JP7424531B1 - Beautiful pottery and the pottery base that provides it - Google Patents

Beautiful pottery and the pottery base that provides it Download PDF

Info

Publication number
JP7424531B1
JP7424531B1 JP2023059116A JP2023059116A JP7424531B1 JP 7424531 B1 JP7424531 B1 JP 7424531B1 JP 2023059116 A JP2023059116 A JP 2023059116A JP 2023059116 A JP2023059116 A JP 2023059116A JP 7424531 B1 JP7424531 B1 JP 7424531B1
Authority
JP
Japan
Prior art keywords
pottery
weight
pores
base
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023059116A
Other languages
Japanese (ja)
Inventor
雅子 中村
亮太 菊池
有美 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2023059116A priority Critical patent/JP7424531B1/en
Application granted granted Critical
Publication of JP7424531B1 publication Critical patent/JP7424531B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 美観に優れた陶器及びそれを与える陶器素地の提供。【解決手段】 陶器素地と、釉薬層とを少なくとも備え、陶器素地の気孔率が12%以下であり、かつ、陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積が8.0×10-4mm3以下である陶器は、陶器素地に由来する気泡の影響を釉薬層が受け難く、美観に優れたものとなる。【選択図】 なし[Problem] To provide pottery with excellent aesthetic appearance and a pottery base that provides it. [Solution] Comprising at least a pottery base and a glaze layer, the porosity of the pottery base is 12% or less, and the volume of the pores existing in the pottery base is added from the smallest one. Ceramics with a pore volume of 8.0 x 10-4 mm3 or less, where the sum of pores is 90% of the total volume of all pores, have an excellent appearance because the glaze layer is less susceptible to the effects of air bubbles originating from the ceramic base. It becomes something. [Selection diagram] None

Description

本発明は釉薬層を有する陶器に関し、詳しくは外観に優れた陶器及びそれを与える陶器素地に関する。 The present invention relates to a pottery having a glaze layer, and more particularly to a pottery with an excellent appearance and a pottery base for producing the pottery.

衛生陶器、タイルなどの陶器には、近時、空間の美観要望の高まりにより、その外観には高い美観が求められてきている。 In recent years, ceramics such as sanitary ware and tiles have been required to have a high aesthetic appearance due to increasing demands for the aesthetic appearance of spaces.

陶器の外観は、その表面にある釉薬層の表面の性状が支配していると一般的には理解されていることから、釉薬層表面への配慮、とりわけ気泡の抑制への配慮がなされていた。例えば、特開2019-218242号公報(特許文献1)は釉薬層中の気泡を制御することを提案し、また特開2012-091998号公報(特許文献2)は、製造時焼成過程において素地層から釉薬層に侵入する気泡を抑制することを提案している。 It is generally understood that the appearance of pottery is determined by the surface properties of the glaze layer on its surface, so consideration was given to the surface of the glaze layer, especially the suppression of air bubbles. . For example, JP 2019-218242 A (Patent Document 1) proposes to control air bubbles in the glaze layer, and JP 2012-091998 A (Patent Document 2) proposes that the base layer be It is proposed to suppress air bubbles from entering the glaze layer.

釉薬層中の気泡は、その表面の美観に直接影響を与えることから、その制御は有効であるが、他方で、釉薬の組成などに制限が加わるため、釉薬組成の選択を制限する可能性がある。 Air bubbles in the glaze layer have a direct effect on the aesthetic appearance of its surface, so controlling them is effective, but on the other hand, it imposes restrictions on the composition of the glaze, which may limit the selection of the glaze composition. be.

特開2019-218242号公報JP2019-218242A 特開2012-091998号公報Japanese Patent Application Publication No. 2012-091998

中山他テクニカルレポート「X線マイクロCTによる生体活性セラミックス多孔体の微小構造解析」歯科放射線2009:49(3):33-40Nakayama et al. Technical report “Microstructure analysis of bioactive ceramic porous materials using X-ray micro-CT” Dental Radiology 2009: 49 (3): 33-40

本発明者らは、今般、陶器の素地自体の気孔を制御することで、有効に陶器の外観、すなわち釉薬層の外観の向上が図れるとの知見を得た。特に、気孔の大きさが釉薬層の外観に影響を与え、気孔を小さいものとすることで陶器の美観を向上させることができ、また、気泡を、釉薬層との界面から離れるに従い、少なくなるよう分布させることで、陶器の美観を向上させることができるとの知見を得た。さらに、気孔の特性の制御は、調製した釉薬の陶器素地への適用条件を適切に管理することで効率よく行うことができた。本発明はこれら知見に基づくものである。 The present inventors have recently found that by controlling the pores of the ceramic base itself, it is possible to effectively improve the appearance of the ceramic, that is, the appearance of the glaze layer. In particular, the size of the pores affects the appearance of the glaze layer, and by making the pores smaller, the aesthetic appearance of the pottery can be improved, and the further away from the interface with the glaze layer the fewer air bubbles. It was discovered that the beauty of pottery can be improved by distributing it in this way. Furthermore, the pore characteristics could be efficiently controlled by appropriately controlling the conditions under which the prepared glaze was applied to the ceramic base. The present invention is based on these findings.

したがって、本発明は、その美観に優れた陶器及びそれを与える陶器素地の提供をその目的としている。 Therefore, an object of the present invention is to provide pottery with excellent aesthetic appearance and a pottery base for producing the pottery.

そして、本発明による陶器は、陶器素地と、釉薬層とを少なくとも備えてなる陶器であって、陶器素地の気孔率が12%以下であり、かつ、陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積が8.0×10-4mm以下であることを特徴とするものである。 The pottery according to the present invention is a pottery comprising at least a pottery base and a glaze layer, in which the porosity of the pottery base is 12% or less, and the volume of pores present in the pottery base is reduced. It is characterized in that the volume of the pores, the sum of which is 90% of the total volume of all pores, is 8.0×10 −4 mm 3 or less when added from both sides.

本発明による陶器によれば、美観に優れた陶器及びそれを与える陶器素地が提供できる。 According to the pottery according to the present invention, it is possible to provide pottery with excellent aesthetic appearance and a pottery base that provides the pottery.

マイクロCTによる陶器の断面画像である。This is a cross-sectional image of ceramics taken by micro-CT. 実施例1の陶器素地における気孔の体積別の出願頻度のグラフである。2 is a graph of the application frequency according to the volume of pores in the pottery base of Example 1.

陶器
本発明において、「陶器」とは、衛生陶器、タイルなど陶器素地に釉薬層が設けられた基本構成を備えた物を意味する。また、「衛生陶器」とは、バスルーム、トイレ空間、化粧室、洗面所、または台所などで用いられる陶器製品を意味する。具体的には、大便器、小便器、便器のサナ、便器タンク、洗面器、手洗い器などを意味する。
Pottery In the present invention, "pottery" refers to items such as sanitary ware and tiles that have a basic structure in which a glaze layer is provided on a ceramic base. Furthermore, "sanitary ware" refers to ceramic products used in bathrooms, toilet spaces, restrooms, washrooms, kitchens, etc. Specifically, it refers to toilets, urinals, toilet bowls, toilet tanks, wash basins, hand wash basins, etc.

陶器素地
本発明による陶器を構成する陶器素地は、後記する気泡に関する要件を充足する限り、特に限定されないが、好ましい組成としては以下が挙げられる。
SiOを60~75重量%、好ましくは62.5~72.5重量%、
Alを20~30重量%、好ましくは21.5~28.5重量%、
Feを0.4~1.5重量%、好ましくは0.5~1.4重量%、
CaO を0.1~2.0重量%、好ましくは0.2~1.6重量%、
MgO を0.1~1.5重量%、好ましくは0.2~1.2重量%、
O を0.8~5.0重量%、好ましくは1.0~4.5%、そして
NaO を0.4~4.0重量%、好ましくは0.6~3.0重量%
を含む。また、TiOを0.2~0.5重量%含むことができる。
Pottery Base The pottery base constituting the pottery according to the present invention is not particularly limited as long as it satisfies the requirements regarding air bubbles described below, but preferred compositions include the following.
60 to 75% by weight of SiO 2 , preferably 62.5 to 72.5% by weight,
20 to 30% by weight, preferably 21.5 to 28.5% by weight of Al 2 O 3 ;
0.4 to 1.5% by weight, preferably 0.5 to 1.4% by weight of Fe 2 O 3 ;
0.1 to 2.0% by weight, preferably 0.2 to 1.6% by weight of CaO 2 ,
0.1 to 1.5% by weight, preferably 0.2 to 1.2% by weight of MgO 2 ,
0.8-5.0% by weight of K 2 O, preferably 1.0-4.5%, and 0.4-4.0% by weight of Na 2 O, preferably 0.6-3.0% by weight. %
including. Further, 0.2 to 0.5% by weight of TiO 2 may be included.

本発明による陶器を構成する陶器素地は、その断面において観察される気孔率が12%以下、好ましくは5%以上12%以下、より好ましくは8%以上12%以下とされる。本明細書において「陶器素地の気孔率(%)」は、好ましくは、以下の方法より測定された「開気孔率」及び「閉気孔率」の合計を意味する。 The ceramic base constituting the ceramic according to the present invention has a porosity observed in its cross section of 12% or less, preferably 5% or more and 12% or less, more preferably 8% or more and 12% or less. In this specification, "porosity (%) of the ceramic base" preferably means the sum of "open porosity" and "closed porosity" measured by the following method.

開気孔率
開気孔率は、例えば水中重量法(アルキメデス法)を用いて以下の手順で求めることができる。まず、陶器素地について、各種重量を測定できる大きさに切断し試験体とする。試験体は乾燥機により110℃で乾燥を行い、デシケータ中で室温まで冷却してから重量(乾燥重量:W1)を測定する。次に、試験体を水中で2時間以上沸騰させた後、室温で20時間冷却することで飽水(試験体の開口気孔を水で満たした)状態にする。試験体を水中に吊るした状態で測定し、得られた重量から試験体を吊るすために使用した部材の重量を差し引いた重量(水中重量:W2)を算出する。また、飽水させた試験体を水中から取り出し、試験体の表面の水分をふき取り、重量(飽水重量:W3)を測定する。測定した3つの重量W1、W2、W3と、測定時の水の温度における密度ρwにより、以下の式を用いてかさ密度ρb、見掛け密度ρa、開気孔率Poを算出する。
ρb=W1/(W3-W2)×ρw
ρa=W1/(W1-W2)×ρw
Po=(ρa-ρb)/ρa×100(%)
Open porosity The open porosity can be determined by the following procedure using, for example, an underwater gravimetric method (Archimedes method). First, the pottery base is cut to a size that allows measurements of various weights to be used as test specimens. The test specimen is dried at 110° C. in a dryer, cooled to room temperature in a desiccator, and then weighed (dry weight: W1). Next, the test piece is boiled in water for 2 hours or more, and then cooled at room temperature for 20 hours to bring it into a water-saturated state (the open pores of the test piece are filled with water). The test specimen is measured while suspended in water, and the weight (weight in water: W2) is calculated by subtracting the weight of the member used to suspend the specimen from the obtained weight. Further, the saturated test specimen is taken out of the water, the moisture on the surface of the test specimen is wiped off, and the weight (saturated water weight: W3) is measured. Using the three measured weights W1, W2, and W3 and the density ρw at the water temperature at the time of measurement, the bulk density ρb, apparent density ρa, and open porosity Po are calculated using the following formulas.
ρb=W1/(W3-W2)×ρw
ρa=W1/(W1-W2)×ρw
Po=(ρa-ρb)/ρa×100(%)

閉気孔率
閉気孔率は、例えば定容積膨張法による真密度の測定結果から下記の手順で求めることができる。まず、陶器素地を微粉砕して試験体とし、乾式自動密度計(島津製作所(株)アキュピックII1340)を用いて定容積膨張法による真密度ρtを測定する。測定した真密度ρtと、アルキメデス法で算出したかさ密度ρb、開気孔率Poにより、以下の式を用いて、全気孔率Po+c、そして閉気孔率Pcを算出する。
の方法により測定することができる。
Po+c=(ρt-ρb)/ρt×100(%)
Pc=Po+c-Po
Closed porosity The closed porosity can be determined, for example, by the following procedure from the measurement results of true density by constant volume expansion method. First, a ceramic base is finely ground to obtain a test specimen, and the true density ρt is measured by a constant volume expansion method using a dry automatic density meter (Shimadzu Corporation Accupic II 1340). The total porosity Po+c and the closed porosity Pc are calculated using the following formula from the measured true density ρt, the bulk density ρb calculated by the Archimedes method, and the open porosity Po.
It can be measured by the following method.
Po+c=(ρt-ρb)/ρt×100(%)
Pc=Po+c-Po

本発明の別の好ましい態様によれば、「陶器素地の気孔率(%)」をX線コンピューター断層撮影装置、特にマイクロフォーカスX線コンピューター断層撮影装置(以下、本明細書において「マイクロCT」と略記する)により測定する。例えば、マイクロCTにより断層画像を得て、この画像から断面において気孔が占める割合を求め、これを「陶器素地の気孔率(%)」とする。マイクロCTによれば、開気孔のみならず、閉気孔も観察でき、さらに非常に微小な気孔も認識できることから、陶器素地のより正確な気孔の状態を知ることができる。マイクロCTによる陶器素地の測定条件等の詳細は、歯科放射線2009:49(3):33-40(非特許文献1)の記載を参考に定めることができる。 According to another preferred embodiment of the present invention, the "porosity (%) of the pottery base" is measured using an X-ray computed tomography apparatus, particularly a microfocus X-ray computed tomography apparatus (hereinafter referred to as "micro CT"). (abbreviated)). For example, a tomographic image is obtained by micro-CT, and the proportion occupied by pores in the cross section is determined from this image, and this is defined as the "porosity (%) of the ceramic base." According to micro-CT, not only open pores but also closed pores can be observed, and even very small pores can be recognized, so it is possible to know the state of pores in a ceramic base more accurately. Details such as the measurement conditions of the ceramic base by micro-CT can be determined with reference to the description in Dental Radiology 2009:49(3):33-40 (Non-Patent Document 1).

さらに本発明による陶器を構成する陶器素地は、その気孔率が12%以下であり、かつ、陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積(以下、本明細書ではこの値を「閾値」ということがある)が8.0×10-4mm以下とされる。ここでの気孔の体積の測定も「陶器素地の気孔率(%)」の測定方法に準じて行われてよく、好ましくはX線コンピューター断層撮影装置、特にマイクロCTにより行われる。上記のような気孔を備える陶器素地は、その上に釉薬層が形成されたとき、陶器素地の気孔から生じる気泡の影響を小さくすることができる。気孔率が小さいことから、焼成中に釉薬層に移動する気泡の量を小さくでき、釉薬層に与える影響を最小限にできるものと考えられる。しかし、これはあくまで仮定であって、本発明はこの理論に拘束されるものではない。 Furthermore, the pottery base constituting the pottery according to the present invention has a porosity of 12% or less, and when the volumes of the pores existing in the pottery base are added starting from the smallest, the sum of the volumes is the total pore size. The volume of pores that is 90% of the total volume (hereinafter, this value may be referred to as a "threshold value" in this specification) is 8.0×10 −4 mm 3 or less. The pore volume may also be measured in accordance with the method for measuring "porosity (%) of ceramic base", and is preferably carried out using an X-ray computed tomography device, particularly micro-CT. A ceramic base having pores as described above can reduce the influence of air bubbles generated from the pores of the ceramic base when a glaze layer is formed thereon. Since the porosity is small, it is thought that the amount of air bubbles that migrate to the glaze layer during firing can be reduced, and the effect on the glaze layer can be minimized. However, this is just an assumption, and the present invention is not bound by this theory.

本発明の好ましい態様によれば、全気孔の総体積に対する体積1.0×10-3mm以上の気孔の体積の割合が8%以下とされる。このような比較的大きな気孔の割合を小さくすることで、上記した焼成中に陶器素地から釉薬層に移動する気泡の影響をより小さくすることができる。 According to a preferred embodiment of the present invention, the ratio of the volume of pores having a volume of 1.0×10 −3 mm 3 or more to the total volume of all pores is 8% or less. By reducing the proportion of such relatively large pores, the influence of air bubbles moving from the ceramic base to the glaze layer during firing can be further reduced.

本発明の別の好ましい態様によれば、陶器素地は、釉薬層との界面から離れるに従い、陶器素地における気孔率が低下するように構成される。焼成中の気泡の供給機序として、まず、釉薬層との界面付近の気孔から気泡が供給されるが、それがある程度進行した後、さらに釉薬層との界面から離れた陶器素地の気孔から気泡が供給されると考えられる。しかし、釉薬層との界面から離れるに従い、陶器素地における気孔率が低下するように構成されることで、その気泡の供給を抑え、釉薬層への気泡の影響を抑えることできると考えられる。 According to another preferred embodiment of the present invention, the ceramic base is configured such that the porosity of the ceramic base decreases as it moves away from the interface with the glaze layer. The mechanism of supply of air bubbles during firing is that air bubbles are first supplied from the pores near the interface with the glaze layer, but after this has progressed to a certain extent, air bubbles are further supplied from the pores of the ceramic base away from the interface with the glaze layer. It is thought that the supply of However, by configuring the ceramic base so that the porosity decreases as it moves away from the interface with the glaze layer, it is thought that the supply of air bubbles can be suppressed and the influence of air bubbles on the glaze layer can be suppressed.

なお、陶器素地を泥漿から型に鋳込んで成形する場合、泥漿の両面が鋳型で覆われている状態で成形された型二重部位の素地には、中央部に粗粒分が残存して線として現れるぶつかり面が形成されることがあり、このぶつかり面において素地の性質がやや変化することがある。この場合、釉薬層との界面から離れるに従い陶器素地における気孔率が低下するように構成しても、そのぶつかり面において、気孔率が変化し、場合により一旦気孔率が上昇してしまうことがある。しかし、そのぶつかり面を過ぎた後、再度、気孔率を低下させるよう構成すれば、上記した本発明の効果は得られ、このような態様も本発明に包含される。 In addition, when molding a pottery base from slurry by casting it into a mold, coarse particles remain in the center of the base at the double mold part where both sides of the slurry are covered with the mold. A collision surface that appears as a line may be formed, and the properties of the substrate may change slightly at this collision surface. In this case, even if the porosity of the ceramic base is configured to decrease as it moves away from the interface with the glaze layer, the porosity will change at the contact surface, and in some cases, the porosity may temporarily increase. . However, if the porosity is reduced again after passing the collision surface, the above-described effects of the present invention can be obtained, and such an embodiment is also included in the present invention.

釉薬
本発明において釉薬は、珪砂、長石、石灰石などの天然鉱物粒子の混合物及び/又は非晶質釉薬に、乳濁剤を含み、さらに顔料を添加したものを使用できる。乳濁剤としては、ジルコン、酸化錫などが挙げられる。釉薬の組成は、たとえば、SiO:52~80重量部、Al:5~14重量部、CaO:6~17重量部、MgO:0.5~4.0重量部、ZnO:1~11重量部、KO:1~5重量部、NaO:0.5~2.5重量部、乳濁剤:0.1~15重量部、顔料:0.001~20重量部である。釉薬は、その他に糊剤、分散剤、防腐剤、抗菌剤などが含有されていてもよい。顔料としては、コバルト化合物、鉄化合物などが挙げられる。また、非晶質釉薬とは、上記のような天然鉱物粒子などの混合物からなる釉薬原料を高温で溶融し、ガラス化させた釉薬をいい、例えばフリット釉薬が好適に利用可能である。
Glaze In the present invention, the glaze may be a mixture of natural mineral particles such as silica sand, feldspar, and limestone, and/or an amorphous glaze containing an emulsifier and further adding a pigment. Examples of emulsifying agents include zircon and tin oxide. The composition of the glaze is, for example, SiO 2 : 52 to 80 parts by weight, Al 2 O 3 : 5 to 14 parts by weight, CaO: 6 to 17 parts by weight, MgO: 0.5 to 4.0 parts by weight, ZnO: 1 ~11 parts by weight, K 2 O: 1 to 5 parts by weight, Na 2 O: 0.5 to 2.5 parts by weight, emulsifier: 0.1 to 15 parts by weight, pigment: 0.001 to 20 parts by weight It is. The glaze may also contain a sizing agent, a dispersant, a preservative, an antibacterial agent, and the like. Examples of pigments include cobalt compounds and iron compounds. Further, the amorphous glaze refers to a glaze obtained by melting a glaze raw material made of a mixture of natural mineral particles as described above at a high temperature and vitrifying it, and for example, a frit glaze can be suitably used.

陶器素地の製造方法
本発明による陶器素地の気孔率は、素地原料及び焼成条件を制御することで得ることができる。本発明において「陶器素地の気孔率」は、素地組成及び焼成条件により変化するが、例えば、マイクロCTのような非破壊的な測定手段があることで、その条件をわずかに変化させた結果を容易に知ることができることから、一旦、気孔率の指標が本発明により示された結果、本発明による陶器素地の製造はもはや特に困難なものとはならない。
Method for producing a pottery base The porosity of the pottery base according to the present invention can be obtained by controlling the base material and firing conditions. In the present invention, the "porosity of the pottery base" varies depending on the base composition and firing conditions, but with non-destructive measurement methods such as micro-CT, the results can be measured by slightly changing the conditions. Once an indicator of porosity has been provided according to the invention, the production of ceramic bodies according to the invention is no longer particularly difficult, since it is easily known.

本発明による陶器は、気孔率が制御されることを除いて、基本的には、陶器素地を用意し、これに釉薬スラリーを適用し、焼成することで製造されてよい。 The pottery according to the present invention, except that the porosity is controlled, can basically be manufactured by preparing a pottery body, applying a glaze slurry thereto, and firing it.

釉薬スラリーは、釉薬原料の50%粒径が好ましくは10μm以下、より好ましくは5μm以下にボールミルなどで粉砕することにより得ることができる。釉薬スラリーにあっては、ケイ砂などの石英原料の粒子径を他の釉薬原料とは別に制御することにより釉薬表面における石英の残存を抑制することができる。 The glaze slurry can be obtained by pulverizing the glaze raw material using a ball mill or the like so that the 50% particle size is preferably 10 μm or less, more preferably 5 μm or less. In a glaze slurry, by controlling the particle size of a quartz raw material such as silica sand separately from other glaze raw materials, it is possible to suppress quartz from remaining on the glaze surface.

本発明の好ましい態様によれば、その製造条件を制御することで、上記要件を充足する陶器を効率よく製造される。まず、釉薬スラリーの粘度について、これを800~1200mPa・sとする。これにより、釉薬スラリーの沈殿、分離を有効に防止でき、結果として得られる陶器の美観に優れたものとすることができる。 According to a preferred embodiment of the present invention, by controlling the manufacturing conditions, pottery that satisfies the above requirements can be efficiently manufactured. First, the viscosity of the glaze slurry is set to 800 to 1200 mPa·s. As a result, precipitation and separation of the glaze slurry can be effectively prevented, and the resulting pottery can have an excellent appearance.

また、釉薬スラリーの陶器素地への施釉は好ましくはスプレーコーティング法により行われ、かつ、以下の条件下で実施されるのが望ましい。すなわち、施釉にあたり、陶器素地を25~35℃とし、釉薬水分浸透時間が25~35分となるようにする。さらに、施釉の際の釉薬スラリーの温度を、室温如何に関わらず、25~30℃に調整することが重要となる。つまりここでの温度管理は、生産場所の地理的又は季節的要因により変動する雰囲気温度の影響を受けないように温度制御することを意味する。 Moreover, the glaze application of the glaze slurry to the ceramic base is preferably carried out by a spray coating method, and is preferably carried out under the following conditions. That is, when applying the glaze, the temperature of the pottery base is 25 to 35°C, and the glaze water penetration time is 25 to 35 minutes. Furthermore, it is important to adjust the temperature of the glaze slurry during glazing to 25 to 30°C, regardless of the room temperature. In other words, temperature control here means temperature control so as not to be affected by atmospheric temperature that fluctuates due to geographical or seasonal factors of the production location.

また、陶器素地に釉薬スラリーを施釉した後の乾燥も適切に温度管理の下、行われることが好ましい。例えば、施釉後の乾燥は、25~30℃に調整された雰囲気で、2時間以上の時間なされる。これにより、施釉された釉薬における十分な水分浸透と粒子着肉化・固定化を促すことができる。 Further, it is preferable that drying after applying the glaze slurry to the pottery base is also carried out under appropriate temperature control. For example, drying after glazing is carried out for 2 hours or more in an atmosphere adjusted to 25 to 30°C. Thereby, sufficient water penetration into the applied glaze and particle inking/fixation can be promoted.

本発明による陶器は、陶器素地及び釉薬の組成を考慮して、その焼成条件を適宜定め、製造されてよい。例えば、陶器素地に釉薬を適用した後、800~1300℃の温度で成形素地を焼結させ、かつ釉薬層を固着させることができる。 The pottery according to the present invention may be manufactured by appropriately determining the firing conditions in consideration of the composition of the pottery base and glaze. For example, after applying a glaze to a ceramic body, the shaped body can be sintered at a temperature of 800 to 1300° C. and the glaze layer can be fixed.

釉薬スラリーの陶器素地への施釉において、施釉スラリーの温度や乾燥時間を上記のように設定することでも、陶器焼成時の陶器素地の気孔率を制御することができる。 In applying the glaze slurry to the pottery base, the porosity of the pottery base during firing can also be controlled by setting the temperature and drying time of the glaze slurry as described above.

本発明をさらに以下の実施例により説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be further explained by the following examples, but the present invention is not limited to these examples.

陶器の製造
釉薬の用意
表1に記載の組成からなる釉薬原料2Kgと水1Kg及び球石4Kgを、容積6リットルの陶器製ポットに入れ、レーザー回折式粒度分布計を用いた粉砕後の着色性釉薬スラリーの粒度測定結果が、10μm以下が65%、50%平均粒径(D50)が6.0μm程度になるように、ボールミルにより粉砕を行い、釉薬を得た。得られた釉薬の粘度について、これを800~1200mPa・sとした。この釉薬を以下の実施例及び比較例において、共通釉薬として用いた。
pottery manufacturing
Preparation of glaze 2 kg of glaze raw material having the composition shown in Table 1, 1 kg of water, and 4 kg of cobblestone were placed in a 6-liter pottery pot, and the colored glaze slurry was crushed using a laser diffraction particle size distribution analyzer. A glaze was obtained by pulverizing with a ball mill so that the particle size measurement result was 65% of particles of 10 μm or less and a 50% average particle size (D50) of about 6.0 μm. The viscosity of the obtained glaze was set to 800 to 1200 mPa·s. This glaze was used as a common glaze in the following Examples and Comparative Examples.

Figure 0007424531000001
Figure 0007424531000001

陶器素地の用意
表2に記載の組成からなる陶器素地を以下のようにして得た。原料として、骨格形成材料であるセリサイト陶石およびカオリン陶石、または珪石を8~45重量%、可塑性材料であるチャイナクレー(粉体)およびボールクレー(粉体)を28~65重量%、主焼結助剤である長石を約10~35重量%、およびドロマイトを1~4重量%秤量し、水と解膠剤として珪酸ソーダを適量添加したものを一括してボールミルに入れ、レーザー回折式粒度分布計を用いた粉砕後の素地スラリーの粒度測定結果が、10μm以下が52~60%、50%平均粒径(D50)が7~9μm程度になるまで湿式粉砕し、陶器素地材料を得た。得られた陶器素地材料を、石膏型を用いた泥漿鋳込み成形法により成形し、乾燥させて陶器素地を得た。
Preparation of pottery base A pottery base having the composition shown in Table 2 was obtained as follows. As raw materials, 8 to 45% by weight of sericite chinastone, kaolin chinastone, or silica stone, which are skeleton forming materials, and 28 to 65% by weight, china clay (powder) and ball clay (powder), which are plastic materials. Approximately 10 to 35% by weight of feldspar, which is the main sintering aid, and 1 to 4% by weight of dolomite are weighed, water and an appropriate amount of sodium silicate as a deflocculant are added, and the mixture is placed in a ball mill and laser diffracted. Wet-pulverize the ceramic base material until the particle size measurement result of the base slurry after crushing using a type particle size distribution meter shows that 52 to 60% of the particles are 10 μm or less, and the 50% average particle size (D50) is about 7 to 9 μm. Obtained. The obtained pottery base material was molded by a slurry casting method using a plaster mold and dried to obtain a pottery base.

陶器素地への釉薬の適用
上で得られた陶器素地に上記共通釉薬をスプレーコーティング法により塗布した後、焼成条件として実施例1及び2は1160℃、実施例3は1107℃、比較例1は1180℃、比較例2は1280℃(いずれもリファサーモによる)で焼成し、陶器を得た。
After applying the above-mentioned common glaze to the ceramic base obtained by applying the glaze to the ceramic base by a spray coating method, the firing conditions were 1160°C for Examples 1 and 2, 1107°C for Example 3, and 1107°C for Comparative Example 1. Ceramics were obtained by firing at 1180° C. and 1280° C. in Comparative Example 2 (both by ReferThermo).

Figure 0007424531000002
Figure 0007424531000002

マイクロCTによる気孔率の測定
実施例及び比較例の陶器の表面部位を、厚さ10mm、大きさ20mm×50mmで切り出し、試験片とした。この試験片の気孔率を以下の装置及び測定条件で測定した。
マイクロCT装置 INSPEXIO SMX-225CT FPD HR
電流:210μA
電流:210KV
FOV(XY):20.5mm
FOV(Z):17.2mm
画像サイズ:1024×1024ピクセル
Measurement of porosity by micro-CT Surface portions of the ceramics of Examples and Comparative Examples were cut out to a thickness of 10 mm and a size of 20 mm x 50 mm to prepare test pieces. The porosity of this test piece was measured using the following equipment and measurement conditions.
Micro CT device INSPEXIO SMX-225CT FPD HR
Current: 210μA
Current: 210KV
FOV (XY): 20.5mm
FOV (Z): 17.2mm
Image size: 1024 x 1024 pixels

得られた画像の回析は以下のとおり行った。3次元画像解析ソフトVGStudio MAXを使用し、解析エリアとして1.2×1.2×1.2mmの任意の立方体を選択し、その範囲に存在する各気孔の体積とその出現頻度、さらに解析エリア全体に占める気孔率を算出した。 Diffraction of the obtained image was performed as follows. Using the 3D image analysis software VGStudio MAX, select an arbitrary cube of 1.2 x 1.2 x 1.2 mm as the analysis area, and calculate the volume of each pore existing in that range and its appearance frequency, as well as the analysis area. The porosity of the whole was calculated.

陶器の断面画像に基づき、上記測定方法の概念を説明する。図1は、実施例2で得られた陶器の断面画像であり、図1において、陶器素地1に釉薬層2が接して存在しており、画像中の複数の正方形A乃至Eの枠が、解析エリアの立方体に対応する。そして上記試験条件においては、A乃至Eの枠の位置は、陶器素地1と釉薬相の界面からそれぞれAが1乃至1.2mm、Bが1.2乃至2.4mm、Cが2.4mm乃至3.6mm、Dが3.6mm乃至4.8mm、Eが4.8mm乃至6.0mmとなる。さらに実施例1及び比較例2では、解析エリアFとしてさらに深い6.0mm乃至7.2mmについても測定対象とした。また、図中の直線の筋3は、型二重部位で成形された素地の中央部に粗粒分が線状に残存すること生じたぶつかり面である。 The concept of the above measurement method will be explained based on a cross-sectional image of ceramics. FIG. 1 is a cross-sectional image of the pottery obtained in Example 2. In FIG. 1, a glaze layer 2 is present in contact with a pottery base 1, and a plurality of square frames A to E in the image are Corresponds to the cube of the analysis area. Under the above test conditions, the positions of the frames A to E are 1 to 1.2 mm for A, 1.2 to 2.4 mm for B, and 2.4 mm to 2.4 mm for C from the interface between the ceramic base 1 and the glaze phase. 3.6 mm, D is 3.6 mm to 4.8 mm, and E is 4.8 mm to 6.0 mm. Furthermore, in Example 1 and Comparative Example 2, a deeper analysis area F of 6.0 mm to 7.2 mm was also measured. Further, the straight line 3 in the figure is a collision surface caused by coarse particles remaining in a linear shape in the center of the base material formed at the double mold part.

実施例及び比較例の試験片について、算出された気孔率の値は、A乃至E、さらにFにおいてそれぞれ以下の表3に記載のとおりであった。 Regarding the test pieces of Examples and Comparative Examples, the calculated porosity values for A to E and F were as shown in Table 3 below.

また、実施例及び比較例の試験片について、上記測定方法で得られた気孔について、体積別の出現頻度の分布を整理した。実施例1の気孔の体積別の出願頻度は図2のグラフに示されるとおりであった。 In addition, for the test pieces of Examples and Comparative Examples, the distribution of appearance frequency by volume of pores obtained by the above measurement method was organized. The application frequency according to pore volume in Example 1 was as shown in the graph of FIG. 2.

さらに、体積別の出現頻度の分布をもとに、閾値及び全気孔の総体積に対する体積1.0×10-3mm以上の気孔の体積の割合(体積率)を算出した。実施例及び比較例の試験片について、算出された閾値及び体積率の値は、表3に記載のとおりであった。 Furthermore, based on the distribution of appearance frequency by volume, the threshold value and the ratio of the volume of pores with a volume of 1.0×10 −3 mm 3 or more to the total volume of all pores (volume ratio) were calculated. The calculated threshold values and volume fraction values for the test pieces of Examples and Comparative Examples were as shown in Table 3.

釉薬層の外観の評価(気泡の影響の評価)
得られた陶器について、目視で外観を次のように評価した。すなわち、標準色サンプルと比較した色・光沢について、それぞれ三段階で評価した。より具体的には、得られた陶器において、表面の色味・光沢が良好で微細な発泡跡が無いものを〇、表面の色味・光沢が良好だが微細な発泡跡があるものを△、表面の色味・光沢が不良で微細な発泡跡があるものを×とした。その結果は表3に記載のとおりであった。
Evaluation of the appearance of the glaze layer (evaluation of the influence of air bubbles)
The appearance of the obtained pottery was visually evaluated as follows. That is, the color and gloss compared with standard color samples were each evaluated in three stages. More specifically, among the obtained pottery, those with good surface color and gloss and no traces of fine foaming are rated as 〇, those with good surface color and gloss but with fine traces of foaming are rated as △, Those with poor surface color and gloss and fine foam marks were rated as ×. The results were as shown in Table 3.

Figure 0007424531000003
表中
・閾値:陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積(mm
・体積率(%):全気孔の総体積に対する体積1.0×10-3mm以上の気孔の体積の割合
Figure 0007424531000003
Threshold value in the table: Volume of pores (mm 3 ) where the sum of the volumes is 90% of the total volume of all pores when the volumes of pores existing in the ceramic base are added starting from the smallest.
・Volume ratio (%): The ratio of the volume of pores with a volume of 1.0 × 10 -3 mm 3 or more to the total volume of all pores

本発明の好ましい態様
本発明の好ましい態様は以下のとおりである。
(1) 陶器素地と、釉薬層とを少なくとも備える陶器であって、
前記陶器素地の気孔率が12%以下であり、かつ、前記陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積が8.0×10-4mm以下である、衛生陶器。
(2) 前記気孔率及び気孔の体積がマイクロCTで観察される、(1)に記載の陶器。
(3) 前記陶器素地における全気孔の総体積に対する体積1.0×10-3mm以上の気孔の体積の割合が8%以下である、(1)又は(2)に記載の陶器。
(4) 前記釉薬層との界面付近から離れるに従い、前記陶器素地における気孔率が低下する、(1)~(3)のいずれかに記載の陶器。
(5) 衛生陶器である、(1)~(4)のいずれかに記載の陶器。
(6) 気孔率が12%以下であり、かつ、前記陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積が8.0×10-4mm以下である、陶器素地。
(7) 前記気孔率及び気孔の体積がマイクロCTで観察される、(6)に記載の陶器素地。
(8) 前記陶器素地における全気孔の総体積に対する体積1.0×10-3mm以上の気孔の体積の割合が8%以下である、(6)又は(7)に記載の陶器。
(9) 前記釉薬層との界面付近から離れるに従い、前記陶器素地における気孔率が低下する、(6)~(8)のいずれかに記載の陶器。
(10) 陶器の表面美観の評価方法であって、
陶器素地と釉薬層とを備えた陶器又は陶器素地を用意し、
前記陶器素地の気孔率を測定・算出する工程を含んでなる、方法。
(11) 前記陶器素地の気孔率が12%以下であり、かつ、前記陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積が8.0×10-4mm以下である場合、陶器の表現が美観に優れると評価する、(10)に記載の方法。
Preferred embodiments of the present invention Preferred embodiments of the present invention are as follows.
(1) Pottery comprising at least a pottery base and a glaze layer,
The porosity of the ceramic base is 12% or less, and when the volumes of the pores existing in the ceramic base are added from the smallest to the smallest, the sum of the volumes is 90% of the total volume of all pores. Sanitary ware having a pore volume of 8.0×10 −4 mm 3 or less.
(2) The pottery according to (1), wherein the porosity and pore volume are observed by micro-CT.
(3) The pottery according to (1) or (2), wherein the ratio of the volume of pores having a volume of 1.0×10 −3 mm 3 or more to the total volume of all pores in the pottery base is 8% or less.
(4) The pottery according to any one of (1) to (3), wherein the porosity of the pottery base decreases as it moves away from the vicinity of the interface with the glaze layer.
(5) The pottery according to any one of (1) to (4), which is sanitary ware.
(6) The porosity is 12% or less, and when the volumes of pores existing in the ceramic base are added from the smallest to the smallest, the sum of the volumes is 90% of the total volume of all pores. A pottery base having a pore volume of 8.0×10 −4 mm 3 or less.
(7) The ceramic base according to (6), wherein the porosity and pore volume are observed by micro-CT.
(8) The pottery according to (6) or (7), wherein the ratio of the volume of pores having a volume of 1.0×10 −3 mm 3 or more to the total volume of all pores in the pottery base is 8% or less.
(9) The pottery according to any one of (6) to (8), wherein the porosity of the pottery base decreases as it moves away from the vicinity of the interface with the glaze layer.
(10) A method for evaluating the surface appearance of ceramics, the method comprising:
Prepare pottery or pottery base comprising a pottery base and a glaze layer,
A method comprising the step of measuring and calculating the porosity of the ceramic base.
(11) When the porosity of the ceramic base is 12% or less, and the volumes of the pores existing in the ceramic base are added from the smallest to the lowest, the sum of the volumes is relative to the total volume of all pores. The method according to (10), wherein the expression of the pottery is evaluated to be excellent in aesthetic appearance when the volume of pores that is 90% is 8.0 × 10 -4 mm 3 or less.

Claims (4)

陶器素地と、釉薬層とを少なくとも備える陶器であって、
前記陶器素地が、SiO を60~75重量%、Al を20~30重量%、Fe を0.4~1.5重量%、CaOを0.1~2.0重量%、MgOを0.1~1.5重量%、K Oを0.8~5.0重量%、及びNa Oを0.4~4.0重量%を少なくとも含む組成を有し、
前記釉薬層の釉薬が、SiO :52~80重量部、Al :5~14重量部、CaO:6~17重量部、MgO:0.5~4.0重量部、ZnO:1~11重量部、K O:1~5重量部、及びNa O:0.5~2.5重量部を少なくとも含む組成を有し(ただし亜硫酸カルシウム又はシュウ酸第一鉄を含む釉薬は除く)、
前記陶器素地の気孔率が12%以下であり、かつ、前記陶器素地に存在する気孔の体積を、小さい方から足していったとき、その体積の和が全気孔の総体積に対して90%となる気孔の体積が8.0×10-4mm以下であり、前記陶器素地における全気孔の総体積に対する体積1.0×10-3mm以上の気孔の体積の割合が8%以下であり、前記釉薬層との界面付近から離れるに従い前記陶器素地における気孔率が低下する、衛生陶器。
A pottery comprising at least a pottery base and a glaze layer,
The ceramic base contains 60 to 75% by weight of SiO 2 , 20 to 30% by weight of Al 2 O 3 , 0.4 to 1.5% by weight of Fe 2 O 3 , and 0.1 to 2.0% by weight of CaO. %, has a composition containing at least 0.1 to 1.5% by weight of MgO, 0.8 to 5.0% by weight of K 2 O, and 0.4 to 4.0% by weight of Na 2 O,
The glaze of the glaze layer contains SiO 2 : 52 to 80 parts by weight, Al 2 O 3 : 5 to 14 parts by weight, CaO: 6 to 17 parts by weight, MgO: 0.5 to 4.0 parts by weight, ZnO: 1 -11 parts by weight, K 2 O: 1-5 parts by weight, and Na 2 O: 0.5-2.5 parts by weight (however, glazes containing calcium sulfite or ferrous oxalate except),
The porosity of the ceramic base is 12% or less, and when the volumes of the pores existing in the ceramic base are added from the smallest to the smallest, the sum of the volumes is 90% of the total volume of all pores. The volume of pores with a volume of 1.0 × 10 -3 mm 3 or more is 8.0 × 10 -4 mm 3 or less, and the ratio of the volume of pores with a volume of 1.0 × 10 -3 mm 3 or more to the total volume of all pores in the ceramic base is 8% or less Sanitary ware, wherein the porosity of the ceramic base decreases as it moves away from the vicinity of the interface with the glaze layer.
前記気孔率及び気孔の体積がマイクロCTで観察される、請求項1に記載の陶器。 The pottery according to claim 1, wherein the porosity and pore volume are observed with micro-CT. 衛生陶器である、請求項1又は2に記載の陶器。 The earthenware according to claim 1 or 2, which is sanitary ware. 陶器の表面美観の評価方法であって、
陶器素地と釉薬層とを備えた陶器を用意し、
前記陶器素地の気孔率を測定・算出する工程を含んでなり、
前記陶器素地の気孔率が12%以下であり、かつ、存在する気孔の90%以上となる気孔の体積が8.0×10-4mm以下である場合、陶器の表面が美観に優れると評価する、方法。
A method for evaluating the surface appearance of pottery,
Prepare pottery with a pottery base and a glaze layer,
comprising a step of measuring and calculating the porosity of the ceramic base,
When the porosity of the pottery base is 12% or less and the volume of pores, which is 90% or more of the existing pores, is 8.0 × 10 -4 mm 3 or less, the surface of the pottery is excellent in appearance. How to evaluate .
JP2023059116A 2023-03-31 2023-03-31 Beautiful pottery and the pottery base that provides it Active JP7424531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023059116A JP7424531B1 (en) 2023-03-31 2023-03-31 Beautiful pottery and the pottery base that provides it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023059116A JP7424531B1 (en) 2023-03-31 2023-03-31 Beautiful pottery and the pottery base that provides it

Publications (1)

Publication Number Publication Date
JP7424531B1 true JP7424531B1 (en) 2024-01-30

Family

ID=89704324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023059116A Active JP7424531B1 (en) 2023-03-31 2023-03-31 Beautiful pottery and the pottery base that provides it

Country Status (1)

Country Link
JP (1) JP7424531B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267774A (en) 2002-03-12 2003-09-25 Toto Ltd Method for manufacturing sanitary ware
JP2009525251A (en) 2006-06-21 2009-07-09 ユー.エス.ボラックス インコーポレイテッド Glaze composition
JP2020059618A (en) 2018-10-09 2020-04-16 国立研究開発法人産業技術総合研究所 Base for ceramic and method for producing sintered ceramic using same
CN113135661A (en) 2021-04-15 2021-07-20 唐山市丰华陶瓷有限公司 Glaze layer slurry, sanitary ceramic with smooth surface and ceramic preparation method
CN113135733A (en) 2021-04-15 2021-07-20 唐山市丰华陶瓷有限公司 Oxidation-fired sanitary ceramic and preparation process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267774A (en) 2002-03-12 2003-09-25 Toto Ltd Method for manufacturing sanitary ware
JP2009525251A (en) 2006-06-21 2009-07-09 ユー.エス.ボラックス インコーポレイテッド Glaze composition
JP2020059618A (en) 2018-10-09 2020-04-16 国立研究開発法人産業技術総合研究所 Base for ceramic and method for producing sintered ceramic using same
CN113135661A (en) 2021-04-15 2021-07-20 唐山市丰华陶瓷有限公司 Glaze layer slurry, sanitary ceramic with smooth surface and ceramic preparation method
CN113135733A (en) 2021-04-15 2021-07-20 唐山市丰华陶瓷有限公司 Oxidation-fired sanitary ceramic and preparation process thereof

Similar Documents

Publication Publication Date Title
Taskiran et al. A new porcelainised stoneware material based on anorthite
US6737166B2 (en) Sanitary ware
Zanelli et al. Glass–ceramic frits for porcelain stoneware bodies: Effects on sintering, phase composition and technological properties
KR100925149B1 (en) Manufacturing method of ceramic ware with low deformation
CN107266023B (en) Surface is gentle as jade has the ink-jet of translucency to seep flower polished brick in porcelain character and preparation method
Boudeghdegh et al. Composition effects on the whiteness and physical-mechanical properties of traditional sanitary-ware glaze
Tarhan Whiteness improvement of porcelain tiles incorporated with anorthite and diopside phases
Ochen et al. Physical and mechanical properties of porcelain tiles made from raw materials in Uganda
EP3459924A1 (en) Sanitary ware
Mukhopadhyay et al. Phase analysis and microstructure evolution of a bone china body modified with scrap addition
JP7424531B1 (en) Beautiful pottery and the pottery base that provides it
ES2716120T3 (en) Reduction of internal stresses in ceramic materials
JP2023143627A (en) Sanitary earthenware
CN110615664A (en) Sanitary ware and method for producing sanitary ware
Wannagon et al. Crystalline phases and physical properties of modified stoneware body with glaze sludge
JP5158168B2 (en) Sanitary ware with excellent image clarity
JP2001253760A (en) China and porcelain
JP2002068825A (en) Ceramics
JP7343031B1 (en) pottery base
JP7420209B1 (en) Pottery with glaze layer
JP7375974B1 (en) Ceramic with excellent appearance and stain resistance
JP7375973B1 (en) Ceramic with excellent appearance and stain resistance
JP7375972B1 (en) Ceramic with excellent appearance and stain resistance
JP7375971B1 (en) Ceramic with excellent appearance and stain resistance
JP2019218242A (en) Sanitary earthenware and manufacturing method of sanitary earthenware

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R150 Certificate of patent or registration of utility model

Ref document number: 7424531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150