JP2008278036A - Infrared camera - Google Patents

Infrared camera Download PDF

Info

Publication number
JP2008278036A
JP2008278036A JP2007117500A JP2007117500A JP2008278036A JP 2008278036 A JP2008278036 A JP 2008278036A JP 2007117500 A JP2007117500 A JP 2007117500A JP 2007117500 A JP2007117500 A JP 2007117500A JP 2008278036 A JP2008278036 A JP 2008278036A
Authority
JP
Japan
Prior art keywords
infrared
infrared imaging
signal
imaging unit
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007117500A
Other languages
Japanese (ja)
Inventor
Tadashi Shiraishi
匡 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007117500A priority Critical patent/JP2008278036A/en
Publication of JP2008278036A publication Critical patent/JP2008278036A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared camera for preventing the failure of an infrared imaging part due to imaging the image of a high luminance object or a high temperature object. <P>SOLUTION: This infrared camera is provided with: an infrared imaging part for converting received infrared rays of light into an electric signal corresponding to intensity; a shutter mechanism for interrupting the rays of light made incident from the outside to the infrared imaging part; an optical diaphragm mechanism for controlling the diaphragm of the rays of light made incident from the outside to the infrared imaging part; an image signal generation part for generating an image signal by processing a signal acquired by amplifying the electric signal from the infrared imaging part by a first gain, and A/D converting it; and an incident light control signal generation part for amplifying the electric signal from the infrared imaging part by a second gain which is lower than the first gain, and for A/D converting it, and for transmitting an incident light control signal to the shutter mechanism or the optical diaphragm mechanism for interrupting or reducing the rays of light made incident from the outside to the infrared imaging part when the A/D converted infrared signal is turned to be a predetermined threshold or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、赤外線カメラ、特に常温で動作する熱型の赤外線撮像素子を用いた非冷却赤外線カメラに関するものである。   The present invention relates to an infrared camera, and more particularly to an uncooled infrared camera using a thermal infrared imaging element that operates at room temperature.

従来、熱型の赤外線撮像素子等を使用したこの種の赤外線カメラは例えば特許文献1に開示されており、特許文献1では赤外光学系や装置の筐体等からの不要な赤外線放射によるシェーディングの影響をカメラ内部に設けたシャッタで有効に補正する装置が開示されている。   Conventionally, this type of infrared camera using a thermal infrared imaging device or the like has been disclosed in, for example, Patent Document 1, and in Patent Document 1, shading due to unnecessary infrared radiation from an infrared optical system or a housing of an apparatus is disclosed. An apparatus that effectively corrects the influence of the above with a shutter provided inside the camera is disclosed.

特開2005−274301号公報JP 2005-274301 A

明るい光学系を用いた従来のこの種の赤外線カメラでは、太陽光などの高輝度物体又は高温度物体を撮像した場合に赤外線撮像部の赤外線撮像素子の画素温度が高温になり、長時間耐熱温度を超えた状態が続くと素子が故障するという問題があった。   In this type of conventional infrared camera using a bright optical system, when a high-brightness object such as sunlight or a high-temperature object is imaged, the pixel temperature of the infrared imaging element of the infrared imaging unit becomes high, and the heat-resistant temperature for a long time. There was a problem that the device failed if the state exceeding the value continued.

この発明は、高輝度被写体又は高温度被写体を撮像したことによる赤外線撮像部の故障を防止した赤外線カメラを提供することを目的とする。   An object of the present invention is to provide an infrared camera that prevents a failure of an infrared imaging unit caused by imaging a high-luminance subject or a high-temperature subject.

この発明は、受光した赤外線を強さに応じた電気信号に変換する赤外線撮像部と、外部からの前記赤外線撮像部へ入射する光を遮断するためのシャッタ機構と、外部からの前記赤外線撮像部へ入射する光の絞りを調節する光学絞り機構と、前記赤外線撮像部からの電気信号を第1の利得で増幅した後A/D変換した信号を処理して画像信号を生成する画像信号生成部と、前記赤外線撮像部からの電気信号を前記第1の利得より低い第2の利得で増幅した後A/D変換し、A/D変換した赤外線信号が予め定められた閾値以上になった時に、外部からの前記赤外線撮像部へ入射する光を遮断又は絞るために前記シャッタ機構又は光学絞り機構に入射光制御信号を送る入射光制御信号生成部と、を備えたことを特徴とする赤外線カメラにある。   The present invention includes an infrared imaging unit that converts received infrared light into an electrical signal corresponding to intensity, a shutter mechanism that blocks light incident on the infrared imaging unit from the outside, and the infrared imaging unit from the outside An optical aperture mechanism for adjusting the aperture of light incident on the image signal, and an image signal generation unit that generates an image signal by processing an A / D-converted signal after amplifying an electrical signal from the infrared imaging unit with a first gain And when the electric signal from the infrared imaging unit is amplified with a second gain lower than the first gain and then A / D converted, and when the A / D converted infrared signal exceeds a predetermined threshold value. An infrared light camera comprising: an incident light control signal generation unit that transmits an incident light control signal to the shutter mechanism or the optical diaphragm mechanism to block or restrict light incident on the infrared imaging unit from the outside It is in.

この発明では、高輝度被写体又は高温度被写体を撮像したことによる赤外線撮像部の故障を防止した赤外線カメラを提供することができる。   According to the present invention, it is possible to provide an infrared camera that prevents a failure of the infrared imaging unit caused by imaging a high-luminance subject or a high-temperature subject.

実施の形態1.
図1はこの発明の実施の形態1による赤外線カメラの構成を示す図である。赤外線カメラは、筐体14、筐体14に取り付けられた赤外線光学系1、熱型赤外線撮像部4(以下赤外線撮像部)、赤外線光学系1と赤外線撮像部4の間に設けられたシャッタ2と光学絞り20、赤外線撮像部4を真空状態に保持するための真空パッケージ5、真空パッケージ5の赤外線入射方向に設置されている赤外線透過窓3を含む。
Embodiment 1 FIG.
FIG. 1 is a diagram showing the configuration of an infrared camera according to Embodiment 1 of the present invention. The infrared camera includes a housing 14, an infrared optical system 1 attached to the housing 14, a thermal infrared imaging unit 4 (hereinafter referred to as an infrared imaging unit), and a shutter 2 provided between the infrared optical system 1 and the infrared imaging unit 4. And an optical aperture 20, a vacuum package 5 for holding the infrared imaging unit 4 in a vacuum state, and an infrared transmission window 3 installed in the infrared incident direction of the vacuum package 5.

また、赤外線撮像部4からの電気信号を増幅するための第1のプリアンプ6、第1のプリアンプ6の出力信号をデジタル信号に変換する第1のA/Dコンバータ7、第1のA/Dコンバータ7からの量子化された信号に基づきビデオ出力信号(画像信号)を出力する信号処理回路8を含み、これらは画像信号を生成することを目的としており、画像信号生成部を構成する。   Also, a first preamplifier 6 for amplifying an electrical signal from the infrared imaging unit 4, a first A / D converter 7 for converting an output signal of the first preamplifier 6 into a digital signal, and a first A / D A signal processing circuit 8 that outputs a video output signal (image signal) based on the quantized signal from the converter 7 is included, which is intended to generate an image signal and constitutes an image signal generation unit.

また、赤外線撮像部4からの電気信号を増幅するための第2のプリアンプ9、第2のプリアンプ9の出力信号をデジタル信号に変換する第2のA/Dコンバータ10、第2のA/Dコンバータ10からの量子化された信号のレベルを検知するレベル検知回路11を含み、これらはシャッタ2や光学絞り20への制御信号である入射光制御信号を生成することを目的としており、入射光制御信号生成部を構成する。   In addition, a second preamplifier 9 for amplifying an electric signal from the infrared imaging unit 4, a second A / D converter 10 for converting an output signal of the second preamplifier 9 into a digital signal, and a second A / D A level detection circuit 11 for detecting the level of the quantized signal from the converter 10 is included, which is intended to generate an incident light control signal that is a control signal to the shutter 2 and the optical aperture 20. A control signal generation unit is configured.

さらにそれぞれレベル検知回路11からの入射光制御信号により、シャッタ2を開閉駆動制御するシャッタドライバ12、光学絞り20の絞り駆動制御する光学絞りドライバ15を含む。シャッタ2とシャッタドライバ12はシャッタ機構を構成し、光学絞り20と光学絞りドライバ15は光学絞り機構を構成する。そしてさらに赤外線カメラ全体の制御を行うカメラ制御部13を含む。   Further, a shutter driver 12 for controlling the opening and closing of the shutter 2 and an optical aperture driver 15 for controlling the aperture of the optical aperture 20 by an incident light control signal from the level detection circuit 11 are included. The shutter 2 and the shutter driver 12 constitute a shutter mechanism, and the optical aperture 20 and the optical aperture driver 15 constitute an optical aperture mechanism. Further, a camera control unit 13 that controls the entire infrared camera is included.

図2は赤外線撮像部4の平面図であり、シリコン基板41上に二次元(マトリクス状)に赤外線撮像素子が配置された赤外線撮像素子部42、画素出力信号の読出し回路43が形成されている。   FIG. 2 is a plan view of the infrared imaging unit 4. An infrared imaging element unit 42 in which infrared imaging elements are arranged two-dimensionally (matrix) on a silicon substrate 41 and a pixel output signal readout circuit 43 are formed. .

図3は図2における赤外線撮像素子部42の1画素の構造、すなわち1つの赤外線撮像素子402を示す斜視図である。シリコン基板41に両側の支持脚402bにより基板から空間を隔てて持ち上げるように赤外線検知部402aが設けられている。熱型の赤外線撮像素子402は、赤外線が照射されると、赤外線を吸収して赤外線検知部402aの温度が上昇し、その温度変化を抵抗変化に変換して検出するものである。   FIG. 3 is a perspective view showing the structure of one pixel of the infrared imaging element section 42 in FIG. 2, that is, one infrared imaging element 402. An infrared detector 402a is provided on the silicon substrate 41 so as to be lifted from the substrate by the support legs 402b on both sides. When infrared rays are irradiated, the thermal infrared imaging element 402 absorbs infrared rays and the temperature of the infrared detection unit 402a rises, and the temperature change is converted into a resistance change and detected.

最初に一般的動作を説明する。図1において、赤外線光学系1から入射した赤外線は赤外線透過窓3を透過して赤外線撮像部4に照射される。照射された赤外線は、図3における赤外線検知部402aにおいて吸収されることにより赤外線検知部の温度が上昇する。赤外線検知部402aに例えば酸化バナジウムなどの抵抗体を用いた場合、温度変化に伴いその抵抗値が変化するので、この温度変化による抵抗値の変化を電気信号の変化として読み出すことにより2次元の赤外線画像情報を得ることができる。   First, the general operation will be described. In FIG. 1, infrared light incident from the infrared optical system 1 passes through the infrared transmission window 3 and is applied to the infrared imaging unit 4. The irradiated infrared ray is absorbed by the infrared ray detection unit 402a in FIG. 3, and the temperature of the infrared ray detection unit rises. When a resistor such as vanadium oxide is used for the infrared detection unit 402a, the resistance value changes with a change in temperature. Therefore, the change in the resistance value due to the change in temperature is read out as a change in the electrical signal to read a two-dimensional infrared ray. Image information can be obtained.

赤外線は室温においては、あらゆる物体から放射されているため、たとえシャッタ2を閉じたとしても赤外線撮像部4に入射される赤外線の入射光量はゼロにはならない。赤外線カメラでは、ある基準面を撮像しそれを撮像信号から差し引くオフセット補正を行う必要がある。図1においては、カメラ制御部13からの信号に応じてシャッタドライバ12の制御によりシャッタ2が閉じられ、その時の赤外線撮像部4から第1のプリアンプ6及び第1のA/Dコンバータ7を介して得られる撮像信号の値をオフセット補正値として信号処理回路8で保持記憶しておき、撮像時に生の撮像信号から差し引く動作を行う。   Since infrared rays are radiated from all objects at room temperature, even if the shutter 2 is closed, the amount of infrared rays incident on the infrared imaging unit 4 does not become zero. In an infrared camera, it is necessary to perform offset correction by imaging a certain reference plane and subtracting it from the imaging signal. In FIG. 1, the shutter 2 is closed by the control of the shutter driver 12 in accordance with a signal from the camera control unit 13, and the infrared imaging unit 4 at that time passes through the first preamplifier 6 and the first A / D converter 7. The value of the imaging signal obtained in this way is held and stored in the signal processing circuit 8 as an offset correction value, and an operation of subtracting from the raw imaging signal is performed during imaging.

また、図3に示す赤外線検知部402aに用いる抵抗体の抵抗温度係数(温度に対する抵抗値の変化の割合のことで単位は%/℃)が同じであれば、赤外線検知部402aの温度上昇が大きいほど同じ量の赤外線入射でえられる抵抗変化が大きくなり、感度が高くなる。従って温度上昇を高くするためには赤外線検知部402aからシリコン基板41に逃げる熱をできるだけ小さくすることが効果的であり、このために両側の支持脚402bは熱抵抗をできるだけ大きくするように設計される。   Further, if the resistance temperature coefficient of the resistor used in the infrared detecting unit 402a shown in FIG. 3 is the same, the temperature rise of the infrared detecting unit 402a is the same. The larger the resistance, the greater the resistance change that can be obtained with the same amount of infrared radiation, and the higher the sensitivity. Therefore, in order to increase the temperature rise, it is effective to minimize the heat escaping from the infrared detecting unit 402a to the silicon substrate 41. For this purpose, the support legs 402b on both sides are designed to increase the thermal resistance as much as possible. The

よって近年の高性能な赤外線撮像素子402は、支持脚402bの熱抵抗を小さくし画素温度が上昇しやすい設計になっているため、明るい光学系を用いた場合、太陽光などの高輝度物体又は高温度物体を直視時に、画素温度が数百℃に上昇することで素子が故障するという問題があった。赤外線撮像素子402の耐熱温度は、使用している部材の融点や、部材の変質、熱変形等に決まり、例えば、配線に用いられるアルミニウムの融点による耐熱温度は約400℃である。   Therefore, since the recent high-performance infrared imaging element 402 is designed to reduce the thermal resistance of the support leg 402b and to easily increase the pixel temperature, when a bright optical system is used, When a high-temperature object is viewed directly, there has been a problem that the device malfunctions when the pixel temperature rises to several hundred degrees Celsius. The heat resistance temperature of the infrared imaging element 402 is determined by the melting point of the member being used, the alteration of the member, thermal deformation, and the like. For example, the heat resistance temperature due to the melting point of aluminum used for wiring is about 400 ° C.

そしてこの発明に関し、高感度の赤外線カメラの温度分解能は一般に0.1m℃前後であり、高いSN比の画像信号を生成するための第1のプリアンプ6は利得(第1の利得)を高く設計されている。そのため、ある輝度以上又はある温度以上の被写体を撮像した場合、第1のA/Dコンバータ7は飽和した状態となり、画像は白とび状態となる。一方、第2のプリアンプ9は、高温撮像においても第2のA/Dコンバータ10が飽和しないように利得(第2の利得)が上述の第1のプリアンプ6は利得に比べて低く設計されている。   With respect to the present invention, the temperature resolution of a high-sensitivity infrared camera is generally around 0.1 m ° C., and the first preamplifier 6 for generating an image signal with a high S / N ratio is designed to have a high gain (first gain). Has been. For this reason, when a subject having a certain luminance or higher or a certain temperature is imaged, the first A / D converter 7 is saturated and the image is overexposed. On the other hand, the second preamplifier 9 is designed so that the gain (second gain) of the above-mentioned first preamplifier 6 is lower than the gain so that the second A / D converter 10 is not saturated even in high-temperature imaging. Yes.

次に、高輝度被写体又は高温度物体を撮像したことによる赤外線撮像素子の故障防止の動作について説明する。第1のプリアンプ6、第1のA/Dコンバータ7、信号処理回路8からなる画像信号生成部、及び第2のプリアンプ9、第2のA/Dコンバータ10、レベル検知回路11からなる入射光制御信号生成部はそれぞれ、赤外線撮像部4の複数又は全ての赤外線撮像素子402からの信号を含むフレームを単位とする信号で処理を行い得る。   Next, an operation for preventing a failure of the infrared imaging device by imaging a high-luminance subject or a high-temperature object will be described. An image signal generation unit including a first preamplifier 6, a first A / D converter 7, and a signal processing circuit 8, and incident light including a second preamplifier 9, a second A / D converter 10, and a level detection circuit 11. Each of the control signal generation units can perform processing with a signal in units of frames including signals from a plurality or all of the infrared imaging elements 402 of the infrared imaging unit 4.

図4はレベル検知回路11での信号処理の動作を説明するための図である。図4において、縦軸は第2のA/Dコンバータ10で量子化された出力(赤外線信号)の諧調、横軸はフレーム番号である。この例ではA/Dコンバータ10として10ビット(1024階調)を使用している。各フレーム期間において全画素の出力、すなわち例えば図2の赤外線撮像素子部42の全ての赤外線撮像素子402からの出力が表示されており、図4においては5フレーム分が表示されている。   FIG. 4 is a diagram for explaining the signal processing operation in the level detection circuit 11. In FIG. 4, the vertical axis represents the gradation of the output (infrared signal) quantized by the second A / D converter 10, and the horizontal axis represents the frame number. In this example, 10 bits (1024 gradations) are used as the A / D converter 10. In each frame period, outputs of all pixels, that is, outputs from, for example, all the infrared imaging elements 402 of the infrared imaging element unit 42 in FIG. 2 are displayed. In FIG. 4, five frames are displayed.

また第3フレーム以降において、高輝度被写体又は高温度被写体を撮像しており、一部の画素において出力が大きくなっている。予め閾値を設定しておき、一部の画素出力が閾値を超えた場合、シャッタ2を閉じる入射光制御信号をシャッタドライバ12に出力する。画素が故障する温度を例えば400℃とすれば、閾値をそれ以下の温度に設定することにより、高輝度被写体又は高温度被写体を撮像した場合にシャッタ2を閉じることで、赤外線撮像素子を保護することができる。   In the third and subsequent frames, a high-luminance subject or a high-temperature subject is imaged, and the output is large in some pixels. A threshold value is set in advance, and when a part of the pixel output exceeds the threshold value, an incident light control signal for closing the shutter 2 is output to the shutter driver 12. If the temperature at which a pixel fails is, for example, 400 ° C., the infrared imaging element is protected by closing the shutter 2 when a high-luminance subject or a high-temperature subject is imaged by setting the threshold value to a temperature lower than that. be able to.

なお、レベル判定を行うデータは、上記の例においてはA/Dコンバータ10の出力(赤外線信号)をそのまま使用したが、レベル検知回路11に信号処理回路8と同様にして、シャッタ2が閉じられた時の赤外線撮像部4から第2のプリアンプ9及び第2のA/Dコンバータ10を介して得られる赤外線信号の値をオフセット補正値として保持記憶しておき、撮像時に生の赤外線信号からオフセット補正値を差し引くオフセット補正を実施した赤外線信号を用いるようにしてもよい。これは以下の実施の形態について同様である。   In the above example, the data for level determination uses the output (infrared signal) of the A / D converter 10 as it is, but the shutter 2 is closed by the level detection circuit 11 in the same manner as the signal processing circuit 8. The value of the infrared signal obtained from the infrared imaging unit 4 through the second preamplifier 9 and the second A / D converter 10 is held and stored as an offset correction value and offset from the raw infrared signal at the time of imaging. An infrared signal subjected to offset correction for subtracting the correction value may be used. The same applies to the following embodiments.

実施の形態2.
図5はこの発明の実施の形態2による赤外線カメラにおけるレベル検知回路11での信号処理の動作を説明するための図である。赤外線カメラ全体の構成は図1に示すものと基本的に同じである。上述の実施の形態1においては、高輝度被写体又は高温度被写体からの入射光が入射された後、レベル検知回路11は赤外線信号が最初に閾値以上になったと判断した場合にシャッタ2を閉じる入射光制御信号を出力するのに対して、本実施の形態においては最初に閾値以上になったと判断した後、連続してNフレーム回、閾値以上になったときにシャッタ2を閉じる入射光制御信号を出力するものである。フレーム数Nは各赤外線撮像素子402が高温に耐えうる期間により設定され、例えばその期間を1秒間とすれば、TV同期の場合30フレーム/秒なのでNは30に設定される。これにより、赤外線撮像素子が故障しないような短時間の高輝度又は高温度被写体からの入射光でのシャッタ動作を防止できる。
Embodiment 2. FIG.
FIG. 5 is a diagram for explaining the signal processing operation in the level detection circuit 11 in the infrared camera according to Embodiment 2 of the present invention. The configuration of the entire infrared camera is basically the same as that shown in FIG. In the first embodiment described above, after the incident light from the high-luminance subject or the high-temperature subject is incident, the level detection circuit 11 is configured to close the shutter 2 when it is determined that the infrared signal first exceeds the threshold value. In contrast to outputting the light control signal, in this embodiment, after determining that the threshold value is exceeded first, the incident light control signal that closes the shutter 2 when the threshold value is continuously exceeded N frames times. Is output. The number of frames N is set according to a period in which each infrared imaging element 402 can withstand high temperatures. For example, if the period is 1 second, N is set to 30 because it is 30 frames / second in the case of TV synchronization. Accordingly, it is possible to prevent a shutter operation with incident light from a high-luminance or high-temperature subject in a short time so that the infrared imaging element does not break down.

実施の形態3.
図6はこの発明の実施の形態3による赤外線カメラの構成を示す図である。上述の図1と同一もしくは相当部分は同一符号で示し説明は省略する。図6の赤外線カメラでは実施の形態1に対し、レベル検知回路11から出力される入射光制御信号が光学絞りドライバ15に入力されている点が異なる。高輝度被写体又は高温度被写体からの入射光を検知してレベル検知回路11が出力する入射光制御信号に応じて、光学絞りドライバ15が光学絞り20を開口が最も小さくなる状態に駆動する。レベル検知の方法については、上述の実施の形態1又は2と同様である。
Embodiment 3 FIG.
FIG. 6 is a diagram showing the configuration of an infrared camera according to Embodiment 3 of the present invention. Parts that are the same as or equivalent to those in FIG. The infrared camera in FIG. 6 differs from the first embodiment in that an incident light control signal output from the level detection circuit 11 is input to the optical aperture driver 15. In response to an incident light control signal output from the level detection circuit 11 by detecting incident light from a high-luminance subject or a high-temperature subject, the optical aperture driver 15 drives the optical aperture 20 to a state where the aperture is minimized. The level detection method is the same as that in the first or second embodiment.

この発明の実施の形態1による赤外線カメラの構成を示す図である。It is a figure which shows the structure of the infrared camera by Embodiment 1 of this invention. 図1は赤外線撮像部の平面図である。FIG. 1 is a plan view of the infrared imaging unit. 図2の赤外線撮像素子部の1つの赤外線撮像素子を示す斜視図である。It is a perspective view which shows one infrared image sensor of the infrared image sensor part of FIG. この発明の実施の形態1による赤外線カメラのレベル検知回路での信号処理の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the signal processing in the level detection circuit of the infrared camera by Embodiment 1 of this invention. この発明の実施の形態2による赤外線カメラのレベル検知回路での信号処理の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the signal processing in the level detection circuit of the infrared camera by Embodiment 2 of this invention. この発明の実施の形態3による赤外線カメラの構成を示す図である。It is a figure which shows the structure of the infrared camera by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 赤外線光学系、2 シャッタ、3 赤外線透過窓、4 (熱型)赤外線撮像部、5 真空パッケージ、6 第1のプリアンプ、7 第1のA/Dコンバータ、8 信号処理回路、9 第2のプリアンプ、10 第2のA/Dコンバータ、11 レベル検知回路、12 シャッタドライバ、13 カメラ制御部、14 筐体、15 光学絞りドライバ、20 光学絞り、41 シリコン基板、42 赤外線撮像素子部、43 読み出し回路、402 赤外線撮像素子、402a 赤外線検知部、402b 支持脚。   DESCRIPTION OF SYMBOLS 1 Infrared optical system, 2 Shutter, 3 Infrared transmission window, 4 (thermal type) infrared imaging part, 5 Vacuum package, 6 1st preamplifier, 7 1st A / D converter, 8 Signal processing circuit, 9 2nd Preamplifier, 10 Second A / D converter, 11 Level detection circuit, 12 Shutter driver, 13 Camera control unit, 14 Housing, 15 Optical aperture driver, 20 Optical aperture, 41 Silicon substrate, 42 Infrared imaging device unit, 43 Read Circuit, 402 Infrared imaging device, 402a Infrared detector, 402b Support leg.

Claims (4)

受光した赤外線を強さに応じた電気信号に変換する赤外線撮像部と、
外部からの前記赤外線撮像部へ入射する光を遮断するためのシャッタ機構と、
外部からの前記赤外線撮像部へ入射する光の絞りを調節する光学絞り機構と、
前記赤外線撮像部からの電気信号を第1の利得で増幅した後A/D変換した信号を処理して画像信号を生成する画像信号生成部と、
前記赤外線撮像部からの電気信号を前記第1の利得より低い第2の利得で増幅した後A/D変換し、A/D変換した赤外線信号が予め定められた閾値以上になった時に、外部からの前記赤外線撮像部へ入射する光を遮断又は絞るために前記シャッタ機構又は光学絞り機構に入射光制御信号を送る入射光制御信号生成部と、
を備えたことを特徴とする赤外線カメラ。
An infrared imaging unit for converting the received infrared light into an electrical signal corresponding to the intensity;
A shutter mechanism for blocking light incident on the infrared imaging unit from the outside;
An optical diaphragm mechanism for adjusting the diaphragm of light incident on the infrared imaging unit from the outside;
An image signal generator for amplifying an electrical signal from the infrared imaging unit with a first gain and then processing an A / D converted signal to generate an image signal;
When the electric signal from the infrared imaging unit is amplified by a second gain lower than the first gain and then A / D converted, and the A / D converted infrared signal becomes equal to or greater than a predetermined threshold, An incident light control signal generation unit that sends an incident light control signal to the shutter mechanism or the optical diaphragm mechanism to block or restrict light incident on the infrared imaging unit from
An infrared camera characterized by comprising:
赤外線撮像部が複数の赤外線撮像素子を含み、画像信号生成部及び入射光制御信号生成部で前記赤外線撮像部の複数の赤外線撮像素子からの信号を含むフレームを単位とする信号で処理を行い、前記入射光制御信号生成部が、連続する複数のフレームにおいて赤外線信号が前記閾値以上になった時に、入射光制御信号を送ることを特徴とする請求項1に記載の赤外線カメラ。   The infrared imaging unit includes a plurality of infrared imaging elements, and the image signal generation unit and the incident light control signal generation unit perform processing with a signal in units of frames including signals from the plurality of infrared imaging elements of the infrared imaging unit, The infrared camera according to claim 1, wherein the incident light control signal generation unit transmits an incident light control signal when the infrared signal becomes equal to or greater than the threshold value in a plurality of consecutive frames. 入射光制御信号生成部が、シャッタ機構を遮断状態にした時の赤外線撮像部からの信号値をオフセット補正値として記憶し、赤外線信号から前記オフセット補正値を差し引いた信号を使用することを特徴とする請求項1又は2に記載の赤外線カメラ。   The incident light control signal generation unit stores a signal value from the infrared imaging unit when the shutter mechanism is in a blocking state as an offset correction value, and uses a signal obtained by subtracting the offset correction value from the infrared signal. The infrared camera according to claim 1 or 2. 赤外線撮像部が、照射される赤外線による温度変化により信号出力が変化する熱型赤外線撮像部であることを特徴とする請求項1から3までのいずれか1項に記載の赤外線カメラ。   The infrared camera according to any one of claims 1 to 3, wherein the infrared imaging unit is a thermal infrared imaging unit in which a signal output changes due to a temperature change caused by irradiated infrared rays.
JP2007117500A 2007-04-26 2007-04-26 Infrared camera Pending JP2008278036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117500A JP2008278036A (en) 2007-04-26 2007-04-26 Infrared camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117500A JP2008278036A (en) 2007-04-26 2007-04-26 Infrared camera

Publications (1)

Publication Number Publication Date
JP2008278036A true JP2008278036A (en) 2008-11-13

Family

ID=40055503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117500A Pending JP2008278036A (en) 2007-04-26 2007-04-26 Infrared camera

Country Status (1)

Country Link
JP (1) JP2008278036A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173753A (en) * 2016-03-25 2017-09-28 日本電産コパル株式会社 Blade operation device
US10362243B2 (en) 2014-09-30 2019-07-23 Fujifilm Corporation Infrared imaging device, diaphragm control method, and diaphragm control program
US10462387B2 (en) 2014-09-30 2019-10-29 Fujifilm Corporation Infrared imaging device, image processing method, and image processing program
WO2022018900A1 (en) * 2020-07-22 2022-01-27 株式会社Jvcケンウッド Image processing device, image processing method, and program
JP7433839B2 (en) 2019-10-31 2024-02-20 株式会社東芝 Lightwave target detection device and polarization control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10362243B2 (en) 2014-09-30 2019-07-23 Fujifilm Corporation Infrared imaging device, diaphragm control method, and diaphragm control program
US10462387B2 (en) 2014-09-30 2019-10-29 Fujifilm Corporation Infrared imaging device, image processing method, and image processing program
JP2017173753A (en) * 2016-03-25 2017-09-28 日本電産コパル株式会社 Blade operation device
JP7433839B2 (en) 2019-10-31 2024-02-20 株式会社東芝 Lightwave target detection device and polarization control method
WO2022018900A1 (en) * 2020-07-22 2022-01-27 株式会社Jvcケンウッド Image processing device, image processing method, and program

Similar Documents

Publication Publication Date Title
US10706514B2 (en) Systems and methods for enhanced dynamic range infrared imaging
JP4185949B2 (en) Photoelectric conversion device and imaging device
JP3635937B2 (en) Infrared camera
JP5311945B2 (en) Imaging apparatus and defective pixel detection method
KR100793230B1 (en) Apparatus and method for compensating a partial back light in camera
JP2008278036A (en) Infrared camera
KR101438327B1 (en) Thermal imaging camera for correcting ununiformity according to temperature of infrared detector and method of correcting ununiformity in the same
JP2017126812A (en) Infrared imaging device
JP2014093660A (en) Image pickup device
US10362243B2 (en) Infrared imaging device, diaphragm control method, and diaphragm control program
JP5122358B2 (en) Camera drive method, camera
JP2009089138A (en) Infrared ray camera
JP2011044813A (en) Imaging apparatus, correction value calculation method, and imaging method
JP2005249723A (en) Display output unit for image containing temperature distribution, and control method therefor
JP2009017156A (en) Imaging apparatus and monitoring system and method
JP6152894B2 (en) Radiation imaging device
JP2008109264A5 (en)
JP2008109264A (en) Solid state imaging device and imaging apparatus
JP2009077047A (en) Electronic camera
JP2008187254A (en) Infrared imaging apparatus, and output value calculating method for imaging element
JP2013088192A (en) Infrared solid-state imaging apparatus
JP2012058064A (en) Method for correcting data of infrared imaging device
US6956978B2 (en) Multi-pass dark frame subtraction
JP2009005120A (en) Far-infrared imaging unit and method
US20060087571A1 (en) Method and apparatus for performing correction in imaging device