JP7432194B1 - compressed air condensing equipment - Google Patents

compressed air condensing equipment Download PDF

Info

Publication number
JP7432194B1
JP7432194B1 JP2022190635A JP2022190635A JP7432194B1 JP 7432194 B1 JP7432194 B1 JP 7432194B1 JP 2022190635 A JP2022190635 A JP 2022190635A JP 2022190635 A JP2022190635 A JP 2022190635A JP 7432194 B1 JP7432194 B1 JP 7432194B1
Authority
JP
Japan
Prior art keywords
compressed air
condensing
collision
air
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022190635A
Other languages
Japanese (ja)
Other versions
JP2024078224A (en
Inventor
博康 川真田
Original Assignee
日本エアードライヤー販売株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エアードライヤー販売株式会社 filed Critical 日本エアードライヤー販売株式会社
Priority to JP2022190635A priority Critical patent/JP7432194B1/en
Application granted granted Critical
Publication of JP7432194B1 publication Critical patent/JP7432194B1/en
Publication of JP2024078224A publication Critical patent/JP2024078224A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Drying Of Gases (AREA)

Abstract

【課題】圧縮空気を効率良く除湿し得るようにした圧縮空気の凝縮装置を提供する。【解決手段】エアーコンプレッサ1から圧縮空気を導入可能な凝縮筒3を設ける。凝縮筒3内に複数の通気孔13を形成した複数の衝突板12を離間して配置し、複数の圧縮空気導入室Ro,Rm,Ruを区画する。上流側の空気導入室Ro,Rm,Ruから圧縮空気を順次導入し衝突板12に衝突して凝縮する。および/または通気孔13から圧縮空気を噴出させて断熱膨張する。除湿した圧縮空気を下流側のエア-ツール5へ供給可能にした圧縮空気の凝縮装置であること。圧縮空気を導入する最上流の圧縮空気導入室Roの容積を、他の圧縮空気導入室Rm,Ruの容積よりも大きく形成したこと。【選択図】図1The present invention provides a compressed air condensing device that can efficiently dehumidify compressed air. SOLUTION: A condensing cylinder 3 into which compressed air can be introduced from an air compressor 1 is provided. A plurality of collision plates 12 having a plurality of ventilation holes 13 formed in the condensing cylinder 3 are arranged at a distance to define a plurality of compressed air introduction chambers Ro, Rm, and Ru. Compressed air is introduced sequentially from the upstream air introduction chambers Ro, Rm, and Ru, collides with the collision plate 12, and is condensed. And/or compressed air is blown out from the vent hole 13 for adiabatic expansion. The compressed air condensing device is capable of supplying dehumidified compressed air to the air tool 5 on the downstream side. The volume of the most upstream compressed air introduction chamber Ro into which compressed air is introduced is made larger than the volumes of the other compressed air introduction chambers Rm and Ru. [Selection diagram] Figure 1

Description

本発明は、圧縮空気を導入する凝縮筒内を複数の通気板で区画し、その区画スペースの圧縮空気の除湿と凝縮を合理的に実現するとともに、圧縮空気を効率良く除湿し得るようにした圧縮空気の凝縮装置に関する。 The present invention divides the inside of a condensing cylinder into which compressed air is introduced with a plurality of ventilation plates, and rationally realizes dehumidification and condensation of the compressed air in the divided space, and also makes it possible to efficiently dehumidify the compressed air. The present invention relates to a compressed air condensing device.

エアーコンプレッサから吐出された圧縮空気には凝縮水や油分が混在し、この圧縮空気をエアードライバーやインパクトレンチ等のエアーツールへ供給すると、空気導管の内部が錆たりエアーツール内部の構成部品が錆びて、機能が低下し故障を起こす惧れがある。
このため、圧縮空気の供給管路に除湿手段として、エアードライヤを取付けて水分を除去し、除湿・乾燥した圧縮空気をエアーツールへ供給するようにしている(例えば、特許文献1参照)。
The compressed air discharged from an air compressor contains condensed water and oil, and if this compressed air is supplied to an air tool such as an air driver or impact wrench, the inside of the air pipe may rust or the components inside the air tool may rust. There is a risk that functionality may deteriorate and cause a malfunction.
For this reason, an air dryer is attached as a dehumidifying means to the compressed air supply pipeline to remove moisture, and the dehumidified and dried compressed air is supplied to the air tool (for example, see Patent Document 1).

しかし、エアードライヤは高価で取付けが煩雑なため、その設置場所や個数が制約され、圧縮空気を十分に除湿することが難しいという問題があった。 However, since air dryers are expensive and complicated to install, the installation location and number of air dryers are restricted, making it difficult to sufficiently dehumidify compressed air.

そこで、前記問題を解決するものとして、出願人は、圧縮空気の供給路に複数の管状の凝縮ユニットを連結し、該凝縮ユニットは内部に複数の衝突板を離間して配置し、該衝突板に多数の通気孔を形成し、圧縮空気を衝突板に衝突させて凝縮するとともに、圧縮空気を通気孔から噴出させて断熱膨張させ、圧縮空気中の水分を除去して除湿するようにした圧縮空気の凝縮装置を開発し、これを既に提案している(例えば、特許文献2参照)。 Therefore, in order to solve the above problem, the applicant connected a plurality of tubular condensing units to a compressed air supply path, and each of the condensing units had a plurality of collision plates spaced apart inside the condensation unit. Compressed air is made to collide with a collision plate to condense it, and the compressed air is jetted out through the vents for adiabatic expansion, removing moisture from the compressed air and dehumidifying it. An air condensing device has been developed and has already been proposed (for example, see Patent Document 2).

しかし、前記凝縮装置は構成が複雑で製作が難しく、高価になるという問題があった。 However, the condensing device has a complicated structure, is difficult to manufacture, and is expensive.

前記問題を解決するものとして、出願人は、凝縮ユニットを1または複数の継手管を用いて長尺の管体に構成し、その内部に複数の衝突板を離間して配置し、該衝突板に多数の通気孔を形成し、圧縮空気を衝突板に衝突させて凝縮するとともに、通気孔から圧縮空気を噴出させて断熱膨張させ、圧縮空気中の水分を除去し除湿するようにした圧縮空気の凝縮装置を開発し、これを前記特許文献2の図10、24、26で提案している。 In order to solve the above problem, the applicant constructed a condensing unit into a long tube using one or more joint tubes, arranged a plurality of collision plates at a distance therein, and proposed that the collision plates A compressed air system in which a large number of ventilation holes are formed in the air, and the compressed air collides with a collision plate to condense it, and the compressed air is jetted out from the ventilation holes for adiabatic expansion to remove moisture from the compressed air and dehumidify it. 10, 24, and 26 of the above-mentioned Patent Document 2.

しかし、前記凝縮装置は、複数の衝突板の取付けに手間が掛かるとともに、複数の衝突板を略等間隔に配置しているため、圧縮空気が衝突板間の小スペースに導入されて除湿され、圧縮空気中の水分の除去能力が概して低く、十分な除湿精度を得られない、という問題があった。 However, in the condensing device, it takes time and effort to install the plurality of collision plates, and since the plurality of collision plates are arranged at approximately equal intervals, compressed air is introduced into the small space between the collision plates and dehumidified. There was a problem in that the ability to remove moisture from compressed air was generally low, and sufficient dehumidification accuracy could not be obtained.

特許第6826144号公報Patent No. 6826144 特開2022-140215号公報JP 2022-140215 Publication

本発明はこのような問題を解決し、圧縮空気を導入する凝縮筒内を複数の通気板で区画し、その区画スペースの圧縮空気の除湿と凝縮を合理的に実現するとともに、圧縮空気を効率良く除湿し得るようにした、圧縮空気の凝縮装置を提供することを目的とする。 The present invention solves these problems by partitioning the inside of the condensing cylinder into which compressed air is introduced using a plurality of ventilation plates, rationally realizing the dehumidification and condensation of the compressed air in the partitioned space, and efficiently using the compressed air. It is an object of the present invention to provide a compressed air condensing device that can effectively dehumidify.

請求項1の発明は、エアーコンプレッサから圧縮空気を導入可能な凝縮筒を設け、該凝縮筒内に複数の通気孔を形成した衝突板を配置し、該突板を介して凝縮筒内を複数の圧縮空気導入室区画、上流側の圧縮空気導入室にエアーコンプレッサで生成した圧縮空気を導入し、該縮空気を下方の衝突板に衝突して凝縮し、および/または突板の通気孔から圧縮空気を噴出させて断熱膨張し、除湿した圧縮空気を下流側のエアーツールへ供給可能にした圧縮空気の凝縮装置において、凝縮筒を上下端部を閉塞した単一の直管状に形成し、該凝縮筒内の中間位置から下部に亘って1または複数の衝突板を配置し、その最上流の圧縮空気導入室の容積を、他の圧縮空気導入室の容積よりも大きく形成し、凝縮筒を上下端部を閉塞した単一の直管状に形成し、容易かつ安価に製作し得るとともに、凝縮筒内における圧縮空気の移動を抑止して圧縮空気の凝縮作用と断熱膨張作用を精密かつ確度良く行ない、また最上流の圧縮空気導入室の容積を、他の圧縮空気導入室の容積よりも大きく形成して、最上流の圧縮空気導入室に多量の圧縮空気を収容し、衝突板による凝縮作用と断熱膨張作用を活発かつ旺盛に行うようにしている。 The invention of claim 1 provides a condensing cylinder into which compressed air can be introduced from an air compressor, a collision plate having a plurality of ventilation holes is arranged in the condensing cylinder, and the inside of the condensing cylinder is arranged through the collision plate. It is divided into a plurality of compressed air introduction chambers, and compressed air generated by an air compressor is introduced into the upstream compressed air introduction chamber, and the compressed air collides with a lower collision plate and condenses, and/or In a compressed air condensing device that blows out compressed air from the ventilation holes of the collision plate, expands it adiabatically, and supplies the dehumidified compressed air to downstream air tools, a single condensing tube with its upper and lower ends closed is used. It is formed into a straight tube shape, and one or more collision plates are arranged from the middle position to the lower part of the condensing cylinder, and the volume of the most upstream compressed air introduction chamber is larger than the volume of the other compressed air introduction chambers. The condensing cylinder is formed into a single straight pipe shape with the upper and lower ends closed, making it easy and inexpensive to manufacture. It also prevents the movement of compressed air within the condensing cylinder, thereby improving the condensing action of the compressed air and heat insulation. The expansion action is performed precisely and accurately, and the volume of the most upstream compressed air introduction chamber is made larger than the other compressed air introduction chambers to accommodate a large amount of compressed air in the most upstream compressed air introduction chamber. In addition, the condensation and adiabatic expansion effects of the collision plate are actively and vigorously performed .

請求項2の発明は、凝縮筒内を、高温高圧の圧縮空気を導入する上部室と、一または複数の衝突板で区画した中間室と、除湿した圧縮空気をエアーツール側へ送出する下部室とに、区画し、これらの各室に圧縮空気を円滑かつ速やかに移動させて、圧縮空気を効率良く凝縮または断熱膨張させて除湿するようにしている。 The invention of claim 2 provides an upper chamber into which high-temperature, high-pressure compressed air is introduced, an intermediate chamber partitioned by one or more collision plates, and a lower chamber through which dehumidified compressed air is sent to the air tool side. The compressed air is moved smoothly and quickly to each of these chambers, and the compressed air is efficiently condensed or adiabatically expanded for dehumidification .

請求項3の発明は、上部室に導入した圧縮空気を下方に配置した一または複数の衝突板に衝突し、多量の圧縮空気を速やかに凝縮させるとともに、衝突板の通気孔から噴出し、多量の圧縮空気を速やかに断熱膨張させて除湿するようにしている。
請求項4の発明は、上部室の下方に単一の衝突板を設け、中間室の容積の低減分、上部室の容積を最大に形成し、大量の圧縮空気を上部室に収容し、これを衝突板に速やかに衝突して凝縮し、および/または通気孔から圧縮空気を噴出させて効率良く除湿するようにしている。
In the invention of claim 3, the compressed air introduced into the upper chamber collides with one or more collision plates arranged below, and a large amount of compressed air is quickly condensed , and is ejected from the ventilation hole of the collision plate, causing a large amount of The compressed air is quickly adiabatically expanded and dehumidified.
The invention of claim 4 provides a single collision plate below the upper chamber, maximizes the volume of the upper chamber by the reduction in the volume of the intermediate chamber, and stores a large amount of compressed air in the upper chamber. The air quickly collides with the collision plate and condenses, and/or compressed air is blown out from the ventilation holes to efficiently dehumidify .

請求項5の発明は、上部室の下方に複数の衝突板を配置し、これらの衝突板に圧縮空気を順次衝突させて凝縮させるとともに、これらの衝突板の通気孔から圧縮空気を順次噴出させて断熱膨張させ、上部室内の大量の圧縮空気を精密かつ効率良く除湿するようにしている。
請求項6の発明は、複数の衝突板を等間隔に配置した一組または二組の衝突板で構成し、衝突板を容易かつ速やかに配置し、その製作を容易に行えるようにしている。
請求項7の発明は、複数の衝突板を間隔を異にする二組の衝突板で構成し、衝突板に対する圧縮空気の衝突効果を多様に設定するとともに、衝突板の通気孔から圧縮空気の噴出を多様に設定するようにしている。
The invention of claim 5 arranges a plurality of collision plates below the upper chamber, compressed air is caused to collide with these collision plates one after another to condense it, and the compressed air is sequentially jetted out from the ventilation holes of these collision plates. The system uses adiabatic expansion to dehumidify a large amount of compressed air in the upper chamber precisely and efficiently .
According to the sixth aspect of the present invention, the collision plate is composed of one or two sets of collision plates arranged at equal intervals, so that the collision plates can be easily and quickly arranged and manufactured.
According to the seventh aspect of the invention , the plurality of collision plates are composed of two sets of collision plates having different intervals, and the impact effects of compressed air on the collision plates can be set in various ways, and the compressed air is discharged from the ventilation holes of the collision plates. I try to set the eruption in various ways.

請求項1の発明は、凝縮筒を上下端部を閉塞した単一の直管状に形成したから、容易かつ安価に製作できるとともに、凝縮筒内における圧縮空気の移動を抑止して圧縮空気の凝縮作用と熱膨張作用を精密かつ確度良く行なうことができる。
また、最上流の圧縮空気導入室の容積を、他の圧縮空気導入室の容積よりも大きく形成したから、最上流の圧縮空気導入室に多量の圧縮空気を収容でき、この圧縮空気に対する衝突板による凝縮作用と断熱膨張作用を活発かつ旺盛に行うことができる
請求項2の発明は、凝縮筒内を、高温高圧の圧縮空気を導入する上部室と、一または複数の衝突板で区画した中間室と、除湿した圧縮空気をエアーツール側へ送出する下部室とに、区画したから、これらの各室に圧縮空気を円滑かつ速やかに移動させて、高温高圧の圧縮空気を効率良く凝縮または断熱膨張させて除湿することができる。
According to the invention of claim 1, since the condensing cylinder is formed into a single straight pipe shape with the upper and lower ends closed, it can be manufactured easily and at low cost, and the movement of compressed air within the condensing cylinder is suppressed, so that the compressed air can be condensed. The action and thermal expansion action can be performed precisely and accurately.
In addition, since the volume of the most upstream compressed air introduction chamber is larger than the volume of the other compressed air introduction chambers, a large amount of compressed air can be accommodated in the most upstream compressed air introduction chamber, and a collision plate for this compressed air The condensation effect and adiabatic expansion effect can be carried out actively and energetically .
The invention of claim 2 provides an upper chamber into which high-temperature, high-pressure compressed air is introduced, an intermediate chamber partitioned by one or more collision plates, and a lower chamber through which dehumidified compressed air is sent to the air tool side. Since the chambers are divided, the compressed air can be moved smoothly and quickly to each of these chambers, and the high-temperature, high-pressure compressed air can be efficiently condensed or adiabatically expanded for dehumidification .

請求項3の発明は、上部室に導入した圧縮空気を下方に配置した一または複数の衝突板に衝突したから、多量の圧縮空気を速やかに凝縮させることができるとともに、衝突板の通気孔から噴出し、多量の圧縮空気を速やかに断熱膨張させて除湿することができる。
請求項4の発明は、上部室の下方に単一の衝突板を設けたから、中間室の容積の低減分、上部室の容積を最大に形成し、大量の圧縮空気を前記衝突板に速やかに衝突して凝縮し、および/または通気孔から圧縮空気を噴出させて効率良く除湿することができる。
According to the third aspect of the invention, since the compressed air introduced into the upper chamber collides with one or more collision plates arranged below, a large amount of compressed air can be quickly condensed , and the air can be compressed from the ventilation holes of the collision plates. A large amount of compressed air can be quickly adiabatically expanded and dehumidified.
In the invention of claim 4, since a single collision plate is provided below the upper chamber, the volume of the upper chamber is maximized by the reduction in the volume of the intermediate chamber, and a large amount of compressed air can be quickly delivered to the collision plate. It is possible to efficiently dehumidify by colliding and condensing and/or blowing out compressed air from the ventilation holes.

請求項5の発明は、上部室の下方に複数の衝突板を配置し、これらの衝突板に圧縮空気を順次衝突させて凝縮させるとともに、これらの衝突板の通気孔から圧縮空気を順次噴出させて断熱膨張させたから、上部室内の大量の圧縮空気を効率良く除湿することができる
請求項6の発明は、複数の衝突板を等間隔に配置した一組または二組の衝突板で構成したから、衝突板を容易かつ速やかに配置することができる。
請求項7の発明は、複数の衝突板を間隔を異にする二組の衝突板で構成したから、衝突板に対する圧縮空気の衝突効果を多様に設定することができるとともに、衝突板の通気孔から圧縮空気の噴出を多様に設定することができる。
The invention of claim 5 arranges a plurality of collision plates below the upper chamber, compressed air is caused to collide with these collision plates one after another to condense it, and the compressed air is sequentially jetted out from the ventilation holes of these collision plates. A large amount of compressed air in the upper chamber can be efficiently dehumidified because the compressed air is adiabatically expanded.The invention according to claim 6 is composed of one or two sets of collision plates arranged at equal intervals. , the collision plate can be placed easily and quickly .
According to the seventh aspect of the invention, since the plurality of collision plates are composed of two sets of collision plates having different intervals, it is possible to set various collision effects of compressed air on the collision plates, and the ventilation holes of the collision plates can be set in a variety of ways. The jetting of compressed air can be set in various ways .

請求項8の発明は、相対する衝突板の間隔を幅広に形成して圧縮空気導入量を増量可能に設け、圧縮空気の凝縮量を増加可能に設けたから、広いスペースの中間室における圧縮空気の凝縮を合理的かつ効率良く行なうことができる。
請求項9の発明は、相対する衝突板の間隔を幅狭に形成して衝突板に対する圧縮空気の衝突圧力を上昇可能に設け、圧縮空気の凝縮効率を上昇可能に設けたから、狭いスペースの中間室における圧縮空気の断熱膨張を合理的かつ効率良く行なうことができる。
請求項10の発明は、上部室に凝縮筒内に導入した約81%の圧縮空気を導入可能にしたから、上部室の下方に単一の衝突板を設けて上部室の容積を最大量に増量し、この圧縮空気の凝縮と断熱膨張を向上することができる。
In the invention of claim 8, since the interval between the opposing collision plates is widened so that the amount of compressed air introduced can be increased, and the amount of compressed air condensed can be increased, the amount of compressed air in the middle chamber with a wide space can be increased. Condensation can be performed rationally and efficiently.
According to the ninth aspect of the invention, the gap between the opposing collision plates is formed narrowly so that the collision pressure of the compressed air against the collision plates can be increased, and the condensation efficiency of the compressed air can be increased. Adiabatic expansion of compressed air in the chamber can be carried out rationally and efficiently.
The invention of claim 10 makes it possible to introduce approximately 81% of the compressed air introduced into the condensing cylinder into the upper chamber, so a single collision plate is provided below the upper chamber to maximize the volume of the upper chamber. It is possible to increase the amount of compressed air and improve the condensation and adiabatic expansion of this compressed air.

請求項11の発明は、凝縮筒内にエアーツールに連通する空気出口管を配置し、該空気出口管に各衝突板を支持可能にしたから、各衝突板を強固に支持することができる。
請求項12の発明は、凝縮筒の外側に冷却筒を離間して立設し、該冷却筒の下端部に空気孔を形成し、空気を吸入可能に設けるとともに、吸入した空気を冷却筒内を上動させて凝縮筒の外周面を冷却可能に設け、これを冷却筒の上端部の開口部から外部へ排出可能に設けたから、冷却筒の煙突効果によって冷却筒を合理的に冷却し、凝縮筒による凝縮作用と断熱膨張作用を向上することができる。
請求項13の発明は、上部室の下方に複数の衝突板を配置し、該衝突板によって3以上の対向スペースを形成し、各対向スペースによって圧縮空気を凝縮し断熱膨張可能にしたから、圧縮空気を精密かつ能率良く凝縮することができる。
According to the eleventh aspect of the present invention, an air outlet pipe communicating with the air tool is arranged in the condensing cylinder, and each collision plate can be supported by the air outlet pipe, so that each collision plate can be firmly supported.
In the invention of claim 12, a cooling cylinder is installed at a distance on the outside of the condensing cylinder, an air hole is formed at the lower end of the cooling cylinder so that air can be sucked, and the sucked air is directed into the cooling cylinder. The outer peripheral surface of the condensing cylinder can be cooled by moving the condensing cylinder upward, and this can be discharged to the outside from the opening at the upper end of the cooling cylinder, so that the cooling cylinder can be rationally cooled by the chimney effect of the cooling cylinder. The condensing action and adiabatic expansion action of the condensing cylinder can be improved.
The thirteenth aspect of the invention is that a plurality of collision plates are disposed below the upper chamber, three or more opposing spaces are formed by the collision plates, and compressed air can be condensed and expanded adiabatically in each opposing space. Air can be condensed precisely and efficiently.

本発明の第1の実施形態の概容を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an outline of a first embodiment of the present invention. 図1の要部を拡大して示す断面図で、冷却筒の内部に凝縮筒を収容しているThis is an enlarged cross-sectional view of the main part of Figure 1, showing a condensing cylinder housed inside the cooling cylinder. 図2のA-A線に沿う断面図を示している。3 shows a cross-sectional view taken along line AA in FIG. 2. FIG. 本発明の第2の実施形態の要部を示す断面図である。FIG. 3 is a cross-sectional view showing the main parts of a second embodiment of the present invention. 本発明の第3の実施形態の要部を示す断面図である。FIG. 7 is a cross-sectional view showing main parts of a third embodiment of the present invention.

本発明の第4の実施形態の要部を示す断面図である。FIG. 7 is a sectional view showing main parts of a fourth embodiment of the present invention. 本発明の第5の実施形態の要部を示す断面図である。It is a sectional view showing the main part of the 5th embodiment of the present invention. 本発明の第6の実施形態の要部を示す断面図である。FIG. 7 is a cross-sectional view showing essential parts of a sixth embodiment of the present invention. 第6の実施形態の応用形態の要部を示す断面図である。FIG. 7 is a sectional view showing a main part of an applied form of the sixth embodiment.

以下、本発明を図示の実施形態について説明すると、図1乃至図3において1は工場等に設置したエアーコンプレッサで、生成した高温高圧の圧縮空気をエアータンク(図示略)に貯留し、その所定量を空気導管2を介して凝縮筒3へ送り出し、該凝縮筒3で除湿し乾燥した圧縮空気を供給管4へ送出し、工場等のエアーツール5へ供給可能にしている。 Hereinafter, the present invention will be described with reference to the illustrated embodiments. In FIGS. 1 to 3, reference numeral 1 is an air compressor installed in a factory, etc., which stores the generated high-temperature, high-pressure compressed air in an air tank (not shown). A fixed amount of air is sent to a condensing cylinder 3 through an air conduit 2, and the compressed air, which has been dehumidified and dried in the condensing cylinder 3, is sent to a supply pipe 4 so that it can be supplied to an air tool 5 in a factory or the like.

前記凝縮筒3は継手管(図示略)を介して若干長尺の直管状に形成され、その外側に冷却筒6を配置している。
前記冷却筒6は凝縮筒3よりも大径で長尺の管体で構成され、その下端部を地面等の基盤7に立設し、この下端部に設けた空気孔8から空気を吸入して筒内を上動させ、内側の凝縮筒3を冷却可能にしている。
冷却筒6の上端部は凝縮筒3の上方で開口され、この開口部9から導入空気を外部へ排出可能にしている。
すなわち、冷却筒6は煙突機能を備え、下端部の空気孔8から空気を吸入して筒内を上動させ、上端部から熱交換した空気を外部へ排出させて凝縮筒3を冷却可能にしている。
The condensing cylinder 3 is formed into a slightly elongated straight pipe via a joint pipe (not shown), and a cooling cylinder 6 is disposed on the outside thereof.
The cooling cylinder 6 is composed of a long tube with a larger diameter than the condensing cylinder 3, and its lower end is set up on a base 7 such as the ground, and air is sucked in through air holes 8 provided at the lower end. The inner condensing cylinder 3 can be cooled by moving the inside of the cylinder upward.
The upper end of the cooling cylinder 6 is opened above the condensing cylinder 3, and the introduced air can be discharged to the outside through this opening 9.
That is, the cooling cylinder 6 has a chimney function, sucks air through the air hole 8 at the lower end, moves the cylinder upward, and exhausts heat-exchanged air from the upper end to the outside to cool the condensing cylinder 3. ing.

前記凝縮筒3の上端部に空気入口管10と空気出口管11とが異方向に突設されて外側に配置され、空気導管2に空気入口管10が接続され、空気出口管11の外側に供給管4が接続されている。
前記空気出口管11の他端部は、エルボ状に折り曲げられて凝縮筒3内の中央下部に配置され、下端の開口部から除湿した圧縮空気を吸入可能にしている。
An air inlet pipe 10 and an air outlet pipe 11 are protruded in different directions from the upper end of the condensing cylinder 3 and are disposed on the outside. A supply pipe 4 is connected.
The other end of the air outlet pipe 11 is bent into an elbow shape and placed at the lower center of the condensing cylinder 3, so that dehumidified compressed air can be taken in from the opening at the lower end.

前記凝縮筒3の下部から中間部に亘って複数の衝突板12が配置され、この衝突板12によって凝縮筒3内を区画している。すなわち、凝縮筒3内の全容積は、内径と内面の上下端部の間隔で凡そ決定され、内面の上端部と上側の衝突板12とで最も広い上部室Roを区画し、内面の下端部と最下位置の衝突板12とで下部室Ruを区画し、上下側の2つの衝突板12によって中間室Rmを区画している。中間室Rmの容積は、中間位置の衝突板12によって上下に二分され、その対向間隔dを同一に形成している。 A plurality of collision plates 12 are arranged from the bottom to the middle of the condensing cylinder 3, and the inside of the condensing cylinder 3 is partitioned by the collision plates 12. That is, the total volume inside the condensing cylinder 3 is approximately determined by the inner diameter and the interval between the upper and lower ends of the inner surface, and the upper end of the inner surface and the upper collision plate 12 define the widest upper chamber Ro, and the lower end of the inner surface and the collision plate 12 at the lowest position define a lower chamber Ru, and the two upper and lower collision plates 12 define an intermediate chamber Rm. The volume of the intermediate chamber Rm is divided into upper and lower halves by the collision plate 12 at the intermediate position, and the facing interval d is formed to be the same.

上部室Roの上側の衝突板12上面からの高さは略5dに形成され、下部室Ruの下側の衝突板12下面から高さは略1.5dに形成され、中間室Rmの高さは2dに形成されている。したがって、各室の容積は、Ro:Rm:Ruが略5:2:1.5に形成され、この割合で圧縮空気を収容可能にしている。 The height of the upper chamber Ro from the upper surface of the collision plate 12 is approximately 5 d, the height of the lower chamber Ru from the lower surface of the collision plate 12 is approximately 1.5 d, and the height of the intermediate chamber Rm is approximately 5 d. is formed at 2d. Therefore, the volumes of each chamber are formed in a ratio of Ro:Rm:Ru of approximately 5:2:1.5, and can accommodate compressed air at this ratio.

前記衝突板12に小径の複数の通気孔13が形成され、該通気孔13から圧縮空気を噴出して断熱膨張可能にしている。図中、14は凝縮筒3の下端部に取付けたドレンラップで、凝縮筒3の下端部に滞留したドレン(図示略)を外部へ排出可能にしている。 A plurality of small-diameter ventilation holes 13 are formed in the collision plate 12, and compressed air is blown out from the ventilation holes 13 to enable adiabatic expansion. In the figure, reference numeral 14 denotes a drain wrap attached to the lower end of the condensing cylinder 3, which allows drain (not shown) accumulated at the lower end of the condensing cylinder 3 to be discharged to the outside.

このように構成した本発明の圧縮空気の凝縮装置は、凝縮筒3と冷却筒6の製作を要する。このうち、凝縮筒3は一または複数の継手管を用いて鋼製の細長の直管状に構成し、その内部に複数の衝突板12を所定間隔に配置する。 The compressed air condensing device of the present invention configured in this manner requires the manufacture of the condensing cylinder 3 and the cooling cylinder 6. Among these, the condensing cylinder 3 is formed into an elongated straight tube made of steel using one or more joint pipes, and a plurality of collision plates 12 are arranged at predetermined intervals inside the condensing cylinder 3.

図2の実施形態では、3枚の衝突板12を凝縮筒3の中間部のやや下方に配置し、その中間室Rmを凝縮筒3内の全容積の略1/4に構成し、その上側に上部室Roを配置し、下側に下部室Ruを配置している。各室Ro:Rm:Ruの容積を5:2:1.5に形成し、中間室Rmを中間部の衝突板12で上下に二分し、そのそれぞれの衝突板12に複数の通気孔13を形成する。 In the embodiment of FIG. 2, the three collision plates 12 are arranged slightly below the middle part of the condensing cylinder 3, and the intermediate chamber Rm is configured to be approximately 1/4 of the total volume inside the condensing cylinder 3, and the upper side An upper chamber Ro is disposed on the lower side, and a lower chamber Ru is disposed on the lower side. The volumes of each chamber Ro:Rm:Ru are formed to be 5:2:1.5, and the intermediate chamber Rm is divided into upper and lower halves by a collision plate 12 in the middle, and a plurality of ventilation holes 13 are provided in each collision plate 12. Form.

この場合、各室Ro:Rm:Ruの容積配分は、衝突板12,12の間隔dを基準に区画し、凝縮筒3内の空気出口管11の下端部に2枚の衝突板12,12を配置し、上側の衝突板12の上方に衝突板12の対向間隔dの約5倍位置に上部室Roを形成し、最下位置の衝突板12の下方に衝突板12の対向間隔dの約1.5倍位置に下部室Ruを形成する。 In this case, the volume distribution of each chamber Ro:Rm:Ru is divided based on the interval d between the collision plates 12, 12, and two collision plates 12, 12 are placed at the lower end of the air outlet pipe 11 in the condensing cylinder 3. An upper chamber Ro is formed above the upper collision plate 12 at a position approximately five times the facing distance d between the collision plates 12, and below the lowest collision plate 12, an upper chamber Ro is formed at a position approximately five times the facing distance d between the collision plates 12. A lower chamber Ru is formed at approximately 1.5 times the position.

こうして製作した凝縮筒3は図1および図2のようで、内側上部に上部室Roが広域に区画され、中間部にその1/2以下の中間室Rmが区画され、最下位置に中間室Rmより若干狭い下部室Ruが区画されている。
このうち、上部室Roは、導入した圧縮空気を主に衝突板12との衝突に伴う凝縮に機能させ、中間室Rmは導入した圧縮空気の通気孔13からの断熱膨張と、衝突板12,12間の衝突による凝縮に機能させ、下部室Ruは導入した圧縮空気の湾曲底面に対する衝突による凝縮と、通気孔13からの断熱膨張に機能させている。
The condensing tube 3 manufactured in this way is as shown in FIGS. 1 and 2, with an upper chamber Ro divided into a wide area at the upper part of the inside, an intermediate chamber Rm of less than half of the upper chamber Ro divided at the middle part, and an intermediate chamber Rm at the lowest position. A lower chamber Ru, which is slightly narrower than Rm, is defined.
Among these, the upper chamber Ro mainly functions to condense the introduced compressed air due to collision with the collision plate 12, and the intermediate chamber Rm functions to adiabatic expansion of the introduced compressed air from the ventilation hole 13, The lower chamber Ru functions to condense the introduced compressed air by collision with the curved bottom surface, and to cause adiabatic expansion from the vent hole 13.

また、冷却筒6は凝縮筒3よりも大径で長尺の管体に構成し、その下端部を地面等の基盤7に立設し、この下端部に設けた空気孔8から空気を吸入して筒内を上動させ、凝縮筒3を冷却可能にしている。すなわち、冷却筒6に煙突機能を装備させる。 The cooling cylinder 6 is formed into a long tube with a larger diameter than the condensing cylinder 3, and its lower end is erected on a base 7 such as the ground, and air is sucked in through air holes 8 provided at the lower end. This moves the inside of the cylinder upward, allowing the condensing cylinder 3 to be cooled. That is, the cooling cylinder 6 is equipped with a chimney function.

こうして製作した冷却筒6内に凝縮筒3を配置し、該凝縮筒3を冷却筒6の中央位置に支持し、凝縮筒3に接続した空気導管10の一端を、エアータンク(図示略)を経てエアーコンプレッサ1の空気出口管2に連通させ、空気出口管11の吐出側を供給管4の上流側に連通させる。 The condensing tube 3 is placed inside the cooling tube 6 thus manufactured, the condensing tube 3 is supported at the center of the cooling tube 6, and one end of the air conduit 10 connected to the condensing tube 3 is connected to an air tank (not shown). The air outlet pipe 2 of the air compressor 1 is communicated through the air outlet pipe 1, and the discharge side of the air outlet pipe 11 is communicated with the upstream side of the supply pipe 4.

このように組み立てた凝縮筒3に、エアーコンプレッサ1で生成された高温高圧の圧縮空気を導入すると、圧縮空気は先ず上部室Roに流入し、この上部室Roに大量の圧縮空気が導入される。 When high-temperature, high-pressure compressed air generated by the air compressor 1 is introduced into the condensing cylinder 3 assembled in this way, the compressed air first flows into the upper chamber Ro, and a large amount of compressed air is introduced into this upper chamber Ro. .

この場合、凝縮筒3はエアータンク(図示略)の近接位置に配置されているため、圧縮空気の圧力低下が少なく高圧を維持して上部室Roへ流入し、最上位置の衝突板12に勢い良く衝突して凝縮される。その際、前記圧縮空気は衝突板12に対し高圧で衝突し、前記凝縮が旺盛に行なわれて多量の凝縮水が圧縮空気から除去される。
しかも、上部室Roの圧縮空気量は、凝縮筒3に導入される圧縮空気の単位時間当たり約58%に相当し、この圧縮空気が除湿されて水蒸気が除去されるから、前記凝縮が多量かつ効率良く行なわれる。
In this case, since the condensing tube 3 is placed close to the air tank (not shown), the pressure of the compressed air decreases little, maintains a high pressure, flows into the upper chamber Ro, and hits the collision plate 12 at the top position with force. They collide well and condense. At this time, the compressed air collides with the collision plate 12 at high pressure, and the condensation occurs vigorously, and a large amount of condensed water is removed from the compressed air.
Moreover, the amount of compressed air in the upper chamber Ro corresponds to about 58% of the compressed air introduced into the condensing cylinder 3 per unit time, and since this compressed air is dehumidified and water vapor is removed, a large amount of the condensation occurs. It is done efficiently.

一方、上部室Roへ流入した圧縮空気は前記凝縮と同時に、通気孔13から下方へ噴出して断熱膨張し、圧縮空気中の水蒸気が液化して除湿される。
この場合、前記断熱膨張は、上部室Roの圧力が前述のように高圧を維持しているため、圧縮空気の仕事が大きく形成され、この断熱膨張によって能率良く温度低下して液化する。
On the other hand, at the same time as the compressed air that has flowed into the upper chamber Ro is condensed, it is ejected downward from the vent hole 13 and expands adiabatically, and water vapor in the compressed air is liquefied and dehumidified.
In this case, in the adiabatic expansion, since the pressure in the upper chamber Ro is maintained at a high pressure as described above, the work of the compressed air is large, and this adiabatic expansion efficiently lowers the temperature and liquefies the air.

次に、通気孔13から下方へ噴出した圧縮空気は中間位置の衝突板12に衝突して凝縮され、この凝縮と同時に通気孔13から下方へ噴出して断熱膨張し、圧縮空気中の水蒸気が液化して除湿される。
この後、圧縮空気は最下位置の衝突板12上に移動して衝突し、凝縮されると同時に、通気孔13から下方へ噴出して断熱膨張し、圧縮空気中の水蒸気が液化して除湿される。
更に、通気孔13から下方へ噴出した圧縮空気は、凝縮筒3内の下端部の湾曲底面に衝突して凝縮され、空気出口管11の下端部への流入を促される。
Next, the compressed air ejected downward from the vent hole 13 collides with the collision plate 12 at an intermediate position and is condensed.At the same time as this condensation, the compressed air ejects downward from the vent hole 13 and expands adiabatically, causing water vapor in the compressed air to Liquefied and dehumidified.
After that, the compressed air moves to the collision plate 12 at the lowest position, collides with it, and is condensed. At the same time, it jets out downward from the vent hole 13 and expands adiabatically, and the water vapor in the compressed air liquefies and dehumidifies it. be done.
Further, the compressed air jetted downward from the vent hole 13 collides with the curved bottom surface at the lower end of the condensing cylinder 3 and is condensed, and is urged to flow into the lower end of the air outlet pipe 11.

このように、凝縮筒3に導入された圧縮空気は、その約58%が上部室Roに流入し、直下の衝突板12に衝突して凝縮され、水蒸気が除去されて除湿される。
また、中間室Rmでは凝縮筒3に導入された圧縮空気の約23%が衝突板12,12に衝突して凝縮され、通気孔13から下方へ噴出して断熱膨張し、これらの凝縮作用と断熱膨張を繰り返し受けて、圧縮空気中の水蒸気が液化し除湿される。
In this way, approximately 58% of the compressed air introduced into the condensing cylinder 3 flows into the upper chamber Ro, collides with the collision plate 12 directly below and is condensed, and water vapor is removed and dehumidified.
In addition, in the intermediate chamber Rm, about 23% of the compressed air introduced into the condensing cylinder 3 collides with the collision plates 12, 12, is condensed, blows out downward from the vent hole 13, and expands adiabatically. Through repeated adiabatic expansion, the water vapor in the compressed air is liquefied and dehumidified.

更に、下部室Ruでは凝縮筒3に導入された圧縮空気の約19%が下端部の湾曲底面に衝突して凝縮され、また通気孔13から下方へ噴出して断熱膨張し、圧縮空気中の水蒸気が液化して除湿される。 Furthermore, in the lower chamber Ru, approximately 19% of the compressed air introduced into the condensing cylinder 3 collides with the curved bottom surface of the lower end and is condensed, and also jets out downward from the vent hole 13 and expands adiabatically, causing the Water vapor is liquefied and dehumidified.

こうして、下部室Ruへ噴出した圧縮空気は十分に除湿され、乾燥した圧縮空気が空気出口管11の下端の開口部へ押し込まれ、空気出口管11を上動して上端の開口部から供給管4へ移動し、エアーツール5へ供給される。
各部屋Ro、Rm、Ruで排出された凝縮水は、凝縮筒3内を流下して底部のドレンラップ14に収容される。
In this way, the compressed air blown into the lower chamber Ru is sufficiently dehumidified, and the dry compressed air is pushed into the opening at the lower end of the air outlet pipe 11, moves upward through the air outlet pipe 11, and passes through the opening at the upper end into the supply pipe. 4 and is supplied to the air tool 5.
The condensed water discharged from each of the rooms Ro, Rm, and Ru flows down inside the condensing cylinder 3 and is stored in the drain wrap 14 at the bottom.

このような凝縮筒3による圧縮空気の除湿作用の間、外側の冷却筒6では下部の通気孔8から空気が吸入され、これが煙突効果によって冷却筒6と凝縮筒3との間を移動し、凝縮筒3の外周を冷却して凝縮作用と断熱膨張作用を促し、上端の開口部9から外部へ排出される。 During the dehumidification of compressed air by the condensing tube 3, air is sucked in from the lower ventilation hole 8 in the outer cooling tube 6, and this air moves between the cooling tube 6 and the condensing tube 3 due to the chimney effect. The outer periphery of the condensing cylinder 3 is cooled to promote condensation and adiabatic expansion, and is discharged to the outside through the opening 9 at the upper end.

このように本発明は、凝縮筒3内に複数の衝突板12を合理的に配置し、凝縮筒3内に複数の圧縮空気導入室Ro、Rm、Ruを合理的に区画し、各空気導入室Ro、Rm、Ruに圧縮空気を合理的に導入して凝縮し断熱膨張させているから、凝縮筒3内に複数の衝突板を等間隔に配置して除湿する従来の凝縮装置に比べ、圧縮空気の凝縮と断熱膨張を合理的かつ効率良く行うことができる。 In this way, the present invention rationally arranges a plurality of collision plates 12 in the condensation cylinder 3, rationally divides a plurality of compressed air introduction chambers Ro, Rm, Ru in the condensation cylinder 3, and Since compressed air is rationally introduced into the chambers Ro, Rm, and Ru for condensation and adiabatic expansion, compared to conventional condensing devices that dehumidify by arranging a plurality of collision plates at equal intervals in the condensing cylinder 3, Condensation and adiabatic expansion of compressed air can be performed rationally and efficiently.

その際、例えば圧縮空気を導入する上部室Roの容積を、他の圧縮空気導入室の容積よりも大きく形成すれば、エア-コンプレッサ1で生成された高温高圧の圧縮空気を上部室Roに多量に導入し、該圧縮空気の凝縮と断熱膨張を合理的かつ効率良く行え、凝縮量を増量して圧縮空気を効率良く除湿し、除湿した圧縮空気をエアーツールへ供給し得る。 At that time, for example, if the volume of the upper chamber Ro into which compressed air is introduced is made larger than the volume of the other compressed air introduction chambers, a large amount of high temperature and high pressure compressed air generated by the air compressor 1 can be transferred to the upper chamber Ro. It is possible to condense and adiabatically expand the compressed air rationally and efficiently, increase the amount of condensation, efficiently dehumidify the compressed air, and supply the dehumidified compressed air to the air tool.

図4乃至図9は本発明の他の実施形態を示し、前述の実施形態と対応する構成部に同一の符号を用いている。このうち、図4は本発明の第2の実施形態を示し、この実施形態では凝縮筒3内の上部室Roと中間室Rmの容積を変更し、それらの容積比を変更している 4 to 9 show other embodiments of the present invention, and the same reference numerals are used for components corresponding to those of the previous embodiment. Of these, FIG. 4 shows a second embodiment of the present invention, in which the volumes of the upper chamber Ro and intermediate chamber Rm in the condensing cylinder 3 are changed, and their volume ratio is changed.

すなわち、衝突板12を3枚から2枚に減少し、上部室Roの下側境界部を下方へ移動するとともに、2つの衝突板12の対向間隔を1/2dに縮小し、上部室Roの容積を増加するとともに、その分、中間室Rmの容積を縮小している。 That is, the number of collision plates 12 is reduced from three to two, the lower boundary of the upper chamber Ro is moved downward, and the facing interval between the two collision plates 12 is reduced to 1/2d, so that the upper chamber Ro is moved downward. While increasing the volume, the volume of the intermediate chamber Rm is reduced accordingly.

このように構成することで、上部室Roの容積を前述の実施形態の約1.3倍に増加し、凝縮筒3内の容積の約75%に区画し、中間室Rmの容積を前述の実施形態の約1/4に減少し、凝縮筒3内の容積の約6%に区画している。
したがって、上部室Roに導入される圧縮空気量は、前述の実施形態に比べ約1.3倍に増加し、その大半(約75%)を凝縮して除湿し、また中間室Rmでは少量(約6%)の圧縮空気が凝縮されかつ断熱膨張され、下部室Ruでは圧縮空気は約19%の圧縮空気が凝縮され、かつ断熱膨張されて、乾燥した圧縮空気がエアーツール5へ供給される。
With this configuration, the volume of the upper chamber Ro is increased to about 1.3 times that of the above-described embodiment, and is divided into about 75% of the volume inside the condensing cylinder 3, and the volume of the intermediate chamber Rm is increased to about 1.3 times that of the above-mentioned embodiment. It is reduced to about 1/4 of that in the embodiment, and is divided into about 6% of the volume inside the condensing cylinder 3.
Therefore, the amount of compressed air introduced into the upper chamber Ro increases approximately 1.3 times compared to the above embodiment, and most of it (approximately 75%) is condensed and dehumidified, and a small amount (approximately 75%) of it is condensed and dehumidified in the intermediate chamber Rm. About 19% of the compressed air is condensed and adiabatically expanded in the lower chamber Ru, and dry compressed air is supplied to the air tool 5. .

図5は本発明の第3の実施形態を示し、この実施形態では凝縮筒3内の上部室Roと中間室Rmの容積を更に変更し、それらの凝縮筒3内における容積比を変更している。
すなわち、衝突板12を2枚から1枚に減少し、上部室Roの下側境界部を更に下方へ移動し、凝縮筒3内の上部室Roの容積を約82%に増加するとともに、中間室Rmを消失させ、凝縮筒3内の容積を実質的に上部室Roで構成している。
FIG. 5 shows a third embodiment of the present invention, in which the volumes of the upper chamber Ro and intermediate chamber Rm in the condensing cylinder 3 are further changed, and the volume ratio thereof in the condensing cylinder 3 is changed. There is.
That is, the number of collision plates 12 is reduced from two to one, the lower boundary of the upper chamber Ro is moved further downward, the volume of the upper chamber Ro in the condensing cylinder 3 is increased to approximately 82%, and the intermediate The chamber Rm is eliminated, and the volume inside the condensing cylinder 3 is substantially made up of the upper chamber Ro.

このように構成することで、上部室Roの容積を第1の実施形態の約1.4倍に増加し、衝突板12で区画する中間室Rmの容積を零に構成している。したがって、上部室Roに導入される圧縮空気量は、凝縮筒3に導入される圧縮空気の全量になり、この圧縮空気が衝突板12に勢い良く衝突して凝縮され、通気孔13から下方へ噴出して断熱膨張し、除湿される。 With this configuration, the volume of the upper chamber Ro is increased to approximately 1.4 times that of the first embodiment, and the volume of the intermediate chamber Rm partitioned by the collision plate 12 is configured to be zero. Therefore, the amount of compressed air introduced into the upper chamber Ro becomes the total amount of compressed air introduced into the condensing cylinder 3, and this compressed air collides with the collision plate 12 with force, is condensed, and flows downward from the ventilation hole 13. It blows out, expands adiabatically, and is dehumidified.

しかも、上部室Roの圧力はエアータンク(図示略)からの圧力低下が僅かで、高圧を維持して単一の衝突板12に勢い良く衝突するため、衝突圧力が高く前記凝縮が効率良く旺盛に行われ、前記圧縮空気から多量の凝縮水が除去される。
また、圧縮空気が通気孔13から下方へ噴出して断熱膨張され、この断熱膨張による仕事が高圧の圧縮空気に抗して行われるため、この断熱膨張によって能率良く温度低下して液化する。
In addition, the pressure in the upper chamber Ro is maintained at a high pressure with only a slight drop in pressure from the air tank (not shown) and collides vigorously with the single collision plate 12, so the collision pressure is high and the condensation is efficiently and vigorously generated. A large amount of condensed water is removed from the compressed air.
Further, the compressed air is ejected downward from the vent hole 13 and is adiabatically expanded, and the work due to this adiabatic expansion is performed against the high pressure compressed air, so the temperature is efficiently lowered and liquefied due to this adiabatic expansion.

そして、下部室Ruでは凝縮筒3に導入された圧縮空気の約19%が下端部の湾曲底面に衝突して凝縮され、また通気孔13から下方へ噴出して断熱膨張し、圧縮空気中の水蒸気が液化して除湿される。 In the lower chamber Ru, approximately 19% of the compressed air introduced into the condensing cylinder 3 collides with the curved bottom surface of the lower end and is condensed, and is also jetted downward from the vent hole 13 and expands adiabatically, causing the Water vapor is liquefied and dehumidified.

こうして、下部室Ruへ噴出した圧縮空気は十分に除湿され、乾燥した圧縮空気が空気出口管11の下端の開口部へ押し込まれ、空気出口管11を上動して上端の開口部から供給管4へ移動し、エアーツール5へ供給される。
なお、各部屋Ro、Rm、Ruで排出された凝縮水は、凝縮筒3内を流下して底部のド
レンラップ14に収容される。
In this way, the compressed air blown into the lower chamber Ru is sufficiently dehumidified, and the dry compressed air is pushed into the opening at the lower end of the air outlet pipe 11, moves upward through the air outlet pipe 11, and passes through the opening at the upper end into the supply pipe. 4 and is supplied to the air tool 5.
The condensed water discharged from each of the rooms Ro, Rm, and Ru flows down inside the condensing cylinder 3 and is stored in the drain wrap 14 at the bottom.

図6は本発明の第4の実施形態を示し、この実施形態は第2の実施形態の衝突板12の直上に1枚の衝突板12を配置し、これらで同様な中間室Rmを上下に配置し、この上方に上部室Roを配置している。
この実施形態では、上部室Roの容積を第1の実施形態の約1.3倍に形成し、2つの衝突板12で区画する中間室Rmを、第1の実施形態の中間室Rmの容積の1/2に形成している。
FIG. 6 shows a fourth embodiment of the present invention, in which one collision plate 12 is arranged directly above the collision plate 12 of the second embodiment, and these are used to vertically move a similar intermediate chamber Rm. The upper chamber Ro is arranged above this.
In this embodiment, the volume of the upper chamber Ro is formed to be approximately 1.3 times that of the first embodiment, and the intermediate chamber Rm partitioned by two collision plates 12 has a volume equal to that of the intermediate chamber Rm of the first embodiment. It is formed to 1/2 of the size.

上部室Roに導入される圧縮空気量は、第1の実施形態の約1.3倍になり、この圧縮空気が衝突板12に勢い良く衝突して凝縮され、多量の凝縮水が発生するとともに、各中間室Rmに導入される圧縮空気量は、第1の実施形態の中間室Rmの1/2になり、全体的には相当量の凝縮水が除去される。 The amount of compressed air introduced into the upper chamber Ro is approximately 1.3 times that of the first embodiment, and this compressed air collides vigorously with the collision plate 12 and is condensed, generating a large amount of condensed water. The amount of compressed air introduced into each intermediate chamber Rm is 1/2 that of the intermediate chamber Rm of the first embodiment, and a considerable amount of condensed water is removed overall.

図7は本発明の第の実施形態を示し、この実施形態は第1の実施形態の衝突板12の直上に衝突板12をd/2の間隔で配置し、上部室Roに導入された圧縮空気を最上位置の衝突板12に勢い良く衝突して凝縮させる。
そして、前記圧縮空気を通気孔13から下方へ噴出して断熱膨張させ、この噴出した圧縮空気を直下の衝突板12に衝突させて凝縮する。この後、噴出した圧縮空気を通気孔13から下方へ噴出して断熱膨張させ、この噴出した圧縮空気を直下の衝突板12に衝突させて凝縮させる。
FIG. 7 shows a fifth embodiment of the present invention, in which a collision plate 12 is arranged directly above the collision plate 12 of the first embodiment at an interval of d/2, and the collision plate 12 is introduced into the upper chamber Ro. The compressed air collides vigorously with the collision plate 12 at the uppermost position and is condensed.
Then, the compressed air is jetted downward from the vent hole 13 to be adiabatically expanded, and the jetted compressed air collides with the collision plate 12 directly below and is condensed. Thereafter, the jetted compressed air is jetted downward from the vent hole 13 to be adiabatically expanded, and the jetted compressed air collides with the collision plate 12 directly below and is condensed.

更に、前記圧縮空気を衝突板12の通気孔13から下方へ噴出して断熱膨張させ、この噴出した圧縮空気を最下位置の衝突板12に衝突させて凝縮し、その通気孔13から前記圧縮空気を下方へ噴出して断熱膨張させる。
こうして、下部室Ruに噴出した圧縮空気を下端部の湾曲底面に衝突して凝縮し、また通気孔13から下方へ噴出して断熱膨張し、圧縮空気中の水蒸気を液化して除湿する。
そして、前記乾燥した圧縮空気を空気出口管11の下端の開口部へ押し込み、空気出口管11を上動して上端の開口部から供給管4へ移動し、エアーツール5へ供給する。
Further, the compressed air is ejected downward from the ventilation hole 13 of the collision plate 12 to adiabatically expand, and the ejected compressed air is caused to collide with the lowest collision plate 12 and condensed, and the compressed air is discharged from the ventilation hole 13. Air is ejected downward for adiabatic expansion.
In this way, the compressed air ejected into the lower chamber Ru collides with the curved bottom surface of the lower end and is condensed, and is ejected downward from the vent hole 13 and expands adiabatically, liquefying water vapor in the compressed air and dehumidifying it.
Then, the dry compressed air is forced into the opening at the lower end of the air outlet pipe 11, moves up the air outlet pipe 11, moves from the opening at the upper end to the supply pipe 4, and is supplied to the air tool 5.

このように第の実施形態は、第1の実施形態に比べ衝突板12を増加して、複数の衝突板12による圧縮空気の凝縮と、通気孔13から圧縮空気を下方へ噴出する断熱膨張とで、圧縮空気中の水蒸気の液化を増進させ、凝縮筒3に導入された圧縮空気の約52%を最上位置の衝突板12に衝突させて凝縮し、上部室Roより下方の圧縮空気の除湿を旺盛にしている。 In this way, the fifth embodiment increases the number of collision plates 12 compared to the first embodiment, so that compressed air is condensed by a plurality of collision plates 12, and compressed air is ejected downward from the vent holes 13 for adiabatic expansion. This increases the liquefaction of the water vapor in the compressed air, causing approximately 52% of the compressed air introduced into the condensing tube 3 to collide with the collision plate 12 at the top position and condense it, thereby increasing the liquefaction of the compressed air below the upper chamber Ro. It actively dehumidifies.

図8は本発明の第の実施形態を示し、この実施形態は第5の実施形態の最上位置の衝突板12の上方に衝突板12を2dの間隔で配置し、この衝突板12の直上にd/2間隔の一対の衝突板12を上下に配置している。 FIG. 8 shows a sixth embodiment of the present invention, in which collision plates 12 are arranged at an interval of 2d above the collision plate 12 at the uppermost position of the fifth embodiment, and directly above the collision plate 12. A pair of collision plates 12 are arranged one above the other with an interval of d/2.

そして、上部室Roに圧縮空気の約34%を導入し、これを上方からd/2間隔の一対の中間室Rmと、2d間隔の中間室Rmと、d/2間隔の一対の中間室Rmを移動させ、各室で圧縮空気を衝突板12に衝突して凝縮させ、また通気孔13から下方へ噴出させて断熱膨張させ、最下位置の下部室Ruで凝縮筒3に導入された圧縮空気の約19%を下端部の湾曲底面に衝突させて凝縮し、また通気孔13から下方へ噴出して断熱膨張させて、圧縮空気中の水蒸気を液化し除湿している。 Approximately 34% of the compressed air is then introduced into the upper chamber Ro, and it is introduced from above into a pair of intermediate chambers Rm with an interval of d/2, an intermediate chamber Rm with an interval of 2d, and a pair of intermediate chambers Rm with an interval of d/2 from above. The compressed air collides with the collision plate 12 and condenses in each chamber, and is ejected downward from the vent hole 13 for adiabatic expansion. Approximately 19% of the air is condensed by colliding with the curved bottom surface of the lower end, and is also jetted downward from the vent hole 13 for adiabatic expansion to liquefy water vapor in the compressed air and dehumidify it.

このように、この実施形態では最初に圧縮空気の約34%を凝縮し、その凝縮水を除去後、各室で凝縮と断熱膨張を繰り返して圧縮空気中の水蒸気を液化し、精密に除湿するようにしている。 In this way, in this embodiment, approximately 34% of the compressed air is first condensed, and after the condensed water is removed, condensation and adiabatic expansion are repeated in each chamber to liquefy the water vapor in the compressed air, resulting in precise dehumidification. That's what I do.

図9は本発明の第7の実施形態の応用形態を示し、この応用形態は第7の実施形態における下方のd/2間隔の一対の中間室Rmを削除し、上方にd/2間隔の一対の中間室Rmを残置させて、凝縮筒3に導入された圧縮空気の約34%を導入して凝縮させ、前記一対の中間室Rmで圧縮空気を凝縮するとともに、通気孔13から下方へ噴出させて断熱膨張させ、最下位置の下部室Ruを凝縮筒3内の約53%に拡張し、下部室Ruに導入した圧縮空気を下端部の湾曲底面に勢い良く衝突させて凝縮し、この凝縮効果を倍増するとともに、通気孔13から下方へ噴出して断熱膨張させて、圧縮空気中の水蒸気を液化し除湿するようにしている。 FIG. 9 shows an applied form of the seventh embodiment of the present invention, in which the pair of intermediate chambers Rm with a d/2 spacing in the lower part in the seventh embodiment are deleted, and the pair of middle chambers Rm with a d/2 space in the upper part are removed. Approximately 34% of the compressed air introduced into the condensing cylinder 3 is introduced and condensed by leaving a pair of intermediate chambers Rm, and while the compressed air is condensed in the pair of intermediate chambers Rm, it flows downward from the vent hole 13. The compressed air is blown out and adiabatically expanded to expand the lower chamber Ru at the lowest position to approximately 53% of the interior of the condensing cylinder 3, and the compressed air introduced into the lower chamber Ru is forcefully collided with the curved bottom surface of the lower end and condensed. This condensation effect is doubled, and the water vapor in the compressed air is liquefied and dehumidified by being ejected downward from the vent hole 13 and adiabatically expanded.

本発明の圧縮空気の凝縮装置は、圧縮空気を導入する凝縮筒内を複数の通気板で区画し、その区画スペースの圧縮空気の除湿と凝縮を合理的に実現するとともに、圧縮空気を効率良く除湿し得るようにしたものである。 The compressed air condensing device of the present invention divides the inside of the condensing cylinder into which compressed air is introduced with a plurality of ventilation plates, rationally realizes dehumidification and condensation of the compressed air in the divided space, and efficiently uses the compressed air. It is designed to be able to dehumidify.

1 エアーコンプレッサ-
3 凝縮筒
5 エアーツール
6 冷却筒
11 空気出口管
12 衝突板
13 通気孔
Ro 圧縮空気導入室(上部室)
Rm 圧縮空気導入室(中間室)
Ru 圧縮空気導入室(下部室)
1 Air compressor
3 Condensing cylinder 5 Air tool 6 Cooling cylinder 11 Air outlet pipe 12 Collision plate 13 Ventilation hole
Ro Compressed air introduction chamber (upper chamber)
Rm Compressed air introduction chamber (middle chamber)
Ru Compressed air introduction chamber (lower chamber)

Claims (7)

エアーコンプレッサから圧縮空気を導入可能な凝縮筒を設け、該凝縮筒内に複数の通気孔を形成した衝突板を配置し、該突板を介して凝縮筒内を複数の圧縮空気導入室区画、上流側の圧縮空気導入室にエアーコンプレッサで生成した圧縮空気を導入し、該縮空気を下方の衝突板に衝突して凝縮し、および/または突板の通気孔から圧縮空気を噴出させて断熱膨張し、除湿した圧縮空気を下流側のエアーツールへ供給可能にした圧縮空気の凝縮装置において、 凝縮筒を上下端部を閉塞した単一の直管状に形成し、該凝縮筒内の中間位置から下部に亘って1または複数の衝突板を配置し、その最上流の圧縮空気導入室の容積を、他の圧縮空気導入室の容積よりも大きく形成したことを特徴とする圧縮空気の凝縮装置。 A condensing cylinder capable of introducing compressed air from an air compressor is provided, a collision plate with a plurality of ventilation holes is arranged inside the condensing cylinder, and the inside of the condensing cylinder is connected to a plurality of compressed air introduction chambers via the collision plate. The compressed air generated by the air compressor is introduced into the upstream compressed air introduction chamber, and the compressed air collides with the lower collision plate and condenses, and/or is compressed through the ventilation hole of the collision plate . In a compressed air condensing device that blows out air, expands adiabatically, and supplies dehumidified compressed air to an air tool on the downstream side, the condensing cylinder is formed into a single straight pipe shape with its upper and lower ends closed, and One or more collision plates are arranged from the middle position to the lower part of the condensing cylinder, and the volume of the most upstream compressed air introduction chamber is larger than the volume of the other compressed air introduction chambers. compressed air condensing equipment. 凝縮筒内を、高温高圧の圧縮空気を導入する上部室と、複数の衝突板で区画した中間室と、除湿した圧縮空気をエアーツール側へ送出する下部室とに、区画した請求項1記載の圧縮空気の凝縮装置。 Claim 1, wherein the inside of the condensing cylinder is divided into an upper chamber into which high-temperature, high-pressure compressed air is introduced, an intermediate chamber divided by a plurality of collision plates, and a lower chamber through which dehumidified compressed air is sent to the air tool side. compressed air condensing equipment. 上部室に導入した圧縮空気を下方に配置した1または複数の衝突板に衝突し、圧縮空気を凝縮可能に設けるとともに、衝突板の通気孔から噴出し、圧縮空気を断熱膨張可能に設けた請求項記載の圧縮空気の凝縮装置。 The compressed air introduced into the upper chamber collides with one or more collision plates arranged below, so that the compressed air can be condensed, and the compressed air can be jetted out from the ventilation holes of the collision plates and expanded adiabatically. A compressed air condensing device according to claim 2 . 上部室の下方に単一の衝突板を配置し、上部室の容積を最大に形成するとともに、多量の圧縮空気を前記衝突板に衝突して凝縮し、および/または通気孔から圧縮空気を噴出させて断熱膨張可能にした請求項記載の圧縮空気の凝縮装置。 A single collision plate is arranged below the upper chamber to maximize the volume of the upper chamber, and a large amount of compressed air collides with the collision plate and condenses, and/or the compressed air is blown out from the ventilation hole. 3. The compressed air condensing device according to claim 2 , wherein the compressed air condensing device is made capable of adiabatic expansion. 上部室の下方に複数の衝突板を配置し、これらの衝突板に圧縮空気を順次衝突して凝縮させるとともに、これらの衝突板の通気孔から圧縮空気を噴出させて断熱膨張させた請求項2記載の圧縮空気の凝縮装置。 Claim 2, wherein a plurality of collision plates are arranged below the upper chamber, compressed air is sequentially collided with these collision plates to condense it, and the compressed air is jetted out from the ventilation holes of these collision plates to cause adiabatic expansion. The compressed air condensing device described. 複数の衝突板を等間隔に配置した一または二組の衝突板で構成した請求項記載の圧縮空気の凝縮装置。 6. The compressed air condensing device according to claim 5 , comprising one or two sets of collision plates arranged at equal intervals . 複数の衝突板を間隔を異にする二組の衝突板で構成した請求項記載の圧縮空気の凝縮装置。 6. The compressed air condensing device according to claim 5 , wherein the plurality of collision plates are comprised of two sets of collision plates having different intervals .
JP2022190635A 2022-11-29 2022-11-29 compressed air condensing equipment Active JP7432194B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022190635A JP7432194B1 (en) 2022-11-29 2022-11-29 compressed air condensing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022190635A JP7432194B1 (en) 2022-11-29 2022-11-29 compressed air condensing equipment

Publications (2)

Publication Number Publication Date
JP7432194B1 true JP7432194B1 (en) 2024-02-16
JP2024078224A JP2024078224A (en) 2024-06-10

Family

ID=89852773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022190635A Active JP7432194B1 (en) 2022-11-29 2022-11-29 compressed air condensing equipment

Country Status (1)

Country Link
JP (1) JP7432194B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140215A (en) 2021-03-11 2022-09-26 日本エアードライヤー販売株式会社 Compressed air condensation device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140215A (en) 2021-03-11 2022-09-26 日本エアードライヤー販売株式会社 Compressed air condensation device

Also Published As

Publication number Publication date
JP2024078224A (en) 2024-06-10

Similar Documents

Publication Publication Date Title
CN100565023C (en) Air-conditioner
JP3986529B2 (en) High density heat transfer tube bundle
JP6403703B2 (en) Method and apparatus for cooling and drying compressed air
KR200459178Y1 (en) Double tube type heat exchange pipe
US10072900B2 (en) Heat exchanger distributor with intersecting streams
CN107850359A (en) Evaporator and the turbine refrigerating plant for possessing the evaporator
US20140124183A1 (en) Heat exchanger for an air conditioner and an air conditioner having the same
CA2355219C (en) Circuiting arrangement for a closed circuit cooling tower
JP2007309604A (en) Evaporator for refrigeration system, and refrigeration system
CN101738013B (en) Pure reverse flow dry evaporator device and use method thereof
JP7432194B1 (en) compressed air condensing equipment
JP4716361B2 (en) Steam spray humidification mechanism in the low-temperature air of the air conditioner.
JP6436849B2 (en) Gas-liquid separator storage device
JP7262130B2 (en) Compressed air condensing device
KR101989096B1 (en) Heat exchanger
CN102619550A (en) Novel mine air conditioning system heat exchange device
JP6592538B2 (en) Gas-liquid separation system for compressed air
JPWO2002042696A1 (en) Evaporator and refrigerator for refrigerator
JP2012130897A (en) Compressed air dehumidifier
JP2020121291A (en) Cooling and drying method and cooling and drying device of compressed-air
TWI825529B (en) Condensation device for compressed air
JP7198517B2 (en) Compressed air condensing device
KR20140037337A (en) Tube bundle steam generator for recovery of waste heat
KR102014150B1 (en) Dehumidifier
KR101996408B1 (en) Dehumidifier having evaporative cooling function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7432194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150