JP7433954B2 - レーザ干渉装置 - Google Patents

レーザ干渉装置 Download PDF

Info

Publication number
JP7433954B2
JP7433954B2 JP2020020561A JP2020020561A JP7433954B2 JP 7433954 B2 JP7433954 B2 JP 7433954B2 JP 2020020561 A JP2020020561 A JP 2020020561A JP 2020020561 A JP2020020561 A JP 2020020561A JP 7433954 B2 JP7433954 B2 JP 7433954B2
Authority
JP
Japan
Prior art keywords
light
measurement
light guide
guide section
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020020561A
Other languages
English (en)
Other versions
JP2021124483A (ja
JP2021124483A5 (ja
Inventor
雄一郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2020020561A priority Critical patent/JP7433954B2/ja
Priority to US17/160,992 priority patent/US11378386B2/en
Publication of JP2021124483A publication Critical patent/JP2021124483A/ja
Publication of JP2021124483A5 publication Critical patent/JP2021124483A5/ja
Application granted granted Critical
Publication of JP7433954B2 publication Critical patent/JP7433954B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/02052Protecting, e.g. shock absorbing, arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02021Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different faces of object, e.g. opposite faces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、レーザ干渉装置に関する。
従来、計測機器や超精密加工装置等において移動体の変位を高精度に測定する手段として、レーザ干渉装置が用いられる。
例えば、図6は、特許文献1に記載のレーザ干渉装置を示す平面図である。図6に示すレーザ干渉装置100では、レーザ光源101から出射されたレーザ光がビームスプリッタ102によって測定光と参照光とに分割される。測定光は、移動体であるスライダ103と共に移動可能な測定反射体104により反射され、参照光は、参照反射体105で反射される。各反射体104,105で反射された測定光および参照光は、ビームスプリッタ102で重ね合わされて干渉光を生成する。この干渉光では、測定光の光路長と参照光の光路長との光路長差に応じて明暗が変化する。このため、スライダ103が移動する際の干渉光を光検出器106によって検出し、光検出器106の出力信号に基づいて干渉光の干渉縞を計数することにより、スライダ103の変位量を測定できる。
ここで、図6に示すレーザ干渉装置100では、高精度な測定を実現するために、測定反射体104まで測長方向に延びた測定光の経路(測定光路Lp1)と、参照反射体まで測長方向に平行な方向に延びた参照光の光路(参照光路Lp2)とが形成されている。このような構成によれば、レーザ干渉装置100のベース107に熱膨張や撓み等が生じた場合、測定光路Lp1だけでなく、参照光路Lp2でも同様に光路長が変化し、光路長差に生じる誤差を低減できる。
また、レーザ光の光路が空気中を通る場合、測定環境の温度、気圧、湿度または二酸化炭素濃度などによって空気の屈折率が変動し、光路長が変動してしまう可能性がある。そこで、図6に示すレーザ干渉装置100では、高精度な測定を実現するために、ビームスプリッタ102等を収容する真空チャンバー111と、測定光路Lp1を囲う伸縮可能な測定光路筒112と、参照光路Lp2を囲う参照光路筒113とを有しており、レーザ光の経路を真空状態にしている。
特許第3400393号
しかし、前述した特許文献1に記載のレーザ干渉装置には、以下の問題点がある。
図6に示すように、特許文献1に記載のレーザ干渉装置100では、ビームスプリッタ102を透過した測定光が測定光路筒112に向かって直進する一方、ビームスプリッタ102で反射された参照光は、ミラー108でさらに反射されることによって参照光路筒113に向かう。このため、レーザ干渉装置100の真空チャンバー111内では、測定光の光路長と参照光の光路長とが互いに大きく異なっている。
このようなレーザ干渉装置100では、真空チャンバー111に熱膨張が生じた場合、真空チャンバー111内の測定光の光路長に生じる変化量と、真空チャンバー111内の参照光の光路長に生じる変化量とが異なるため、光路長差に誤差が生じ、その結果、測定精度が低下する。
本発明は、測定精度を向上できるレーザ干渉装置を提供することを目的とする。
本発明のレーザ干渉装置は、測長方向に移動可能な測定反射体と、前記測長方向に直交する直交方向において前記測定反射体とは異なる位置に配置された参照反射体と、レーザ光源から出力されたレーザ光を測定光と参照光とに分割する分割面を有する光束分割部材と、前記光束分割部材から入射された前記測定光を導光し、前記測定光を前記測定反射体に向かって前記測長方向に出射する第1導光部と、前記光束分割部材から入射された前記参照光を導光し、前記参照光を前記参照反射体に向かって前記測長方向に出射する第2導光部と、を備え、前記分割面から前記第1導光部の出射面までの前記測定光の経路である第1分配経路と、前記分割面から前記第2導光部の出射面までの前記参照光の経路である第2分配経路とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しいことを特徴とする。
このような発明では、第1導光部の出射面から測定反射体までの測定光の経路(測定光路)と、第2導光部の出射面から参照反射体までの参照光の経路(参照光路)とが、測長方向に沿って配置されている。よって、前述の特許文献1と同様、レーザ干渉装置に熱膨張等が生じた場合、測定光路および参照光路の両方で光路長が同様に変化するため、光路長差に生じる誤差を低減できる。
また、本発明では、分割面から第1導光部の出射面までの測定光の経路(第1分配経路)と、分割面から第2導光部の出射面までの参照光の経路(第2分配経路)との間で、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しい。このため、レーザ干渉装置に熱膨張等が生じ、第1導光部および第2導光部に配置ずれが生じた場合において、第1分配経路で生じる光路長の変化量と第2分配経路で生じる光路長の変化量とを同程度にすることができる。この結果、光路長差に生じる誤差をより低減することができ、レーザ干渉装置による測定精度を向上させることができる。
本発明のレーザ干渉装置において、前記第1分配経路と前記第2分配経路とは、前記機械的な経路長が前記測長方向および前記直交方向のそれぞれで等しく、かつ、前記光学的な光路長が前記測長方向および前記直交方向のそれぞれで等しいことが好ましい。
このような構成によれば、測長方向および直交方向の間でレーザ干渉装置の膨張度合が異なる場合であっても、第1分配経路で生じる光路長の変化量と、第2分配経路で生じる光路長の変化量とを同程度にすることができる。この結果、光路長差に生じる誤差をより低減することができ、レーザ干渉装置による測定精度をより向上できる。
本発明のレーザ干渉装置において、前記光束分割部材は、前記第1導光部の前記出射面から出射する前記測定光の経路と、前記第2導光部の前記出射面から出射する前記参照光の経路との間隔を等分する仮線上に配置されていることが好ましい。
このような構成によれば、第1分配経路と第2分配経路とがX方向およびY方向のそれぞれで同等の経路長になる構成を容易に構築できる。
本発明のレーザ干渉装置において、前記第1導光部を構成する光学素子群と、前記第2導光部を構成する光学素子群とは、光学素子の数、材質および大きさが揃えられていることが好ましい。
このような構成では、第1導光部を構成する光学素子群と第2導光部を構成する光学素子群との間で、光学素子の材質を揃えることにより、機械的な経路長に影響する熱膨張係数や、光学的な経路長に影響する屈折率および当該屈折率の温度特性を揃えることができる。さらに、第1導光部を構成する光学素子群と第2導光部を構成する光学素子群との間で、光学素子の数および大きさを揃えることにより、光学素子内の光路の合計が等しい。このため、第1導光部および第2導光部に伝わる熱によって、光学素子の部品寸法が変化したり、光学素子内の屈折率が変化したりする場合であっても、第1分配経路で生じる光路長の変化量と、第2分配経路で生じる光路長の変化量とを同程度にすることができる。これにより、第1導光部および第2導光部を構成する光学素子としてミラー以外の光学素子を用いつつ、レーザ干渉装置による測定精度を向上させることができる。
本発明のレーザ干渉装置において、前記第1導光部および前記第2導光部は、それぞれ、ピッチングおよびヨーイングの姿勢調整が可能に構成された光学素子、または、ピッチングの姿勢調整が可能に構成された光学素子とヨーイングの姿勢調整が可能に構成された光学素子との2つの光学素子を含んで構成されていることが好ましい。
このような構成によれば、第1導光部および第2導光部の各光学素子の姿勢を調整することにより、測定光路および参照光路をそれぞれ測長方向に沿うように調整することができる。このような調整方法は、光束分割部の姿勢を調整する方法に比べて、測定光路および参照光路をそれぞれ個別に調整できるため、調整作業が容易である。
本発明のレーザ干渉装置において、前記第1導光部および前記第2導光部は、それぞれ、ピッチングまたはヨーイングの両方の姿勢調整が可能に構成された2つの光学素子を含んで構成されていることが好ましい。
このような構成によれば、第1導光部および第2導光部の各光学素子の姿勢を調整することにより、測定光路および参照光路をそれぞれ測長方向に沿うように調整すること、および、反射体への入射位置を任意の位置に調整することの両方を実現することができる。
このような調整方法は、光束分割部の姿勢を調整する方法に比べて、測定光路および参照光路をそれぞれ個別に調整できるため、調整作業が容易である。
また、本発明の方法は、測定反射体および参照反射体として、それぞれコーナーキューブを用いた場合に特に有用である。
本発明のレーザ干渉装置において、前記光束分割部材は、偏光ビームスプリッタであり、前記第1導光部および前記第2導光部は、それぞれ、偏光素子を含んで構成されていることが好ましい。
このような構成によれば、測定反射体または参照反射体で反射された光が理想の偏光状態から崩れてしまった場合、偏光素子がフィルタとして機能し、不要な偏光成分をカットすることができる。これにより、測定精度をより向上させることができる。
本発明のレーザ干渉装置において、前記光束分割部材、前記第1導光部および前記第2導光部は、空気中に配置されていることが好ましい。
このような構成によれば、真空チャンバーのような大型な重量物を必要としないため、レーザ干渉装置の小型化および軽量化が可能である。軽量化はレーザ干渉装置の固有振動数を向上できるため、更なる高精度化を図ることができる。なお、本発明では、測定環境の温度、気圧、湿度または二酸化炭素濃度などによって空気の屈折率が変動した場合、第1分配経路および第2分配経路に同程度の光路長の変化が生じるため、光路長の変動を抑制できる。すなわち、レーザ光の光路が空気中であっても測定精度の低下が生じない。
本発明の一実施形態にかかるレーザ干渉装置を示す平面図である。 図1に示すレーザ干渉装置のII-II線断面図である。 図1に示すレーザ干渉装置を矢印III方向から見たときの側面図である。 前記実施形態の第1導光部および第2導光部を示す模式図である。 前記実施形態の変形例にかかるレーザ干渉装置を示す平面図である。 従来技術のレーザ干渉装置を示す平面図である。
本発明の一実施形態について図1~図4を参照して説明する。なお、図1では、レーザ光の光路を図示するために、レーザ干渉装置1のいくつかの要素の上部を切断した状態で示している。
本実施形態のレーザ干渉装置1は、スライダ3に載置される対象物Wを観察しつつ、一方向に移動するスライダ3の変位量を検出可能な装置である。
具体的には、本実施形態の対象物Wは線度器であり、レーザ干渉装置1は、レーザ干渉計6により検出されたスライダ3の変位量を基準とし、光電顕微鏡5により検出される線度器の目盛線間隔の偏差を算出することにより、線度器の精度評価を行う装置として構成されている。
(レーザ干渉装置1)
まず、レーザ干渉装置1の全体的な構成について説明する。
レーザ干渉装置1は、ベース2と、ベース2に対して移動可能なスライダ3と、スライダ3を駆動する駆動機構4と、スライダ3に配置される対象物Wを観察可能な光電顕微鏡5と、スライダ3の変位を検出するためのレーザ干渉計6と、を備えている。
ベース2は、水平に配置された上面21を有しており、この上面21に対してスライダ3やレーザ干渉計6などが設置される。また、ベース2には、スライダ3を跨ぐように配置されたブリッジ構造体22が設けられている。ブリッジ構造体22の両脚は、ベース2に固定されている。
スライダ3は、ベース2の上面21に平行な一方向(以下、X方向)に移動可能である。
スライダ3上には、対象物Wがセットされる。この対象物Wは、後述する測定光路筒66の中心と同一線上に配置されることが好ましい。
駆動機構4は、例えば送りねじ機構によって構成され、スライダ3をX方向に駆動する。また、駆動機構4は、スライダ3だけでなく、レーザ干渉計6のキャリッジ668にも連結されており、スライダ3と共にキャリッジ668をX方向に駆動する。
光電顕微鏡5は、スライダ3の上方においてブリッジ構造体22に支持されている。本実施形態において、光電顕微鏡5の観察光軸Aは、ベース2の上面21に平行かつX方向に直交する直交方向(以下、Y方向)に沿って配置されており、スライダ3に載置された対象物Wを観察可能である。
レーザ干渉計6は、後述に説明するが、干渉計の原理を利用して、スライダ3の変位を検出するための干渉光を出力する。
(レーザ干渉計6)
次に、レーザ干渉計6の構成について説明する。
レーザ干渉計6は、レーザ光源61、1/2波長板62、真空チャンバー63、光束分割合成部材64、第1導光部71、第2導光部72、測定反射体65、測定光路筒66、参照反射体67、参照光路筒68、検出部69を有する。
レーザ光源61は、例えばヘリウムネオンレーザであり、安定した周波数のレーザ光を出射する。
1/2波長板62は、レーザ光源61から出射されたレーザ光の偏光状態を調整する。
真空チャンバー63は、光束分割合成部材64、第1導光部71および第2導光部72を収容する容器であり、真空チャンバー63内の空間は、真空状態に維持される。また、真空チャンバー63は、レーザ光源61から出射されて1/2波長板62を透過したレーザ光が透過する窓部631を有している。
光束分割合成部材64は、本発明の光束分割部材に相当するものであり、入射光を透過光と反射光とに分割する分割面641を有する(図4参照)。本実施形態の光束分割合成部材64は、偏光ビームスプリッタである。光束分割合成部材64は、レーザ光源61から出射されて1/2波長板62を透過したレーザ光のうち、P偏光を透過させて測定光として出射し、S偏光を反射して参照光として出射する。
また、光束分割合成部材64は、測定反射体65で反射されて戻った測定光と、参照反射体67で反射されて戻った参照光とを合成して出射する。
第1導光部71は、光学素子群から構成されている。この第1導光部71は、光束分割合成部材64から出射された測定光を導光し、当該測定光を測長方向(X方向)に出射することで、測定反射体65との間に直線状の測定光路Lp1を形成する。また、第1導光部71は、測定反射体65で反射され、測定光路Lp1を戻る測定光を光束分割合成部材64に導く。
第2導光部72は、第1導光部71と同内容の光学素子群から構成されている。この第2導光部72は、光束分割合成部材64から出射された参照光を導光し、当該参照光を測長方向(X方向)に出射することで、参照反射体67との間に、測定光路Lp1に対して平行な参照光路Lp2を形成する。また、第2導光部72は、参照反射体67で反射され、参照光路Lp2を戻る参照光を光束分割合成部材64に導く。
なお、測定光路Lp1、参照光路Lp2および観察光軸Aは、ベース面に垂直な方向(以下、Z方向)において同じ位置に配置される。
測定反射体65は、スライダ3に取り付けられており、スライダ3と共にX方向に移動可能である。この測定反射体65は、例えばコーナーキューブプリズムなどのリトロリフレクターであり、第1導光部71から出射された測定光を再帰反射する。
測定光路筒66は、測定光路Lp1を囲うようにX方向に沿って配置されている。測定光路筒66の一端部は、真空チャンバー63に接続され、測定光路筒66の他端部は、測定反射体65に固定されている。この測定光路筒66は、測定反射体65がX方向に移動することによってX方向に伸縮するように構成されている。
具体的には、測定光路筒66は、ベローズ661(蛇腹菅)と、二重ベローズ662,663と、中間筒664,665とが連結されることによって構成されている。二重ベローズ662,663は、内側空間および外側空間を区画する二重構造を有しており、内側空間を真空状態に保つと共に、外側空間を大気圧以上の所定の圧力に保つことで、圧力バランスをとっている。中間筒664は、X方向に移動可能なキャリッジ668によって支持されており、駆動機構4によりX方向に駆動される。
参照反射体67は、光電顕微鏡5の観察光軸A上に配置され、ブリッジ構造体22に取り付けられている。この参照反射体67は、例えばコーナーキューブプリズムなどのリトロリフレクターであり、第2導光部72から出射された参照光を再帰反射する。
参照光路筒68は、参照光路Lp2を囲うようにX方向に沿って配置されている。参照光路筒68の一端部は、真空チャンバー63に接続され、参照光路筒68の他端部は、参照反射体67に固定されている。
具体的には、参照光路筒68は、パイプ構造体681と、パイプ構造体681の両側にそれぞれ配置された二重ベローズ682,683とを有する。なお、二重ベローズ682,683は、前述した二重ベローズ662,663と同様、二重構造を有している。参照光路筒68は、伸縮することを前提としていないが、二重ベローズ682,683を有することで、レーザ干渉装置1の各要素が熱膨張した場合にX方向の負荷が生じることを防止できる。
検出部69は、光束分割合成部材64から出射される合成光を受光して検出信号を出力する。この検出部69は、外部の信号処理装置に接続されており、信号処理装置によって検出信号が処理されることにより、測定反射体65の変位量が演算される。検出部69および信号処理装置の具体的構成については、公知技術を利用可能であるため、説明を省略する。
(第1導光部71および第2導光部72)
次に、第1導光部71および第2導光部72の各構成について、図4を参照して説明する。なお、図4は、真空チャンバー63内に配置された光束分割合成部材64、第1導光部71および第2導光部72を示している。
本実施形態において、第1導光部71および第2導光部72は、それぞれ、同一のXY平面上に配置された複数の光学素子から構成されている。
具体的には、第1導光部71は、光束分割合成部材64側から順に、直角プリズム711、偏光ビームスプリッタ712および直角プリズム713を有している。また、第2導光部72は、光束分割合成部材64側から順に、偏光ビームスプリッタ721、直角プリズム722,723を有している。
ここで、偏光ビームスプリッタ712,721は、大きさおよび材質の屈折率が互いに等しい。また、直角プリズム711,713,722,723は、大きさおよび材質の屈折率が互いに等しい。
すなわち、第1導光部71を構成する光学素子群と、第2導光部72を構成する光学素子群とは、光学素子の数、材質および大きさが揃えられている。
このような構成において、光束分割合成部材64を透過した測定光L1は、第1導光部71において、直角プリズム711で反射され、偏光ビームスプリッタ712を透過し、直角プリズム713で反射されることにより、測長方向(X方向)に出射される。
一方、光束分割合成部材64で反射された参照光L2は、第2導光部72において、偏光ビームスプリッタ721で反射された後、直角プリズム722および直角プリズム723で反射されることにより、測長方向(X方向)に出射される。
ここで、光束分割合成部材64の分割面641から第1導光部71の出射面71Aまでの測定光の経路を第1分配経路Dp1とし、分割面641から第2導光部72の出射面72Aまでの参照光の経路を第2分配経路Dp2とするとき、第1分配経路Dp1と第2分配経路Dp2とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しい。
なお、光学的な光路長とは、光が進む経路の機械的な経路長に対して当該経路を形成する媒質の屈折率を掛けた長さとなる。
また、光束分割合成部材64は、第1導光部71の出射面71Aから出射する測定光L1の経路(図1の測定光路Lp1)と、第2導光部72の出射面72Aから出射する参照光L2の経路(図1の参照光路Lp2)との間隔を等分する仮線Lt上に配置されている。これにより、第1分配経路Dp1と第2分配経路Dp2とは、X方向の機械的な経路長W1,W2が互いに等しく、かつ、Y方向の機械的な経路長D1,D2が互いに等しくなるように形成されている。
また、第1導光部71において、直角プリズム711,713は、ピッチングおよびヨーイングの両方の姿勢調整が可能に構成されている。
同様に、第2導光部72において、直角プリズム722,723は、ピッチングおよびヨーイングの両方の姿勢調整が可能に構成されている。
〔効果〕
本実施形態のレーザ干渉装置1では、測定光路Lp1と参照光路Lp2とが、測長方向(X方向)に沿って配置されている。よって、前述の特許文献1と同様、レーザ干渉装置1に熱膨張等が生じた場合、測定光路Lp1と参照光路Lp2の両方で光路長が同様に変化するため、光路長差に生じる誤差を低減できる。
また、本実施形態では、第1分配経路Dp1と第2分配経路Dp2とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しい。このため、真空チャンバー63が熱膨張し、第1導光部71および第2導光部72の各光学要素に配置ずれが生じた場合において、第1分配経路Dp1で生じる光路長の変化量と、第2分配経路Dp2で生じる光路長の変化量とを同程度にすることができる。この結果、光路長差に生じる誤差をより低減することができ、レーザ干渉装置1による測定精度を向上できる。
本実施形態では、光束分割合成部材64の配置により、第1分配経路Dp1と第2分配経路Dp2とは、X方向およびY方向のそれぞれにおいて等しく構成されている。
このため、X方向およびY方向のどちらに熱膨張が発生しても、第1分配経路Dp1で生じる光路長の変化量と、第2分配経路Dp2で生じる光路長の変化量とを同程度にすることができる。この結果、光路長差に生じる誤差をより低減することができ、レーザ干渉装置1による測定精度をより向上できる。
本実施形態では、第1導光部71を構成する光学素子群と第2導光部72を構成する光学素子群との間で、光学素子の材質を揃えることにより、機械的な経路長に影響する熱膨張係数や、光学的な経路長に影響する屈折率および当該屈折率の温度特性を揃えることができる。さらに、第1導光部71を構成する光学素子群と第2導光部72を構成する光学素子群との間で、光学素子の数および大きさを揃えることにより、光学素子内の光路の合計が等しい。このため、第1導光部71および第2導光部72に伝わる熱によって、光学素子の部品寸法が変化したり、光学素子内の屈折率が変化したりする場合であっても、第1分配経路Dp1で生じる光路長の変化量と、第2分配経路Dp2で生じる光路長の変化量とを同程度にすることができる。これにより、第1導光部71および第2導光部72を構成する光学素子としてミラー以外の光学素子を用いつつ、レーザ干渉装置1による測定精度を向上させることができる。
本実施形態では、直角プリズム711,713のピッチングおよびヨーイングを調整することにより、測定光路Lp1を測長方向に平行、かつ、測定反射体65の任意の位置に入射できるように調整することができる。同様に、直角プリズム722,723のピッチングおよびヨーイングを調整することにより、参照光路Lp2を測長方向に平行、かつ、参照反射体67の任意の位置に入射できるように調整することができる。このような調整方法は、光束分割合成部材64の姿勢を調整する方法に比べて、測定光路Lp1および参照光路Lp2をそれぞれ個別に調整でき、かつ、ピッチングとヨーイングを分けて調整できるため、調整作業が容易である。
本実施形態において、光束分割合成部材64は、偏光ビームスプリッタであり、第1導光部71および第2導光部72が偏光ビームスプリッタ712,721を含んで構成されている。このような構成では、測定反射体65で反射された測定光または参照反射体67で反射された参照光が理想の偏光状態から崩れてしまった場合、偏光ビームスプリッタ7
12,721がフィルタとして機能し、不要な偏光成分をカットすることができる。これにより、測定精度をより向上させることができる。
〔変形例〕
本発明は前述した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
前記実施形態のレーザ干渉装置1は、真空チャンバー63を備えているが、この真空チャンバー63は省略されてもよい。この場合、真空チャンバー63に接続されていた測定光路筒66および参照光路筒68の各二重ベローズ663,683も省略される。
例えば、図5は、前記実施形態の変形例にかかるレーザ干渉装置1Aを示す図である。図5において、光束分割合成部材64、第1導光部71および第2導光部72は、空気環境下でベース2に配置されている。また、測定光路筒66および参照光路筒68の各一端部は、レーザ光を透過させる窓部669,689によって塞がれている。
このような変形例では、真空チャンバー63のような大型な重量物を用いないことにより、レーザ干渉装置1の小型化および軽量化が可能である。軽量化はレーザ干渉装置1の固有振動数を向上できるため、更なる高精度化を図ることができる。
なお、この変形例では、図示を省略しているが、真空チャンバー63の代わりに空気揺らぎ防止用のカバーを用いることが好ましい。
また、この変形例では、測定環境の温度、気圧、湿度または二酸化炭素濃度などによって空気の屈折率が変動した場合、第1分配経路Dp1および第2分配経路Dp2に同程度の光路長の変化が生じるため、光路長の変動を抑制できる。すなわち、レーザ光の光路が空気中であっても測定精度の低下が生じない。
前記実施形態では、第1分配経路Dp1と第2分配経路Dp2との間で、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しいという条件が満たされていれば、第1導光部71および第2導光部72を構成する各光学素子群について、光学素子の数、材質、大きさ、種類および配置等は、それぞれ変更可能である。
例えば、前記実施形態において、第1導光部71を構成する光学素子群と、第2導光部72を構成する光学素子群とは、光学種類の数、材質および大きさが揃えられているが、少なくともいずれかの点で異なってもよい。
前記実施形態では、第1導光部71および第2導光部72が偏光ビームスプリッタ712,721を含んで構成されているが、本発明はこれに限られない。例えば、偏光ビームスプリッタ712,721は、それぞれ直角プリズムに変更されてもよい。
また、前記実施形態において、各直角プリズム711,713,722,723の内面が反射面として使用されているが、各直角プリズム711,713,722,723の外面が反射面として使用されてもよい。あるいは、直角プリズム711,713,722,723の替わりに平面ミラーを用いてもよい。
前記実施形態では、本発明の光束分割部材として、偏光ビームスプリッタである光束分割合成部材64を説明しているが、本発明はこれに限られない。例えば、レーザ光を測定光および参照光に分割する機能と、測定光および参照光を合成する機能とは、それぞれ別の部材によって実現されてもよい。
前記実施形態では、本発明の偏光素子として偏光ビームスプリッタ712,721を説明しているが、本発明はこれに限られない。例えば、第1導光部71および第2導光部72は、偏光ビームスプリッタ712,721以外の偏光素子を含んで構成されてもよい。
前記実施形態では、測定反射体65および参照反射体67がそれぞれコーナーキューブである場合を例示しているが、本発明はこれに限られない。
例えば、測定反射体65および参照反射体67として、それぞれ平面鏡を用い、レーザ干渉計6が偏光を用いないように構成されてもよい。
このような場合、第1導光部71の直角プリズム711,713は、いずれか一方がピッチングおよびヨーイングの姿勢調整可能に構成されてもよい。また、第1導光部71の直角プリズム711,713は、一方がピッチングの姿勢調整可能に構成され、他方がヨーイングの姿勢調整可能に構成されてもよい。これにより、測定光路Lp1を測長方向に平行に調整できる。なお、第2導光部72についても第1導光部71と同様である。
前記実施形態のレーザ干渉装置1は、光電顕微鏡5を含んで構成されているが、本発明はこれに限られず、プローブ、加工工具、または露光光学系などを含んで構成されてもよい。例えば、レジストを塗布された線度器用基板が対象物Wである場合、レーザ干渉装置1は、光電顕微鏡5の替わりに、線度器用基板にメモリパターンを露光する露光光学系を含んで構成されてもよい。
その他、本発明は、移動体の変位量を測定する様々なレーザ干渉装置に適用することができる。
1,1A…レーザ干渉装置、2…ベース、21…上面、22…ブリッジ構造体、3…スライダ、4…駆動機構、5…光電顕微鏡、6…レーザ干渉計、61…レーザ光源、62…2波長板、63…真空チャンバー、631…窓部、64…光束分割合成部材、641…分割面、65…測定反射体、66…測定光路筒、661…ベローズ、662,663…二重ベローズ、664,665…中間筒、668…キャリッジ、669…窓部、67…参照反射体、68…参照光路筒、681…パイプ構造体、682,683…二重ベローズ、689…窓部、69…検出部、71…第1導光部、711,713…直角プリズム、712…偏光ビームスプリッタ、71A…出射面、72…第2導光部、721…偏光ビームスプリッタ、722,723…直角プリズム、72A…出射面、A…観察光軸、Dp1…第1分配経路、Dp2…第2分配経路、L1…測定光、L2…参照光、Lp1…測定光路、Lp2…参照光路、Lt…仮線、W…対象物。

Claims (8)

  1. 測長方向に移動可能な測定反射体と、
    前記測長方向に直交する直交方向において前記測定反射体とは異なる位置に配置された参照反射体と、
    レーザ光源から出力されたレーザ光を測定光と参照光とに分割する分割面を有する光束分割部材と、
    前記光束分割部材から入射された前記測定光を導光し、前記測定光を前記測定反射体に向かって前記測長方向に出射する第1導光部と、
    前記光束分割部材から入射された前記参照光を導光し、前記参照光を前記参照反射体に向かって前記測長方向に出射する第2導光部と、を備え、
    前記分割面から前記第1導光部の出射面までの前記測定光の経路である第1分配経路と、前記分割面から前記第2導光部の出射面までの前記参照光の経路である第2分配経路とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しく、
    機械的な経路長が前記測長方向および前記直交方向のそれぞれで等しく、かつ、光学的な光路長が前記測長方向および前記直交方向のそれぞれで等しく、
    前記光束分割部材は、前記第1導光部の前記出射面から出射する前記測定光の経路と、前記第2導光部の前記出射面から出射する前記参照光の経路との間隔を等分する仮線上に配置されている
    ことを特徴とするレーザ干渉装置。
  2. 測長方向に移動可能な測定反射体と、
    前記測長方向に直交する直交方向において前記測定反射体とは異なる位置に配置された参照反射体と、
    レーザ光源から出力されたレーザ光を測定光と参照光とに分割する分割面を有する光束分割部材と、
    前記光束分割部材から入射された前記測定光を導光し、前記測定光を前記測定反射体に向かって前記測長方向に出射する第1導光部と、
    前記光束分割部材から入射された前記参照光を導光し、前記参照光を前記参照反射体に向かって前記測長方向に出射する第2導光部と、を備え、
    前記分割面から前記第1導光部の出射面までの前記測定光の経路である第1分配経路と
    、前記分割面から前記第2導光部の出射面までの前記参照光の経路である第2分配経路とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しく、
    前記第1導光部を構成する光学素子群と、前記第2導光部を構成する光学素子群とは、光学素子の数、材質および大きさが揃えられている
    ことを特徴とするレーザ干渉装置。
  3. 測長方向に移動可能な測定反射体と、
    前記測長方向に直交する直交方向において前記測定反射体とは異なる位置に配置された参照反射体と、
    レーザ光源から出力されたレーザ光を測定光と参照光とに分割する分割面を有する光束分割部材と、
    前記光束分割部材から入射された前記測定光を導光し、前記測定光を前記測定反射体に向かって前記測長方向に出射する第1導光部と、
    前記光束分割部材から入射された前記参照光を導光し、前記参照光を前記参照反射体に向かって前記測長方向に出射する第2導光部と、を備え、
    前記分割面から前記第1導光部の出射面までの前記測定光の経路である第1分配経路と、前記分割面から前記第2導光部の出射面までの前記参照光の経路である第2分配経路とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しく、
    前記第1導光部および前記第2導光部は、それぞれ、ピッチングおよびヨーイングの姿勢調整が可能に構成された光学素子、または、ピッチングの姿勢調整が可能に構成された光学素子とヨーイングの姿勢調整が可能に構成された光学素子との2つの光学素子を含んで構成されている
    ことを特徴とするレーザ干渉装置。
  4. 測長方向に移動可能な測定反射体と、
    前記測長方向に直交する直交方向において前記測定反射体とは異なる位置に配置された参照反射体と、
    レーザ光源から出力されたレーザ光を測定光と参照光とに分割する分割面を有する光束分割部材と、
    前記光束分割部材から入射された前記測定光を導光し、前記測定光を前記測定反射体に向かって前記測長方向に出射する第1導光部と、
    前記光束分割部材から入射された前記参照光を導光し、前記参照光を前記参照反射体に向かって前記測長方向に出射する第2導光部と、を備え、
    前記分割面から前記第1導光部の出射面までの前記測定光の経路である第1分配経路と、前記分割面から前記第2導光部の出射面までの前記参照光の経路である第2分配経路とは、機械的な経路長が互いに等しく、かつ、光学的な光路長が互いに等しく、
    前記第1導光部および前記第2導光部は、それぞれ、ピッチングおよびヨーイングの両方の姿勢調整が可能に構成された2つの光学素子を含んで構成されている
    ことを特徴とするレーザ干渉装置。
  5. 記光束分割部材は、偏光ビームスプリッタであり、
    前記第1導光部および前記第2導光部は、それぞれ、偏光素子を含んで構成されている
    ことを特徴とする、請求項1~4のいずれか一項に記載のレーザ干渉装置。
  6. 記光束分割部材、前記第1導光部および前記第2導光部は、空気中に配置されている
    ことを特徴とする、請求項1~5のいずれか一項に記載のレーザ干渉装置。
  7. 請求項2に記載のレーザ干渉装置において、
    前記第1導光部および前記第2導光部は、それぞれ、ピッチングおよびヨーイングの姿勢調整が可能に構成された光学素子、または、ピッチングの姿勢調整が可能に構成された光学素子とヨーイングの姿勢調整が可能に構成された光学素子との2つの光学素子を含んで構成されている
    ことを特徴とするレーザ干渉装置。
  8. 請求項2に記載のレーザ干渉装置において、
    前記第1導光部および前記第2導光部は、それぞれ、ピッチングおよびヨーイングの両方の姿勢調整が可能に構成された2つの光学素子を含んで構成されている
    ことを特徴とするレーザ干渉装置。
JP2020020561A 2020-02-10 2020-02-10 レーザ干渉装置 Active JP7433954B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020020561A JP7433954B2 (ja) 2020-02-10 2020-02-10 レーザ干渉装置
US17/160,992 US11378386B2 (en) 2020-02-10 2021-01-28 Laser interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020561A JP7433954B2 (ja) 2020-02-10 2020-02-10 レーザ干渉装置

Publications (3)

Publication Number Publication Date
JP2021124483A JP2021124483A (ja) 2021-08-30
JP2021124483A5 JP2021124483A5 (ja) 2023-02-17
JP7433954B2 true JP7433954B2 (ja) 2024-02-20

Family

ID=77177055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020561A Active JP7433954B2 (ja) 2020-02-10 2020-02-10 レーザ干渉装置

Country Status (2)

Country Link
US (1) US11378386B2 (ja)
JP (1) JP7433954B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510794A (ja) 1998-04-04 2002-04-09 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 位置測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3471239A (en) * 1966-01-10 1969-10-07 Singer General Precision Interferometric apparatus
EP1031868B1 (de) * 1999-02-26 2003-05-14 Dr. Johannes Heidenhain GmbH Kompensierter Parallel-Strahlteiler mit zwei Platten sowie Interferometer
JP3400393B2 (ja) 1999-10-13 2003-04-28 株式会社ミツトヨ レーザ干渉装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510794A (ja) 1998-04-04 2002-04-09 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 位置測定装置

Also Published As

Publication number Publication date
JP2021124483A (ja) 2021-08-30
US20210247176A1 (en) 2021-08-12
US11378386B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
KR100554886B1 (ko) 2파장을 갖는 간섭계 시스템 및 그 시스템을 구비한 전사장치
US9036154B2 (en) Four-axis four-subdividing interferometer
US4984891A (en) Laser gauge interferometer and locating method using the same
US6509971B2 (en) Interferometer system
JP2005338075A (ja) ウェハステージの平行移動を測定するヘテロダインレーザ干渉計
US6057921A (en) Two piece mirror arrangement for interferometrically controlled stage
JP2007052022A (ja) 物体を測定するためのシステム及び垂直変位を測定するための方法
JP4852318B2 (ja) 変位検出装置、偏光ビームスプリッタ及び回折格子
KR100200453B1 (ko) 광 압력 검출 방법 및 광 압력 검출 장치
JP5786270B2 (ja) 2色干渉計測装置
JP7433954B2 (ja) レーザ干渉装置
US20050036152A1 (en) Vibration-resistant interferometer apparatus
CN108286943B (zh) 应用于光刻系统工作台的位移测量光学系统
US6559951B2 (en) Air refractometer
JP4081317B2 (ja) 波長較正用干渉測定装置
JPH04351905A (ja) レーザ測長装置を備えたxyステージ
JP2023100358A (ja) レーザ干渉装置
US20100020332A1 (en) Interferometric device for position measurement and coordinate measuring machine
JP3230280B2 (ja) 干渉計
JP3633828B2 (ja) 構造体の制御方式
JP3019050B2 (ja) 干渉計装置
JP5361230B2 (ja) 2波長レーザ干渉計評価校正方法、評価校正装置および評価校正システム
JP3412212B2 (ja) 干渉計装置
JP3045567B2 (ja) 移動体位置測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7433954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150