JP7432558B2 - Inspection equipment and inspection method - Google Patents

Inspection equipment and inspection method Download PDF

Info

Publication number
JP7432558B2
JP7432558B2 JP2021092781A JP2021092781A JP7432558B2 JP 7432558 B2 JP7432558 B2 JP 7432558B2 JP 2021092781 A JP2021092781 A JP 2021092781A JP 2021092781 A JP2021092781 A JP 2021092781A JP 7432558 B2 JP7432558 B2 JP 7432558B2
Authority
JP
Japan
Prior art keywords
wavelength
light
separation
excitation light
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021092781A
Other languages
Japanese (ja)
Other versions
JP2021129120A (en
JP2021129120A5 (en
Inventor
共則 中村
賢一郎 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2021092781A priority Critical patent/JP7432558B2/en
Publication of JP2021129120A publication Critical patent/JP2021129120A/en
Publication of JP2021129120A5 publication Critical patent/JP2021129120A5/ja
Application granted granted Critical
Publication of JP7432558B2 publication Critical patent/JP7432558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N2021/646Detecting fluorescent inhomogeneities at a position, e.g. for detecting defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/103Scanning by mechanical motion of stage

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Transplanting Machines (AREA)

Description

本発明は、検査装置及び検査方法に関する。 The present invention relates to an inspection device and an inspection method.

基板上に形成された発光素子群の良・不良を判定する手法として、発光素子に針をあてて電気を流した際に生じる発光(エレクトロルミネッセンス)を計測するプロービングが知られている。しかしながら、例えばウェハ上に形成されたμLED等の微細な発光素子については、複数の発光素子の1つ1つに針をあてて計測を行うプロービングが物理的に困難である。その他の手法として、例えば発光素子に励起光を照射して、発光素子が発するフォトルミネッセンスを観察することにより、発光素子の良否判定を行う手法が知られている(例えば特許文献1参照)。当該手法によれば、上述したμLED等の微細な発光素子についても良・不良を効率的に判定することができる。 A known method for determining whether a group of light emitting elements formed on a substrate is good or bad is probing, which measures the light emission (electroluminescence) produced when a needle is placed on a light emitting element and electricity is passed through it. However, with respect to minute light emitting elements such as μLEDs formed on a wafer, probing, which involves placing a needle on each of the plurality of light emitting elements for measurement, is physically difficult. As another method, a method is known in which the quality of the light emitting element is determined by, for example, irradiating the light emitting element with excitation light and observing photoluminescence emitted by the light emitting element (see, for example, Patent Document 1). According to this method, it is possible to efficiently determine whether fine light emitting elements such as the above-mentioned μLEDs are good or bad.

特開2018-132308号公報JP2018-132308A

ここで、フォトルミネッセンスを観察することにより良否判定を行う手法においては、測定対象である発光素子の発光を適切に取得(観察)し、発光素子の良否判定を高精度に行うことが求められている。 Here, in the method of determining pass/fail by observing photoluminescence, it is required to appropriately acquire (observe) the light emitted from the light emitting element to be measured and to judge the pass/fail of the light emitting element with high precision. There is.

本発明は上記実情に鑑みてなされたものであり、発光素子の良否判定を高精度に行うことを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to highly accurately determine the quality of a light emitting element.

本発明の一態様に係る検査装置は、基板上に複数の発光素子が形成された対象物を検査する検査装置であって、発光素子に照射される励起光を生成する光源部と、励起光が照射された発光素子の発光を検出する光検出部と、発光素子の発光色に関する情報を受け付ける入力部と、入力部によって受付けられた発光色に関する情報に基づいて励起光の波長を決定し、該波長の励起光が生成されるように光源部を制御する制御部と、を備え、制御部は、対象物の基板の吸収端波長よりも長く、且つ、発光色に関する情報から特定される発光素子の発光スペクトルのピーク波長よりも短い波長を、励起光の波長に決定する。 An inspection apparatus according to one embodiment of the present invention is an inspection apparatus for inspecting an object having a plurality of light emitting elements formed on a substrate, and includes a light source unit that generates excitation light to be irradiated to the light emitting elements, and a light source unit that generates excitation light to irradiate the light emitting elements; a light detection unit that detects the light emission of the light emitting element irradiated with the light emitting element; an input unit that receives information regarding the emission color of the light emitting element; and determining the wavelength of the excitation light based on the information regarding the emission color received by the input unit; a control unit that controls the light source unit so that excitation light of the wavelength is generated, the control unit configured to generate excitation light that is longer than the absorption edge wavelength of the target substrate and that is specified from information regarding the emission color. A wavelength shorter than the peak wavelength of the emission spectrum of the device is determined as the wavelength of the excitation light.

本発明の一態様に係る検査装置では、発光素子の発光色に関する情報の入力が受け付けられ、励起光の波長が、発光素子の発光スペクトルのピーク波長よりも短い波長とされている。このように、発光素子の発光色に応じて励起光の波長が決定され、励起光の波長が発光素子の発光スペクトルのピーク波長よりも短くされることにより、発光素子の発光を適切に検出することができる。また、本発明の一態様に係る検査装置では、励起光の波長が、対象物の基板の吸収端波長よりも長い波長とされている。このことにより、基板に光が吸収されて励起光が発光素子に届きにくくなることを抑制すると共に、励起光によって基板が励起されることが抑制され、発光素子の発光以外の光が検出されることを抑制することができる。以上のように、本発明の一態様に係る検査装置によれば、測定対象である発光素子の発光を適切に取得し、該発光に基づき、発光素子の良否判定を高精度に行うことができる。 In the inspection apparatus according to one embodiment of the present invention, input of information regarding the emission color of the light emitting element is accepted, and the wavelength of the excitation light is set to be a wavelength shorter than the peak wavelength of the emission spectrum of the light emitting element. In this way, the wavelength of the excitation light is determined according to the emission color of the light emitting element, and by making the wavelength of the excitation light shorter than the peak wavelength of the emission spectrum of the light emitting element, the light emission of the light emitting element can be appropriately detected. Can be done. Further, in the inspection apparatus according to one aspect of the present invention, the wavelength of the excitation light is longer than the absorption edge wavelength of the target substrate. This prevents light from being absorbed by the substrate and makes it difficult for excitation light to reach the light emitting element, and also prevents the substrate from being excited by the excitation light, allowing light other than light emitted by the light emitting element to be detected. This can be suppressed. As described above, according to the inspection apparatus according to one embodiment of the present invention, the light emission of the light emitting element to be measured can be appropriately acquired, and the quality of the light emitting element can be determined with high accuracy based on the light emission. .

制御部は、発光素子の発光スペクトルのピーク波長から、該発光スペクトルの半値全幅を引いた波長よりも短い波長を、励起光の波長に決定してもよい。これにより、発光スペクトルに含まれるほとんどの波長帯よりも励起光の波長を短くすることができ、発光素子の発光を適切に検出することができる。 The control unit may determine the wavelength of the excitation light to be shorter than the wavelength obtained by subtracting the full width at half maximum of the emission spectrum from the peak wavelength of the emission spectrum of the light emitting element. Thereby, the wavelength of the excitation light can be made shorter than most wavelength bands included in the emission spectrum, and the light emission from the light emitting element can be appropriately detected.

光源部は、励起光の白色光源と、互いに異なる波長帯の励起光を透過する複数の第1のバンドパスフィルタとを有し、制御部は、決定した励起光の波長に応じて第1のバンドパスフィルタを切り替えてもよい。このように、バンドパスフィルタの切り替えにより励起光の波長を変化させることによって、波長を変化させるために光源を複数設ける必要がなく、装置を小型化することができる。 The light source section includes a white light source of excitation light and a plurality of first bandpass filters that transmit excitation light in different wavelength bands, and the control section selects one of the first bandpass filters according to the determined wavelength of the excitation light. Bandpass filters may be switched. In this way, by changing the wavelength of the excitation light by switching the bandpass filter, there is no need to provide a plurality of light sources to change the wavelength, and the device can be downsized.

光源部は、互いに異なる波長の励起光を生成する複数の光源を有し、制御部は、決定した励起光の波長に応じて複数の光源を切り替えてもよい。このような構成によれば、バンドパスフィルタを複数設けることなく、シンプルな装置構成で励起光の波長を変化させることができる。 The light source section may include a plurality of light sources that generate excitation light of different wavelengths, and the control section may switch between the plurality of light sources according to the determined wavelength of the excitation light. According to such a configuration, the wavelength of the excitation light can be changed with a simple device configuration without providing a plurality of bandpass filters.

検査装置は、互いに異なる波長帯の発光を透過する複数の第2のバンドパスフィルタを更に備え、制御部は、決定した励起光の波長に応じて、発光素子から光検出部に至る光路に設置される第2のバンドパスフィルタを切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な第2のバンドパスフィルタを設定することができる。このことで、発光を検出する上で適切なバンドパスフィルタを、スムーズに設定することができる。 The inspection device further includes a plurality of second bandpass filters that transmit light in different wavelength bands, and the control unit is configured to install the second bandpass filters on the optical path from the light emitting element to the photodetection unit according to the determined wavelength of the excitation light. The second bandpass filter used may be switched. Thereby, an appropriate second bandpass filter can be set in conjunction with the determination of the wavelength of the excitation light according to the emission color of the light emitting element. This makes it possible to smoothly set an appropriate bandpass filter for detecting light emission.

検査装置は、互いに異なる波長を第1の分離波長として該第1の分離波長により励起光と発光とを分離する複数の第1の波長分離素子を更に備え、制御部は、決定した励起光の波長に応じて、光源部から発光素子に至る光路且つ発光素子から光検出部に至る光路に設置される第1の波長分離素子を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な第1の波長分離素子を設定することができる。このことで、発光を検出する上で適切な波長分離素子を、スムーズに設定することができる。 The inspection device further includes a plurality of first wavelength separation elements that separate excitation light and emission light using different wavelengths as first separation wavelengths, and the control unit controls the determination of the determined excitation light. Depending on the wavelength, the first wavelength separation element installed in the optical path from the light source to the light emitting element and from the light emitting element to the photodetector may be switched. Thereby, an appropriate first wavelength separation element can be set in conjunction with the determination of the wavelength of excitation light according to the emission color of the light emitting element. With this, it is possible to smoothly set a wavelength separation element appropriate for detecting light emission.

検査装置は、互いに異なる波長を第2の分離波長として該第2の分離波長により第2の分離波長よりも長い波長の発光と第2の分離波長よりも短い波長の発光とを分離する複数の第2の波長分離素子を更に備え、光検出部は、発光のうち第2の分離波長よりも長い波長の発光を検出する第1の光検出器と、発光のうち第2の分離波長よりも短い波長の発光を検出する第2の光検出器と、を有し、制御部は、決定した励起光の波長に応じて、発光素子から第1の光検出器及び第2の光検出器に至る光路に設置される第2の波長分離素子を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な第2の波長分離素子を設定することができる。このことで、長波長側の発光及び短波長側の発光を2つの光検出器により検出する構成において、発光を検出する上で適切な波長分離素子を、スムーズに設定することができる。 The inspection device includes a plurality of devices that use mutually different wavelengths as second separation wavelengths and separate light emission with a wavelength longer than the second separation wavelength and emission light with a wavelength shorter than the second separation wavelength using the second separation wavelength. The photodetector further includes a second wavelength separation element, and the photodetector includes a first photodetector that detects a wavelength of the emitted light that is longer than the second separated wavelength; a second photodetector that detects light emission with a short wavelength; A second wavelength separation element installed in the optical path leading to the wavelength separation element may be switched. Thereby, an appropriate second wavelength separation element can be set in conjunction with the determination of the wavelength of excitation light according to the emission color of the light emitting element. As a result, in a configuration in which two photodetectors detect the long-wavelength side light emission and the short-wavelength side light emission, it is possible to smoothly set a wavelength separation element appropriate for detecting the light emission.

検査装置は、互いに異なる波長帯の発光を透過する複数の第2のバンドパスフィルタと、互いに異なる波長を第1の分離波長として該第1の分離波長により励起光と発光とを分離する複数の第1の波長分離素子と、互いに異なる波長を第2の分離波長として該第2の分離波長により第2の分離波長よりも長い波長の発光と第2の分離波長よりも短い波長の発光とを分離する複数の第2の波長分離素子と、を更に備え、光源部は、励起光の白色光源と、互いに異なる波長帯の励起光を透過する複数の第1のバンドパスフィルタとを有し、光検出部は、発光のうち第2の分離波長よりも長い波長の発光を検出する第1の光検出器と、発光のうち第2の分離波長よりも短い波長の発光を検出する第2の光検出器と、を有し、制御部は、決定した励起光の波長に応じて、第1のバンドパスフィルタ、第2のバンドパスフィルタ、第1の波長分離素子、及び第2の波長分離素子を一体的に切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、よりスムーズに、発光を検出するのに適した各構成を設定することができる。 The inspection device includes a plurality of second bandpass filters that transmit light in different wavelength bands, and a plurality of second bandpass filters that use different wavelengths as first separation wavelengths to separate excitation light and emission. A first wavelength separation element, which uses different wavelengths as second separation wavelengths, and uses the second separation wavelength to emit light with a wavelength longer than the second separation wavelength and emit light with a wavelength shorter than the second separation wavelength. The light source section further includes a plurality of second wavelength separation elements for separating, and the light source section has a white light source of excitation light and a plurality of first bandpass filters that transmit excitation light in mutually different wavelength bands. The photodetector includes a first photodetector that detects the emitted light having a longer wavelength than the second separated wavelength among the emitted light, and a second photodetector that detects the emitted light that has a shorter wavelength than the second separated wavelength among the emitted light. a photodetector, and the control unit selects a first bandpass filter, a second bandpass filter, a first wavelength separation element, and a second wavelength separation element according to the determined wavelength of the excitation light. The elements may be switched integrally. Thereby, each configuration suitable for detecting light emission can be set more smoothly in conjunction with the determination of the wavelength of excitation light according to the color of light emitted from the light emitting element.

本発明の一態様に係る検査方法は、基板上に複数の発光素子が形成された対象物を検査する検査方法であって、発光素子の発光色に関する情報を入力するステップと、発光色に関する情報に基づいて、対象物の基板の吸収端波長、及び、発光素子の発光スペクトルのピーク波長を導出するステップと、光源部から発光素子に照射される励起光の波長が、吸収端波長よりも長く、且つ、ピーク波長よりも短くなるように、光源部を制御するステップと、を含む。 An inspection method according to one embodiment of the present invention is an inspection method for inspecting an object in which a plurality of light emitting elements are formed on a substrate, and includes a step of inputting information regarding the emitted light color of the light emitting elements; a step of deriving the absorption edge wavelength of the target substrate and the peak wavelength of the emission spectrum of the light emitting element based on , and controlling the light source unit so that the wavelength is shorter than the peak wavelength.

本発明によれば、発光素子の良否判定を高精度に行うことができる。 According to the present invention, it is possible to determine the quality of a light emitting element with high accuracy.

本発明の実施形態に係る検査装置の較正図である。FIG. 3 is a calibration diagram of the inspection device according to the embodiment of the present invention. 発光スペクトルを説明する図である。It is a figure explaining an emission spectrum. 検査方法のフローチャートである。It is a flow chart of an inspection method.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Embodiments of the present invention will be described in detail below with reference to the drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and redundant explanations will be omitted.

図1は、本実施形態に係る検査装置1の構成図である。検査装置1は、サンプルS(対象物)を検査する装置である。サンプルSは、例えば、基板上に複数の発光素子が形成された半導体デバイスである。発光素子は、例えばLED、ミニLED、μLED、SLD素子、レーザ素子、垂直型レーザ素子(VCSEL)等である。なお、本実施形態においてサンプルSの基板とは、シリコン又はサファイア等の層だけでなく、当該層の上にエピタキシャル成長によって形成されたGaN等の層も含むものである。検査装置1は、サンプルSにおいて形成されている複数の発光素子について、フォトルミネッセンス(具体的には蛍光等の発光)を観察することにより、各発光素子の良否判定を行う。発光素子の良否判定は、例えばプロービングによって(すなわち電気的特性に基づいて)行うことが考えられる。しかしながら、例えばμLED等の微細なLEDについては、針をあてて計測を行うプロービングが物理的に困難である。この点、本実施形態に係るフォトルミネッセンスに基づく発光素子の良否判定方法は、蛍光画像を取得することによって良否判定を行うことができるので、物理的な制約にとらわれることなく、大量の発光素子を効率的に良否判定することができる。 FIG. 1 is a configuration diagram of an inspection apparatus 1 according to this embodiment. The inspection device 1 is a device that inspects a sample S (object). The sample S is, for example, a semiconductor device in which a plurality of light emitting elements are formed on a substrate. Examples of the light emitting element include an LED, a mini LED, a μLED, an SLD element, a laser element, and a vertical laser element (VCSEL). Note that in this embodiment, the substrate of sample S includes not only a layer of silicon or sapphire, but also a layer of GaN or the like formed on the layer by epitaxial growth. The inspection apparatus 1 determines the quality of each light emitting element by observing photoluminescence (specifically, light emission such as fluorescence) of a plurality of light emitting elements formed in the sample S. It is conceivable that the quality of the light emitting element is determined by, for example, probing (ie, based on electrical characteristics). However, it is physically difficult to perform probing, which involves placing a needle against a minute LED such as a μLED, for measurement. In this regard, the method for determining the quality of light-emitting elements based on photoluminescence according to the present embodiment can determine the quality of light-emitting elements by acquiring fluorescence images, so it is possible to evaluate the quality of light-emitting elements in large quantities without being bound by physical constraints. It is possible to efficiently determine pass/fail.

図1に示されるように、検査装置1は、チャック11と、XYステージ12と、光源部20と、複数の波長分離素子40(第1の波長分離素子)と、対物レンズ51と、Zステージ52と、複数の波長分離素子60(第2の波長分離素子)と、結像レンズ71,72と、カメラ81(光検出部,第1の光検出器),82(光検出部,第2の光検出器)と、暗箱90と、制御装置100(制御部)と、モニタ110と、キーボード120(入力部)と、それぞれ複数のバンドパスフィルタ202,203(第2のバンドパスフィルタ)と、を備えている。暗箱90は、上述した構成のうち制御装置100、モニタ110、及びキーボード120以外の構成を収容しており、収容した各構成に外部の光の影響が及ぼされることを回避するために設けられている。なお、暗箱90に収容される各構成は、カメラ81,82において撮像される画像の質の向上(画質の向上及び画像の位置ずれ防止)を図るべく除振台の上に搭載されていてもよい。 As shown in FIG. 1, the inspection apparatus 1 includes a chuck 11, an XY stage 12, a light source section 20, a plurality of wavelength separation elements 40 (first wavelength separation elements), an objective lens 51, and a Z stage. 52, a plurality of wavelength separation elements 60 (second wavelength separation elements), imaging lenses 71, 72, cameras 81 (photodetection section, first photodetector), 82 (photodetection section, second a photodetector), a dark box 90, a control device 100 (control unit), a monitor 110, a keyboard 120 (input unit), and a plurality of bandpass filters 202 and 203 (second bandpass filters), respectively. , is equipped with. The dark box 90 accommodates components other than the control device 100, the monitor 110, and the keyboard 120 among the components described above, and is provided to avoid the influence of external light on each of the components contained therein. There is. Note that each component housed in the dark box 90 may be mounted on an anti-vibration table in order to improve the quality of images captured by the cameras 81 and 82 (improve image quality and prevent image position shift). good.

チャック11は、サンプルSを保持する保持部材である。チャック11は、例えばサンプルSの基板を真空吸着することにより、サンプルSを保持する。XYステージ12は、サンプルSを保持しているチャック11をXY方向(前後・左右方向)、すなわちチャック11におけるサンプルSの載置面に沿った方向に移動させるステージである。XYステージ12は、制御装置100の制御に応じて、複数の発光素子のそれぞれが順次、励起光の照射領域とされるように、チャック11をXY方向に移動させる。なお、検査装置1は、更に回転ステージ(Θステージ。不図示)を備えていてもよい。このような回転ステージは、例えばXYステージ12の上且つチャック11の下に設けられていてもよいし、XYステージ12と一体的に設けられていてもよい。回転ステージは、サンプルSの縦横の位置を精度よく合わせるためのものである。回転ステージが設けられることによって、位置合わせ等の時間を短縮し、データ処理のトータル時間を短縮することができる。 The chuck 11 is a holding member that holds the sample S. The chuck 11 holds the sample S by vacuum suctioning the substrate of the sample S, for example. The XY stage 12 is a stage that moves the chuck 11 holding the sample S in the XY direction (front-back and left-right directions), that is, in the direction along the mounting surface of the sample S on the chuck 11. The XY stage 12 moves the chuck 11 in the XY directions under the control of the control device 100 so that each of the plurality of light emitting elements is sequentially irradiated with excitation light. Note that the inspection device 1 may further include a rotation stage (Θ stage, not shown). Such a rotation stage may be provided, for example, above the XY stage 12 and below the chuck 11, or may be provided integrally with the XY stage 12. The rotation stage is used to precisely align the vertical and horizontal positions of the sample S. By providing the rotation stage, it is possible to shorten the time for positioning, etc., and to shorten the total time for data processing.

光源部20は、発光素子に照射される励起光を生成する。光源部20は、1つの励起光源21と、光学系22とを有する。励起光源21は、サンプルSに照射される励起光を生成し、該励起光をサンプルSに照射する光源である。励起光源21は、例えばサンプルSの発光素子を励起させる波長を含む光を生成可能な白色光源であればよい。白色光源は、例えばLED、レーザ、ハロゲンランプ、水銀ランプ、D2ランプ、プラズマ光源等である。なお、検査装置1は、励起光源21から出射される励起光の輝度を一定に保つべく、照明輝度をモニタするセンサをさらに備えていてもよい。 The light source section 20 generates excitation light that is irradiated onto the light emitting element. The light source section 20 has one excitation light source 21 and an optical system 22. The excitation light source 21 is a light source that generates excitation light to be irradiated onto the sample S and irradiates the sample S with the excitation light. The excitation light source 21 may be a white light source that can generate light including a wavelength that excites the light emitting element of the sample S, for example. Examples of the white light source include an LED, a laser, a halogen lamp, a mercury lamp, a D2 lamp, and a plasma light source. Note that the inspection device 1 may further include a sensor that monitors illumination brightness in order to keep the brightness of the excitation light emitted from the excitation light source 21 constant.

光学系22は、光ファイバケーブル22aと、導光レンズ22bと、複数のバンドパスフィルタ22c(第1のバンドパスフィルタ)と、を含んで構成されている。光ファイバケーブル22aは、励起光源21に接続された導光用の光ファイバケーブルである。光ファイバケーブル22aとしては、例えば、偏波保存ファイバ又はシングルモードファイバ等を用いることができる。導光レンズ22bは、例えば単独又は複合の凸レンズであり、光ファイバケーブル22aを介して到達した励起光を波長分離素子40方向に導く。 The optical system 22 includes an optical fiber cable 22a, a light guide lens 22b, and a plurality of bandpass filters 22c (first bandpass filters). The optical fiber cable 22a is a light guiding optical fiber cable connected to the excitation light source 21. As the optical fiber cable 22a, for example, a polarization maintaining fiber or a single mode fiber can be used. The light guide lens 22b is, for example, a single or composite convex lens, and guides the excitation light that has arrived via the optical fiber cable 22a toward the wavelength separation element 40.

複数のバンドパスフィルタ22cは、互いに異なる波長帯の励起光を透過するフィルタである。すなわち、複数のバンドパスフィルタ22cは、フィルタリングする波長帯の領域が互いに異なっている。複数のバンドパスフィルタ22cは、後述する制御装置100によって1つのみ選択され、切り替えて設定される。バンドパスフィルタ22cは、励起光源21から出射される励起光の波長が経時的に変化することを防ぐ用途で導光レンズ22bと波長分離素子40との間に設けられる。 The plurality of bandpass filters 22c are filters that transmit excitation light in different wavelength bands. That is, the plurality of bandpass filters 22c filter different wavelength bands. Only one of the plurality of bandpass filters 22c is selected and set by the control device 100, which will be described later. The bandpass filter 22c is provided between the light guide lens 22b and the wavelength separation element 40 in order to prevent the wavelength of the excitation light emitted from the excitation light source 21 from changing over time.

複数の波長分離素子40は、互いに異なる波長を第1の分離波長として該第1の分離波長により励起光と発光とを分離する。すなわち、複数の波長分離素子40は、励起光と発光とを分離する基準となる分離波長が互いに異なっている。複数の波長分離素子40は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。波長分離素子40は、誘電体多層膜等の光学素材を用いて作成されたダイクロイックミラーであり、特定の波長の光を反射すると共に、その他の波長の光を透過する。具体的には、波長分離素子40は、励起光を対物レンズ51方向に反射すると共に、励起光とは異なる波長帯の光である発光素子からのフォトルミネッセンス(詳細には蛍光等の発光)を波長分離素子60方向に透過するように構成されている。 The plurality of wavelength separation elements 40 use mutually different wavelengths as first separation wavelengths and separate excitation light and emission light using the first separation wavelengths. That is, the plurality of wavelength separation elements 40 have different separation wavelengths that serve as a reference for separating excitation light and emission light. Only one of the plurality of wavelength separation elements 40 is selected and set by the control device 100 described later. The wavelength separation element 40 is a dichroic mirror made using an optical material such as a dielectric multilayer film, and reflects light of a specific wavelength while transmitting light of other wavelengths. Specifically, the wavelength separation element 40 reflects the excitation light toward the objective lens 51, and also reflects photoluminescence (specifically, light emission such as fluorescence) from the light emitting element, which is light in a wavelength band different from that of the excitation light. It is configured to transmit in the direction of the wavelength separation element 60.

対物レンズ51は、サンプルSを観察するための構成であり、波長分離素子40によって導かれた励起光をサンプルSに集光する。Zステージ52は、対物レンズ51をZ方向(上下方向)、すなわちチャック11におけるサンプルSの載置面に交差する方向に移動させてフォーカス調整を行う。 The objective lens 51 is configured to observe the sample S, and focuses the excitation light guided by the wavelength separation element 40 onto the sample S. The Z stage 52 performs focus adjustment by moving the objective lens 51 in the Z direction (vertical direction), that is, in a direction intersecting the mounting surface of the sample S on the chuck 11.

複数の波長分離素子60は、互いに異なる波長を第2の分離波長として該第2の分離波長により、第2の分離波長よりも長い波長の発光と第2の分離波長よりも短い波長の発光とを分離する。すなわち、複数の波長分離素子60は、長波長側の発光と低波長側の発光とを分離する基準となる分離波長が互いに異なっている。複数の波長分離素子60は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。波長分離素子60は、誘電体多層膜等の光学素材を用いて作成されたダイクロイックミラーであり、特定の波長の光を反射すると共に、その他の波長の光を透過する。このダイクロイックミラーは、波長に対する透過率(反射率)変化が急峻な特性のものだけでなく、波長に対する透過率(反射率)が約100nm程度の幅をもって緩やかに変化するような特性のものでもよい。波長分離素子60は、第2の分離波長よりも短い波長の発光を透過せずに(反射し)、第2の分離波長よりも長い波長の蛍光を透過するように構成されている。波長分離素子60が反射する短い波長の発光は、例えば、正常発光スペクトルに含まれる波長の発光(本来発光波長の発光)であり、波長分離素子60が透過する長い波長の蛍光は正常発光スペクトルに含まれない波長の発光(長波長側の発光)である。なお、本来発光波長は、例えば予め発光素子の仕様から既知である波長であってもよく、発光素子からの蛍光を分光器により実測した強度のピークとなる波長であってもよい。なお、詳細には、波長分離素子60は、第2の分離波長よりも短い波長の発光の一部を透過し、また、第2の分離波長よりも長い波長の発光の一部を反射すると考えられるが、概ね、第2の分離波長よりも短い波長の発光を反射すると共に第2の分離波長よりも長い波長の発光を透過することから、以下では単に、「波長分離素子60は第2の分離波長よりも短い波長の発光を反射し、第2の分離波長よりも長い波長の発光を透過する」として説明する。第2の分離波長よりも長い波長の発光(長波長側の発光)は、波長分離素子60を経て結像レンズ71に達する。第2の分離波長よりも短い波長の発光(本来発光波長の発光)は、波長分離素子60を経て結像レンズ72に達する。なお、波長分離素子60は、必ずしもダイクロイックミラーでなくともよく、例えばハーフミラーとバンドパスフィルタ202,203との組み合わせによって実現されてもよい。 The plurality of wavelength separation elements 60 use mutually different wavelengths as second separation wavelengths, and use the second separation wavelengths to separate light emission with a wavelength longer than the second separation wavelength and emission with a wavelength shorter than the second separation wavelength. Separate. That is, the plurality of wavelength separation elements 60 have different separation wavelengths, which serve as a reference for separating the long-wavelength side light emission and the low-wavelength side light emission. Only one of the plurality of wavelength separation elements 60 is selected by the control device 100, which will be described later, and is set by switching. The wavelength separation element 60 is a dichroic mirror made using an optical material such as a dielectric multilayer film, and reflects light of a specific wavelength while transmitting light of other wavelengths. This dichroic mirror may not only have a characteristic in which the transmittance (reflectance) changes sharply with respect to the wavelength, but also a characteristic in which the transmittance (reflectance) with respect to the wavelength changes gradually with a width of about 100 nm. . The wavelength separation element 60 is configured so as not to transmit (reflect) the emitted light having a wavelength shorter than the second separation wavelength, but to transmit the fluorescence having a wavelength longer than the second separation wavelength. The short-wavelength light that is reflected by the wavelength separation element 60 is, for example, light with a wavelength included in the normal emission spectrum (emission with the original emission wavelength), and the long-wavelength fluorescence that is transmitted by the wavelength separation element 60 is included in the normal emission spectrum. This is light emission with wavelengths that are not included (light emission on the long wavelength side). Note that the original emission wavelength may be, for example, a wavelength known in advance from the specifications of the light emitting element, or may be a wavelength at which the intensity of fluorescence from the light emitting element is actually measured using a spectrometer. In addition, in detail, it is considered that the wavelength separation element 60 transmits a part of the emitted light having a wavelength shorter than the second separated wavelength and reflects a part of the emitted light having a longer wavelength than the second separated wavelength. However, in general, it reflects light emission with a wavelength shorter than the second separation wavelength and transmits light emission with a longer wavelength than the second separation wavelength. It reflects light emission with a wavelength shorter than the separation wavelength, and transmits light emission with a wavelength longer than the second separation wavelength.'' Light emission with a wavelength longer than the second separation wavelength (light emission on the long wavelength side) reaches the imaging lens 71 via the wavelength separation element 60. Light emission with a wavelength shorter than the second separation wavelength (light emission with the original emission wavelength) reaches the imaging lens 72 via the wavelength separation element 60. Note that the wavelength separation element 60 does not necessarily have to be a dichroic mirror, and may be realized, for example, by a combination of a half mirror and bandpass filters 202 and 203.

複数のバンドパスフィルタ202は、互いに異なる波長帯の発光を透過するフィルタである。すなわち、複数のバンドパスフィルタ202は、フィルタリングする波長帯の領域が互いに異なっている。複数のバンドパスフィルタ202は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。バンドパスフィルタ202は、長波長側の余計な発光を防ぐために、波長分離素子60とカメラ81との間に設けられる。複数のバンドパスフィルタ203は、互いに異なる波長帯の発光を透過するフィルタである。すなわち、複数のバンドパスフィルタ203は、フィルタリングする波長帯の領域が互いに異なっている。複数のバンドパスフィルタ203は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。バンドパスフィルタ203は、短波長側の発光の計測において波長分離素子60の表面反射に伴う長波長側の発光の混入を防ぐために、波長分離素子60とカメラ82との間に設けられる。 The plurality of bandpass filters 202 are filters that transmit light in different wavelength bands. That is, the plurality of bandpass filters 202 filter different wavelength bands. Only one of the plurality of bandpass filters 202 is selected and set by the control device 100, which will be described later. The bandpass filter 202 is provided between the wavelength separation element 60 and the camera 81 in order to prevent unnecessary light emission on the long wavelength side. The plurality of bandpass filters 203 are filters that transmit light in different wavelength bands. That is, the plurality of bandpass filters 203 filter different wavelength bands. Only one of the plurality of bandpass filters 203 is selected by the control device 100, which will be described later, and is set by switching. The bandpass filter 203 is provided between the wavelength separation element 60 and the camera 82 in order to prevent the long wavelength emission from being mixed in due to surface reflection of the wavelength separation element 60 when measuring the emission of the short wavelength side.

結像レンズ71は、長波長側の発光を結像させ、該発光をカメラ81に導くレンズである。カメラ81は、サンプルSからの発光を撮像する撮像部である。より詳細には、カメラ81は、発光素子からの発光のうち上述した第2の分離波長よりも長い波長の発光(長波長側の発光)を撮像して検出する。カメラ81は、撮像結果である長波長側の発光画像を制御装置100に出力する。カメラ81は、例えばCCDやMOS等のエリアイメージセンサである。また、カメラ81は、ラインセンサやTDI(Time Delay Integration)センサによって構成されていてもよい。 The imaging lens 71 is a lens that forms an image of the emitted light on the longer wavelength side and guides the emitted light to the camera 81 . The camera 81 is an imaging unit that images the light emitted from the sample S. More specifically, the camera 81 images and detects the light emitted from the light emitting element with a wavelength longer than the above-mentioned second separation wavelength (emission on the long wavelength side). The camera 81 outputs a light emission image on the long wavelength side, which is the imaging result, to the control device 100. The camera 81 is, for example, an area image sensor such as a CCD or MOS. Further, the camera 81 may be configured by a line sensor or a TDI (Time Delay Integration) sensor.

結像レンズ72は、本来発光波長の発光を結像させ、該発光をカメラ82に導くレンズである。カメラ82は、サンプルSからの発光を撮像する撮像部である。より詳細には、カメラ82は、発光素子からの発光のうち上述した第2の分離波長よりも短い波長の発光であって発光素子の正常発光スペクトルESに含まれる波長の発光(本来発光波長の発光)を撮像して検出する。カメラ82は、撮像結果である本来発光波長の発光画像を制御装置100に出力する。カメラ82は、例えばCCDやMOS等のエリアイメージセンサである。また、カメラ82は、ラインセンサやTDIセンサによって構成されていてもよい。 The imaging lens 72 is a lens that forms an image of the light emitted at the original emission wavelength and guides the light emission to the camera 82 . The camera 82 is an imaging unit that images the light emitted from the sample S. More specifically, the camera 82 detects light emitted from the light emitting element at a wavelength shorter than the above-mentioned second separation wavelength and included in the normal emission spectrum ES of the light emitting element (original emission wavelength). (light emission) is imaged and detected. The camera 82 outputs a light emission image of the original light emission wavelength, which is an imaging result, to the control device 100. The camera 82 is, for example, an area image sensor such as a CCD or MOS. Further, the camera 82 may be configured by a line sensor or a TDI sensor.

制御装置100は、コンピュータであって、物理的には、RAM、ROM等のメモリ、CPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部を備えて構成されている。かかる制御装置100としては、例えばパーソナルコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。制御装置100は、メモリに格納されるプログラムをコンピュータシステムのCPUで実行することにより機能する。制御装置100は、XYステージ12、励起光源21、Zステージ52、及びカメラ81,82を制御する。具体的には、制御装置100は、XYステージ12を制御することにより励起光の照射領域(サンプルSにおける照射領域)を調整する。制御装置100は、Zステージ52を制御することにより励起光に係るフォーカス調整を行う。制御装置100は、励起光源21を制御することにより励起光の出射調整並びに励起光の波長及び振幅等の調整を行う。制御装置100は、カメラ81,82を制御することにより発光画像の取得に係る調整を行う。 The control device 100 is a computer, and physically includes a memory such as a RAM and a ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, and a storage unit such as a hard disk. Examples of the control device 100 include a personal computer, a cloud server, a smart device (smartphone, tablet terminal, etc.), and the like. The control device 100 functions by executing a program stored in a memory using a CPU of a computer system. Control device 100 controls XY stage 12, excitation light source 21, Z stage 52, and cameras 81 and 82. Specifically, the control device 100 adjusts the irradiation area of the excitation light (the irradiation area on the sample S) by controlling the XY stage 12. The control device 100 performs focus adjustment regarding the excitation light by controlling the Z stage 52. The control device 100 controls the excitation light source 21 to adjust the emission of excitation light and adjust the wavelength, amplitude, etc. of the excitation light. The control device 100 controls the cameras 81 and 82 to make adjustments related to the acquisition of light emission images.

また、制御装置100は、カメラ81,82によって撮像された発光画像に基づいて、サンプルSの発光素子の良否判定を行う。制御装置100は、カメラ81によって取得された長波長側の発光画像、及び、カメラ82によって取得された本来発光波長の発光画像に基づいて、発光素子の良否を判定する。制御装置100は、例えば、カメラ82によって取得された本来発光波長の発光画像に基づいて発光素子の良否を判定すると共に、該判定の後に、該判定において良と判定された発光素子について、カメラ81によって取得された長波長側の発光画像に基づいて良否を判定する。 Further, the control device 100 determines the quality of the light emitting element of the sample S based on the light emission images captured by the cameras 81 and 82. The control device 100 determines the quality of the light emitting element based on the long wavelength side emission image acquired by the camera 81 and the emission image at the original emission wavelength acquired by the camera 82. For example, the control device 100 determines the quality of the light emitting element based on the light emission image of the original light emission wavelength acquired by the camera 82, and after this determination, the control device 100 displays the light emitting element that is determined to be good in the determination by the camera 81. The quality is determined based on the long-wavelength side emission image obtained by.

制御装置100は、まず、発光画像に基づいて発光素子の位置を特定し、各発光素子の発光エリアを特定する。発光素子の位置の特定は、例えば発光画像内の位置とXYステージ12の位置の換算によって行われる。なお、制御装置100は、予めサンプルS全体のパターン像を取得しておき、パターン像ないし発光画像から、発光素子の位置を認識(特定)してもよい。そして、制御装置100は、本来発光波長の発光画像に基づいて各発光素子の発光エリア内の平均輝度を導出し、各発光素子についてアドレス位置と輝度(発光エリア内の平均輝度)とを紐づける。制御装置100は、各アドレス(各発光素子)について、絶対輝度と相対輝度とから評価指数を導出する。相対輝度とは、導出対象の発光素子と該発光素子の周辺の発光素子とを含む発光素子群の平均輝度に対する導出対象の発光素子の輝度比率である。制御装置100は、例えば、絶対輝度と相対輝度との積から評価指数を導出する。或いは、制御装置100は、絶対輝度と相対輝度のn乗(nは自然数。例えば2)との積から評価指数を導出する。制御装置100は、同一の発光画像に含まれる各発光素子それぞれについて上述した評価指数の導出を行う。また、制御装置100は、照射領域を変更することにより新たな発光画像(本来発光波長の発光画像)を取得し、該発光画像に含まれる各発光素子それぞれについて評価指数の導出を行う。制御装置100は、全ての発光素子について評価指数を導出すると、該評価指数の高い順に発光素子のソート(並び替え)を行う。ソートを行うと、評価指数は、ある点(変化点)を境に急激に小さくなっていることがわかる。制御装置100は、例えばこのような変化点を閾値として、評価指数が該閾値以上である発光素子を良品(良ピクセル)、該閾値よりも小さい発光素子を不良品(不良ピクセル)と判定してもよい。なお、閾値は、例えば、事前に閾値決定用の参照半導体デバイスを用いて、蛍光(フォトルミネッセンス)に基づく発光素子の良否判定結果と、プロービングに基づく良否判定結果(電気的特性に基づく良否判定結果)とを比較して決定されていてもよい。 The control device 100 first identifies the positions of the light emitting elements based on the light emission image, and identifies the light emitting area of each light emitting element. The position of the light emitting element is determined, for example, by converting the position in the light emission image and the position of the XY stage 12. Note that the control device 100 may acquire a pattern image of the entire sample S in advance, and recognize (specify) the position of the light emitting element from the pattern image or the light emission image. Then, the control device 100 derives the average brightness within the light emitting area of each light emitting element based on the light emission image of the original light emission wavelength, and links the address position and brightness (average brightness within the light emitting area) for each light emitting element. . The control device 100 derives an evaluation index from absolute brightness and relative brightness for each address (each light emitting element). Relative brightness is the brightness ratio of the light emitting element to be derived to the average brightness of a light emitting element group including the light emitting element to be derived and the light emitting elements around the light emitting element. For example, the control device 100 derives the evaluation index from the product of absolute brightness and relative brightness. Alternatively, the control device 100 derives the evaluation index from the product of the absolute brightness and the nth power of the relative brightness (n is a natural number, for example, 2). The control device 100 derives the evaluation index described above for each light emitting element included in the same light emission image. Furthermore, the control device 100 acquires a new luminescence image (a luminescence image of the original emission wavelength) by changing the irradiation area, and derives an evaluation index for each light-emitting element included in the luminescence image. When the control device 100 derives the evaluation index for all the light emitting elements, it sorts the light emitting elements in descending order of the evaluation index. When sorting is performed, it can be seen that the evaluation index rapidly decreases after a certain point (change point). For example, using such a change point as a threshold, the control device 100 determines a light emitting element whose evaluation index is equal to or greater than the threshold as a good product (good pixel), and a light emitting element smaller than the threshold as a defective product (defective pixel). Good too. Note that the threshold value can be determined by, for example, using a reference semiconductor device for determining the threshold value in advance, and determining the quality of the light emitting element based on fluorescence (photoluminescence) and the quality determination result based on probing (the quality determination result based on electrical characteristics). ) may be determined by comparing.

また、制御装置100は、長波長側の発光画像に基づいて各発光素子の発光エリア内における輝点(発光スポット)を検出し、各発光素子についてアドレス位置と輝点数とを紐づける。このような、正常発光スペクトルよりも長波長側の輝点(発光スポット)は、異常発光箇所である。そして、制御装置100は、上述した本来発光波長の発光画像に基づく良否判定において良品であると判定された発光素子について、長波長側の発光画像に一定数以上の輝点が含まれているか否かを判定し、一定数以上の輝点が含まれていない発光素子を良品(良ピクセル)、一定数以上の輝点が含まれている発光素子を不良品(不良ピクセル)と判定する。このような例では、本来発光波長の発光画像に基づいて良品であると判定された発光素子であっても、長波長側の蛍光画像に基づいて不良品であると判定される場合がある。 Furthermore, the control device 100 detects bright spots (light-emitting spots) in the light-emitting area of each light-emitting element based on the long-wavelength side light emission image, and links the address position and the number of bright spots for each light-emitting element. Such a bright spot (light emission spot) on the longer wavelength side than the normal emission spectrum is an abnormal light emission location. Then, the control device 100 determines whether the light emitting element determined to be good in the quality determination based on the light emission image of the original light emission wavelength described above contains a certain number or more of bright spots in the light emission image of the long wavelength side. A light emitting element that does not contain a certain number of bright spots or more is determined to be a good product (good pixel), and a light emitting element that contains a certain number or more bright spots is determined to be a defective product (defective pixel). In such an example, even if a light emitting element is originally determined to be a good product based on a light emission image at a light emission wavelength, it may be determined to be a defective product based on a fluorescence image at a longer wavelength.

なお、制御装置100は、カメラ82によって取得された本来発光波長の発光画像に基づいて発光素子の良品判定を行った後に、該判定において不良と判定された発光素子について、カメラ81によって取得された長波長側の発光画像に基づいて良否を判定してもよい。また、制御装置100は、全ての発光素子について、長波長側の発光画像に基づく良否判定を行ってもよい。このように、制御装置100は、本来発光波長の発光画像に基づいて良と判定された発光素子についてのみ長波長側の発光画像に基づいて良否判定を行ってもよいし、本来発光波長の発光画像に基づいて不良と判定された発光素子についてのみ長波長側の発光画像に基づいて良否判定を行ってもよいし、本来発光波長の発光画像に基づく良否判定結果によらずに全ての発光素子について長波長側の発光画像に基づく良否判定を行ってもよい。 The control device 100 determines whether the light emitting element is good or not based on the light emission image of the original light emission wavelength acquired by the camera 82, and then determines whether the light emitting element is defective in the determination. The quality may be determined based on the emission image on the long wavelength side. Further, the control device 100 may perform quality determination for all light emitting elements based on long wavelength side emission images. In this way, the control device 100 may perform a pass/fail determination based on the long wavelength side emission image only for the light emitting element that was determined to be good based on the emission image of the original emission wavelength, or may perform a quality judgment based on the emission image of the long wavelength side. Only those light emitting elements determined to be defective based on the image may be judged to be pass/fail based on the long-wavelength emission image, or all light emitting elements may be judged to be defective, regardless of the pass/fail judgment result based on the emission image at the original emission wavelength. A quality determination may be made based on a light emission image on the long wavelength side.

制御装置100は、各発光素子の良否判定結果を出力する。当該良否判定結果は、例えばモニタ110に表示される。また、制御装置100は、発光素子内における不良個所(例えば長波長側の輝点の箇所)を特定し、該不良個所の位置を出力(モニタ110に表示されるように出力)してもよい。 The control device 100 outputs the quality determination result of each light emitting element. The quality determination result is displayed on the monitor 110, for example. The control device 100 may also identify a defective location (for example, a bright spot on the longer wavelength side) in the light emitting element, and output the location of the defective location (output it so that it is displayed on the monitor 110). .

制御装置100は、上述した良否判定をより高精度に行うべく、発光素子の発光色に関する情報に応じた所定の制御を行っている。発光素子の発光色に関する情報については、例えばユーザによるキーボード120の入力によって受付けられ、制御装置100に入力される。 The control device 100 performs predetermined control according to information regarding the emitted light color of the light emitting element in order to perform the above-described quality judgment with higher accuracy. Information regarding the emitted light color of the light emitting element is received by a user's input using the keyboard 120, and is input to the control device 100, for example.

制御装置100は、キーボード120によって受付けられた発光色に関する情報に基づいて、励起光の波長を決定する。具体的には、制御装置100は、サンプルSの基板の吸収端波長よりも長く、且つ、発光色に関する情報から特定される発光素子の発光スペクトルのピーク波長よりも短い波長を、励起光の波長に決定する。基板の吸収端波長とは、基板において光吸収が起こる最も長い波長である。基板の吸収端波長は、母材のバンドギャップにより決まる。基板の吸収端波長よりも長い波長の光は、基板を透過する。上述したように、サンプルSの基板とは、シリコン又はサファイア等の層だけでなく、当該層の上にエピタキシャル成長によって形成されたGaN等の層も含むものである。励起光の波長が基板の吸収端波長よりも長くされることにより、励起光によって基板が励起されること(基板からの発光が生じること)が抑制される。また、励起光の波長が発行スペクトルのピーク波長よりも短い波長とされることにより、発光素子を適切に励起させて発光素子からの発光を適切に取得することができる。制御装置100は、より詳細には、発光素子の発光スペクトルのピーク波長から、該発光スペクトルの半値全幅を引いた(半値全幅の差をとった)波長よりも短い波長を、励起光の波長に決定する。 The control device 100 determines the wavelength of the excitation light based on the information regarding the emitted light color received by the keyboard 120. Specifically, the control device 100 sets the wavelength of the excitation light to a wavelength that is longer than the absorption edge wavelength of the substrate of the sample S and shorter than the peak wavelength of the emission spectrum of the light emitting element specified from the information regarding the emission color. decided on. The absorption edge wavelength of a substrate is the longest wavelength at which light absorption occurs in the substrate. The absorption edge wavelength of the substrate is determined by the bandgap of the base material. Light with a wavelength longer than the absorption edge wavelength of the substrate is transmitted through the substrate. As described above, the substrate of sample S includes not only a layer of silicon or sapphire, but also a layer of GaN or the like formed on the layer by epitaxial growth. By making the wavelength of the excitation light longer than the absorption edge wavelength of the substrate, excitation of the substrate by the excitation light (occurrence of light emission from the substrate) is suppressed. Further, by setting the wavelength of the excitation light to be shorter than the peak wavelength of the emission spectrum, the light emitting element can be appropriately excited and light emitted from the light emitting element can be appropriately acquired. More specifically, the control device 100 sets the wavelength of the excitation light to a wavelength shorter than the wavelength obtained by subtracting the full width at half maximum of the emission spectrum from the peak wavelength of the emission spectrum of the light emitting element (taking the difference in the full width at half maximum). decide.

図2は、各条件の発光スペクトルを説明する図である。図2において、横軸は波長を、縦軸は輝度(A.U.)を示している。また、図2において、細い破線は励起光の波長を370nmとした場合のサンプルSの発光スペクトルを、太い破線は励起光の波長を355nmとした場合のサンプルSの発光スペクトルを、実線は電気を流した場合のサンプルSの発光スペクトルを、それぞれ示している。サンプルSが製品化されて利用されるシーンにおいては、発光素子に電気が流されて利用される。そのため、励起光の照射によって発光素子の良否判定を行う場合においても、その発光スペクトルが、発光素子に電気を流した場合の発光スペクトルに近似することが好ましい。なお、励起光により発光素子を励起した場合と電気を流した場合とでは、実際には発光の輝度のレベルは異なるが、ここでは、発光スペクトルの形状が重要であるため、輝度のレベルの違いは適宜調整して図示している。 FIG. 2 is a diagram illustrating the emission spectrum under each condition. In FIG. 2, the horizontal axis represents wavelength, and the vertical axis represents brightness (A.U.). In addition, in FIG. 2, the thin broken line represents the emission spectrum of sample S when the wavelength of excitation light is 370 nm, the thick dashed line represents the emission spectrum of sample S when the wavelength of excitation light is 355 nm, and the solid line represents the emission spectrum of sample S when the wavelength of excitation light is 355 nm. The emission spectra of sample S when flowing are shown. When the sample S is commercialized and used, electricity is applied to the light emitting element. Therefore, even when determining the quality of a light emitting element by irradiation with excitation light, it is preferable that the emission spectrum is similar to the emission spectrum when electricity is passed through the light emitting element. Note that the level of luminance of light emission is actually different when the light emitting element is excited with excitation light and when electricity is passed through it, but the shape of the emission spectrum is important here, so the difference in the level of luminance is are adjusted and illustrated as appropriate.

いま、観察対象のサンプルSの発光素子が青色のLEDである(発光色が青色である)とする。この場合、発光素子の発光波長幅は、例えば420nm~480nmである。また、サンプルSのGan基板の吸収端波長が365nmであるとする。このような条件において、図2に示されるように、励起光の波長が355nmとされた場合、すなわち励起光の波長が基板の吸収端波長よりも短くされた場合には、発光スペクトル(図2の「PL(355)」)が、発光素子に電気を流した場合の発光スペクトル(図2の「EL」)と大きく異なっている。これは、励起光の波長が基板の吸収端波長よりも短くされることによって基板からの発光の影響を受けたためと考えられる。一方で、図2に示されるように、励起光の波長が370nmとされた場合、すなわち励起光の波長が基板の吸収端波長よりも長くされた場合には、発光スペクトル(図2の「PL(370)」)が、発光素子に電気を流した場合の発光スペクトル(図2の「EL」)に近似している。このように、励起光の波長がサンプルSの基板の吸収端波長よりも長くされることにより、基板からの発光の影響を受けずに適切な発光スペクトルを得ることができる。上記の例の場合、励起光の波長は、基板の吸収端波長である365nm~420nmの範囲とされることが好ましい。なお、励起光の波長は、上記範囲内で極力長くされたほうが、量子井戸の中間領域を励起せず発光の強度のコントラストが大きくなるため好ましい。なお、例えば発光素子が緑色のLEDである(発光色が緑色である)場合においては、発光素子の発光波長幅は、例えば490nm~550nmである。この場合には、励起光の波長は、基板の吸収端波長である365nm~490nmの範囲とされることが好ましい。 Assume now that the light emitting element of the sample S to be observed is a blue LED (emission color is blue). In this case, the emission wavelength width of the light emitting element is, for example, 420 nm to 480 nm. Further, it is assumed that the absorption edge wavelength of the Gan substrate of sample S is 365 nm. Under these conditions, as shown in Figure 2, when the wavelength of the excitation light is set to 355 nm, that is, when the wavelength of the excitation light is made shorter than the absorption edge wavelength of the substrate, the emission spectrum (Figure 2 "PL(355)") is significantly different from the emission spectrum ("EL" in FIG. 2) when electricity is passed through the light emitting element. This is thought to be due to the fact that the wavelength of the excitation light was made shorter than the absorption edge wavelength of the substrate, thereby being affected by light emission from the substrate. On the other hand, as shown in FIG. 2, when the wavelength of the excitation light is 370 nm, that is, when the wavelength of the excitation light is made longer than the absorption edge wavelength of the substrate, the emission spectrum ("PL" in FIG. 2) (370)'') is similar to the emission spectrum ("EL" in FIG. 2) when electricity is passed through the light emitting element. In this way, by making the wavelength of the excitation light longer than the absorption edge wavelength of the substrate of the sample S, an appropriate emission spectrum can be obtained without being affected by light emission from the substrate. In the above example, the wavelength of the excitation light is preferably in the range of 365 nm to 420 nm, which is the absorption edge wavelength of the substrate. Note that it is preferable that the wavelength of the excitation light be as long as possible within the above range because the middle region of the quantum well will not be excited and the contrast in the intensity of light emission will be increased. Note that, for example, in the case where the light emitting element is a green LED (emission color is green), the emission wavelength width of the light emitting element is, for example, 490 nm to 550 nm. In this case, the wavelength of the excitation light is preferably in the range of 365 nm to 490 nm, which is the absorption edge wavelength of the substrate.

制御装置100は、決定した波長の励起光が生成されるように、光源部20を制御する。具体的には、制御装置100は、決定した波長の励起光が光源部20から出射されて発光素子に照射されるように、決定した波長の励起光を透過するバンドパスフィルタ22cを選択し、該バンドパスフィルタ22cを、光源部20から波長分離素子40に至る光路に設置する。このように、制御装置100は、決定した励起光の波長に応じてバンドパスフィルタ22cを切り替える。なお、検査装置1は、互いに異なる波長の励起光を生成する複数の励起光源21を有していてもよい。この場合、励起光源21は互いに異なる単色の光を生成可能な複数の光源から構成されていてもよく、複数の光源は例えばLED、SLD、レーザ等である。この場合には、制御装置100は、決定した波長の励起光を生成可能な励起光源21を選択して励起光を生成させることにより、上述した、バンドパスフィルタ22cを切り替えて設定する態様と同様に、所望の波長の励起光を生成することができる。すなわち、制御装置100は、決定した励起光の波長に応じて複数の励起光源21を切り替えてもよい。 The control device 100 controls the light source section 20 so that excitation light of the determined wavelength is generated. Specifically, the control device 100 selects the bandpass filter 22c that transmits the excitation light of the determined wavelength so that the excitation light of the determined wavelength is emitted from the light source section 20 and irradiated to the light emitting element, The bandpass filter 22c is installed on the optical path from the light source section 20 to the wavelength separation element 40. In this way, the control device 100 switches the bandpass filter 22c according to the determined wavelength of the excitation light. Note that the inspection device 1 may include a plurality of excitation light sources 21 that generate excitation lights of mutually different wavelengths. In this case, the excitation light source 21 may be composed of a plurality of light sources capable of generating mutually different monochromatic lights, and the plurality of light sources are, for example, LEDs, SLDs, lasers, and the like. In this case, the control device 100 selects the excitation light source 21 capable of generating excitation light of the determined wavelength and generates the excitation light, similar to the mode in which the bandpass filter 22c is switched and set as described above. Therefore, excitation light of a desired wavelength can be generated. That is, the control device 100 may switch the plurality of excitation light sources 21 according to the determined wavelength of the excitation light.

制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81に至る光路に設置されるバンドパスフィルタ202を切り替えてもよい。この場合、制御装置100は、例えば励起光の波長の決定に係る発光素子の発光色を考慮して、長波長側の余計な発光を防ぐことができるバンドパスフィルタ202を選択する。また、制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ82に至る光路に設置されるバンドパスフィルタ203を切り替えてもよい。この場合、制御装置100は、例えば励起光の波長の決定に係る発光素子の発光色を考慮して、長波長側の発光が短波長側の発光の計測において混入することを防ぐことができるバンドパスフィルタ203を選択する。 The control device 100 may switch the bandpass filter 202 installed in the optical path from the light emitting element to the camera 81 according to the determined wavelength of the excitation light. In this case, the control device 100 selects the bandpass filter 202 that can prevent unnecessary light emission on the long wavelength side, taking into consideration the emission color of the light emitting element related to determining the wavelength of the excitation light, for example. Further, the control device 100 may switch the bandpass filter 203 installed in the optical path from the light emitting element to the camera 82 according to the determined wavelength of the excitation light. In this case, the control device 100 considers the emission color of the light emitting element related to the determination of the wavelength of the excitation light, for example, and selects a band that can prevent the long wavelength side emission from being mixed in the measurement of the short wavelength side emission. Select pass filter 203.

制御装置100は、決定した励起光の波長に応じて、光源部20から発光素子に至る光路且つ発光素子からカメラ81,82に至る光路に設置される波長分離素子40を切り替えてもよい。この場合、制御装置100は、例えば発光素子の発光色及び励起光の波長を考慮して、励起光を対物レンズ51方向に反射すると共に、発光を波長分離素子60方向に透過することができる波長分離素子40を選択する。 The control device 100 may switch the wavelength separation element 40 installed in the optical path from the light source section 20 to the light emitting element and from the light emitting element to the cameras 81 and 82, depending on the determined wavelength of the excitation light. In this case, the control device 100 reflects the excitation light in the direction of the objective lens 51 and transmits the emitted light in the direction of the wavelength separation element 60, taking into consideration the emission color of the light emitting element and the wavelength of the excitation light, for example. A separation element 40 is selected.

制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81及びカメラ82に至る光路に設置される波長分離素子60を切り替えてもよい。この場合、制御装置100は、例えば発光素子の発光色を考慮して、本来発光波長の発光と長波長側の発光とを適切に分離することができる(第2の分離波長が適切である)波長分離素子60を選択する。 The control device 100 may switch the wavelength separation element 60 installed on the optical path from the light emitting element to the cameras 81 and 82, depending on the determined wavelength of the excitation light. In this case, the control device 100 can appropriately separate the light emission at the original emission wavelength and the emission at the long wavelength side, taking into account the emission color of the light emitting element, for example (the second separation wavelength is appropriate). A wavelength separation element 60 is selected.

なお、制御装置100は、決定した励起光の波長に応じて、バンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60を一体的に切り替えてもよい。すなわち、制御装置100は、励起光の波長の決定に連動して、上述したバンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60の切り替えを同時に行ってもよい。 Note that the control device 100 may integrally switch the bandpass filter 22c, the bandpass filters 202 and 203, the wavelength separation element 40, and the wavelength separation element 60 according to the determined wavelength of the excitation light. That is, the control device 100 may simultaneously switch the above-described bandpass filter 22c, bandpass filters 202, 203, wavelength separation element 40, and wavelength separation element 60 in conjunction with the determination of the wavelength of the excitation light. .

次に、図3を参照して、検査方法について説明する。図3は、検査装置1を用いて行う検査方法のフローチャートである。当該検査方法は、基板上に複数の発光素子が形成されたサンプルSを検査する検査方法である。 Next, the inspection method will be explained with reference to FIG. FIG. 3 is a flowchart of an inspection method performed using the inspection apparatus 1. The inspection method is an inspection method for inspecting a sample S in which a plurality of light emitting elements are formed on a substrate.

図3に示されるように、最初に発光素子の発光色に関する情報をキーボード120から入力する(ステップS1,入力するステップ)。検査装置1は、当該発光色に関する情報の入力を受け付ける。 As shown in FIG. 3, first, information regarding the emitted light color of the light emitting element is input from the keyboard 120 (step S1, input step). The inspection device 1 receives input of information regarding the emitted light color.

つづいて、検査装置1は、発光色に関する情報に基づいて励起光の波長を決定する(ステップS2)。具体的には、検査装置1は、発光色に関する情報に基づいて、サンプルSの基板の吸収端波長、及び、発光素子の発光スペクトルのピーク波長を導出する(導出するステップ)。 Subsequently, the inspection device 1 determines the wavelength of the excitation light based on the information regarding the emission color (step S2). Specifically, the inspection apparatus 1 derives the absorption edge wavelength of the substrate of the sample S and the peak wavelength of the emission spectrum of the light emitting element based on the information regarding the emission color (derivation step).

つづいて、検査装置1は、決定した励起光の波長となるように、光源部20のバンドパスフィルタ22cを設定する(ステップS3)。すなわち、検査装置1は、励起光の波長が基板の吸収端波長よりも長く、且つ、発光スペクトルのピーク波長よりも短くなるように、光源部20を制御する(制御するステップ)。 Subsequently, the inspection apparatus 1 sets the bandpass filter 22c of the light source section 20 to match the determined wavelength of the excitation light (step S3). That is, the inspection apparatus 1 controls the light source section 20 so that the wavelength of the excitation light is longer than the absorption edge wavelength of the substrate and shorter than the peak wavelength of the emission spectrum (controlling step).

つづいて、検査装置1は、決定した励起光の波長に応じて、バンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60を一体的に設定する(ステップS4)。 Next, the inspection device 1 integrally sets the bandpass filter 22c, bandpass filters 202, 203, wavelength separation element 40, and wavelength separation element 60 according to the determined wavelength of the excitation light (step S4). .

つづいて、検査装置1は、発光素子に励起光を照射し、発光素子からの発光(蛍光)を検出する(ステップS5)。そして、検査装置1は、当該発光素子からの発光に基づいて、発光素子の良否判定を行う(ステップS6)。 Subsequently, the inspection device 1 irradiates the light emitting element with excitation light and detects light emission (fluorescence) from the light emitting element (step S5). Then, the inspection device 1 determines the quality of the light emitting element based on the light emitted from the light emitting element (step S6).

次に、本実施形態に係る検査装置1の作用効果について説明する。 Next, the effects of the inspection device 1 according to this embodiment will be explained.

検査装置1は、基板上に複数の発光素子が形成されたサンプルSを検査する検査装置であって、発光素子に照射される励起光を生成する光源部20と、励起光が照射された発光素子の発光を検出するカメラ81,82と、発光素子の発光色に関する情報の入力を受け付けるキーボード120と、キーボード120によって受付けられた発光色に関する情報に基づいて励起光の波長を決定し、該波長の励起光が生成されるように光源部20を制御する制御装置100と、を備え、制御装置100は、サンプルSの基板の吸収端波長よりも長く、且つ、発光色に関する情報から特定される発光素子の発光スペクトルのピーク波長よりも短い波長を、励起光の波長に決定する。 The inspection apparatus 1 is an inspection apparatus for inspecting a sample S in which a plurality of light emitting elements are formed on a substrate, and includes a light source unit 20 that generates excitation light to be irradiated to the light emitting elements, and a light source unit 20 that generates excitation light that is irradiated to the light emitting elements, and Cameras 81 and 82 detect light emission from the elements; a keyboard 120 receives input of information regarding the emission color of the light emitting element; and a wavelength of the excitation light is determined based on the information regarding the emission color received by the keyboard 120; a control device 100 that controls the light source unit 20 so that excitation light of A wavelength shorter than the peak wavelength of the emission spectrum of the light emitting element is determined as the wavelength of the excitation light.

このような検査装置1では、発光素子の発光色に関する情報の入力が受け付けられ、励起光の波長が、発光素子の発光スペクトルのピーク波長よりも短い波長とされている。このように、発光素子の発光色に応じて励起光の波長が決定され、励起光の波長が発光素子の発光スペクトルのピーク波長よりも短くされることにより、発光素子の発光を適切に検出することができる。また、本発明の一態様に係る検査装置では、励起光の波長が、サンプルSの基板の吸収端波長よりも長い波長とされている。このことにより、基板に光が吸収されて励起光が発光素子に届きにくくなることが抑制される。また、励起光によって基板が励起されることが抑制され、発光素子の発光以外の光が検出されることを抑制することができる。以上のように、検査装置1によれば、測定対象である発光素子の発光を適切に取得し、該発光に基づき、発光素子の良否判定を高精度に行うことができる。 In such an inspection apparatus 1, input of information regarding the emission color of the light emitting element is accepted, and the wavelength of the excitation light is set to be shorter than the peak wavelength of the emission spectrum of the light emitting element. In this way, the wavelength of the excitation light is determined according to the emission color of the light emitting element, and by making the wavelength of the excitation light shorter than the peak wavelength of the emission spectrum of the light emitting element, the light emission of the light emitting element can be appropriately detected. Can be done. Further, in the inspection apparatus according to one aspect of the present invention, the wavelength of the excitation light is longer than the absorption edge wavelength of the substrate of the sample S. This prevents light from being absorbed by the substrate and making it difficult for excitation light to reach the light emitting element. Furthermore, it is possible to suppress the substrate from being excited by the excitation light, and to suppress the detection of light other than the light emitted from the light emitting element. As described above, according to the inspection apparatus 1, the light emitted from the light emitting element to be measured can be appropriately acquired, and based on the light emitted, the quality of the light emitting element can be determined with high accuracy.

制御装置100は、発光素子の発光スペクトルのピーク波長から、該発光スペクトルの半値全幅を引いた波長よりも短い波長を、励起光の波長に決定してもよい。これにより、発光スペクトルに含まれるほとんどの波長帯よりも励起光の波長を短くすることができ、発光素子の発光を適切に検出することができる。 The control device 100 may determine the wavelength of the excitation light to be shorter than the wavelength obtained by subtracting the full width at half maximum of the emission spectrum from the peak wavelength of the emission spectrum of the light emitting element. Thereby, the wavelength of the excitation light can be made shorter than most wavelength bands included in the emission spectrum, and the light emission from the light emitting element can be appropriately detected.

光源部20は、励起光の白色光源と、互いに異なる波長帯の励起光を透過する複数のバンドパスフィルタ22cとを有し、制御装置100は、決定した励起光の波長に応じてバンドパスフィルタ22cを切り替えてもよい。このように、バンドパスフィルタ22cの切り替えにより励起光の波長を変化させることによって、波長を変化させるために励起光源21を複数設ける必要がなく、検査装置1を小型化することができる。 The light source unit 20 includes a white light source of excitation light and a plurality of bandpass filters 22c that transmit excitation light in different wavelength bands, and the control device 100 selects the bandpass filters according to the determined wavelength of the excitation light. 22c may be switched. In this way, by changing the wavelength of the excitation light by switching the bandpass filter 22c, it is not necessary to provide a plurality of excitation light sources 21 to change the wavelength, and the inspection apparatus 1 can be downsized.

光源部20は、互いに異なる波長の励起光を生成する複数の励起光源21を有し、制御装置100は、決定した励起光の波長に応じて複数の励起光源21を切り替えてもよい。このような構成によれば、バンドパスフィルタ22cを複数設けることなく、シンプルな装置構成で励起光の波長を変化させることができる。 The light source unit 20 includes a plurality of excitation light sources 21 that generate excitation light of different wavelengths, and the control device 100 may switch among the plurality of excitation light sources 21 according to the determined wavelength of the excitation light. According to such a configuration, the wavelength of the excitation light can be changed with a simple device configuration without providing a plurality of bandpass filters 22c.

検査装置1は、互いに異なる波長帯の発光を透過する複数のバンドパスフィルタ202,203を更に備え、制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81に至る光路に設置されるバンドパスフィルタ202、及び、発光素子からカメラ82に至る光路に設置されるバンドパスフィルタ203を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切なバンドパスフィルタ202,203を設定することができる。このことで、発光を検出する上で適切なバンドパスフィルタ202,203を、スムーズに設定することができる。 The inspection device 1 further includes a plurality of bandpass filters 202 and 203 that transmit light in different wavelength bands, and the control device 100 controls the optical path from the light emitting element to the camera 81 according to the determined wavelength of the excitation light. The bandpass filter 202 installed and the bandpass filter 203 installed on the optical path from the light emitting element to the camera 82 may be switched. Thereby, appropriate bandpass filters 202 and 203 can be set in conjunction with the determination of the wavelength of excitation light according to the emission color of the light emitting element. This makes it possible to smoothly set bandpass filters 202 and 203 appropriate for detecting light emission.

検査装置1は、互いに異なる波長を第1の分離波長として該第1の分離波長により励起光と発光とを分離する複数の波長分離素子40を更に備え、制御装置100は、決定した励起光の波長に応じて、光源部20から発光素子に至る光路且つ発光素子からカメラ81,82に至る光路に設置される波長分離素子40を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な波長分離素子40を設定することができる。このことで、発光を検出する上で適切な波長分離素子40を、スムーズに設定することができる。 The inspection device 1 further includes a plurality of wavelength separation elements 40 that separate excitation light and emission using different wavelengths as first separation wavelengths, and the control device 100 controls how the determined excitation light is separated. Depending on the wavelength, the wavelength separation element 40 installed in the optical path from the light source section 20 to the light emitting element and from the light emitting element to the cameras 81 and 82 may be switched. Thereby, an appropriate wavelength separation element 40 can be set in conjunction with the determination of the wavelength of excitation light according to the emission color of the light emitting element. With this, it is possible to smoothly set the appropriate wavelength separation element 40 for detecting light emission.

検査装置1は、互いに異なる波長を第2の分離波長として該第2の分離波長により第2の分離波長よりも長い波長の発光と第2の分離波長よりも短い波長の発光とを分離する複数の波長分離素子60を更に備え、発光のうち第2の分離波長よりも長い波長の発光を検出するカメラ81と、発光のうち第2の分離波長よりも短い波長の発光を検出するカメラ82と、を有し、制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81及びカメラ82に至る光路に設置される波長分離素子60を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な波長分離素子60を設定することができる。このことで、長波長側の発光及び短波長側の発光を2つの光検出器により検出する構成において、発光を検出する上で適切な波長分離素子60を、スムーズに設定することができる。 The inspection device 1 includes a plurality of inspection apparatuses that use mutually different wavelengths as second separation wavelengths and use the second separation wavelengths to separate light emission with a wavelength longer than the second separation wavelength and light emission with a wavelength shorter than the second separation wavelength. A camera 81 which further includes a wavelength separation element 60 and which detects the light emission having a wavelength longer than the second separation wavelength among the light emission, and a camera 82 which detects the light emission having a wavelength shorter than the second separation wavelength among the light emission. The control device 100 may switch the wavelength separation element 60 installed in the optical path from the light emitting element to the cameras 81 and 82, depending on the determined wavelength of the excitation light. Thereby, an appropriate wavelength separation element 60 can be set in conjunction with the determination of the wavelength of excitation light according to the emission color of the light emitting element. With this, in a configuration in which two photodetectors detect long-wavelength and short-wavelength light, it is possible to smoothly set the wavelength separation element 60 that is appropriate for detecting light.

制御装置100は、決定した励起光の波長に応じて、バンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60を一体的に切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、よりスムーズに、発光を検出するのに適した各構成を設定することができる。 The control device 100 may integrally switch the bandpass filter 22c, the bandpass filters 202 and 203, the wavelength separation element 40, and the wavelength separation element 60 according to the determined wavelength of the excitation light. Thereby, each configuration suitable for detecting light emission can be set more smoothly in conjunction with the determination of the wavelength of excitation light according to the color of light emitted from the light emitting element.

1…検査装置、20…光源部、21…励起光源、22c…バンドパスフィルタ、40…波長分離素子、60…波長分離素子、81,82…カメラ、100…制御装置、120…キーボード、202,203…バンドパスフィルタ。 DESCRIPTION OF SYMBOLS 1... Inspection device, 20... Light source part, 21... Excitation light source, 22c... Band pass filter, 40... Wavelength separation element, 60... Wavelength separation element, 81, 82... Camera, 100... Control device, 120... Keyboard, 202, 203...Band pass filter.

Claims (8)

基板上に複数の発光素子が形成された対象物を検査する検査装置であって、
前記発光素子に照射される励起光を生成する光源部と、
前記励起光が照射された前記発光素子の発光を検出する光検出部と、
前記発光素子の発光色に関する情報を受け付ける入力部と、
前記入力部によって受付けられた前記発光色に関する情報に基づいて前記励起光の波長を決定し、該波長の前記励起光が生成されるように前記光源部を制御する制御部と、
互いに異なる波長帯の前記発光を透過する複数の第2のバンドパスフィルタと、を備え、
前記制御部は、365nm~490nmの範囲の波長を、前記励起光の波長に決定し、
前記制御部は、決定した前記励起光の波長に応じて、前記発光素子から前記光検出部に至る光路に設置される前記第2のバンドパスフィルタを切り替える、検査装置。
An inspection device for inspecting an object having a plurality of light emitting elements formed on a substrate,
a light source unit that generates excitation light that is irradiated to the light emitting element;
a light detection unit that detects light emission from the light emitting element irradiated with the excitation light;
an input unit that receives information regarding the emission color of the light emitting element;
a control unit that determines the wavelength of the excitation light based on information regarding the emission color received by the input unit, and controls the light source unit so that the excitation light of the wavelength is generated;
a plurality of second bandpass filters that transmit the light emission in mutually different wavelength bands ;
The control unit determines a wavelength in a range of 365 nm to 490 nm as the wavelength of the excitation light ,
In the inspection device, the control unit switches the second bandpass filter installed on the optical path from the light emitting element to the photodetection unit according to the determined wavelength of the excitation light.
前記制御部は、前記入力部によって受付けられた前記発光色に関する情報が緑色の場合、365nm~490nmの範囲の波長を、前記励起光の波長に決定する、請求項1記載の検査装置。 The inspection device according to claim 1, wherein the control unit determines a wavelength in a range of 365 nm to 490 nm as the wavelength of the excitation light when the information regarding the emission color received by the input unit is green. 前記制御部は、前記入力部によって受付けられた前記発光色に関する情報が青色の場合、365nm~420nmの範囲の波長を、前記励起光の波長に決定する、請求項1記載の検査装置。 The inspection device according to claim 1, wherein the control unit determines a wavelength in a range of 365 nm to 420 nm as the wavelength of the excitation light when the information regarding the emission color received by the input unit is blue. 前記光源部は、前記励起光の白色光源と、互いに異なる波長帯の前記励起光を透過する複数の第1のバンドパスフィルタとを有し、
前記制御部は、決定した前記励起光の波長に応じて前記第1のバンドパスフィルタを切り替える、請求項1~3のいずれか一項記載の検査装置。
The light source section includes a white light source for the excitation light and a plurality of first bandpass filters that transmit the excitation light in different wavelength bands,
4. The inspection device according to claim 1, wherein the control unit switches the first bandpass filter according to the determined wavelength of the excitation light.
前記光源部は、互いに異なる波長の前記励起光を生成する複数の光源を有し、
前記制御部は、決定した前記励起光の波長に応じて前記複数の光源を切り替える、請求項1~3のいずれか一項記載の検査装置。
The light source section has a plurality of light sources that generate the excitation light of mutually different wavelengths,
4. The inspection apparatus according to claim 1, wherein the control unit switches the plurality of light sources according to the determined wavelength of the excitation light.
互いに異なる波長を第1の分離波長として該第1の分離波長により前記励起光と前記発光とを分離する複数の第1の波長分離素子を更に備え、
前記制御部は、決定した前記励起光の波長に応じて、前記光源部から前記発光素子に至る光路且つ前記発光素子から前記光検出部に至る光路に設置される前記第1の波長分離素子を切り替える、請求項1~のいずれか一項記載の検査装置。
further comprising a plurality of first wavelength separation elements that separate the excitation light and the emission using different wavelengths as first separation wavelengths,
The control section controls the first wavelength separation element, which is installed in an optical path from the light source section to the light emitting element and from the light emitting element to the photodetection section, according to the determined wavelength of the excitation light. The inspection device according to any one of claims 1 to 5 , wherein the inspection device switches.
互いに異なる波長を第2の分離波長として該第2の分離波長により前記第2の分離波長よりも長い波長の発光と前記第2の分離波長よりも短い波長の発光とを分離する複数の第2の波長分離素子を更に備え、
前記光検出部は、前記発光のうち前記第2の分離波長よりも長い波長の発光を検出する第1の光検出器と、前記発光のうち前記第2の分離波長よりも短い波長の発光を検出する第2の光検出器と、を有し、
前記制御部は、決定した前記励起光の波長に応じて、前記発光素子から前記第1の光検出器及び前記第2の光検出器に至る光路に設置される前記第2の波長分離素子を切り替える、請求項1~のいずれか一項記載の検査装置。
A plurality of second separation wavelengths having different wavelengths as second separation wavelengths and separating light emission with a wavelength longer than the second separation wavelength and light emission with a wavelength shorter than the second separation wavelength by the second separation wavelength. further comprising a wavelength separation element,
The photodetector includes a first photodetector that detects a wavelength of the emitted light that is longer than the second separated wavelength, and a first photodetector that detects the emitted light that has a wavelength shorter than the second separated wavelength of the emitted light. a second photodetector for detecting,
The control unit controls the second wavelength separation element installed in the optical path from the light emitting element to the first photodetector and the second photodetector, depending on the determined wavelength of the excitation light. The inspection device according to any one of claims 1 to 6 , wherein the inspection device switches.
互いに異なる波長帯の前記発光を透過する複数の第2のバンドパスフィルタと、互いに異なる波長を第1の分離波長として該第1の分離波長により前記励起光と前記発光とを分離する複数の第1の波長分離素子と、互いに異なる波長を第2の分離波長として該第2の分離波長により前記第2の分離波長よりも長い波長の発光と前記第2の分離波長よりも短い波長の発光とを分離する複数の第2の波長分離素子と、を更に備え、
前記光源部は、前記励起光の白色光源と、互いに異なる波長帯の前記励起光を透過する複数の第1のバンドパスフィルタとを有し、
前記光検出部は、前記発光のうち前記第2の分離波長よりも長い波長の発光を検出する第1の光検出器と、前記発光のうち前記第2の分離波長よりも短い波長の発光を検出する第2の光検出器と、を有し、
前記制御部は、決定した前記励起光の波長に応じて、前記第1のバンドパスフィルタ、前記第2のバンドパスフィルタ、前記第1の波長分離素子、及び前記第2の波長分離素子を一体的に切り替える、請求項1~のいずれか一項記載の検査装置。
a plurality of second bandpass filters that transmit the emitted light in different wavelength bands; and a plurality of second bandpass filters that separate the excitation light and the emitted light by the first separation wavelength, each having a different wavelength as a first separation wavelength. 1 wavelength separation element, different wavelengths from each other are used as second separation wavelengths, and the second separation wavelength enables emission of light with a wavelength longer than the second separation wavelength and emission of light with a wavelength shorter than the second separation wavelength. further comprising a plurality of second wavelength separation elements that separate the
The light source section includes a white light source for the excitation light and a plurality of first bandpass filters that transmit the excitation light in different wavelength bands,
The photodetector includes a first photodetector that detects a wavelength of the emitted light that is longer than the second separated wavelength, and a first photodetector that detects the emitted light that has a wavelength shorter than the second separated wavelength of the emitted light. a second photodetector for detecting,
The control unit integrates the first bandpass filter, the second bandpass filter, the first wavelength separation element, and the second wavelength separation element according to the determined wavelength of the excitation light. The inspection device according to any one of claims 1 to 7 , wherein the inspection device switches automatically.
JP2021092781A 2020-01-17 2021-06-02 Inspection equipment and inspection method Active JP7432558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021092781A JP7432558B2 (en) 2020-01-17 2021-06-02 Inspection equipment and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020005830A JP6894019B1 (en) 2020-01-17 2020-01-17 Inspection equipment and inspection method
JP2021092781A JP7432558B2 (en) 2020-01-17 2021-06-02 Inspection equipment and inspection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020005830A Division JP6894019B1 (en) 2020-01-17 2020-01-17 Inspection equipment and inspection method

Publications (3)

Publication Number Publication Date
JP2021129120A JP2021129120A (en) 2021-09-02
JP2021129120A5 JP2021129120A5 (en) 2023-01-19
JP7432558B2 true JP7432558B2 (en) 2024-02-16

Family

ID=76464636

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020005830A Active JP6894019B1 (en) 2020-01-17 2020-01-17 Inspection equipment and inspection method
JP2021092781A Active JP7432558B2 (en) 2020-01-17 2021-06-02 Inspection equipment and inspection method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020005830A Active JP6894019B1 (en) 2020-01-17 2020-01-17 Inspection equipment and inspection method

Country Status (7)

Country Link
US (2) US12013349B2 (en)
EP (1) EP4080199A4 (en)
JP (2) JP6894019B1 (en)
KR (1) KR20220123378A (en)
CN (1) CN114729891A (en)
TW (1) TW202129237A (en)
WO (1) WO2021145048A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102602029B1 (en) * 2021-11-11 2023-11-14 주식회사 에타맥스 Micro LED Inspection Device for Performing Photoluminescence Inspection and Automatic Optical Inspection Simultaneously
US20240175826A1 (en) * 2022-11-29 2024-05-30 PlayNitride Display Co., Ltd. Wafer defect inspection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240638A (en) 2002-02-13 2003-08-27 Nikon Corp Inspection device
JP2007088389A (en) 2005-09-26 2007-04-05 Yamaguchi Univ Equipment for measuring internal quantum efficiency of semiconductor light emitting device (led), and method therefor
JP2014520272A (en) 2011-06-24 2014-08-21 ケーエルエー−テンカー コーポレイション Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
JP2014157131A (en) 2013-02-18 2014-08-28 Nichia Chem Ind Ltd Inspection method for semiconductor light-emitting element and manufacturing method for semiconductor light-emitting element
JP2015087171A (en) 2013-10-29 2015-05-07 浜松ホトニクス株式会社 Fluorescent imaging device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408017B2 (en) * 1995-05-17 2003-05-19 シャープ株式会社 Method for manufacturing semiconductor light emitting device
US6534774B2 (en) * 2000-09-08 2003-03-18 Mitsubishi Materials Silicon Corporation Method and apparatus for evaluating the quality of a semiconductor substrate
EP3266367B1 (en) * 2008-07-24 2021-03-03 Massachusetts Institute Of Technology Systems and methods for imaging using absorption
JP5021784B2 (en) 2010-04-01 2012-09-12 シャープ株式会社 Luminescence measurement device, luminescence measurement method, control program, and readable recording medium
JP2015010834A (en) * 2013-06-26 2015-01-19 東レエンジニアリング株式会社 Method for estimating emission wavelength of luminous body and device therefore
DE102013219087A1 (en) * 2013-09-23 2015-03-26 Osram Opto Semiconductors Gmbh Method and device for processing an optoelectronic device
WO2015064757A1 (en) * 2013-10-31 2015-05-07 コニカミノルタ株式会社 Detection device, detection method using said detection device, and detection chip used in said detection device
CA2957546A1 (en) * 2014-08-08 2016-02-11 Quantum-Si Incorporated Integrated device with external light source for probing, detecting, and analyzing molecules
WO2016121628A1 (en) * 2015-01-28 2016-08-04 東レエンジニアリング株式会社 Defect inspection method and defect inspection device for wide-gap semiconductor substrates
JP2018132308A (en) 2017-02-13 2018-08-23 東レエンジニアリング株式会社 Spectroscopy measurement device and device for estimating emission wavelength of light emitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240638A (en) 2002-02-13 2003-08-27 Nikon Corp Inspection device
JP2007088389A (en) 2005-09-26 2007-04-05 Yamaguchi Univ Equipment for measuring internal quantum efficiency of semiconductor light emitting device (led), and method therefor
JP2014520272A (en) 2011-06-24 2014-08-21 ケーエルエー−テンカー コーポレイション Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
JP2014157131A (en) 2013-02-18 2014-08-28 Nichia Chem Ind Ltd Inspection method for semiconductor light-emitting element and manufacturing method for semiconductor light-emitting element
JP2015087171A (en) 2013-10-29 2015-05-07 浜松ホトニクス株式会社 Fluorescent imaging device

Also Published As

Publication number Publication date
JP2021129120A (en) 2021-09-02
EP4080199A4 (en) 2024-03-06
US20220373480A1 (en) 2022-11-24
US12013349B2 (en) 2024-06-18
CN114729891A (en) 2022-07-08
JP6894019B1 (en) 2021-06-23
WO2021145048A1 (en) 2021-07-22
KR20220123378A (en) 2022-09-06
US20240302292A1 (en) 2024-09-12
EP4080199A1 (en) 2022-10-26
TW202129237A (en) 2021-08-01
JP2021113712A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6840881B1 (en) Inspection equipment and inspection method
US12072289B2 (en) Inspection apparatus comprising a first imager imaging fluorescence having a wavelength longer than a first wavelength and a second imager imaging fluorescence having a wavelength shorter than a second wavelength and inspection method
US20240302292A1 (en) Inspection apparatus and inspection method
WO2020195137A1 (en) Inspection device and inspection method
JP6720430B1 (en) Inspection device and inspection method
JP2022122596A (en) Inspection device and inspection method
JP6720429B1 (en) Inspection device and inspection method
JP7291676B2 (en) Inspection device and inspection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7432558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150