JP7433839B2 - Lightwave target detection device and polarization control method - Google Patents

Lightwave target detection device and polarization control method Download PDF

Info

Publication number
JP7433839B2
JP7433839B2 JP2019198436A JP2019198436A JP7433839B2 JP 7433839 B2 JP7433839 B2 JP 7433839B2 JP 2019198436 A JP2019198436 A JP 2019198436A JP 2019198436 A JP2019198436 A JP 2019198436A JP 7433839 B2 JP7433839 B2 JP 7433839B2
Authority
JP
Japan
Prior art keywords
polarization
incident light
polarizing filter
infrared detector
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019198436A
Other languages
Japanese (ja)
Other versions
JP2021071605A (en
Inventor
一秀 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019198436A priority Critical patent/JP7433839B2/en
Publication of JP2021071605A publication Critical patent/JP2021071605A/en
Application granted granted Critical
Publication of JP7433839B2 publication Critical patent/JP7433839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

この発明の実施形態は、光波目標検出装置及び偏光制御方法に関する。 Embodiments of the present invention relate to a lightwave target detection device and a polarization control method .

光波目標検出装置は、レーザ光を捜索域に向けて照射し、その反射光を赤外線撮像装置で撮像し、その撮像した映像信号から目標成分を抽出して目標の方向及び位置を検出する。この種の装置を搭載する目標追跡誘導装置は、レーザ光によって検出された目標を逐次同定することで目標を追跡し、目標に向けて被搭載機を誘導する。 A light wave target detection device irradiates a search area with laser light, images the reflected light with an infrared imaging device, extracts a target component from the imaged video signal, and detects the direction and position of the target. A target tracking and guidance device equipped with this type of device tracks the target by sequentially identifying the target detected by laser light, and guides the mounted aircraft toward the target.

ところで、上記光波目標検出装置に用いられる赤外線撮像装置では、赤外線検知器の感度補正のための黒背景を形成する手段として、光波入射経路に開閉蓋を配置し、当該開閉蓋の開閉駆動機構を搭載して、感度補正の都度、開閉蓋で光波入射を遮蔽する処置を行っており、装置の大型化の要因となっている。この要因は、移動体(特に飛翔体)搭載用として問題が大きい。 By the way, in the infrared imaging device used in the above-mentioned light wave target detection device, as a means for forming a black background for sensitivity correction of the infrared detector, an opening/closing lid is disposed in the light wave incident path, and the opening/closing drive mechanism of the opening/closing lid is Each time the sensitivity is corrected, an opening/closing lid is installed to block the incidence of light waves, which is a factor in increasing the size of the device. This factor is a serious problem when used to mount a moving object (particularly a flying object).

特開平6-51921号公報Japanese Patent Application Publication No. 6-51921

以上のように、従来の光波目標検出装置に用いられる赤外線撮像装置では、赤外線検知器の感度補正のための黒背景を形成する手段として、光波入射経路に開閉蓋を配置し、当該開閉蓋の開閉駆動機構を搭載する処置を行っており、装置の大型化の要因となっている。 As described above, in the infrared imaging device used in the conventional light wave target detection device, an opening/closing lid is placed in the light wave incident path as a means for forming a black background for sensitivity correction of the infrared detector. We are installing an opening/closing drive mechanism, which is a factor in making the device larger.

この発明に係る実施形態の課題は、赤外線検知器の感度補正のための黒背景を駆動機構を用いずに、簡易な構造で形成することのできる光波目標検出装置及び偏光制御方法を提供することにある。 An object of the embodiments of the present invention is to provide a lightwave target detection device and a polarization control method that can form a black background for sensitivity correction of an infrared detector with a simple structure without using a drive mechanism. There is a particular thing.

実施形態によれば、被搭載機から水上の目標検出を行う光波目標検出装置は、直線偏光のレーザ光を照射する照射器と、前記照射器で照射されたレーザ光の反射光を入射し、その入射光の赤外線から熱源目標像を検出する赤外線撮像装置と、前記照射器及び前記赤外線撮像装置を所定方向に指向させる駆動装置と、前記照射器、前記赤外線撮像装置及び前記駆動装置を制御する制御装置とを具備する。前記赤外線撮像装置は、前記入射光の赤外線を検知して前記熱源目標像を検出する赤外線検知器と、前記赤外線検知器の前記入射光の光軸上に配置され、前記入射光の偏光面を制限する偏光制御器とを具備する。前記偏光制御器は、前記赤外線検知器の前記入射光の光軸上に、偏光面が横方向の偏光成分をカットするように配置される第1の偏光フィルタと、前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタの後方に、偏光面が前記第1の偏光フィルタがカットする偏光成分の方向に対して直交する方向の偏光成分をカットするように配置される第2の偏光フィルタと、前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタ及び前記第2の偏光フィルタの間に配置され、磁力強度に応じてファラデー効果により偏光面が回転するファラデーローテータと、前記ファラデーローテータにかける磁力強度を制御する磁力強度制御器とを具備する。前記制御装置は、前記赤外線検知器の感度補正時に、前記偏光制御器に入射光遮断の指示を送り、前記赤外線検知器の運用時に前記偏光制御器に入射光遮断解除の指示及び前記被搭載機のロール角の情報を送る。前記磁力強度制御器は、前記入射光遮断の指示に応じて前記磁力強度を0にして前記ファラデーローテータによる偏光面の回転を停止させ、前記第1の偏光フィルタからの入射光の偏光面を維持させることで、前記入射光を前記第2の偏光フィルタで遮断して前記赤外線検知器の黒背景を形成し、前記入射光遮断解除の指示及び前記被搭載機のロール角の情報に応じて前記ファラデーローテータに前記ロール角に相当する磁力を含む所定の磁力強度を与え、前記ファラデーローテータで前記第1の偏光フィルタからの入射光の偏光面を前記ロール角に相当する角度を付加して回転させることで、前記赤外線検知器に送出する前記第2の偏光フィルタの出射光から前記被搭載機のロールによって発生したクラッタの偏光成分を除去する。
また、被搭載機から水上の目標検出を行う光波目標検出装置の赤外線撮像装置に用いられる偏光制御器の偏光制御方法は、前記光波目標検出装置が、直線偏光のレーザ光を照射する照射器と、前記照射器で照射されたレーザ光の反射光を入射して、その入射光の赤外線から熱源目標像を検出する赤外線撮像装置と、前記照射器及び前記赤外線撮像装置を所定方向に指向させる駆動装置と、前記照射器、前記赤外線撮像装置及び前記駆動装置を制御する制御装置とを具備し、前記赤外線撮像装置が、前記入射光の赤外線を検知して前記熱源目標像を検出する赤外線検知器と、前記赤外線検知器の前記入射光の光軸上に配置され、前記入射光の偏光面を制限する偏光制御器とを具備し、前記偏光制御器が、前記赤外線検知器の前記入射光の光軸上に、偏光面が横方向の偏光成分をカットするように配置される第1の偏光フィルタと、前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタの後方に、偏光面が前記第1の偏光フィルタがカットする偏光成分の方向に対して直交する方向の偏光成分をカットするように配置される第2の偏光フィルタと、前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタ及び前記第2の偏光フィルタの間に配置され、磁力強度に応じてファラデー効果により偏光面が回転するファラデーローテータと、前記ファラデーローテータにかける磁力強度を制御する磁力強度制御器とを具備し、前記制御装置が、前記赤外線検知器の感度補正時に、前記偏光制御器に入射光遮断の指示を送り、前記赤外線検知器の運用時に前記偏光制御器に入射光遮断解除の指示及び前記被搭載機のロール角の情報を送る場合に、前記磁力強度制御器が、前記入射光遮断の指示に応じて前記磁力強度を0にして前記ファラデーローテータによる偏光面の回転を停止させ、前記第1の偏光フィルタからの入射光の偏光面を維持させることで、前記入射光を前記第2の偏光フィルタで遮断して前記赤外線検知器の黒背景を形成し、前記入射光遮断解除の指示及び前記被搭載機のロール角の情報に応じて前記ファラデーローテータに前記ロール角に相当する磁力を含む所定の磁力強度を与え、前記ファラデーローテータで前記第1の偏光フィルタからの入射光の偏光面を前記ロール角に相当する角度を付加して回転させることで、前記赤外線検知器に送出する前記第2の偏光フィルタの出射光から前記被搭載機のロールによって発生したクラッタの偏光成分を除去する。
According to an embodiment, a light wave target detection device that detects targets on water from a mounted aircraft includes an irradiator that irradiates linearly polarized laser light, and a reflected light of the laser light irradiated by the irradiator, and an infrared imaging device that detects a heat source target image from the infrared rays of the incident light; a drive device that directs the irradiator and the infrared imaging device in a predetermined direction; and a control device that controls the irradiator, the infrared imaging device, and the drive device. and a control device. The infrared imaging device includes an infrared detector that detects the infrared rays of the incident light to detect the heat source target image; and a polarization controller that limits the polarization. The polarization controller includes a first polarization filter disposed on the optical axis of the incident light of the infrared detector so that a polarization plane cuts a horizontal polarization component; A first polarizing filter arranged behind the first polarizing filter on the optical axis of the emitted light so that the polarizing plane cuts a polarized light component in a direction perpendicular to the direction of the polarized light component cut by the first polarizing filter. and the first polarizing filter and the second polarizing filter on the optical axis of the incident light of the infrared detector, and the plane of polarization is rotated by the Faraday effect according to the magnetic strength. and a magnetic force intensity controller that controls the magnetic force intensity applied to the Faraday rotator. The control device sends an instruction to block the incident light to the polarization controller when correcting the sensitivity of the infrared detector, and sends an instruction to the polarization controller to cancel the blocking of the incident light and sends an instruction to the mounted device to cancel the blocking of the incident light when the infrared detector is operated. Send roll angle information. The magnetic force intensity controller sets the magnetic force intensity to 0 in response to the instruction to interrupt the incident light, stops rotation of the plane of polarization by the Faraday rotator, and maintains the plane of polarization of the incident light from the first polarizing filter. The incident light is blocked by the second polarizing filter to form a black background of the infrared detector, and the incident light is blocked by the second polarizing filter, and the incident light is A predetermined magnetic strength including a magnetic force corresponding to the roll angle is applied to the Faraday rotator, and the Faraday rotator rotates the polarization plane of the incident light from the first polarizing filter by adding an angle corresponding to the roll angle. As a result, the polarized light component of clutter generated by the roll of the mounted machine is removed from the light emitted from the second polarizing filter to be sent to the infrared detector.
In addition, a polarization control method of a polarization controller used in an infrared imaging device of a lightwave target detection device that detects a target on water from a mounted aircraft is such that the lightwave target detection device uses an irradiator that irradiates linearly polarized laser light. , an infrared imaging device that receives reflected light of the laser beam irradiated by the irradiator and detects a heat source target image from the infrared rays of the incident light; and a drive that directs the irradiator and the infrared imaging device in a predetermined direction. an infrared detector, comprising: a control device for controlling the irradiator, the infrared imaging device, and the driving device; the infrared imaging device detects the infrared rays of the incident light to detect the heat source target image; and a polarization controller that is disposed on the optical axis of the incident light of the infrared detector and limits the plane of polarization of the incident light, and the polarization controller is arranged on the optical axis of the incident light of the infrared detector. a first polarizing filter arranged on the optical axis so that the polarization plane cuts horizontal polarization components; and behind the first polarizing filter on the optical axis of the incident light of the infrared detector. , a second polarizing filter whose polarization plane is arranged so as to cut a polarized light component in a direction perpendicular to the direction of the polarized light component cut by the first polarizing filter; A Faraday rotator that is disposed between the first polarizing filter and the second polarizing filter on the optical axis and whose polarization plane rotates by the Faraday effect according to the magnetic force intensity; and controlling the magnetic force intensity applied to the Faraday rotator. a magnetic force intensity controller, the control device sends an instruction to block the incident light to the polarization controller when correcting the sensitivity of the infrared detector, and blocks the incident light to the polarization controller when the infrared detector is operated. When transmitting an instruction to cancel the interruption and information about the roll angle of the loaded device, the magnetic force intensity controller sets the magnetic force intensity to 0 in response to the instruction to interrupt the incident light, and rotates the plane of polarization by the Faraday rotator. is stopped and the polarization plane of the incident light from the first polarizing filter is maintained, so that the incident light is blocked by the second polarizing filter to form a black background of the infrared detector; A predetermined magnetic force intensity including a magnetic force corresponding to the roll angle is applied to the Faraday rotator in accordance with an instruction to release light blocking and information on the roll angle of the loaded machine, and the Faraday rotator is used to remove light from the first polarizing filter. By rotating the polarization plane of the incident light by adding an angle corresponding to the roll angle, clutter generated by the roll of the mounted machine is removed from the output light of the second polarizing filter that is sent to the infrared detector. Removes polarized light components.

図1は、実施形態に係る光波目標検出装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of a lightwave target detection device according to an embodiment. 図2は、図1に示す光波目標検出装置に用いられる赤外線撮像装置の具体的な構成を示す図である。FIG. 2 is a diagram showing a specific configuration of an infrared imaging device used in the light wave target detection device shown in FIG. 1. 図3は、図2に示す偏光制御器の処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the processing flow of the polarization controller shown in FIG.

以下、図面を参照しながら、種々の実施形態について説明する。
図1は、本実施形態に係る光波目標検出装置の構成を示すブロック図である。図1において、11は所定波長の直線偏光レーザ光を指定方向に照射するレーザ照射器、12はレーザ照射器11で照射されたレーザ光の反射光を入射し、赤外線の目標像を検出する赤外線撮像装置である。レーザ照射器11、赤外線撮像装置12はジンバル13に載置され、当該ジンバル13によって安定姿勢の状態で所定方向に指向制御される。14はレーザ照射器11及び赤外線撮像装置12、ジンバル13を総括的に制御する制御装置である。
Various embodiments will be described below with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of a lightwave target detection device according to this embodiment. In FIG. 1, 11 is a laser irradiator that irradiates a linearly polarized laser beam of a predetermined wavelength in a specified direction, and 12 is an infrared ray that receives reflected light from the laser beam irradiated by the laser irradiator 11 and detects an infrared target image. It is an imaging device. The laser irradiator 11 and the infrared imaging device 12 are placed on a gimbal 13, and the gimbal 13 controls the orientation in a predetermined direction in a stable posture. Reference numeral 14 denotes a control device that collectively controls the laser irradiator 11, the infrared imaging device 12, and the gimbal 13.

図2は、図1に示す光波目標検出装置に用いられる赤外線撮像装置12の具体的な構成を示す図である。図2において、121は偏光制御器、122は赤外線検知器である。偏光制御器121は、赤外線撮像装置の入射光軸上に配置され、入射光の偏光角度を制御して透過量を制限する。赤外線検知器122は、入射光の赤外線波長域を検知して、熱源目標像を検知する。 FIG. 2 is a diagram showing a specific configuration of the infrared imaging device 12 used in the light wave target detection device shown in FIG. 1. In FIG. 2, 121 is a polarization controller, and 122 is an infrared detector. The polarization controller 121 is arranged on the incident optical axis of the infrared imaging device, and controls the polarization angle of the incident light to limit the amount of transmission. The infrared detector 122 detects the infrared wavelength range of incident light to detect the heat source target image.

ここで、上記赤外線検知器122は、運用前にあるいは定期的に、黒背景を形成して感度の補正を行う必要がある。そこで、本実施形態では、上記偏光制御器121に開閉蓋に代わる入射光遮断機能を持たせる。 Here, the infrared detector 122 needs to correct its sensitivity by forming a black background before operation or periodically. Therefore, in this embodiment, the polarization controller 121 is provided with an incident light blocking function in place of the opening/closing lid.

図2示す偏光制御器121は、赤外線検知器122の入射光軸上に、互いに偏光面が直交する(90度ずれている)ように第1の偏光フィルタA1及び第2の偏光フィルタA2を配置し、第1の偏光フィルタA1及び第2の偏光フィルタA2の間に、ファラデー効果により磁力強度に応じて偏光面が回転するファラデーローテータA3を配置し、磁力強度制御器A4で制御装置14からの指示に応じてファラデーローテータA3にかける磁力強度を制御する。 The polarization controller 121 shown in FIG. 2 arranges a first polarization filter A1 and a second polarization filter A2 on the incident optical axis of the infrared detector 122 so that their polarization planes are perpendicular to each other (shifted by 90 degrees). A Faraday rotator A3 whose polarization plane rotates according to the magnetic force intensity due to the Faraday effect is arranged between the first polarizing filter A1 and the second polarizing filter A2, and the magnetic force intensity controller A4 controls the polarization from the control device 14. The strength of the magnetic force applied to the Faraday rotator A3 is controlled according to instructions.

上記ファラデーローテータA3は、次式によるファラデー効果を利用して、電気量の増減により磁場(磁力)を制御することで、機械的な駆動機構を用いることなく、光の旋回角度(偏光角度)を制御することができ、磁力強度を0にすることで、赤外線検知器122への入射光を遮断し、黒背景を形成することができる。
α=VHL
α:旋光度
H:磁場の強さ
L:偏光が通過する物質の長さ
V:透過物質の種類、光の波長、温度に依存するパラメータ
そこで、本実施形態の磁力制御器A4では、図3に示す処理を実行する。まず、運用開始前に制御装置14から光遮断の指示があると(ステップS1)、ファラデーローテータA3への磁力強度を制御(例えば0)にして、第1の偏光フィルタA1を通過した入射光を遮断して赤外線検知器122に入らないようにし、黒背景を形成する(ステップS2)このとき、制御装置14は、感度補正として、赤外線検知器122のパラメータを調整して、感度が最大となるように設定する。
The above-mentioned Faraday rotator A3 uses the Faraday effect according to the following equation to control the magnetic field (magnetic force) by increasing or decreasing the amount of electricity, thereby changing the rotation angle (polarization angle) of light without using a mechanical drive mechanism. By setting the magnetic force strength to 0, it is possible to block the incident light to the infrared detector 122 and form a black background.
α=VHL
α: optical rotation
H: Magnetic field strength
L: Length of material through which polarized light passes
V: Parameter dependent on the type of transparent material, wavelength of light, and temperature Therefore, the magnetic force controller A4 of this embodiment executes the processing shown in FIG. 3. First, when an instruction to cut off light is received from the control device 14 before the start of operation (step S1), the magnetic force intensity to the Faraday rotator A3 is controlled (for example, 0), and the incident light that has passed through the first polarizing filter A1 is controlled. The control device 14 blocks the infrared light from entering the infrared detector 122 to form a black background (step S2). At this time, the control device 14 adjusts the parameters of the infrared detector 122 as sensitivity correction to maximize the sensitivity. Set it as follows.

運用開始後、制御装置14から光遮断解除の指示があると(ステップS3)、光の旋回角度(α)が90°となるように磁力強度を制御する(ステップS4)。これにより、第1の偏光フィルタA1を通過した入射光はファラデーローテータA3、第2の偏光フィルタA2を通過し、赤外線検知器122に入射される。 After the start of operation, when there is an instruction to cancel light blocking from the control device 14 (step S3), the magnetic force strength is controlled so that the turning angle (α) of the light becomes 90° (step S4). As a result, the incident light that has passed through the first polarizing filter A1 passes through the Faraday rotator A3 and the second polarizing filter A2, and then enters the infrared detector 122.

以上のように、本実施形態に係る光波目標検出装置によれば、赤外線検知器122の入射光をファラデーローテータA3を用いた偏光制御器121により電気的に遮断することができるので、感度補正のための黒背景を容易に形成することができ、開閉蓋及び開閉駆動機構のような機械的な構造体を用いる必要がないため、装置全体の小型化に寄与することができる。 As described above, according to the light wave target detection device according to the present embodiment, since the incident light of the infrared detector 122 can be electrically blocked by the polarization controller 121 using the Faraday rotator A3, sensitivity correction can be performed. It is possible to easily form a black background for the purpose of use, and there is no need to use mechanical structures such as an opening/closing lid and an opening/closing drive mechanism, which contributes to miniaturization of the entire device.

ところで、海上での目標検出においては、海面の反射(クラッタ)成分が目標検出のノイズとなる。日光の海面反射は、横方向の偏光成分が主である(縦方向の偏光成分は海面を透過する)ため、海上の捜索を目的とする光波目標検出装置では、横方向の偏光成分をカットするように第1の偏光フィルタA1が配置される。 By the way, in target detection on the sea, reflection (clutter) components from the sea surface become noise in target detection. Sunlight reflected from the sea surface is mainly composed of horizontally polarized components (the vertically polarized components are transmitted through the sea surface), so light wave target detection devices for the purpose of searching at sea cut out the horizontally polarized components. The first polarizing filter A1 is arranged as follows.

ただし、被搭載機がロールによりクラッタの偏光成分の方向と第1の偏光フィルタA1の偏光カット方向が直交していない状況となった場合、海面反射のクラッタ成分が第1の偏光フィルタA1にて十分カットできない。 However, if the mounted aircraft rolls and the direction of the polarized light component of clutter is not perpendicular to the polarized light cut direction of the first polarizing filter A1, the clutter component of the sea surface reflection will be cut off by the first polarizing filter A1. I can't cut it enough.

そこで、本実施形態では、上記構成による偏光制御器121を利用して、制御装置14からのロール角情報に相当する磁力をファラデーローテータA3に与えて光の旋回角度を制御することにより、偏光フィルタBにて再度クラッタ成分をカットする。これにより、運用時の赤外線画像のSN比を大幅に向上させることができる。 Therefore, in this embodiment, the polarization controller 121 having the above configuration is used to apply a magnetic force corresponding to the roll angle information from the control device 14 to the Faraday rotator A3 to control the rotation angle of the light, thereby filtering the polarization filter. At B, the clutter component is cut again. Thereby, the S/N ratio of infrared images during operation can be significantly improved.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 It should be noted that the present invention is not limited to the above-described embodiments as they are, but can be implemented by modifying the constituent elements within the scope of the invention at the implementation stage. Moreover, various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, components of different embodiments may be combined as appropriate.

11…レーザ照射器、12…赤外線撮像装置、13…ジンバル、14…制御装置、121…偏光制御器、122…赤外線検知器、A1…第1の偏光フィルタ、A2…第2の偏光フィルタ、A3…ファラデーローテータ、A4…磁力強度制御器。 DESCRIPTION OF SYMBOLS 11... Laser irradiator, 12... Infrared imaging device, 13... Gimbal, 14... Control device, 121... Polarization controller, 122... Infrared detector, A1... First polarizing filter, A2... Second polarizing filter, A3 ...Faraday rotator, A4...magnetic force intensity controller.

Claims (2)

被搭載機から水上の目標検出を行う光波目標検出装置であって、
直線偏光のレーザ光を照射する照射器と、
前記照射器で照射されたレーザ光の反射光を入射し、その入射光の赤外線から熱源目標像を検出する赤外線撮像装置と、
前記照射器及び前記赤外線撮像装置を所定方向に指向させる駆動装置と、
前記照射器、前記赤外線撮像装置及び前記駆動装置を制御する制御装置と
を具備し、
前記赤外線撮像装置は、
前記入射光の赤外線を検知して前記熱源目標像を検出する赤外線検知器と、
前記赤外線検知器の前記入射光の光軸上に配置され、前記入射光の偏光面を制限する偏光制御器と
を具備し、
前記偏光制御器は、
前記赤外線検知器の前記入射光の光軸上に、偏光面が横方向の偏光成分をカットするように配置される第1の偏光フィルタと、
前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタの後方に、偏光面が前記第1の偏光フィルタがカットする偏光成分の方向に対して直交する方向の偏光成分をカットするように配置される第2の偏光フィルタと、
前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタ及び前記第2の偏光フィルタの間に配置され、磁力強度に応じてファラデー効果により偏光面が回転するファラデーローテータと、
前記ファラデーローテータにかける磁力強度を制御する磁力強度制御器と
を具備し、
前記制御装置は、前記赤外線検知器の感度補正時に、前記偏光制御器に入射光遮断の指示を送り、前記赤外線検知器の運用時に前記偏光制御器に入射光遮断解除の指示及び前記被搭載機のロール角の情報を送り、
前記磁力強度制御器は、
前記入射光遮断の指示に応じて前記磁力強度を0にして前記ファラデーローテータによる偏光面の回転を停止させ、前記第1の偏光フィルタからの入射光の偏光面を維持させることで、前記入射光を前記第2の偏光フィルタで遮断して前記赤外線検知器の黒背景を形成し、
前記入射光遮断解除の指示及び前記被搭載機のロール角の情報に応じて前記ファラデーローテータに前記ロール角に相当する磁力を含む所定の磁力強度を与え、前記ファラデーローテータで前記第1の偏光フィルタからの入射光の偏光面を前記ロール角に相当する角度を付加して回転させることで、前記赤外線検知器に送出する前記第2の偏光フィルタの出射光から前記被搭載機のロールによって発生したクラッタの偏光成分を除去する
光波目標検出装置。
A light wave target detection device that detects targets on water from a mounted aircraft,
an irradiator that irradiates linearly polarized laser light;
an infrared imaging device that receives reflected light from the laser beam irradiated by the irradiator and detects a heat source target image from the infrared rays of the incident light;
a driving device that directs the irradiator and the infrared imaging device in a predetermined direction;
comprising a control device that controls the irradiator, the infrared imaging device, and the drive device,
The infrared imaging device includes:
an infrared detector that detects the heat source target image by detecting infrared rays of the incident light ;
a polarization controller disposed on the optical axis of the incident light of the infrared detector and limiting the polarization plane of the incident light;
The polarization controller is
a first polarizing filter disposed on the optical axis of the incident light of the infrared detector so that its polarization plane cuts horizontal polarization components;
Behind the first polarization filter on the optical axis of the incident light of the infrared detector, a polarization component whose polarization plane is perpendicular to the direction of the polarization component cut by the first polarization filter is cut. a second polarizing filter arranged so as to
a Faraday rotator, which is disposed between the first polarizing filter and the second polarizing filter on the optical axis of the incident light of the infrared detector , and whose plane of polarization is rotated by the Faraday effect according to the strength of magnetic force;
and a magnetic force intensity controller that controls the magnetic force intensity applied to the Faraday rotator,
The control device sends an instruction to block the incident light to the polarization controller when correcting the sensitivity of the infrared detector, and sends an instruction to the polarization controller to cancel the blocking of the incident light and sends an instruction to the mounted device to cancel the blocking of the incident light when the infrared detector is operated. Send the roll angle information of
The magnetic force strength controller is
In response to the instruction to block the incident light, the magnetic force strength is set to 0, rotation of the polarization plane by the Faraday rotator is stopped, and the polarization plane of the incident light from the first polarizing filter is maintained. is blocked by the second polarizing filter to form a black background of the infrared detector;
A predetermined magnetic force intensity including a magnetic force corresponding to the roll angle is applied to the Faraday rotator in accordance with the instruction to release the incident light blocking and information on the roll angle of the loaded machine , and the Faraday rotator applies the first polarizing filter to the Faraday rotator. By rotating the polarization plane of the incident light by adding an angle corresponding to the roll angle, the output light of the second polarizing filter to be sent to the infrared detector is changed from the polarization plane of the incident light generated by the roll of the loaded device. Remove the polarization component of clutter
Lightwave target detection device.
被搭載機から水上の目標検出を行う光波目標検出装置の赤外線撮像装置に用いられる偏光制御器の偏光制御方法であって、
前記光波目標検出装置が、
直線偏光のレーザ光を照射する照射器と、
前記照射器で照射されたレーザ光の反射光を入射して、その入射光の赤外線から熱源目標像を検出する赤外線撮像装置と、
前記照射器及び前記赤外線撮像装置を所定方向に指向させる駆動装置と、
前記照射器、前記赤外線撮像装置及び前記駆動装置を制御する制御装置と
を具備し、
前記赤外線撮像装置が、
前記入射光の赤外線を検知して前記熱源目標像を検出する赤外線検知器と、
前記赤外線検知器の前記入射光の光軸上に配置され、前記入射光の偏光面を制限する偏光制御器と
を具備し、
前記偏光制御器が、
前記赤外線検知器の前記入射光の光軸上に、偏光面が横方向の偏光成分をカットするように配置される第1の偏光フィルタと、
前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタの後方に、偏光面が前記第1の偏光フィルタがカットする偏光成分の方向に対して直交する方向の偏光成分をカットするように配置される第2の偏光フィルタと、
前記赤外線検知器の前記入射光の光軸上の前記第1の偏光フィルタ及び前記第2の偏光フィルタの間に配置され、磁力強度に応じてファラデー効果により偏光面が回転するファラデーローテータと、
前記ファラデーローテータにかける磁力強度を制御する磁力強度制御器と
を具備し、
前記制御装置が、前記赤外線検知器の感度補正時に、前記偏光制御器に入射光遮断の指示を送り、前記赤外線検知器の運用時に前記偏光制御器に入射光遮断解除の指示及び前記被搭載機のロール角の情報を送る場合に、
前記磁力強度制御器が、
前記入射光遮断の指示に応じて前記磁力強度を0にして前記ファラデーローテータによる偏光面の回転を停止させ、前記第1の偏光フィルタからの入射光の偏光面を維持させることで、前記入射光を前記第2の偏光フィルタで遮断して前記赤外線検知器の黒背景を形成し、
前記入射光遮断解除の指示及び前記被搭載機のロール角の情報に応じて前記ファラデーローテータに前記ロール角に相当する磁力を含む所定の磁力強度を与え、前記ファラデーローテータで前記第1の偏光フィルタからの入射光の偏光面を前記ロール角に相当する角度を付加して回転させることで、前記赤外線検知器に送出する前記第2の偏光フィルタの出射光から前記被搭載機のロールによって発生したクラッタの偏光成分を除去する
偏光制御方法。
A polarization control method for a polarization controller used in an infrared imaging device of a light wave target detection device that detects targets on water from a mounted aircraft, the method comprising:
The light wave target detection device includes:
an irradiator that irradiates linearly polarized laser light;
an infrared imaging device that receives reflected light from the laser beam irradiated by the irradiator and detects a heat source target image from the infrared rays of the incident light;
a driving device that directs the irradiator and the infrared imaging device in a predetermined direction;
a control device that controls the irradiator, the infrared imaging device, and the drive device;
Equipped with
The infrared imaging device includes:
an infrared detector that detects the heat source target image by detecting infrared rays of the incident light;
a polarization controller disposed on the optical axis of the incident light of the infrared detector and limiting the polarization plane of the incident light;
Equipped with
The polarization controller is
a first polarizing filter disposed on the optical axis of the incident light of the infrared detector so that its polarization plane cuts horizontal polarization components;
Behind the first polarization filter on the optical axis of the incident light of the infrared detector, a polarization component whose polarization plane is perpendicular to the direction of the polarization component cut by the first polarization filter is cut. a second polarizing filter arranged so as to
a Faraday rotator, which is disposed between the first polarizing filter and the second polarizing filter on the optical axis of the incident light of the infrared detector, and whose plane of polarization is rotated by the Faraday effect according to the strength of magnetic force;
a magnetic force intensity controller that controls the magnetic force intensity applied to the Faraday rotator;
Equipped with
The control device sends an instruction to block the incident light to the polarization controller when correcting the sensitivity of the infrared detector, and sends an instruction to the polarization controller to cancel the blocking of the incident light and sends an instruction to the mounted device to cancel the blocking of the incident light when the infrared detector is operated. When sending information about the roll angle of
The magnetic force strength controller is
In response to the instruction to block the incident light, the magnetic force strength is set to 0, rotation of the polarization plane by the Faraday rotator is stopped, and the polarization plane of the incident light from the first polarizing filter is maintained. is blocked by the second polarizing filter to form a black background of the infrared detector;
A predetermined magnetic force intensity including a magnetic force corresponding to the roll angle is applied to the Faraday rotator in accordance with the instruction to release the incident light blocking and information on the roll angle of the loaded machine, and the Faraday rotator applies the first polarizing filter to the Faraday rotator. By rotating the polarization plane of the incident light by adding an angle corresponding to the roll angle, the output light of the second polarizing filter to be sent to the infrared detector is changed from the polarization plane of the incident light generated by the roll of the loaded device. Polarization control method for removing polarization components of clutter .
JP2019198436A 2019-10-31 2019-10-31 Lightwave target detection device and polarization control method Active JP7433839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019198436A JP7433839B2 (en) 2019-10-31 2019-10-31 Lightwave target detection device and polarization control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019198436A JP7433839B2 (en) 2019-10-31 2019-10-31 Lightwave target detection device and polarization control method

Publications (2)

Publication Number Publication Date
JP2021071605A JP2021071605A (en) 2021-05-06
JP7433839B2 true JP7433839B2 (en) 2024-02-20

Family

ID=75713080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019198436A Active JP7433839B2 (en) 2019-10-31 2019-10-31 Lightwave target detection device and polarization control method

Country Status (1)

Country Link
JP (1) JP7433839B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083248A (en) 1999-09-14 2001-03-30 Mitsubishi Heavy Ind Ltd Monitoring apparatus
JP2008278036A (en) 2007-04-26 2008-11-13 Mitsubishi Electric Corp Infrared camera
US20160044306A1 (en) 2014-08-05 2016-02-11 Seek Thermal, Inc. Time based offset correction for imaging systems
JP2016100612A (en) 2014-11-18 2016-05-30 パナソニックIpマネジメント株式会社 Projection device
JP2018091630A (en) 2016-11-30 2018-06-14 パイオニア株式会社 Measuring apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161520A (en) * 1980-05-19 1981-12-11 Fujitsu Ltd Optical variable attenuator
JPS5912378A (en) * 1982-07-13 1984-01-23 Hitachi Cable Ltd External modulation type thermal object sensor
JP3739471B2 (en) * 1996-03-01 2006-01-25 富士通株式会社 Variable optical attenuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083248A (en) 1999-09-14 2001-03-30 Mitsubishi Heavy Ind Ltd Monitoring apparatus
JP2008278036A (en) 2007-04-26 2008-11-13 Mitsubishi Electric Corp Infrared camera
US20160044306A1 (en) 2014-08-05 2016-02-11 Seek Thermal, Inc. Time based offset correction for imaging systems
JP2016100612A (en) 2014-11-18 2016-05-30 パナソニックIpマネジメント株式会社 Projection device
JP2018091630A (en) 2016-11-30 2018-06-14 パイオニア株式会社 Measuring apparatus

Also Published As

Publication number Publication date
JP2021071605A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US9606069B2 (en) Method, apparatus and system for generating multiple spatially separated inspection regions on a substrate
TWI757446B (en) Systems and methods for an euv light source
CN105723811A (en) System and method for controlling droplets of target material in an euv light source
JP5117584B2 (en) Scintillator plate
JP2013190417A5 (en)
US20230330773A1 (en) Laser processing device
US10084977B2 (en) Camera system and photographing method
JP7433839B2 (en) Lightwave target detection device and polarization control method
JP3903608B2 (en) Missile jammer
JP6793857B2 (en) Monitoring device
JP2015155865A (en) Oblique incidence interferometer
WO2012101883A1 (en) Radiation image acquisition device
JP2007205976A (en) Laser range finder
JP3079770B2 (en) Light beam scanning device
JP2014160180A (en) Lens unit and camera apparatus
JP2018036440A (en) Optical device, processing device, and article manufacturing method
JP2017020871A (en) Light reception suppression device for laser beam
JP2000171228A (en) Grazing incidence interferometer
JP2000221436A5 (en)
JPH09251067A (en) Infrared image sensor
US10048367B2 (en) Target tracking camera
JP2007078569A (en) Target acquisition tracking device of light wave interference device
JPS59152626A (en) Device for detecting foreign matter
JP3684193B2 (en) Laser irradiation device and underwater object detection device
JP2021032776A (en) Device and method for detecting light wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7433839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150