WO2012101883A1 - Radiation image acquisition device - Google Patents

Radiation image acquisition device Download PDF

Info

Publication number
WO2012101883A1
WO2012101883A1 PCT/JP2011/074334 JP2011074334W WO2012101883A1 WO 2012101883 A1 WO2012101883 A1 WO 2012101883A1 JP 2011074334 W JP2011074334 W JP 2011074334W WO 2012101883 A1 WO2012101883 A1 WO 2012101883A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image acquisition
scintillation light
scintillation
mirror
Prior art date
Application number
PCT/JP2011/074334
Other languages
French (fr)
Japanese (ja)
Inventor
須山 敏康
元胤 杉山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2012101883A1 publication Critical patent/WO2012101883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich

Definitions

  • the present invention relates to a radiological image acquisition apparatus that acquires a radiographic image of an object by irradiating radiation.
  • the two detectors are positioned in the radiation incident direction, the detectors are easily exposed, and noise is generated due to the direct conversion signal of the radiation inside the detector. There is. Further, there is a tendency that noise is generated due to the shadow of the detector reflected in the radiation detection image. In addition, since radiation is attenuated by the detector, there is a problem that it is difficult to obtain a radiation detection image of a low energy component.
  • an object of the present invention is to provide a radiation image acquisition apparatus that can acquire a radiation detection image with reduced noise over a wide energy band.
  • a radiological image acquisition apparatus generates a scintillation light in response to an incident of radiation emitted from the radiation source and transmitted through the object.
  • a flat plate-shaped wavelength conversion member, a first optical member that guides scintillation light emitted from the radiation incident surface of the wavelength conversion member, and a surface opposite to the incident surface of the wavelength conversion member A second optical member that guides the scintillation light emitted from the image sensor, an image sensor that images each of the scintillation lights guided by the first and second optical members, and the first and second optical members.
  • a common optical member that guides each of the guided scintillation lights toward the image sensor.
  • the radiation that has passed through the object is converted into scintillation light by the wavelength conversion member, and the scintillation light emitted from the radiation incident surface side and the opposite surface of the wavelength conversion member. Is detected by the image sensor, and can be detected as an image signal.
  • the scintillation light radiated from both surfaces of the wavelength conversion member is respectively guided from the first optical member and the second optical member to the imaging device via the common optical member, the radiation emission region It is possible to move the image sensor away from. As a result, generation of noise in the radiation detection image detected by the image sensor can be reduced, and a high-contrast detection image can be acquired over a wide energy component.
  • FIG. 1 is a schematic configuration diagram of a radiological image acquisition apparatus 1 according to a preferred embodiment of the present invention.
  • a radiation image acquisition apparatus 1 is emitted from a radiation source 2 that emits radiation such as X-rays toward an object A such as an electronic component such as a semiconductor device or a food product, and the radiation source 2.
  • a wavelength conversion plate (wavelength conversion member) 3 for converting the radiation transmitted through the object A into light
  • a photodetector (imaging device) 4 for imaging the light converted by the wavelength conversion plate 3
  • an optical system 5 that guides the light converted by the light toward the photodetector 4.
  • the photodetector 4 is an indirect conversion type detector such as a CMOS sensor or a CCD sensor that detects light converted based on incident radiation and generates an image signal.
  • the wavelength conversion plate 3 is a plate-like member disposed so as to be substantially perpendicular to the radiation emission direction of the radiation source 2, and generates scintillation light according to the incidence of radiation transmitted through the object A.
  • Examples of such wavelength conversion plate 3 include Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, CsI: Tl, CdWO 4 , CaWO 4 , Gd 2 SiO 5 : Ce, Lu 0.4 Gd 1.6 SiO 5 , Examples include scintillators such as Bi 4 Ge 3 O 12 , Lu 2 SiO 5 : Ce, Y 2 SiO 5 , YAlO 3 : Ce, Y 2 O 2 S: Tb, YTaO 4 : Tm, etc.
  • the wavelength conversion plate 3 emits scintillation light from both the incident surface 3a of the radiation and the surface 3b opposite to the incident surface 3a in response to the incidence of the radiation transmitted through the object A.
  • Scintillation light L 1 emitted from the incident surface 3a becomes those converted from predominantly low-energy components of the incident radiation.
  • scintillation light L 2 emitted from the surface 3b is becomes converted from mainly the high energy component of the radiation incident.
  • the optical system 5 includes five mirrors 6 a, 6 b, 7 a, 7 b, and 8 as optical members that control the optical path of scintillation light emitted from the wavelength conversion plate 3, and a rotation drive mechanism 9 that rotates the mirror 8.
  • the mirrors 6 a and 6 b in the optical system 5 are arranged on the incident surface 3 a side of the wavelength conversion plate 3, and the scintillation light L 1 emitted from the incident surface 3 a is separated from the radiation irradiation direction of the radiation source 2. Light is guided toward the position.
  • the mirrors 6a, 6b respectively, between the incident surface 3a and the radiation source 2, and is disposed at a position apart from the mirror 6a along the incident surface 3a, the scintillation light L 1, the wavelength conversion
  • the light is sequentially reflected from the plate 3 toward the mirror 8 disposed at a position separated along the extending direction of the incident surface 3a.
  • the mirrors 7 a and 7 b in the optical system 5 are arranged on the surface 3 b side opposite to the incident surface 3 a of the wavelength conversion plate 3, and the scintillation light L 2 emitted from the surface 3 b is used as the radiation of the radiation source 2.
  • the light is guided toward the position separated from the irradiation direction.
  • the mirrors 7a, 7b respectively, a position away from the surface 3b in the irradiation direction of the radiation source 2, and is disposed at a position apart from the mirror 7a along the surface 3b, the scintillation light L 2 Then, the light is sequentially reflected toward the mirror 8 disposed at a position away from the wavelength conversion plate 3 along the extending direction of the surface 3b.
  • the mirror 8 of the optical system 5 is substantially parallel to a plane including the optical paths of the scintillation lights L 1 and L 2 at a position away from the wavelength conversion plate 3 along the extending direction of the incident surface 3a. It is arranged to become.
  • the mirror 8 is supported by a rotation drive mechanism 9 incorporating a motor so as to be rotatable about an axis substantially perpendicular to a plane including the optical paths of the scintillation lights L 1 and L 2 .
  • the scintillation lights L 1 and L 2 are selected toward the photodetector 4 arranged further away from the mirror 8 along the extending direction of the incident surface 3a. Light is guided.
  • scintillation light L 1 is the optical detector 4 by a rotational driving mechanism 9 .
  • a rotational driving mechanism 9 the two-dot chain line in FIG. 1
  • the radiological image acquisition apparatus 1 controls the rotation control unit 11 that controls the rotation of the rotation drive mechanism 9, the timing of selection of the scintillation light L 1 and L 2 by the mirror 8, and the timing of imaging of the photodetector 4. And a timing control unit 12 for processing the image signal output from the photodetector 4.
  • the rotation control unit 11 controls the rotation angle of the mirror 8 by sending a control signal to the rotation drive mechanism 9 in response to an instruction signal from the timing control unit 12.
  • the timing control unit 12 sends an instruction signal to the rotation control unit 11 to switch the rotation angle of the mirror 8 so that the scintillation light L 1 is reflected by the photodetector 4, and at the same time,
  • the instruction signal is transmitted so as to capture the scintillation light L 1 in synchronization with the switching of 8.
  • the timing controller 12 sends an instruction signal to the rotation controller 11 to switch the rotation angle of the mirror 8 so that the scintillation light L 2 is reflected by the photodetector 4, and at the same time, to the photodetector 4.
  • the image processing device 13 acquires two image signals obtained as a result of imaging the scintillation lights L 1 and L 2 from the light detector 4, and processes the two image signals to transmit radiation regarding the object A. Image data is generated.
  • the radiation transmitted through the object A is converted into scintillation light L 1 and L 2 by the wavelength conversion plate 3, and the radiation incident surface 3 a side of the wavelength conversion plate 3 and its side
  • the scintillation lights L 1 and L 2 radiated from the opposite surface 3b are detected by the photodetector 4, thereby enabling detection as image signals.
  • the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 are guided to the photodetector 4 from the mirrors 6a and 6b and the mirrors 7a and 7b via the mirror 8, respectively.
  • the photodetector 4 can be separated from the radiation emission region.
  • the shadow of the detector is not reflected in the radiation projection image of the object A, and the attenuation of the low energy component of the radiation by the detector is also eliminated.
  • a low-energy component radiation transmission image and a high-energy component radiation transmission image can be acquired.
  • generation of noise in the radiation detection image can be reduced, and a high-contrast detection image can be acquired over a wide energy component.
  • the radiation of low energy components is obtained by one detector. Since a transmission image and a radiation transmission image of a high energy component can be acquired, the apparatus can be easily downsized and a radiation detection image of a wide energy component can be obtained. Further, adjustment work such as correction of the optical axis and distortion of the shared part of the optical system 5 such as the mirror 8 is simplified.
  • the mirror 8 can be rotated by the rotation drive mechanism 9, the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 can be detected without interfering with each other. A radiation detection image can be obtained reliably.
  • the dual energy radiation detection image is not caused to cause image shift. Can be detected.
  • image processing when obtaining a radiation transmission image of the object A based on the two radiation detection images is simplified.
  • this invention is not limited to embodiment mentioned above.
  • various modifications can be adopted as the configuration of the optical system that guides the scintillation lights L 1 and L 2 .
  • the common part of the optical system 105 has a structure in which two mirrors 108 and 109 are arranged in a V shape, like a radiation image acquisition apparatus 101 which is a modification of the present invention shown in FIG. Good.
  • the mirror 108 has its reflection surface 108a facing the mirror 6b
  • the mirror 109 has its reflection surface 109a facing the mirror 7b.
  • both the scintillation lights L 1 and L 2 are simultaneously guided toward the imaging lens 4a of the photodetector 4.
  • the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 can be detected at the same time, so that a dual energy radiation detection image can be obtained simultaneously.
  • the optical system 105 is a dark optical system, that is, an optical system with a deep aperture and a deep depth of field, detection can be performed with a certain degree of clarity by simply replacing the mirror 8 with the mirrors 108 and 109 in the configuration of the optical system 5. An image can be obtained.
  • the optical system 105 is a bright optical system, that is, an optical system having a small F value and a shallow depth of field, in order to obtain a clear detection image, between the mirror 6a and the mirror 6b and the mirror. It is preferable that a relay lens 6c and a relay lens 7c are disposed between 7a and the mirror 7b, respectively.
  • FIG. 3 shows an image of a radiation detection image detected by the radiation image acquisition apparatus 101.
  • the optical system 105 is adjusted so that the scintillation lights L 1 and L 2 are divided and guided onto the detection region of the image pickup element in the photodetector 4, and therefore is output from the photodetector 4.
  • image signal S G included a radiation detecting image G 2 of a high energy component detected by the radiation detection image G 1 and the scintillation light L 2 of the low energy component detected by the scintillation light L 1 is divided into two Will be.
  • the prism 208a or the prism 208b is arranged as a common part of the optical system 205. Also good. Specifically, the prism 208a, 208b is configured to change the optical path of the scintillation light L 1 incident from the mirror 6b side to face the photodetector 4, the optical light path of the scintillation light L 2 incident from the mirror 7b side Change so that it faces the detector 4.
  • the prism 208a shown in FIG. 4 is a cross dichroic prism configured by bonding four triangular prisms, and the prism 208b shown in FIG.
  • the common part of the optical system 305 has a structure in which two beam splitters 308 and 309 are arranged in a V shape.
  • the beam splitters 308 and 309 are arranged so that the normal lines of the reflecting surfaces 308a and 309a are substantially parallel to a plane including the optical paths of the scintillation lights L 1 and L 2.
  • the reflecting surface 309a is directed to the mirror 6b, and the beam splitter 308 has the reflecting surface 308a directed to the mirror 7b.
  • Such beam splitters 308 and 309 are arranged on the mirror 6b and mirror 7b sides to form a V shape.
  • both the scintillation lights L 1 and L 2 are simultaneously guided toward the imaging lens 4 a of the photodetector 4.
  • the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 can be detected at the same time, so that a dual energy radiation detection image can be obtained simultaneously.
  • the beam splitters 308 and 309 may be half mirrors, and the beam splitter 308 has a property of transmitting the wavelength region of the scintillation light L 1 and reflecting the wavelength region of the scintillation light L 2.
  • the beam splitter 309 is transmitted through the wavelength region of the scintillation light L 2, and may have a property of reflecting the wavelength region of the scintillation light L 1.
  • the radiation image acquisition apparatus of the above embodiment is a semiconductor fault inspection apparatus in which the object A is a semiconductor device and the semiconductor device is an inspection target.
  • the imaging unit image acquisition device for image acquisition
  • the common optical member is preferably a member that selects and guides one of the scintillation lights guided by the first and second optical members toward the image sensor. If such a common optical member is provided, the scintillation light emitted from both surfaces of the wavelength conversion member can be detected by one image sensor, so that the apparatus can be easily downsized and radiation having a wide energy component can be achieved. A detection image can be obtained.
  • the common optical member is a mirror that reflects the scintillation light guided by the first and second optical members, and a rotation that rotates the mirror to selectively guide the scintillation light toward the image sensor. It is also preferable to have a mechanism. By adopting such a configuration, it is possible to detect the scintillation light emitted from both surfaces of the wavelength conversion member without interfering with each other, so that a dual energy radiation detection image can be obtained with certainty.
  • control means for controlling the selection timing of the scintillation light by the rotation mechanism and the imaging timing by the imaging device to be synchronized.
  • the dual energy radiation detection image can be detected without causing image shift.
  • the common optical member is a member that simultaneously guides both the scintillation light guided by the first and second optical members toward the image sensor. If such a common optical member is provided, scintillation light emitted from both surfaces of the wavelength conversion member can be detected simultaneously, so that a dual energy radiation detection image can be obtained simultaneously.
  • the common optical member may be a mirror arranged in a V shape, a beam splitter arranged in a V shape, or a prism.
  • the present invention uses a radiological image acquisition apparatus that acquires a radiographic image of an object by irradiating radiation, and makes it possible to acquire a radiation detection image with reduced noise over a wide energy band.

Abstract

This radiation image acquisition device (1) is provided with a radiation source (2) for emitting radiation, a tabular frequency conversion plate (3) for generating scintillation light (L1, L2) in response to incidence of radiation emitted from the radiation source (2) and transmitted through an object (A), mirrors (6a, 6b) for guiding scintillation light (L1) emitted from a surface (3a) on the radiation-incident side of the wavelength conversion plate (3), mirrors (7a, 7b) for guiding scintillation light (L2) emitted from surface (3b) of the wavelength conversion plate (3) opposite of the incident surface (3a), a light detector (4) for imaging the scintillation light (L1, L2) guided by the mirrors (6a, 6b, 7a, 7b), and a mirror (8) for guiding towards the light detector (4) the scintillation light (L1, L2) which has been guided by the mirrors (6a, 6b, 7a, 7b).

Description

放射線画像取得装置Radiation image acquisition device
 本発明は、放射線を照射して対象物の放射線像を取得する放射線画像取得装置に関する。 The present invention relates to a radiological image acquisition apparatus that acquires a radiographic image of an object by irradiating radiation.
 従来から、X線画像の検出技術に関しては、検出器に入射する放射線をその検出器で直接検出する方式である直接変換方式と、放射線をシンチレータを用いて光に変換してから検出器で検出する方式である間接変換方式が知られている。このような間接変換方式を採用した装置としては、シンチレータによって変換された可視光の検出効率を高めるために、2枚の固体光検出器の間に平面状のシンチレータを挟んで積層させてなる放射線検出器が考案されている(下記特許文献1参照)。 Conventionally, with regard to X-ray image detection technology, a direct conversion method that directly detects radiation incident on a detector with the detector, and a radiation that is converted into light using a scintillator and then detected with the detector An indirect conversion method is known. As an apparatus employing such an indirect conversion method, radiation obtained by laminating a planar scintillator between two solid-state photodetectors in order to increase the detection efficiency of visible light converted by the scintillator. A detector has been devised (see Patent Document 1 below).
特開平7-27866号公報JP-A-7-27866
 しかしながら、上述したような従来の構成では、2つの検出器が放射線の入射方向に位置しているため、検出器が被曝しやすく、検出器内部での放射線の直接変換信号によるノイズが発生する場合がある。また、放射線検出画像に検出器の影が映り込んでノイズが発生する傾向にもある。また、検出器によって放射線の減衰が生じるため低エネルギー成分の放射線検出画像が得られにくいという問題もあった。 However, in the conventional configuration as described above, since the two detectors are positioned in the radiation incident direction, the detectors are easily exposed, and noise is generated due to the direct conversion signal of the radiation inside the detector. There is. Further, there is a tendency that noise is generated due to the shadow of the detector reflected in the radiation detection image. In addition, since radiation is attenuated by the detector, there is a problem that it is difficult to obtain a radiation detection image of a low energy component.
 そこで、本発明は、かかる課題に鑑みて為されたものであり、広いエネルギー帯にわたってノイズの低減された放射線検出画像を取得することが可能な放射線画像取得装置を提供することを目的とする。 Therefore, the present invention has been made in view of such problems, and an object of the present invention is to provide a radiation image acquisition apparatus that can acquire a radiation detection image with reduced noise over a wide energy band.
 上記課題を解決するため、本発明の一側面にかかる放射線画像取得装置は、放射線を出射する放射線源と、放射線源から出射され、対象物を透過した放射線の入射に応じて、シンチレーション光を発生させる平板状の波長変換部材と、波長変換部材の放射線の入射側の面から放射されるシンチレーション光を導光する第1の光学部材と、波長変換部材の入射側の面とは反対側の面から放射されるシンチレーション光を導光する第2の光学部材と、第1及び第2の光学部材によって導光されたそれぞれのシンチレーション光を撮像する撮像素子と、第1及び第2の光学部材によって導光されたそれぞれのシンチレーション光を撮像素子に向けて導光する共通光学部材と、を備える。 In order to solve the above-described problem, a radiological image acquisition apparatus according to one aspect of the present invention generates a scintillation light in response to an incident of radiation emitted from the radiation source and transmitted through the object. A flat plate-shaped wavelength conversion member, a first optical member that guides scintillation light emitted from the radiation incident surface of the wavelength conversion member, and a surface opposite to the incident surface of the wavelength conversion member A second optical member that guides the scintillation light emitted from the image sensor, an image sensor that images each of the scintillation lights guided by the first and second optical members, and the first and second optical members. A common optical member that guides each of the guided scintillation lights toward the image sensor.
 このような放射線画像取得装置によれば、対象物を透過した放射線が波長変換部材によってシンチレーション光に変換されて、波長変換部材の放射線の入射面側およびその反対側の面から放射されたシンチレーション光が撮像素子によって検出されることにより、画像信号として検出可能にされる。このとき、波長変換部材の両面から放射されたシンチレーション光は、それぞれ、第1の光学部材および第2の光学部材から共通光学部材を経由して撮像素子に導光されるので、放射線の出射領域から撮像素子を離すことが可能になる。その結果、撮像素子によって検出される放射線検出画像におけるノイズの発生を低減することができ、広いエネルギー成分にわたって高コントラストの検出画像を取得することができる。 According to such a radiation image acquisition device, the radiation that has passed through the object is converted into scintillation light by the wavelength conversion member, and the scintillation light emitted from the radiation incident surface side and the opposite surface of the wavelength conversion member. Is detected by the image sensor, and can be detected as an image signal. At this time, since the scintillation light radiated from both surfaces of the wavelength conversion member is respectively guided from the first optical member and the second optical member to the imaging device via the common optical member, the radiation emission region It is possible to move the image sensor away from. As a result, generation of noise in the radiation detection image detected by the image sensor can be reduced, and a high-contrast detection image can be acquired over a wide energy component.
 本発明によれば、広いエネルギー帯にわたってノイズの低減された放射線検出画像を取得することができる。 According to the present invention, it is possible to acquire a radiation detection image with reduced noise over a wide energy band.
本発明の好適な一実施形態に係る放射線画像取得装置の概略構成図である。It is a schematic block diagram of the radiographic image acquisition apparatus which concerns on suitable one Embodiment of this invention. 本発明の変形例に係る放射線画像取得装置の概略構成図である。It is a schematic block diagram of the radiographic image acquisition apparatus which concerns on the modification of this invention. 図2の放射線画像取得装置によって検出される放射線検出画像のイメージを示す図である。It is a figure which shows the image of the radiation detection image detected by the radiographic image acquisition apparatus of FIG. 本発明の変形例に係る放射線画像取得装置の概略構成図である。It is a schematic block diagram of the radiographic image acquisition apparatus which concerns on the modification of this invention. 本発明の変形例に係る放射線画像取得装置の概略構成図である。It is a schematic block diagram of the radiographic image acquisition apparatus which concerns on the modification of this invention. 本発明の変形例に係る放射線画像取得装置の概略構成図である。It is a schematic block diagram of the radiographic image acquisition apparatus which concerns on the modification of this invention.
 以下、図面を参照しつつ本発明に係る放射線画像取得装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。 Hereinafter, preferred embodiments of a radiological image acquisition apparatus according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Each drawing is made for the purpose of explanation, and is drawn so as to particularly emphasize the target portion of the explanation. Therefore, the dimensional ratio of each member in the drawings does not necessarily match the actual one.
 図1は、本発明の好適な一実施形態に係る放射線画像取得装置1の概略構成図である。同図に示すように、放射線画像取得装置1は、半導体デバイス等の電子部品や食料品等の対象物Aに向けてX線等の放射線を出射する放射線源2と、放射線源2から出射されて対象物Aを透過した放射線を光に変換する波長変換板(波長変換部材)3と、波長変換板3によって変換された光を撮像する光検出器(撮像素子)4と、波長変換板3によって変換された光を光検出器4に向けて導光する光学系5とを備えている。この光検出器4は、入射する放射線を基に変換された光を検出して画像信号を生成するCMOSセンサ、CCDセンサ等の間接変換方式の検出器である。 FIG. 1 is a schematic configuration diagram of a radiological image acquisition apparatus 1 according to a preferred embodiment of the present invention. As shown in the figure, a radiation image acquisition apparatus 1 is emitted from a radiation source 2 that emits radiation such as X-rays toward an object A such as an electronic component such as a semiconductor device or a food product, and the radiation source 2. A wavelength conversion plate (wavelength conversion member) 3 for converting the radiation transmitted through the object A into light, a photodetector (imaging device) 4 for imaging the light converted by the wavelength conversion plate 3, and the wavelength conversion plate 3 And an optical system 5 that guides the light converted by the light toward the photodetector 4. The photodetector 4 is an indirect conversion type detector such as a CMOS sensor or a CCD sensor that detects light converted based on incident radiation and generates an image signal.
 波長変換板3は、放射線源2の放射線の出射方向に略垂直になるように配置された平板状の部材であり、対象物Aを透過した放射線の入射に応じてシンチレーション光を発生させる。このような波長変換板3としては、Gd2O2S:Tb、Gd2O2S:Pr、CsI:Tl、CdWO4、CaWO4、Gd2SiO5:Ce、Lu0.4Gd1.6SiO5、Bi4Ge3O12、Lu2SiO5:Ce、Y2SiO5、YAlO3:Ce、Y2O2S:Tb、YTaO4:Tm等のシンチレータが挙げられ、その厚さは数μm~数mmの範囲で検出する放射線のエネルギー帯によって適切な値に設定されている。すなわち、波長変換板3は、対象物Aを透過した放射線の入射に応じて、その放射線の入射面3aおよび入射面3aと反対側の面3bの両面から外部にシンチレーション光を放射する。入射面3aから放射されるシンチレーション光Lは、入射した放射線のうちの主に低エネルギー成分から変換されたものとなる。その一方で、面3bから放射されるシンチレーション光Lは、入射した放射線のうちの主に高エネルギー成分から変換されたものとなる。これは、低エネルギー帯の放射線は波長変換板3の内部の入射面3a側でシンチレーション光に変換されやすいのに対して、高エネルギー帯の放射線は、波長変換板3を透過して波長変換板3の内部の面3b寄りでシンチレーション光に変換されやすいためである。 The wavelength conversion plate 3 is a plate-like member disposed so as to be substantially perpendicular to the radiation emission direction of the radiation source 2, and generates scintillation light according to the incidence of radiation transmitted through the object A. Examples of such wavelength conversion plate 3 include Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, CsI: Tl, CdWO 4 , CaWO 4 , Gd 2 SiO 5 : Ce, Lu 0.4 Gd 1.6 SiO 5 , Examples include scintillators such as Bi 4 Ge 3 O 12 , Lu 2 SiO 5 : Ce, Y 2 SiO 5 , YAlO 3 : Ce, Y 2 O 2 S: Tb, YTaO 4 : Tm, etc. It is set to an appropriate value depending on the energy band of the radiation detected within a range of several mm. That is, the wavelength conversion plate 3 emits scintillation light from both the incident surface 3a of the radiation and the surface 3b opposite to the incident surface 3a in response to the incidence of the radiation transmitted through the object A. Scintillation light L 1 emitted from the incident surface 3a becomes those converted from predominantly low-energy components of the incident radiation. On the other hand, scintillation light L 2 emitted from the surface 3b is becomes converted from mainly the high energy component of the radiation incident. This is because radiation in the low energy band is easily converted into scintillation light on the incident surface 3a side inside the wavelength conversion plate 3, whereas radiation in the high energy band is transmitted through the wavelength conversion plate 3 and wavelength conversion plate. This is because it is easily converted into scintillation light near the inner surface 3b of 3.
 光学系5は、波長変換板3から放射されたシンチレーション光の光路を制御する光学部材としての5つのミラー6a,6b,7a,7b,8と、ミラー8を回転させる回転駆動機構9とによって構成されている。光学系5のうちのミラー6a,6bは、波長変換板3の入射面3a側に配置されて、入射面3aから放射されたシンチレーション光Lを、放射線源2の放射線照射方向から分離された位置に向けて導光する。具体的には、ミラー6a,6bは、それぞれ、入射面3aと放射線源2との間、及び、入射面3aに沿ってミラー6aから離れた位置に配置され、シンチレーション光Lを、波長変換板3から入射面3aの延長方向に沿って離れた位置に配置されたミラー8に向けて順次反射させる。光学系5のうちのミラー7a,7bは、波長変換板3の入射面3aとは反対側の面3b側に配置されて、面3bから放射されたシンチレーション光Lを、放射線源2の放射線照射方向から分離された位置に向けて導光する。具体的には、ミラー7a,7bは、それぞれ、面3bから放射線源2の放射線照射方向に離れた位置、及び、面3bに沿ってミラー7aから離れた位置に配置され、シンチレーション光Lを、波長変換板3から面3bの延長方向に沿って離れた位置に配置されたミラー8に向けて順次反射させる。 The optical system 5 includes five mirrors 6 a, 6 b, 7 a, 7 b, and 8 as optical members that control the optical path of scintillation light emitted from the wavelength conversion plate 3, and a rotation drive mechanism 9 that rotates the mirror 8. Has been. The mirrors 6 a and 6 b in the optical system 5 are arranged on the incident surface 3 a side of the wavelength conversion plate 3, and the scintillation light L 1 emitted from the incident surface 3 a is separated from the radiation irradiation direction of the radiation source 2. Light is guided toward the position. Specifically, it mirrors 6a, 6b, respectively, between the incident surface 3a and the radiation source 2, and is disposed at a position apart from the mirror 6a along the incident surface 3a, the scintillation light L 1, the wavelength conversion The light is sequentially reflected from the plate 3 toward the mirror 8 disposed at a position separated along the extending direction of the incident surface 3a. The mirrors 7 a and 7 b in the optical system 5 are arranged on the surface 3 b side opposite to the incident surface 3 a of the wavelength conversion plate 3, and the scintillation light L 2 emitted from the surface 3 b is used as the radiation of the radiation source 2. The light is guided toward the position separated from the irradiation direction. Specifically, it mirrors 7a, 7b, respectively, a position away from the surface 3b in the irradiation direction of the radiation source 2, and is disposed at a position apart from the mirror 7a along the surface 3b, the scintillation light L 2 Then, the light is sequentially reflected toward the mirror 8 disposed at a position away from the wavelength conversion plate 3 along the extending direction of the surface 3b.
 光学系5のミラー8は、波長変換板3から入射面3aの延長方向に沿って離れた位置において、その反射面8aの法線がシンチレーション光L,Lの光路を含む平面に略平行となるように配置されている。また、ミラー8は、モータを内蔵する回転駆動機構9によって、シンチレーション光L,Lの光路を含む平面に略垂直な軸を中心にして回転可能に支持されている。このような回転駆動機構9によって支持されたミラー8により、シンチレーション光L,Lが、ミラー8から入射面3aの延長方向に沿ってさらに離れて配置された光検出器4に向けて選択的に導光される。すなわち、回転駆動機構9によって反射面8aをミラー6b側に向けるようにミラー8を回転させる(図1の実線)と、シンチレーション光Lが光検出器4の撮像レンズ4aに向けて反射される。その一方で、回転駆動機構9によって反射面8aをミラー7b側に向けるようにミラー8を回転させる(図1の二点鎖線)と、シンチレーション光Lが光検出器4の撮像レンズ4aに向けて反射される。 The mirror 8 of the optical system 5 is substantially parallel to a plane including the optical paths of the scintillation lights L 1 and L 2 at a position away from the wavelength conversion plate 3 along the extending direction of the incident surface 3a. It is arranged to become. The mirror 8 is supported by a rotation drive mechanism 9 incorporating a motor so as to be rotatable about an axis substantially perpendicular to a plane including the optical paths of the scintillation lights L 1 and L 2 . By the mirror 8 supported by such a rotational drive mechanism 9, the scintillation lights L 1 and L 2 are selected toward the photodetector 4 arranged further away from the mirror 8 along the extending direction of the incident surface 3a. Light is guided. That, is reflected toward the imaging lens 4a of the rotating mirror 8 so as to direct a reflecting surface 8a mirror 6b side (solid line in FIG. 1), scintillation light L 1 is the optical detector 4 by a rotational driving mechanism 9 . On the other hand, to rotate the mirror 8 so as to direct a reflecting surface 8a mirror 7b side by a rotational driving mechanism 9 (the two-dot chain line in FIG. 1), the scintillation light L 2 toward the image pickup lens 4a of the optical detector 4 And reflected.
 さらに、放射線画像取得装置1は、回転駆動機構9の回転を制御する回転制御部11と、ミラー8によるシンチレーション光L,Lの選択のタイミングと光検出器4の撮像のタイミングとを制御するタイミング制御部12と、光検出器4から出力された画像信号を処理する画像処理装置13とを備えている。 Further, the radiological image acquisition apparatus 1 controls the rotation control unit 11 that controls the rotation of the rotation drive mechanism 9, the timing of selection of the scintillation light L 1 and L 2 by the mirror 8, and the timing of imaging of the photodetector 4. And a timing control unit 12 for processing the image signal output from the photodetector 4.
 詳細には、回転制御部11は、タイミング制御部12からの指示信号に応じて回転駆動機構9に制御信号を送出してミラー8の回転角度を制御する。タイミング制御部12は、シンチレーション光Lを光検出器4に反射させるようにミラー8の回転角度を切り替えるために回転制御部11に指示信号を送出すると同時に、光検出器4に対して、ミラー8の切り替えと同期してシンチレーション光Lを撮像するように指示信号を送出する。さらに、タイミング制御部12は、シンチレーション光Lを光検出器4に反射させるようにミラー8の回転角度を切り替えるために回転制御部11に指示信号を送出すると同時に、光検出器4に対して、ミラー8の切り替えと同期してシンチレーション光Lを撮像するように指示信号を送出する。画像処理装置13は、光検出器4からシンチレーション光L,Lを撮像した結果得られた2つの画像信号を取得し、それらの2つの画像信号を処理することによって対象物Aに関する放射線透過像データを生成する。 Specifically, the rotation control unit 11 controls the rotation angle of the mirror 8 by sending a control signal to the rotation drive mechanism 9 in response to an instruction signal from the timing control unit 12. The timing control unit 12 sends an instruction signal to the rotation control unit 11 to switch the rotation angle of the mirror 8 so that the scintillation light L 1 is reflected by the photodetector 4, and at the same time, The instruction signal is transmitted so as to capture the scintillation light L 1 in synchronization with the switching of 8. Further, the timing controller 12 sends an instruction signal to the rotation controller 11 to switch the rotation angle of the mirror 8 so that the scintillation light L 2 is reflected by the photodetector 4, and at the same time, to the photodetector 4. , in synchronization with the switching of the mirror 8 transmits an instruction signal to image scintillation light L 2. The image processing device 13 acquires two image signals obtained as a result of imaging the scintillation lights L 1 and L 2 from the light detector 4, and processes the two image signals to transmit radiation regarding the object A. Image data is generated.
 以上説明した放射線画像取得装置1によれば、対象物Aを透過した放射線が波長変換板3によってシンチレーション光L,Lに変換されて、波長変換板3の放射線の入射面3a側およびその反対側の面3bからそれぞれ放射されたシンチレーション光L,Lが、光検出器4によって検出されることにより、画像信号として検出可能にされる。このとき、波長変換板3の両面から放射されたシンチレーション光L,Lは、それぞれ、ミラー6a,6bおよびミラー7a,7bからミラー8を経由して光検出器4に導光されるので、放射線の出射領域から光検出器4を離すことが可能になる。これにより、対象物Aの放射線投影像に検出器の影が映り込むことなく、検出器による放射線の低エネルギー成分の減衰も無くなる。また、検出器自体に放射線が入射することによる直接変換ノイズの発生も少ない。さらに、波長変換板3の両面からのシンチレーション光を検出することで、低エネルギー成分の放射線透過像と高エネルギー成分の放射線透過像を取得することができる。その結果、放射線検出画像におけるノイズの発生を低減することができ、広いエネルギー成分にわたって高コントラストの検出画像を取得することができる。 According to the radiographic image acquisition apparatus 1 described above, the radiation transmitted through the object A is converted into scintillation light L 1 and L 2 by the wavelength conversion plate 3, and the radiation incident surface 3 a side of the wavelength conversion plate 3 and its side The scintillation lights L 1 and L 2 radiated from the opposite surface 3b are detected by the photodetector 4, thereby enabling detection as image signals. At this time, since the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 are guided to the photodetector 4 from the mirrors 6a and 6b and the mirrors 7a and 7b via the mirror 8, respectively. The photodetector 4 can be separated from the radiation emission region. Thereby, the shadow of the detector is not reflected in the radiation projection image of the object A, and the attenuation of the low energy component of the radiation by the detector is also eliminated. In addition, there is little occurrence of direct conversion noise due to radiation incident on the detector itself. Further, by detecting scintillation light from both surfaces of the wavelength conversion plate 3, a low-energy component radiation transmission image and a high-energy component radiation transmission image can be acquired. As a result, generation of noise in the radiation detection image can be reduced, and a high-contrast detection image can be acquired over a wide energy component.
 また、ミラー8を用いてシンチレーション光L,Lのうちからいずれかを選択して光検出器4に向けて導光する構成を採用することで、1つの検出器によって低エネルギー成分の放射線透過像と高エネルギー成分の放射線透過像を取得することができるので、容易に装置の小型化を図ることができるとともに広いエネルギー成分の放射線検出画像を得ることができる。さらに、ミラー8等の光学系5の共用部分については光軸や歪の補正等の調整作業も簡素化される。 In addition, by adopting a configuration in which one of the scintillation lights L 1 and L 2 is selected using the mirror 8 and guided toward the photodetector 4, the radiation of low energy components is obtained by one detector. Since a transmission image and a radiation transmission image of a high energy component can be acquired, the apparatus can be easily downsized and a radiation detection image of a wide energy component can be obtained. Further, adjustment work such as correction of the optical axis and distortion of the shared part of the optical system 5 such as the mirror 8 is simplified.
 また、ミラー8を回転駆動機構9によって回転可能にすることで、波長変換板3の両面から放射されたシンチレーション光L,Lを互いに干渉することなく検出することができるので、デュアルエナジーの放射線検出画像を確実に得ることができる。 Further, since the mirror 8 can be rotated by the rotation drive mechanism 9, the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 can be detected without interfering with each other. A radiation detection image can be obtained reliably.
 さらに、回転駆動機構9によるシンチレーション光L,Lの選択タイミングと、光検出器4による撮像タイミングとを同期させるように制御するので、デュアルエナジーの放射線検出画像を画像ずれを生じさせること無く検出することができる。その結果、2つの放射線検出画像を基に対象物Aの放射線透過像を得る際の画像処理が単純化される。 Further, since the control is performed so that the selection timing of the scintillation lights L 1 and L 2 by the rotation drive mechanism 9 and the imaging timing by the photodetector 4 are synchronized, the dual energy radiation detection image is not caused to cause image shift. Can be detected. As a result, image processing when obtaining a radiation transmission image of the object A based on the two radiation detection images is simplified.
 なお、本発明は、前述した実施形態に限定されるものではない。例えば、シンチレーション光L,Lを導光する光学系の構成としては様々な変形例を採用することができる。 In addition, this invention is not limited to embodiment mentioned above. For example, various modifications can be adopted as the configuration of the optical system that guides the scintillation lights L 1 and L 2 .
 例えば、図2に示す本発明の変形例である放射線画像取得装置101のように、光学系105のうちの共通部分が2枚のミラー108,109をV字型に配置した構造であってもよい。ミラー108はその反射面108aをミラー6bに向けられ、ミラー109はその反射面109aをミラー7bに向けられている。このようなミラー108,109により、シンチレーション光L,Lの両方が光検出器4の撮像レンズ4aに向けて同時に導光される。このような構造により、波長変換板3の両面から放射されたシンチレーション光L,Lを同時に検出することができるので、デュアルエナジーの放射線検出画像を同時に得ることができる。なお、光学系105が暗い光学系、すなわち、絞りを絞った被写界深度が深い光学系であれば光学系5の構成のうちでミラー8をミラー108,109に入れ替えるだけである程度鮮明な検出画像を得ることができる。その一方、光学系105が明るい光学系、すなわち、F値が小さく被写界深度が浅い光学系の場合には、鮮明な検出画像を得るために、ミラー6aとミラー6bとの間、及びミラー7aとミラー7bとの間に、それぞれ、リレーレンズ6c及びリレーレンズ7cが配置されていることが好ましい。ここで、図3には、放射線画像取得装置101によって検出される放射線検出画像のイメージを示す。このように、光学系105は、シンチレーション光L,Lが光検出器4内の撮像素子の検出領域上に分割して導かれるように調整されているので、光検出器4から出力される画像信号Sにおいては、シンチレーション光Lによって検出される低エネルギー成分の放射線検出画像Gとシンチレーション光Lによって検出される高エネルギー成分の放射線検出画像Gとが2分割して含まれることになる。 For example, even if the common part of the optical system 105 has a structure in which two mirrors 108 and 109 are arranged in a V shape, like a radiation image acquisition apparatus 101 which is a modification of the present invention shown in FIG. Good. The mirror 108 has its reflection surface 108a facing the mirror 6b, and the mirror 109 has its reflection surface 109a facing the mirror 7b. By such mirrors 108 and 109, both the scintillation lights L 1 and L 2 are simultaneously guided toward the imaging lens 4a of the photodetector 4. With such a structure, the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 can be detected at the same time, so that a dual energy radiation detection image can be obtained simultaneously. If the optical system 105 is a dark optical system, that is, an optical system with a deep aperture and a deep depth of field, detection can be performed with a certain degree of clarity by simply replacing the mirror 8 with the mirrors 108 and 109 in the configuration of the optical system 5. An image can be obtained. On the other hand, when the optical system 105 is a bright optical system, that is, an optical system having a small F value and a shallow depth of field, in order to obtain a clear detection image, between the mirror 6a and the mirror 6b and the mirror. It is preferable that a relay lens 6c and a relay lens 7c are disposed between 7a and the mirror 7b, respectively. Here, FIG. 3 shows an image of a radiation detection image detected by the radiation image acquisition apparatus 101. As described above, the optical system 105 is adjusted so that the scintillation lights L 1 and L 2 are divided and guided onto the detection region of the image pickup element in the photodetector 4, and therefore is output from the photodetector 4. in that image signal S G, included a radiation detecting image G 2 of a high energy component detected by the radiation detection image G 1 and the scintillation light L 2 of the low energy component detected by the scintillation light L 1 is divided into two Will be.
 また、図4及び図5に示す本発明の別の変形例である放射線画像取得装置201a,201bのように、光学系205のうちの共通部分としてプリズム208a又はプリズム208bを配置した構造であってもよい。具体的には、プリズム208a,208bは、ミラー6b側から入射したシンチレーション光Lの光路を光検出器4に向くように変更するとともに、ミラー7b側から入射したシンチレーション光Lの光路を光検出器4に向くように変更する。図4に示すプリズム208aは、4つの三角プリズムを貼り合わせて構成されたクロスダイクロイックプリズムであり、図5に示すプリズム208bは、2つの三角プリズムを一体化させることでV字型のくさびが形成された構造のプリズム、又はV字型のくさびを有するように成型された1つのプリズムである。このようなプリズム208a,208bを用いても、シンチレーション光L,Lの両方を光検出器4の撮像レンズ4aに向けて同時に導光することができる。 Further, like the radiographic image acquisition apparatuses 201a and 201b which are another modification example of the present invention shown in FIGS. 4 and 5, the prism 208a or the prism 208b is arranged as a common part of the optical system 205. Also good. Specifically, the prism 208a, 208b is configured to change the optical path of the scintillation light L 1 incident from the mirror 6b side to face the photodetector 4, the optical light path of the scintillation light L 2 incident from the mirror 7b side Change so that it faces the detector 4. The prism 208a shown in FIG. 4 is a cross dichroic prism configured by bonding four triangular prisms, and the prism 208b shown in FIG. 5 is formed by integrating two triangular prisms to form a V-shaped wedge. Or a single prism molded to have a V-shaped wedge. Even when such prisms 208a and 208b are used, both the scintillation lights L 1 and L 2 can be simultaneously guided toward the imaging lens 4a of the photodetector 4.
 さらに、図6に示す本発明の別の変形例である放射線画像取得装置301のように、光学系305のうちの共通部分が2枚のビームスプリッタ308,309をV字型に配置した構造であってもよい。具体的には、ビームスプリッタ308,309は、それぞれの反射面308a,309aの法線がシンチレーション光L,Lの光路を含む平面に略平行となるように配置され、ビームスプリッタ309はその反射面309aをミラー6bに向けられ、ビームスプリッタ308はその反射面308aをミラー7bに向けられている。このようなビームスプリッタ308,309は、ミラー6b及びミラー7b側にそれぞれ配置されてV字型を形成している。このような光学系305の構成により、シンチレーション光L,Lの両方が光検出器4の撮像レンズ4aに向けて同時に導光される。このような構造により、波長変換板3の両面から放射されたシンチレーション光L,Lを同時に検出することができるので、デュアルエナジーの放射線検出画像を同時に得ることができる。ここで、ビームスプリッタ308,309は、ハーフミラーであってもよいし、ビームスプリッタ308がシンチレーション光Lの波長領域を透過し、かつ、シンチレーション光Lの波長領域を反射する性質を有し、ビームスプリッタ309がシンチレーション光Lの波長領域を透過し、かつ、シンチレーション光Lの波長領域を反射する性質を有するものであってもよい。 Further, like a radiographic image acquisition apparatus 301 which is another modified example of the present invention shown in FIG. 6, the common part of the optical system 305 has a structure in which two beam splitters 308 and 309 are arranged in a V shape. There may be. Specifically, the beam splitters 308 and 309 are arranged so that the normal lines of the reflecting surfaces 308a and 309a are substantially parallel to a plane including the optical paths of the scintillation lights L 1 and L 2. The reflecting surface 309a is directed to the mirror 6b, and the beam splitter 308 has the reflecting surface 308a directed to the mirror 7b. Such beam splitters 308 and 309 are arranged on the mirror 6b and mirror 7b sides to form a V shape. With such a configuration of the optical system 305, both the scintillation lights L 1 and L 2 are simultaneously guided toward the imaging lens 4 a of the photodetector 4. With such a structure, the scintillation lights L 1 and L 2 radiated from both surfaces of the wavelength conversion plate 3 can be detected at the same time, so that a dual energy radiation detection image can be obtained simultaneously. Here, the beam splitters 308 and 309 may be half mirrors, and the beam splitter 308 has a property of transmitting the wavelength region of the scintillation light L 1 and reflecting the wavelength region of the scintillation light L 2. , the beam splitter 309 is transmitted through the wavelength region of the scintillation light L 2, and may have a property of reflecting the wavelength region of the scintillation light L 1.
 また、対象物Aを半導体デバイスとし、その半導体デバイスを検査対象とする半導体故障検査装置として上記実施形態の放射線画像取得装置を適用すると有効である。この場合、検査対象となる半導体デバイスを透過した放射線が撮像部(画像取得用の撮像素子)によりカットされることがないため、半導体デバイスの故障などを精度良く検出することができる。 It is also effective to apply the radiation image acquisition apparatus of the above embodiment as a semiconductor fault inspection apparatus in which the object A is a semiconductor device and the semiconductor device is an inspection target. In this case, since the radiation that has passed through the semiconductor device to be inspected is not cut by the imaging unit (image acquisition device for image acquisition), a failure of the semiconductor device can be detected with high accuracy.
 ここで、共通光学部材は、第1及び第2の光学部材によって導光されたシンチレーション光のうちからいずれかを選択して撮像素子に向けて導光する部材である、ことが好ましい。かかる共通光学部材を備えれば、1つの撮像素子によって波長変換部材の両面から放射されたシンチレーション光を検出することができるので、容易に装置の小型化を図ることができるとともに広いエネルギー成分の放射線検出画像を得ることができる。 Here, the common optical member is preferably a member that selects and guides one of the scintillation lights guided by the first and second optical members toward the image sensor. If such a common optical member is provided, the scintillation light emitted from both surfaces of the wavelength conversion member can be detected by one image sensor, so that the apparatus can be easily downsized and radiation having a wide energy component can be achieved. A detection image can be obtained.
 また、共通光学部材は、第1及び第2の光学部材によって導光されたシンチレーション光を反射させるミラーと、ミラーを、シンチレーション光を撮像素子に向けて選択的に導光するように回転させる回転機構とを有する、ことも好ましい。かかる構成を採れば、波長変換部材の両面から放射されたシンチレーション光を互いに干渉することなく検出することができるので、デュアルエナジーの放射線検出画像を確実に得ることができる。 The common optical member is a mirror that reflects the scintillation light guided by the first and second optical members, and a rotation that rotates the mirror to selectively guide the scintillation light toward the image sensor. It is also preferable to have a mechanism. By adopting such a configuration, it is possible to detect the scintillation light emitted from both surfaces of the wavelength conversion member without interfering with each other, so that a dual energy radiation detection image can be obtained with certainty.
 さらに、回転機構によるシンチレーション光の選択タイミングと、撮像素子による撮像タイミングとを同期させるように制御する制御手段を更に備える、ことも好ましい。この場合、デュアルエナジーの放射線検出画像を画像ずれを生じさせること無く検出することができる。 Furthermore, it is preferable to further include a control means for controlling the selection timing of the scintillation light by the rotation mechanism and the imaging timing by the imaging device to be synchronized. In this case, the dual energy radiation detection image can be detected without causing image shift.
 またさらに、共通光学部材は、第1及び第2の光学部材によって導光されたシンチレーション光の両方を同時に撮像素子に向けて導光する部材である、ことも好ましい。かかる共通光学部材を備えれば、波長変換部材の両面から放射されたシンチレーション光を同時に検出することができるので、デュアルエナジーの放射線検出画像を同時に得ることができる。 Furthermore, it is preferable that the common optical member is a member that simultaneously guides both the scintillation light guided by the first and second optical members toward the image sensor. If such a common optical member is provided, scintillation light emitted from both surfaces of the wavelength conversion member can be detected simultaneously, so that a dual energy radiation detection image can be obtained simultaneously.
 ここで、共通光学部材はV字型に配置されたミラーであってもよいし、V字型に配置されたビームスプリッタであってもよいし、プリズムであってもよい。 Here, the common optical member may be a mirror arranged in a V shape, a beam splitter arranged in a V shape, or a prism.
 本発明は、放射線を照射して対象物の放射線像を取得する放射線画像取得装置を使用用途とし、広いエネルギー帯にわたってノイズの低減された放射線検出画像を取得することを可能にするものである。 The present invention uses a radiological image acquisition apparatus that acquires a radiographic image of an object by irradiating radiation, and makes it possible to acquire a radiation detection image with reduced noise over a wide energy band.
 1,101,201a,201b,301…放射線画像取得装置、2…放射線源、3…波長変換板(波長変換部材)、3a…入射面、4…光検出器(撮像素子)、5,105,205,305…光学系、6a,6b…ミラー(第1の光学部材)、7a,7b…ミラー(第2の光学部材)、8,108,109…ミラー(共通光学部材)、208a,208b…プリズム(共通光学部材)、308,309…ビームスプリッタ(共通光学部材)、9…回転駆動機構(共通光学部材)、11…回転制御部(制御手段)、12…タイミング制御部(制御手段)、A…対象物、L,L…シンチレーション光。 1, 101, 201a, 201b, 301 ... Radiation image acquisition device, 2 ... Radiation source, 3 ... Wavelength conversion plate (wavelength conversion member), 3a ... Incident surface, 4 ... Photodetector (imaging device), 5, 105, 205, 305 ... optical system, 6a, 6b ... mirror (first optical member), 7a, 7b ... mirror (second optical member), 8, 108, 109 ... mirror (common optical member), 208a, 208b ... Prism (common optical member), 308, 309 ... Beam splitter (common optical member), 9 ... Rotation drive mechanism (common optical member), 11 ... Rotation control unit (control unit), 12 ... Timing control unit (control unit), A: object, L 1 , L 2 ... scintillation light.

Claims (8)

  1.  放射線を出射する放射線源と、
     前記放射線源から出射され、対象物を透過した前記放射線の入射に応じて、シンチレーション光を発生させる平板状の波長変換部材と、
     前記波長変換部材の前記放射線の入射側の面から放射される前記シンチレーション光を導光する第1の光学部材と、
     前記波長変換部材の前記入射側の面とは反対側の面から放射される前記シンチレーション光を導光する第2の光学部材と、
     前記第1及び第2の光学部材によって導光されたそれぞれの前記シンチレーション光を撮像する撮像素子と、
     前記第1及び第2の光学部材によって導光されたそれぞれの前記シンチレーション光を前記撮像素子に向けて導光する共通光学部材と、
    を備えることを特徴とする放射線画像取得装置。
    A radiation source that emits radiation; and
    A plate-like wavelength conversion member that generates scintillation light in response to incidence of the radiation emitted from the radiation source and transmitted through the object;
    A first optical member that guides the scintillation light emitted from the radiation incident surface of the wavelength conversion member;
    A second optical member that guides the scintillation light emitted from a surface opposite to the surface on the incident side of the wavelength conversion member;
    An image sensor that images each of the scintillation lights guided by the first and second optical members;
    A common optical member for guiding each of the scintillation lights guided by the first and second optical members toward the image sensor;
    A radiological image acquisition apparatus comprising:
  2.  前記共通光学部材は、前記第1及び第2の光学部材によって導光された前記シンチレーション光のうちからいずれかを選択して前記撮像素子に向けて導光する部材である、
    ことを特徴とする請求項1記載の放射線画像取得装置。
    The common optical member is a member that selects one of the scintillation lights guided by the first and second optical members and guides the light toward the imaging element.
    The radiological image acquisition apparatus according to claim 1.
  3.  前記共通光学部材は、前記前記第1及び第2の光学部材によって導光された前記シンチレーション光を反射させるミラーと、前記ミラーを、前記シンチレーション光を前記撮像素子に向けて選択的に導光するように回転させる回転機構とを有する、
    ことを特徴とする請求項2記載の放射線画像取得装置。
    The common optical member selectively guides the scintillation light toward the imaging element through a mirror that reflects the scintillation light guided by the first and second optical members, and the mirror. A rotation mechanism for rotating the
    The radiographic image acquisition apparatus according to claim 2.
  4.  前記回転機構による前記シンチレーション光の選択タイミングと、前記撮像素子による撮像タイミングとを同期させるように制御する制御手段を更に備える、
    ことを特徴とする請求項3記載の放射線画像取得装置。
    Control means for controlling the scintillation light selection timing by the rotation mechanism and the imaging timing by the imaging device to be synchronized;
    The radiographic image acquisition apparatus according to claim 3.
  5.  前記共通光学部材は、前記第1及び第2の光学部材によって導光された前記シンチレーション光の両方を同時に前記撮像素子に向けて導光する部材である、
    ことを特徴とする請求項1記載の放射線画像取得装置。
    The common optical member is a member that simultaneously guides both the scintillation light guided by the first and second optical members toward the imaging element.
    The radiological image acquisition apparatus according to claim 1.
  6.  前記共通光学部材はV字型に配置されたミラーである、
    ことを特徴とする請求項5記載の放射線画像取得装置。
    The common optical member is a mirror arranged in a V shape,
    The radiological image acquisition apparatus according to claim 5.
  7.  前記共通光学部材はV字型に配置されたビームスプリッタである、
    ことを特徴とする請求項5記載の放射線画像取得装置。
    The common optical member is a beam splitter arranged in a V shape,
    The radiological image acquisition apparatus according to claim 5.
  8.  前記共通光学部材はプリズムである、
    ことを特徴とする請求項5記載の放射線画像取得装置。
    The common optical member is a prism;
    The radiological image acquisition apparatus according to claim 5.
PCT/JP2011/074334 2011-01-25 2011-10-21 Radiation image acquisition device WO2012101883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011013204A JP2012154736A (en) 2011-01-25 2011-01-25 Device for taking radiation image
JP2011-013204 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012101883A1 true WO2012101883A1 (en) 2012-08-02

Family

ID=46580470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074334 WO2012101883A1 (en) 2011-01-25 2011-10-21 Radiation image acquisition device

Country Status (2)

Country Link
JP (1) JP2012154736A (en)
WO (1) WO2012101883A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500600B2 (en) 2012-07-20 2016-11-22 Hamamatsu Photonics K.K. Radiation image acquisition system
US10101469B2 (en) 2011-01-25 2018-10-16 Hamamatsu Photonics K.K. Radiation image acquisition device
US10859715B2 (en) 2015-09-30 2020-12-08 Hamamatsu Photonics K.K. Radiation image acquisition system and radiation image acquisition method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779393A (en) * 1993-07-13 1995-03-20 Olympus Optical Co Ltd Visual sense display device
JP2000510729A (en) * 1996-05-13 2000-08-22 ユニバーシテイ・オブ・マサチユセツツ・メデイカル・センター System for quantitative radiation imaging
JP2005004135A (en) * 2003-06-16 2005-01-06 Auto Network Gijutsu Kenkyusho:Kk Imaging apparatus
JP2007155653A (en) * 2005-12-08 2007-06-21 Olympus Corp Radiation observation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779393A (en) * 1993-07-13 1995-03-20 Olympus Optical Co Ltd Visual sense display device
JP2000510729A (en) * 1996-05-13 2000-08-22 ユニバーシテイ・オブ・マサチユセツツ・メデイカル・センター System for quantitative radiation imaging
JP2005004135A (en) * 2003-06-16 2005-01-06 Auto Network Gijutsu Kenkyusho:Kk Imaging apparatus
JP2007155653A (en) * 2005-12-08 2007-06-21 Olympus Corp Radiation observation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10101469B2 (en) 2011-01-25 2018-10-16 Hamamatsu Photonics K.K. Radiation image acquisition device
US10746884B2 (en) 2011-01-25 2020-08-18 Hamamatsu Photonics K.K. Radiation image acquisition device
US9500600B2 (en) 2012-07-20 2016-11-22 Hamamatsu Photonics K.K. Radiation image acquisition system
US10234406B2 (en) 2012-07-20 2019-03-19 Hamamatsu Photonics K.K. Radiation image acquisition system
US10859715B2 (en) 2015-09-30 2020-12-08 Hamamatsu Photonics K.K. Radiation image acquisition system and radiation image acquisition method
US11237278B2 (en) 2015-09-30 2022-02-01 Hamamatsu Photonics K.K. Radiation image acquisition system and radiation image acquisition method

Also Published As

Publication number Publication date
JP2012154736A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US10746884B2 (en) Radiation image acquisition device
EP2669665B1 (en) Radiation image acquisition device
JP5117584B2 (en) Scintillator plate
US10234406B2 (en) Radiation image acquisition system
WO2012101881A1 (en) Radiation image acquisition device
WO2012101883A1 (en) Radiation image acquisition device
JP3204649U (en) Radiation image acquisition device and imaging unit
JP5706387B2 (en) Scintillator plate and image acquisition device
JP5973040B2 (en) Radiation image acquisition device
JP2018136346A (en) Radiation image acquisition device and adjustment method of radiation image acquisition device
JP3610075B2 (en) X-ray imaging device
JP6345720B2 (en) Radiation image acquisition device and method for adjusting radiation image acquisition device
JP4511997B2 (en) X-ray image reader
JP2014095630A (en) Radar device
JP2013052084A (en) Radiographic imaging system and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856684

Country of ref document: EP

Kind code of ref document: A1