチルエーテル(DGDE、diethyleneglycoldimethylether)に溶解したトリフルオロメチルスルホン酸ナトリウム(NaOTf、Sodiumtrifluoromethylsulfonate)、1,3-ジオキソラン(DOL,1,3-dioxolane))および1,2-ジメトキシエタン(DME、1,2-Dimethoxyethane)に溶解したリチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)(つまり、LiTFSIinDOL:DME)など。 The electrolyte may be any known electrolyte for alkaline ion batteries, including, but not limited to, one or more of the following: solid electrolytes, gel electrolytes, liquid electrolytes, and lithium salts dissolved in polar solvents. or sodium salts) (e.g. LiPF 6 or NaPF 6 added to ethylene carbonate (EC) and diethyl carbonate (DEC)), sodium trifluoromethylsulfonate (NaOTf, Sodium trifluoromethylsulfonate) dissolved in diethylene glycol dimethylether (DGDE, diethylene glycoldimethylether) , 1,3-dioxolane (DOL,1,3-dioxolane) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) dissolved in 1,2-dimethoxyethane (DME, i.e. LiTFSI in DOL:DME) etc.

(ハードカーボン、負極及び電池の製造方法)
図1に、本発明の一実施形態のハードカーボン(14)及び負極(18)の製造プロセスの略図を示す。
(Hard carbon, negative electrode and battery manufacturing method)
FIG. 1 shows a schematic diagram of the manufacturing process of hard carbon (14) and negative electrode (18) according to one embodiment of the present invention.

原料バイオマス(10)としては、上記に生物材料の例として挙げたものを使用することができる。好ましいバイオマスの例は、植物であり、より好ましくはN、S元素を多く含むニンニク、柿、茶、大豆などの植物である。 As the raw material biomass (10), those listed above as examples of biological materials can be used. Examples of preferred biomass are plants, and more preferably plants containing a large amount of N and S elements, such as garlic, persimmon, tea, and soybean.

上記バイオマスを熟成したもの(12)を準備する。熟成したバイオマス(12)には多くの糖分が含まれ、熟成前のバイオマス(10)と比較して炭化物に変え易い。熟成したバイオマス(12)を炭化させて、ハードカーボン(14)を得る。炭化させる材料として、熟成したバイオマス(12)に原料バイオマス(10)を加えてもよいし、加えなくてもよい。得られたハードカーボン(14)の詳細については、(ハードカーボン)の節で説明した通りである。 Prepare the aged biomass (12). Aged biomass (12) contains a large amount of sugar and is easier to convert into char compared to unripened biomass (10). Carbonize the aged biomass (12) to obtain hard carbon (14). As a material to be carbonized, the raw material biomass (10) may or may not be added to the aged biomass (12). The details of the obtained hard carbon (14) are as explained in the (hard carbon) section.

炭化物を、賦活のために酸又はアルカリでさらに処理してもよい。また、炭化させる工程後に得られる炭化物の上に、金属硫化物や酸化物などをドーピングした場合、電気化学特性をさらに向上させることができる。 The carbide may be further treated with acid or alkali for activation. Furthermore, when a metal sulfide, oxide, or the like is doped onto the carbide obtained after the carbonization step, the electrochemical properties can be further improved.

得られたハードカーボン(14)をそのまま負極材料として用いてもよいし、添加剤(16)を添加して負極材料としてもよい。 The obtained hard carbon (14) may be used as a negative electrode material as it is, or may be used as a negative electrode material by adding an additive (16).

添加剤(16)としては、上述したように、バインダー、導電剤などが挙げられる。負極材料を、その用途に応じて球状、シート状(板状)などの任意の形状とし、シート状にしたときは、輪郭を円形、楕円形、矩形などに成形し、負極(18)を作製する。 As described above, examples of the additive (16) include binders, conductive agents, and the like. The negative electrode material is formed into any shape such as spherical or sheet-like (plate-like) depending on its use, and when it is made into a sheet, the outline is shaped into a circle, oval, rectangle, etc., and the negative electrode (18) is produced. do.

図2に、図1の負極(18)を用いたアルカリイオン電池の組み立てを示す。 FIG. 2 shows the assembly of an alkaline ion battery using the negative electrode (18) of FIG. 1.

負極(18)、正極(20)、セパレーター(22)、電解質(24)の詳細は、(アルカリイオン電池)の節で説明した通りである。 Details of the negative electrode (18), positive electrode (20), separator (22), and electrolyte (24) are as explained in the (alkaline ion battery) section.

セパレーター(22)を電解質(24)で湿らせ、負極(18)、正極(20)、及びこれらの間のセパレーター(22)を組み立てることにより、アルカリイオン電池を構成する。負極、正極、セパレータ、及び電解質を備えた電池の組み立て方法は、当該技術分野において周知である。 An alkaline ion battery is constructed by moistening the separator (22) with the electrolyte (24) and assembling the negative electrode (18), the positive electrode (20), and the separator (22) between them. Methods of assembling batteries with negative electrodes, positive electrodes, separators, and electrolytes are well known in the art.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.

試薬、機器及び実験条件
NaOTf、NaPF6、およびdiethylene glycol dimethyl ether (DGDE)は、日本のSigma-Aldrich Corp.から購入した。カーボンブラック(Super-P)は、Alfa Aesar Co.、Ltd. Englandから入手した。ポリ(フッ化ビニリデン)(PVDF)バインダーは、日本のMTI Corp.から購入した。1M ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)の1,3-ジオキソラン(DOL)溶液:ジメトキシエタン(DME)(1:1vol.%)(60μl)は、中国XiamenTob New Energy Technology Co.、Ltd.から購入した。バッテリーテストシステムは、LANDバッテリーテストシステムCT2001A(武漢ランドエレクトロニクス株式会社製)とした。フィルムアプリケーターはBEVS Industrial Co.、Ltd. Japan製である。グローブボックス(日本、美和製作所)は、H2OおよびO2量が0.1 ppmレベル以下のArガス環境とした。
Reagents, equipment and experimental conditions
NaOTf, NaPF6 , and diethylene glycol dimethyl ether (DGDE) were purchased from Sigma-Aldrich Corp., Japan. Carbon black (Super-P) was obtained from Alfa Aesar Co., Ltd. England. Poly(vinylidene fluoride) (PVDF) binder was purchased from MTI Corp., Japan. 1M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3-dioxolane (DOL):dimethoxyethane (DME) (1:1vol.%) (60μl) was purchased from China XiamenTob New Energy Technology Co., Ltd. Purchased from. The battery test system was LAND Battery Test System CT2001A (manufactured by Wuhan Land Electronics Co., Ltd.). The film applicator is manufactured by BEVS Industrial Co., Ltd. Japan. The glove box (Miwa Seisakusho, Japan) was an Ar gas environment in which the amount of H 2 O and O 2 was below the 0.1 ppm level.

実施例1 負極材料の調製
まず、微生物熟成されたニンニク(青森県産黒にんにく」)を地元の市場(青森、日本)から購入し、皮をむき、小片にカットし、次に水熱法で180℃、24時間ニンニクを予備炭化した。その後、粉砕して、予備炭化した材料:KOHを1:2重量%比で均一に混合した後、アルゴン雰囲気下で800℃で2時間焼成した。得られた材料を1.0M HClで徹底的に洗浄して不純物を除去し、続いて中性pHに達するまで蒸留水で洗浄した。最後に、材料を無水エタノールで洗浄し、100℃で乾燥させた。ここで、得られた炭素材料をGT-C炭素材と称する。
Example 1 Preparation of negative electrode material First, microbially aged garlic (black garlic from Aomori Prefecture) was purchased from a local market (Aomori, Japan), peeled and cut into small pieces, and then processed using a hydrothermal method. Garlic was pre-carbonized at 180°C for 24 hours. Thereafter, the pulverized and pre-carbonized material: KOH was uniformly mixed in a 1:2 weight % ratio, and then calcined at 800° C. for 2 hours under an argon atmosphere. The resulting material was thoroughly washed with 1.0 M HCl to remove impurities, followed by distilled water until a neutral pH was reached. Finally, the material was washed with absolute ethanol and dried at 100 °C. Here, the obtained carbon material is referred to as GT-C carbon material.

なお、GT-C炭素材の形態は、走査電子顕微鏡(SEM、Hitachi SU8010)によって特性評価した。その結晶構造は、10-90°の2θ範囲でCu-Kα(λ= 1.5405Å)放射源を使用したX線回折装置(XRD、RigakuSmart Lab X線回折計)により決定した。 The morphology of the GT-C carbon material was characterized using a scanning electron microscope (SEM, Hitachi SU8010). Its crystal structure was determined by an X-ray diffractometer (XRD, RigakuSmart Lab X-ray diffractometer) using a Cu-Kα (λ = 1.5405 Å) radiation source in the 2θ range of 10-90°.

次に、GT-C炭素材、カーボンブラック(Super-P)、およびポリ(フッ化ビニリデン)(PVDF)バインダー(重量比80:10:10)をN-メチル-2-ピロリドン溶媒に完全に分散させ、得られたスラリーをフィルムアプリケーターを使用してCu箔に塗布し、100℃で24時間乾燥させ、GT-C負極の膜を生成した。 Next, the GT-C carbon material, carbon black (Super-P), and poly(vinylidene fluoride) (PVDF) binder (weight ratio 80:10:10) were completely dispersed in N-methyl-2-pyrrolidone solvent. The resulting slurry was applied to Cu foil using a film applicator and dried at 100°C for 24 hours to produce a GT-C negative electrode film.

実施例2 GT-C炭素材を負極に用いたNa-Cハーフセルの組立と電気化学的測定
GT-C 負極(直径12mm)、液体電解質で湿らせたガラス繊維セパレーター(直径16mm)、およびNa金属 正極 (直径12mm)からなるハーフセルを組立てた。このとき、1M NaPF6 のDGDE溶液 (60μl)を液体電解質として使用した。カットオフ電圧範囲0-3Vの下、30℃でLANDバッテリーテストシステムでハーフセルの電気化学的性能をテストした。
Example 2 Assembly and electrochemical measurement of Na-C half cell using GT-C carbon material as negative electrode
A half cell consisting of a GT-C negative electrode (12 mm diameter), a glass fiber separator (16 mm diameter) moistened with liquid electrolyte, and a Na metal positive electrode (12 mm diameter) was assembled. At this time, a 1M NaPF 6 DGDE solution (60 μl) was used as the liquid electrolyte. The electrochemical performance of the half cell was tested in a LAND battery test system at 30°C under a cutoff voltage range of 0-3V.

実施例3 GT-C炭素材を負極に用いたLi-Cハーフセルの組立と電気化学的測定
GT-C負極(直径12mm)、液体電解質で湿らせたガラス繊維セパレーター(直径16mm)、およびLi金属 正極(直径12mm)からなるハーフセルを組立てた。このとき、1M LiTFSIの DOL溶液:DME(1:1vol.%)(60μl)を液体電解質として使用した。実施例2と同様、カットオフ電圧範囲0-3Vの下、30℃でLANDバッテリーテストシステムで電気化学的性能をテストした。
Example 3 Assembly and electrochemical measurement of Li-C half cell using GT-C carbon material as negative electrode
A half cell was assembled consisting of a GT-C negative electrode (12 mm diameter), a glass fiber separator moistened with liquid electrolyte (16 mm diameter), and a Li metal positive electrode (12 mm diameter). At this time, a DOL solution of 1M LiTFSI: DME (1:1 vol.%) (60 μl) was used as the liquid electrolyte. Similar to Example 2, the electrochemical performance was tested in a LAND battery test system at 30°C under a cutoff voltage range of 0-3V.

比較例1 負極材料の調製
まず、普通のニンニクを地元の市場(青森、日本)から購入した。実施例1と同様、皮をむき、小片にカットし、次に水熱法で180℃、24時間ニンニクを予備炭化した。その後、粉砕して、予備炭化した材料:KOHを1:2重量%比で均一に混合した後、アルゴン雰囲気下で800℃で2時間焼成した。得られた材料を1.0M HClで徹底的に洗浄して不純物を除去し、続いて中性pHに達するまで蒸留水で洗浄した。最後に、材料を無水エタノールで洗浄し、100℃で乾燥させた。ここで、得られた炭素材料をGC-C炭素材と称する。
Comparative Example 1 Preparation of Negative Electrode Material First, ordinary garlic was purchased from a local market (Aomori, Japan). As in Example 1, the garlic was peeled, cut into small pieces, and then pre-carbonized using a hydrothermal method at 180° C. for 24 hours. Thereafter, the pulverized and pre-carbonized material: KOH was uniformly mixed in a 1:2 weight % ratio, and then calcined at 800° C. for 2 hours under an argon atmosphere. The resulting material was thoroughly washed with 1.0 M HCl to remove impurities, followed by distilled water until a neutral pH was reached. Finally, the material was washed with absolute ethanol and dried at 100 °C. Here, the obtained carbon material is referred to as GC-C carbon material.

なお、GC-C炭素材の形態は、走査電子顕微鏡(SEM、Hitachi SU8010)によって特性評価した。その結晶構造は、10-90°の2θ範囲でCu-Kα(λ= 1.5405Å)放射源を使用したX線回折装置(XRD、RigakuSmart Lab X線回折計)により決定した。 The morphology of the GC-C carbon material was characterized using a scanning electron microscope (SEM, Hitachi SU8010). Its crystal structure was determined by an X-ray diffractometer (XRD, RigakuSmart Lab X-ray diffractometer) using a Cu-Kα (λ = 1.5405 Å) radiation source in the 2θ range of 10-90°.

次に、GC-C炭素材、カーボンブラック(Super-P)、およびポリ(フッ化ビニリデン)(PVDF)バインダー(重量比80:10:10)をN-メチル-2-ピロリドン溶媒に完全に分散させ、得られたスラリーをフィルムアプリケーターを使用してCu箔に塗布し、100℃で24時間乾燥させ、GC-C負極の膜を生成した。 Next, the GC-C carbon material, carbon black (Super-P), and poly(vinylidene fluoride) (PVDF) binder (weight ratio 80:10:10) were completely dispersed in N-methyl-2-pyrrolidone solvent. The resulting slurry was applied to Cu foil using a film applicator and dried at 100°C for 24 hours to produce a GC-C negative electrode film.

比較例2 GC-C炭素材を負極に用いたNa-Cハーフセルの組立と電気化学的測定
GC-C負極(直径12mm)、液体電解質で湿らせたガラス繊維セパレーター(直径16mm)、およびNa金属正極(直径12mm)からなるハーフセルを組立てた。このとき、1M NaPF6 のDGDE溶液 (60μl)を液体電解質として使用した。カットオフ電圧範囲0-3Vの下、30℃でLANDバッテリーテストシステムで電気化学的性能をテストした。
Comparative Example 2 Assembly and electrochemical measurement of Na-C half cell using GC-C carbon material as negative electrode
A half cell consisting of a GC-C negative electrode (12 mm diameter), a glass fiber separator moistened with liquid electrolyte (16 mm diameter), and a Na metal positive electrode (12 mm diameter) was assembled. At this time, a 1M NaPF 6 DGDE solution (60 μl) was used as the liquid electrolyte. The electrochemical performance was tested in a LAND battery test system at 30°C under a cut-off voltage range of 0-3V.

比較例3 GC-C炭素材を負極に用いたLi-Cハーフセルの組立と電気化学的測定
GC-C負極、液体電解質で湿らせたガラス繊維セパレーター(直径16mm)、およびLi金属 正極(直径12mm)からなるハーフセルを組立てた。このとき、1M LiTFSIのDOL溶液: DME (1:1vol.%)(60μl)を液体電解質として使用した。比較例2と同様、カットオフ電圧範囲0-3Vの下、30℃でLANDバッテリーテストシステムで電気化学的性能をテストした。
Comparative Example 3 Assembly and electrochemical measurement of Li-C half cell using GC-C carbon material as negative electrode
A half cell consisting of a GC-C negative electrode, a glass fiber separator (16 mm diameter) moistened with liquid electrolyte, and a Li metal positive electrode (12 mm diameter) was assembled. At this time, a DOL solution of 1M LiTFSI: DME (1:1 vol.%) (60 μl) was used as the liquid electrolyte. Similar to Comparative Example 2, the electrochemical performance was tested in a LAND battery test system at 30°C under a cutoff voltage range of 0-3V.

結果
図3に示すように、GT-C炭素材(図3A)とGC-C炭素材(図3B)の走査型電子顕微鏡(SEM)画像は、異なる形態を示した。GT-C炭素材の場合、多くの炭素球が観察された。
Results As shown in Fig. 3, scanning electron microscope (SEM) images of the GT-C carbon material (Fig. 3A) and the GC-C carbon material (Fig. 3B) showed different morphologies. In the case of GT-C carbon material, many carbon spheres were observed.

図4はGT-C炭素材とGC-C炭素材のX線回折分析結果を示す。すべてのXRDプロファイルには、グラファイトの(002)および(100)の結晶面に対応する約24°及び43°を中心とする2つの広いピークが明らかに存在する。特にGT-C材料は、より幅広でより低い強度のピークを示し、アモルファスハードカーボンの生成量がGC-C材料よりも多く、黒鉛化カーボンの含有量より少ないことが示唆された。また、(002)ピークはGT-C炭素材ではGC-C炭素材よりもより高い回折角にシフトし、材料の構造秩序の改善を示唆した。 Figure 4 shows the results of X-ray diffraction analysis of GT-C carbon material and GC-C carbon material. Two broad peaks centered around 24° and 43° are clearly present in all XRD profiles, corresponding to the (002) and (100) crystal planes of graphite. In particular, the GT-C material showed a broader and lower intensity peak, suggesting that the amount of amorphous hard carbon produced was greater than the GC-C material and less than the graphitized carbon content. Additionally, the (002) peak shifted to a higher diffraction angle in the GT-C carbon material than in the GC-C carbon material, suggesting an improvement in the structural order of the material.

図5は、GT-C炭素材及びGC-C炭素材を用いた場合のサイクル数に対するナトリウムイオン電池の放電容量を示すグラフである。GC-C負極と比較すると、NaPF6電解質を備えたGT-C負極|Na金属セルは、より高い放電容量(高電流密度1Ag-1で100サイクル数後、115.3mAhg-1)と初期クーロン効率の顕著な改善を示し、約55.42%に達した(図5A)。また、別にNaOTfタイプの電解液を使用した場合も放電容量が改善された(図5B)。 FIG. 5 is a graph showing the discharge capacity of a sodium ion battery versus the number of cycles when GT-C carbon material and GC-C carbon material are used. Compared with GC-C negative electrode, GT-C negative electrode|Na metal cell with NaPF6 electrolyte has higher discharge capacity (115.3mAhg -1 after 100 cycles at high current density 1Ag - 1) and initial Coulombic efficiency. showed a remarkable improvement of approximately 55.42% (Fig. 5A). Furthermore, the discharge capacity was also improved when a NaOTf type electrolyte was used (Figure 5B).

図3の結果と図5の電気化学測定結果によれば、熟成したニンニク由来のGT-C負極の放電容量の増加は、炭素球の適切な表面積と二次粒子の積み重ねにより形成された細孔の均一な分布とを備えたユニークな構造に少なくとも一部起因すると考えられ、GT-C炭素材からなる負極は、アルカリイオン電池により適している。 図6に示すように、GC-C負極を用いた場合と比較すると、市販の液体電解質を備えたGT-C負極|Li金属セルは、より高い放電容量を示した(0.8mAcm-2で200サイクル数後、157.9mAhg-1が)。したがって、豊富な硬質炭素球と細孔を有するGT-C炭素材からなる負極は、リチウムイオン電池にもより適している。 According to the results in Figure 3 and the electrochemical measurement results in Figure 5, the increase in discharge capacity of the aged garlic-derived GT-C negative electrode is due to the appropriate surface area of carbon spheres and the pores formed by stacking secondary particles. Due, at least in part, to its unique structure with a uniform distribution of As shown in Fig. 6, compared with the case using GC-C anode, the GT-C anode|Li metal cell with commercial liquid electrolyte showed higher discharge capacity (200 mAcm -2 After a number of cycles, 157.9mAhg -1 ). Therefore, the negative electrode made of GT-C carbon material with abundant hard carbon spheres and pores is also more suitable for lithium-ion batteries.

Claims (6)

発酵させた植物の炭化物からなる略球形の多孔質ハードカーボン(ただし炭化バイオマス中の細孔のサイズよりも大きい直径を有する酸化鉄ナノ粒子を含む磁性活性炭を除く)からなる負極材料であって、前記植物がニンニク、柿、茶、又は大豆である、負極材料 A negative electrode material made of substantially spherical porous hard carbon made of fermented carbonized plant material (excluding magnetic activated carbon containing iron oxide nanoparticles having a diameter larger than the size of pores in the carbonized biomass), A negative electrode material, wherein the plant is garlic, persimmon, tea, or soybean . 前記ハードカーボンは、粒径100nm~10μmの略球形のハードカーボン粒子を含む請求項1に記載の負極材料 The negative electrode material according to claim 1 , wherein the hard carbon includes approximately spherical hard carbon particles with a particle size of 100 nm to 10 μm. 請求項1又は2に記載の負極材料を成形してなる負極。 A negative electrode formed by molding the negative electrode material according to claim 1 or 2 . 請求項に記載の負極を備えたアルカリイオン電池。 An alkaline ion battery comprising the negative electrode according to claim 3 . 微生物で発酵させた植物を120~220℃で予備炭化すること(酸性条件下で鉄イオンの存在下、180~250℃の間の温度の自発圧力においてバイオマスを含む水溶液を水熱的に処理することを除く)、及び
前記予備炭化した植物を500~1400℃で焼成することを含む、発酵させた植物からの略球形のハードカーボンの製造方法。
Pre-carbonization of plants fermented with microorganisms at 120-220°C (hydrothermal treatment of aqueous solutions containing biomass at autogenous pressures at temperatures between 180-250°C under acidic conditions and in the presence of iron ions) ), and a method for producing substantially spherical hard carbon from a fermented plant, the method comprising: firing the pre-carbonized plant at 500 to 1400°C.
予備炭化する工程の後、前記予備炭化した植物を水酸化カリウムで賦活処理することをさらに含む請求項に記載の製造方法。 6. The manufacturing method according to claim 5, further comprising, after the step of pre-carbonizing, activating the pre-carbonized plant with potassium hydroxide.
JP2019192989A 2019-10-23 2019-10-23 Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries Active JP7436969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192989A JP7436969B2 (en) 2019-10-23 2019-10-23 Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192989A JP7436969B2 (en) 2019-10-23 2019-10-23 Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries

Publications (2)

Publication Number Publication Date
JP2021066629A JP2021066629A (en) 2021-04-30
JP7436969B2 true JP7436969B2 (en) 2024-02-22

Family

ID=75636682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192989A Active JP7436969B2 (en) 2019-10-23 2019-10-23 Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries

Country Status (1)

Country Link
JP (1) JP7436969B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335531A (en) * 2021-12-13 2022-04-12 湖南大学 Sulfur-doped hard carbon material and preparation method and application thereof
CN114400307B (en) * 2021-12-21 2024-06-07 太原理工大学 Tin-carbon composite material and preparation method and application thereof
CN114804064B (en) * 2022-04-14 2023-09-01 福建师范大学 Method for preparing starch-based biomass hard carbon by utilizing yeast fermentation and application of method
CN115028157B (en) * 2022-06-13 2024-02-13 晋中学院 Method for improving electrochemical performance of biomass hard carbon sodium-electricity cathode
CN115159502A (en) * 2022-08-18 2022-10-11 广东邦普循环科技有限公司 Carbonaceous material, preparation method thereof and sodium ion battery
CN115417397A (en) * 2022-08-31 2022-12-02 泾河新城陕煤技术研究院新能源材料有限公司 Preparation method of waste biomass hard carbon negative electrode material for sodium ion battery
CN116216708B (en) * 2023-02-14 2024-04-09 广东邦普循环科技有限公司 Negative electrode material and preparation method and application thereof
CN116404128A (en) * 2023-03-30 2023-07-07 湖北万润新能源科技股份有限公司 Porous hard carbon anode material and preparation method and application thereof
CN116692858B (en) * 2023-04-17 2024-03-15 湖北万润新能源科技股份有限公司 Preparation method and application of sodium ion battery biomass hard carbon anode material
CN117735527B (en) * 2024-02-21 2024-05-14 山东埃尔派粉体科技股份有限公司 Biomass hard carbon anode material, preparation method thereof and sodium ion battery based on biomass hard carbon anode material
CN118270767B (en) * 2024-06-03 2024-09-06 湖南钠科新材料有限公司 Biomass hard carbon material, preparation method thereof and application thereof in sodium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196234A (en) 2005-01-12 2006-07-27 Hitachi Industries Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2007308311A (en) 2006-05-16 2007-11-29 Kazuo Akiyama Manufacturing method of activated carbon and activated carbon
JP2013168241A (en) 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
CN103904328A (en) 2014-04-01 2014-07-02 华南师范大学 Preparation method of biomass lamella carbon material and application
JP2015530236A (en) 2012-08-17 2015-10-15 ビオコル リリーストローレ ウント コンパニー コマンディートボラグBiokol Lilliestrale & Co KB Magnetic activated carbon and methods for preparing and regenerating such materials
CN105514507A (en) 2016-02-02 2016-04-20 陕西科技大学 Preparation method of paper-derived micro- and nano-structure hard carbon materials
CN106410155A (en) 2016-10-28 2017-02-15 林天安 Preparing method of graphene silica carbon negative material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051020B2 (en) * 1993-04-13 2000-06-12 株式会社中康 Organic waste carbonization equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196234A (en) 2005-01-12 2006-07-27 Hitachi Industries Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2007308311A (en) 2006-05-16 2007-11-29 Kazuo Akiyama Manufacturing method of activated carbon and activated carbon
JP2013168241A (en) 2012-02-14 2013-08-29 Sumitomo Chemical Co Ltd Negative electrode material for sodium secondary battery, electrode for sodium secondary battery, and sodium secondary battery
JP2015530236A (en) 2012-08-17 2015-10-15 ビオコル リリーストローレ ウント コンパニー コマンディートボラグBiokol Lilliestrale & Co KB Magnetic activated carbon and methods for preparing and regenerating such materials
CN103904328A (en) 2014-04-01 2014-07-02 华南师范大学 Preparation method of biomass lamella carbon material and application
CN105514507A (en) 2016-02-02 2016-04-20 陕西科技大学 Preparation method of paper-derived micro- and nano-structure hard carbon materials
CN106410155A (en) 2016-10-28 2017-02-15 林天安 Preparing method of graphene silica carbon negative material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU Haolin et al.,ACS Sustainable Chem. Eng.,2019年,7,12188-12199,DOI:10.1021/acssuschemeng.9b01370

Also Published As

Publication number Publication date
JP2021066629A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP7436969B2 (en) Hard carbon derived from biological materials, anode materials, anodes, and alkaline ion batteries
CA2999468C (en) Method of preparing and application of carbon-selenium composites
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
US10483546B2 (en) Use of xanthan gum as an anode binder
KR101108189B1 (en) Negative active material, and electrode and lithium battery containing the material
US10700356B2 (en) Method for producing paste for production of negative electrodes, method for producing negative electrode for lithium ion secondary batteries, negative electrode for lithium secondary batteries, and lithium ion secondary battery
CN104300124B (en) The preparation method of silicon/carbon dioxide compound and the application in lithium/sodium-ion battery
KR20190064398A (en) Binder for manufacturing a positive electrode of lithium-sulfur battery and mathod for manufacturing the positive electrode using the same
US20130252091A1 (en) Lithium Ion Battery Electrode and Its Fabrication Method
US20210358695A1 (en) Electrolyte Solution for Potassium Ion Battery, Potassium Ion Battery, Electrolyte Solution for Potassium Ion Capacitor, and Potassium Ion Capacitor
KR20190068066A (en) Sulfur-carbon complex, cathode for lithium-sulfur battery and lithium-sulfur battery comprising the same
JP6801167B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
US9466828B2 (en) Method for preparing electrode active material for rechargeable lithium battery, electrode active material for rechargeable lithium battery, and rechargeable lithium battery
CN113193196A (en) Multifunctional aqueous binder for sodium ion battery and application thereof
CN103000879A (en) Preparation method of spinel type lithium-nickel-manganese oxide with one-dimensional porous structure
US20140315087A1 (en) Positive active material, method of preparing the same, and rechargeable lithium battery including the same
KR20120123821A (en) Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same
JP2001126762A (en) Nonaqueous electrolyte secondary battery
Li et al. Enhanced elevated-temperature performance of Al-doped LiMn2O4 as cathodes for lithium ion batteries
JPH11213986A (en) Nonaqueous electrolyte battery
KR102477833B1 (en) positive electrode active material composition, positive electrode prepared using the same, and a secondary battery employing the same
JP2017183048A (en) Positive electrode active material, positive electrode arranged by use thereof, and lithium ion secondary battery
JP2011210667A (en) Binder resin composition for nonaqueous secondary battery electrode, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2003317708A (en) Method of manufacturing electrode
KR102574545B1 (en) Coffee foil composition and negative electrode material for secondary battery comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240131

R150 Certificate of patent or registration of utility model

Ref document number: 7436969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150