JP2012058064A - Method for correcting data of infrared imaging device - Google Patents

Method for correcting data of infrared imaging device Download PDF

Info

Publication number
JP2012058064A
JP2012058064A JP2010200912A JP2010200912A JP2012058064A JP 2012058064 A JP2012058064 A JP 2012058064A JP 2010200912 A JP2010200912 A JP 2010200912A JP 2010200912 A JP2010200912 A JP 2010200912A JP 2012058064 A JP2012058064 A JP 2012058064A
Authority
JP
Japan
Prior art keywords
data
correction
calibration
temperature
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010200912A
Other languages
Japanese (ja)
Inventor
Hirobumi Morimoto
博文 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2010200912A priority Critical patent/JP2012058064A/en
Publication of JP2012058064A publication Critical patent/JP2012058064A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the conventional problem in which: output data outputted from an infrared imaging device drifts due to a change of the temperature of an infrared detector.SOLUTION: Data from four sides of infrared imaging devices 102 arrayed in two dimensions which are least susceptible to the heat fluctuation of a detection area is used as data for correction, and drift correction is performed by interframe difference data of the data for correction. When the correction is successful, the data from the infrared imaging device 200 is maintained of the same value as that just after the acquisition of calibration data. When the data fluctuates, it is determined to be correction abnormality and, by closing a shutter 101 and reacquiring the calibration data to perform calibration, data with corrected temperature drift can be acquired.

Description

本発明は赤外線撮像装置から出力されるデータの補正方法に関する。   The present invention relates to a method for correcting data output from an infrared imaging device.

ペルチェ素子等の冷却素子を必要としない赤外線撮像装置からの画像データの温度ドリフトの補正方法として、非特許文献1で示すように、電源投入直後にシャッタを閉じた状態での第一画像データからドリフト成分を抽出し、シャッタを開放した状態での第2画像データからのドリフト成分との相関をとり、相関値に基づいて第2の画像データに含まれるドリフト値を除去している。   As a method for correcting the temperature drift of image data from an infrared imaging device that does not require a cooling element such as a Peltier element, as shown in Non-Patent Document 1, from the first image data in a state in which the shutter is closed immediately after power-on. The drift component is extracted and correlated with the drift component from the second image data with the shutter opened, and the drift value included in the second image data is removed based on the correlation value.

特開2000−131148JP 2000-131148 A

上記の方法では電源投入直後のような過渡的な温度変化の状態ではシャッタを開放した状態での第2画像の成分は赤外線入力による成分よりドリフトによる成分がはるかに大きいため効果はあるが、安定時の環境温度変化によるドリフト成分のほうがはるかに低くなるため、画像データからドリフト成分を抽出することは困難になるという問題があった。   The above method is effective because the component of the second image in the state where the shutter is opened is much larger due to drift than the component due to infrared input in the state of transient temperature change just after turning on the power, but stable. There is a problem that it is difficult to extract the drift component from the image data because the drift component due to the environmental temperature change at the time is much lower.

上記の課題を解決するために本発明の補正方法は2次元に配置した複数の赤外線検出素子102と校正のため定期的に外部からの赤外線入力をさえぎるシャッタ101を持ち、その赤外線検出素子102からの信号を信号処理回路103で処理後、A/D変換機104でA/D変換を行い、時系列で順次2次元のデジタル画像データを出力する赤外線撮像装置200の画像データについて、CPU106で時間の異なる画像データの差分を元に赤外線検出素子102の温度変化による出力ドリフトをCPU106内で補正する手段を備える。   In order to solve the above problems, the correction method of the present invention has a plurality of infrared detection elements 102 arranged two-dimensionally and a shutter 101 that periodically blocks external infrared input for calibration. After the signal is processed by the signal processing circuit 103, the A / D converter 104 performs A / D conversion, and the CPU 106 processes the time for the image data of the infrared imaging apparatus 200 that sequentially outputs two-dimensional digital image data in time series. The CPU 106 is provided with means for correcting the output drift due to the temperature change of the infrared detecting element 102 based on the difference between the different image data.

本発明によれば、赤外線撮像装置より得られた時間の異なる画像データの差分を元に赤外線検出素子の温度変化による出力ドリフトを補正することにより、赤外線撮像装置にペルチェ素子及びペルチェ素子のコントローラを持たない安価な赤外線撮像装置を利用できる。   According to the present invention, the Peltier element and the controller of the Peltier element are added to the infrared imaging apparatus by correcting the output drift due to the temperature change of the infrared detecting element based on the difference between the image data obtained from the infrared imaging apparatus at different times. An inexpensive infrared imaging device that does not have it can be used.

本発明の実施例1に係る赤外線撮像装置データの補正方法の実施形態を示すブロック図である。It is a block diagram which shows embodiment of the correction method of the infrared imaging device data which concerns on Example 1 of this invention. 本発明の実施例1に係る赤外線撮像装置データの補正方法の実施形態を示すフローチャートである。It is a flowchart which shows embodiment of the correction method of the infrared imaging device data which concerns on Example 1 of this invention.

以下、本発明の実施の形態について説明する。
2次元に配列された赤外線検出素子102として抵抗変化型のボロメータを使用した赤外線撮像装置200で、5回/秒の計測フレーム間隔で温度計測を行っている場合を想定する。
Embodiments of the present invention will be described below.
Assume that the infrared imaging device 200 using a resistance change bolometer as the two-dimensionally arranged infrared detecting elements 102 is performing temperature measurement at a measurement frame interval of 5 times / second.

理解のためデータをCPU106で温度換算した例について図1のブロック図、図2のフローチャートを元に説明するがA/D104でA/D変換後のデータ値に対する処理でもかまわない。まずCPU106はシャッタ101を閉じる命令を送る(S301)。入射赤外線を遮断し赤外線検出素子からの出力を信号処理回路103で信号処理後、A/D変換しCPU106が読み込んだデータは、シャッタ101表面から放射する赤外線による信号と赤外線検出素子102のFPNノイズとを含んだデータとなっているため、読み込んだ2次元配列データTn(x、y)とシャッタ101近傍に取り付けられた温度センサ107からの温度出力を読み取った温度TSを記憶する(S302)。これを計測フレームn=0とする。次にシャッタ101を開ける命令を送り(S303)、赤外線検出素子102から出力された検出エリアからの赤外線信号を信号処理回路103で信号処理後、A/D104でA/D変換を行い、FPNのイズTn(x、y)の減算を行いシャッタ温度TSで校正、温度換算処理を行い、2次元配列温度データTn+1(x、y)を得記憶する(S304)。また、Tn+1(x、y)の平均温度Tav0を計算し記憶する。計測したフレームn+1の計測温度は校正直後であるため精度よく計測できる。   For the sake of understanding, an example in which data is converted into temperature by the CPU 106 will be described based on the block diagram of FIG. 1 and the flowchart of FIG. 2, but the A / D 104 may process the data value after A / D conversion. First, the CPU 106 sends a command to close the shutter 101 (S301). After the incident infrared ray is cut off and the output from the infrared detection element is processed by the signal processing circuit 103, the data read by the CPU 106 after A / D conversion is performed by the infrared ray signal radiated from the shutter 101 surface and the FPN noise of the infrared detection element 102 Therefore, the read two-dimensional array data Tn (x, y) and the temperature TS read from the temperature output from the temperature sensor 107 attached in the vicinity of the shutter 101 are stored (S302). This is set to measurement frame n = 0. Next, a command to open the shutter 101 is sent (S303), the infrared signal from the detection area output from the infrared detection element 102 is processed by the signal processing circuit 103, A / D conversion is performed by the A / D 104, and FPN The subtraction of the noise Tn (x, y) is performed, the calibration and the temperature conversion process are performed at the shutter temperature TS, and the two-dimensional array temperature data Tn + 1 (x, y) is obtained and stored (S304). Further, the average temperature Tav0 of Tn + 1 (x, y) is calculated and stored. Since the measured temperature of the measured frame n + 1 is immediately after calibration, it can be measured with high accuracy.

次にCPU106は1/5秒後、同様にフレームn+2の温度換算データTn+2(x、y)を得る。(S305)。
1/5秒の間に環境温度変化があれば、Tn+2(x、y)は、環境温度変化による温度ドリフト成分を含んだデータになる。赤外線検出素子102は対象物から放射される赤外線をうけ、赤外線検出素子102の温度が赤外線によって温度上昇し抵抗変化をする。
Next, after 1/5 second, the CPU 106 similarly obtains the temperature converted data Tn + 2 (x, y) of the frame n + 2. (S305).
If there is an environmental temperature change within 1/5 second, Tn + 2 (x, y) is data including a temperature drift component due to the environmental temperature change. The infrared detecting element 102 receives infrared rays radiated from the object, and the temperature of the infrared detecting element 102 rises due to the infrared rays and changes its resistance.

この入射赤外線による赤外線検出素子102の温度変化は非常にわずかで、たとえば、計測対象物の温度変化が1℃の場合での入射赤外線での赤外線検出素子102の温度変化は0.001℃程度である。このとき環境温度が5℃/分の温度勾配で変化し、赤外線撮像装置200の外装ケース等で温度変化が緩和され、赤外線検出素子102の温度が0.3℃/分で変化した場合、環境温度変化により計測と計測の間、1/5秒後の赤外線検出素の出力データTn+2(x、y)は対象物の温度が1フレームあたり約1℃変化したことと同等の温度データのドリフトが発生してしまう。計測と計測の間に変化した差分温度はほとんど赤外線検出素子102の温度変化による温度ドリフトとみなせば、CPU106はこのフレームn+1とn+2間の差分データ1℃をフレームn+2の温度データから減算してやれば、環境温度変化によるドリフトを補正することができる。CPU106はフレームn+2とn+1の差分データを計算する。   The temperature change of the infrared detection element 102 due to the incident infrared ray is very slight. For example, when the temperature change of the measurement object is 1 ° C., the temperature change of the infrared detection element 102 with the incident infrared ray is about 0.001 ° C. is there. At this time, the environmental temperature changes with a temperature gradient of 5 ° C./min, the temperature change is mitigated by the outer case of the infrared imaging device 200, and the temperature of the infrared detection element 102 changes at 0.3 ° C./min. Infrared detector output data Tn + 2 (x, y) after 1/5 second between measurements due to temperature change has a drift of temperature data equivalent to a change in the temperature of the object by about 1 ° C. per frame. Will occur. If the difference temperature changed between the measurements is almost regarded as a temperature drift due to the temperature change of the infrared detecting element 102, the CPU 106 subtracts the difference data 1 ° C. between the frames n + 1 and n + 2 from the temperature data of the frame n + 2. Drift due to environmental temperature changes can be corrected. The CPU 106 calculates difference data between the frames n + 2 and n + 1.

しかし、上記の処理を全画素に対して行えば計測エリアに熱源が入ってきた場合、熱源による計測値の変動をドリフトと判断して補正してしまう問題が発生する。   However, if the above processing is performed on all the pixels, when a heat source enters the measurement area, there arises a problem that a measurement value variation due to the heat source is determined to be drift and corrected.

そこで、フレーム間の差分データを求めるエリアを計測エリア内の最も影響を受けにくい計測エリアの上下、左右4辺またはその近傍の画像データとする。たとえば64×64の2次元に配列された赤外線検出素子102の場合上下、左右4辺252個の赤外線検出素子102からのデータのフレーム間差分の平均をドリフトデータとすれば、ほとんどの場合計測エリア内の熱源の影響での問題は発生しない。   Therefore, the area for obtaining the difference data between frames is set as image data on the upper and lower sides, the left and right sides of the measurement area that is least affected by the measurement area, or the vicinity thereof. For example, in the case of the infrared detection elements 102 arranged in a two-dimensional manner of 64 × 64, if the average of the inter-frame differences of the data from the 252 infrared detection elements 102 with four sides on the upper and lower sides and the left and right sides is defined as drift data, in most cases the measurement area There is no problem with the effect of the heat source inside.

CPU106はTn+2(x、y)、Tn+1(x、y)の4辺の差分温度を求める(S306)。この場合4辺としたが、4辺近辺のデータとしてもよい。
計測エリア外から熱源が進入した場合必ずこの4辺のどれかの部分を横切るためこの横切った部分のデータは補正データとして使用できない。そこで、差分温度の絶対値が設定温度t1以上の画素が無いか確認する(S307)。仮にフレーム間の差分がt1=2℃以上になる赤外線検出素子4辺からのデータは補正データとして使用しないようにすればこの問題は回避できると共にフレーム間の温度ドリフトが2℃未満であれば補正することができる。設定温度t1を超える画素が無い場合4辺の平均差分温度avを計算し記憶する(S309)。
進入熱源が大きく、補正データとして使用しない画素データが多くなれば残った画素での補正データの精度が下がるため、補正として使用しない画素数が設定画素以上となった場合、補正不能と判断し、CPU106はシャッターコントローラ105に対しシャッタでの校正命令を送り、シャッタを閉じ校正データの取得をおこなう(S308)。差分温度の絶対値がt1を超える画素がありその画素数が設定数を超えなければ、4辺の差分温度のデータから超えた画素のデータを外した差分温度の平均avを計算し記憶する(S310)。
The CPU 106 obtains differential temperatures of four sides of Tn + 2 (x, y) and Tn + 1 (x, y) (S306). In this case, the four sides are used, but the data near the four sides may be used.
When a heat source enters from outside the measurement area, it always crosses any part of these four sides, so the data of this crossing part cannot be used as correction data. Therefore, it is confirmed whether there is any pixel whose absolute value of the difference temperature is equal to or higher than the set temperature t1 (S307). If the data from the four sides of the infrared detection element where the difference between frames is t1 = 2 ° C. or higher is not used as correction data, this problem can be avoided and correction can be performed if the temperature drift between frames is less than 2 ° C. can do. When there is no pixel exceeding the set temperature t1, the average difference temperature av on the four sides is calculated and stored (S309).
If the ingress heat source is large and the amount of pixel data that is not used as correction data increases, the accuracy of the correction data in the remaining pixels is reduced. The CPU 106 sends a calibration command for the shutter to the shutter controller 105, closes the shutter, and acquires calibration data (S308). If there is a pixel whose absolute value of the difference temperature exceeds t1 and the number of pixels does not exceed the set number, the average av of the difference temperature obtained by removing the data of the pixels exceeding the difference temperature data on the four sides is calculated and stored ( S310).

温度換算し記憶した2次元配列データTn+2(x、y)全データから差分温度データの平均avを減算して補正済みデータとして記憶する。また、補正済みデータの全画素の平均Tav1を求め記憶する。
環境温度変化、温度ドリフトが無い状態でこの4辺のエリア内に温度変化の絶対値が設定温度t1=2℃未満の熱源が入ってきた場合、この熱源の大きさは補正誤差に影響し、1.9℃温度差で20画素分の熱源が入った場合、(1.9*20)/252≒0.15℃の補正誤差が発生し、温度が変動していない計測エリア全体の温度計測値に影響し0.15℃下げてしまう。40画素分の熱源が入った場合0.3℃計測エリア全体の温度を下げてしまい温度計測精度に大きく影響を与えてしまう。そこで、ドリフト補正の結果計測範囲全体の温度をあらかじめ設定された閾値温度t2以上変動させてしまうような補正が入った場合、又は、計測フレームnが進むうち閾値温度t2以上の計測温度変動が発生した場合、|Tav1-Tav0|>t2(S312)、補正異常としてCPU106はシャッターコントローラ105に対しシャッタを閉じる命令を送り(S301)、校正データを取得し、フレームカウントnをリセットした後(S302)。シャッタを開け(S303)。計測、補正動作をくりかえす。これら設定閾値温度t1、t2は目的とする計測温度の精度、公差により決定される。仮にt2=0.3℃と設定しておけば、フレーム間での補正誤差及びフレームが進む間に積分される補正誤差が0.3℃を超えることは無い。また、計測エリア全体が温度変化した場合、校正データ取得(S202)直後の計測温度から0.3℃以上の温度変化があれば、シャッタを閉じ校正データを取得、校正を行うため0.3℃以内の誤差で常に温度計測を行うことができる。
補正がうまくいった場合CPU106は補正済み温度データを外部に出力する(S313)。
CPU106はフレームカウントnをインクリメントする(処理314)。
nがあらかじめ設定された値を超えない場合、次のフレームデータ取得を行い、差分データを求め補正、出力を繰り返す。
nが設定された値を超えた場合、シャッタを閉じ、校正データを取得、フレームカウントnをリセットし計測、補正を繰り返す。nの設定値は計測環境によって設定される。
The average temperature av of the difference temperature data is subtracted from all the two-dimensional array data Tn + 2 (x, y) stored after temperature conversion and stored as corrected data. Further, the average Tav1 of all the pixels of the corrected data is obtained and stored.
If there is a heat source with an absolute value of temperature change less than the set temperature t1 = 2 ° C in these four areas with no environmental temperature change or temperature drift, the size of this heat source will affect the correction error, When a heat source for 20 pixels enters with a temperature difference of 1.9 ° C, a correction error of (1.9 * 20) /252≈0.15°C occurs, and the temperature of the entire measurement area where the temperature does not fluctuate It affects the value and drops by 0.15 ° C. When a heat source for 40 pixels enters, the temperature of the entire 0.3 ° C. measurement area is lowered, greatly affecting the temperature measurement accuracy. Therefore, when a correction that causes the temperature of the entire measurement range to fluctuate by a predetermined threshold temperature t2 or more is entered as a result of the drift correction, or a measurement temperature fluctuation of the threshold temperature t2 or more occurs as the measurement frame n advances. If | Tav1-Tav0 |> t2 (S312), the CPU 106 sends a command to close the shutter to the shutter controller 105 as a correction error (S301), obtains calibration data, and resets the frame count n (S302). . The shutter is opened (S303). Repeat measurement and correction operations. These set threshold temperatures t1 and t2 are determined by the accuracy and tolerance of the target measurement temperature. If t2 = 0.3 ° C. is set, the correction error between frames and the correction error integrated while the frame proceeds do not exceed 0.3 ° C. Further, when the temperature of the entire measurement area changes, if there is a temperature change of 0.3 ° C. or more from the measured temperature immediately after the acquisition of calibration data (S 202), the shutter is closed and the calibration data is acquired and calibrated to perform calibration. Temperature measurement can always be performed with an error within.
If the correction is successful, the CPU 106 outputs the corrected temperature data to the outside (S313).
The CPU 106 increments the frame count n (process 314).
If n does not exceed a preset value, the next frame data is acquired, the difference data is obtained, corrected, and output is repeated.
When n exceeds the set value, the shutter is closed, the calibration data is acquired, the frame count n is reset, and the measurement and correction are repeated. The set value of n is set according to the measurement environment.

シャッタを閉じ定期的に校正を行う赤外線撮像装置の場合、ペルチェ等で赤外線検出素子の温度を一定に保たなければ、校正と校正の間の環境温度の変動で計測値が校正時からドリフトしてしまうためシャッタでの校正間隔を非常に短くする必要があるが、本発明はペルチェ素子等の冷却装置を持たない赤外線撮像装置であってもデータの温度ドリフトを防ぐことができるため、校正間隔を長く設定でき、安価で電力を消費しない赤外線撮像装置を利用することができるようになる。   In the case of an infrared imaging device that periodically calibrates with the shutter closed, if the temperature of the infrared detection element is not kept constant with Peltier etc., the measured value drifts from the time of calibration due to fluctuations in the environmental temperature between calibrations. Therefore, it is necessary to make the calibration interval at the shutter very short. However, the present invention can prevent data temperature drift even in an infrared imaging device having no cooling device such as a Peltier element. Can be set long, and an infrared imaging device that is inexpensive and does not consume power can be used.

101 シャッタ
102 赤外線検出素子
103 信号処理回路
104 A/D変換機
106 CPU
107 温度センサ、 赤外線撮像装置 200
101 Shutter 102 Infrared Detector 103 Signal Processing Circuit 104 A / D Converter 106 CPU
107 Temperature sensor, infrared imaging device 200

Claims (5)

2次元に配置した複数の赤外線検出素子と校正のため定期的に外部からの赤外線入力をさえぎるシャッタを持ち、その赤外線検出素子からの信号を処理後、A/D変換を行い、時系列で順次2次元のデジタル画像データを出力する赤外線撮像装置からのデータ処理において、得られた時間の異なる画像データの差分を元に赤外線検出素子の温度変化による出力ドリフトを補正する補正方法。   Two-dimensionally arranged infrared detection elements and a shutter that periodically blocks external infrared input for calibration, processes the signals from the infrared detection elements, performs A / D conversion, and sequentially in time series A correction method for correcting an output drift due to a temperature change of an infrared detection element based on a difference between image data obtained at different times in data processing from an infrared imaging device that outputs two-dimensional digital image data. ドリフト補正用の差分データを求める画像データは2次元画像データの中心から最も外側の上下、左右4辺の画像データ、または、その近傍の画像データとする請求項1に記載の補正方法。   The correction method according to claim 1, wherein the image data for obtaining the drift correction difference data is image data of upper and lower sides, left and right sides on the outermost side from the center of the two-dimensional image data, or image data in the vicinity thereof. 補正用画素のフレーム間差分データの絶対値が設定値以上の画素データは補正データとして使用しない請求項1項に記載の補正方法。   The correction method according to claim 1, wherein pixel data having an absolute value of inter-frame difference data of a correction pixel that is greater than or equal to a set value is not used as correction data. 補正用画素のフレーム間差分データの絶対値が設定値以上になる画素が設定画素数以上存在した場合、シャッタを閉じ校正データを取得、校正を行う命令を出力する請求項1に記載の補正方法。   2. The correction method according to claim 1, wherein when there are more than a set number of pixels whose absolute value of the inter-frame difference data of the correction pixels exceeds the set value, the shutter is closed, calibration data is acquired, and a calibration command is output. . シャッタでの校正後補正を行った計測値の変化が設定値を超えた場合、直ちにシャッタを閉じ校正データを取得、校正を行う命令を出力する請求項1に記載の補正方法。   2. The correction method according to claim 1, wherein when a change in a measured value that has been corrected after calibration by the shutter exceeds a set value, the shutter is immediately closed, calibration data is acquired, and a command to perform calibration is output.
JP2010200912A 2010-09-08 2010-09-08 Method for correcting data of infrared imaging device Pending JP2012058064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200912A JP2012058064A (en) 2010-09-08 2010-09-08 Method for correcting data of infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200912A JP2012058064A (en) 2010-09-08 2010-09-08 Method for correcting data of infrared imaging device

Publications (1)

Publication Number Publication Date
JP2012058064A true JP2012058064A (en) 2012-03-22

Family

ID=46055343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200912A Pending JP2012058064A (en) 2010-09-08 2010-09-08 Method for correcting data of infrared imaging device

Country Status (1)

Country Link
JP (1) JP2012058064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255120A (en) * 2012-06-07 2013-12-19 Nec Corp Imaging apparatus
CN112326036A (en) * 2020-09-29 2021-02-05 武汉高德智感科技有限公司 Method for solving shutter temperature drift of infrared temperature measurement equipment
CN113658054A (en) * 2021-07-06 2021-11-16 北京空间机电研究所 Infrared image splicing correction method based on temperature drift characteristic line approximation
CN115211098A (en) * 2020-07-22 2022-10-18 Jvc建伍株式会社 Image processing apparatus, image processing method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122956A (en) * 1996-10-22 1998-05-15 Mitsubishi Electric Corp Infrared camera

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122956A (en) * 1996-10-22 1998-05-15 Mitsubishi Electric Corp Infrared camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255120A (en) * 2012-06-07 2013-12-19 Nec Corp Imaging apparatus
CN115211098A (en) * 2020-07-22 2022-10-18 Jvc建伍株式会社 Image processing apparatus, image processing method, and program
CN115211098B (en) * 2020-07-22 2023-07-11 Jvc建伍株式会社 Image processing apparatus, image processing method, and storage medium
CN112326036A (en) * 2020-09-29 2021-02-05 武汉高德智感科技有限公司 Method for solving shutter temperature drift of infrared temperature measurement equipment
CN113658054A (en) * 2021-07-06 2021-11-16 北京空间机电研究所 Infrared image splicing correction method based on temperature drift characteristic line approximation
CN113658054B (en) * 2021-07-06 2024-03-29 北京空间机电研究所 Infrared image stitching correction method based on temperature drift characteristic line approximation

Similar Documents

Publication Publication Date Title
US10110833B2 (en) Hybrid infrared sensor array having heterogeneous infrared sensors
US9930324B2 (en) Time based offset correction for imaging systems
US9924116B2 (en) Time based offset correction for imaging systems and adaptive calibration control
EP2923187B1 (en) Hybrid infrared sensor array having heterogeneous infrared sensors
CN1917590B (en) Method for fixed pattern noise reduction in infrared imaging cameras
JP6540519B2 (en) Infrared imaging device
Tempelhahn et al. Shutter-less calibration of uncooled infrared cameras
EP2579578B1 (en) Method for acquiring data with an image sensor
US10079982B2 (en) Determination of an absolute radiometric value using blocked infrared sensors
JP2008185465A (en) Method and apparatus for compensating infrared sensor for temperature
KR101438327B1 (en) Thermal imaging camera for correcting ununiformity according to temperature of infrared detector and method of correcting ununiformity in the same
JP2012058064A (en) Method for correcting data of infrared imaging device
US9581500B2 (en) Diagnosis of the defective state of a bolometric detection array
WO2013052196A1 (en) Determination of an absolute radiometric value using blocked infrared sensors
WO2014105904A1 (en) Infrared focal plane array heat spreaders
RU134643U1 (en) SETTING QUALITY CONTROL OF DEFECTS CORRECTION AND HETEROGENEITY OF PHOTO RECEPTION DEVICES OF IR-RANGE
Tempelhahn et al. Development of a shutterless calibration process for microbolometer-based infrared measurement systems
JP2008278036A (en) Infrared camera
JP2009100380A (en) Imaging apparatus
KR101731287B1 (en) Method and apparatus for compensating output of infrared sensor
KR101804860B1 (en) Infrared Detector
Krupiński et al. Non-uniformity correction with temperature influence compensation in microbolometer detector
KR101563475B1 (en) Infrared Detector
Liu et al. A self-adaptive nonuniformity correction algorithm for infrared images combined with two-point correction along the rim
JP2013083534A (en) Infrared detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729