JP2019218242A - Sanitary earthenware and manufacturing method of sanitary earthenware - Google Patents

Sanitary earthenware and manufacturing method of sanitary earthenware Download PDF

Info

Publication number
JP2019218242A
JP2019218242A JP2018117446A JP2018117446A JP2019218242A JP 2019218242 A JP2019218242 A JP 2019218242A JP 2018117446 A JP2018117446 A JP 2018117446A JP 2018117446 A JP2018117446 A JP 2018117446A JP 2019218242 A JP2019218242 A JP 2019218242A
Authority
JP
Japan
Prior art keywords
intermediate layer
glaze layer
upper glaze
layer composition
sanitary ware
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018117446A
Other languages
Japanese (ja)
Inventor
俊徳 森
Toshinori Mori
俊徳 森
竹内 一男
Kazuo Takeuchi
一男 竹内
俊三 岩崎
Shunzo Iwasaki
俊三 岩崎
勲 吉永
Isao Yoshinaga
勲 吉永
博幸 宮本
Hiroyuki Miyamoto
博幸 宮本
芦澤 忠
Tadashi Ashizawa
忠 芦澤
英明 澤田
Hideaki Sawada
英明 澤田
宰熏 崔
Saikun Sai
宰熏 崔
川合 秀治
Hideji Kawai
秀治 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2018117446A priority Critical patent/JP2019218242A/en
Priority to CN201910510250.2A priority patent/CN110615664A/en
Priority to US16/443,588 priority patent/US20190389780A1/en
Priority to DE102019116358.7A priority patent/DE102019116358A1/en
Publication of JP2019218242A publication Critical patent/JP2019218242A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sanitary Device For Flush Toilet (AREA)
  • Glass Compositions (AREA)

Abstract

To provide a sanitary earthenware capable of enhancing "depth", and a manufacturing method of the sanitary earthenware.SOLUTION: There is provided a sanitary earthenware 1 having an earthenware base material 10, an upper glaze layer 30 positioned on a surface of the sanitary earthenware 10, and an intermediate layer 20 positioned between the earthenware raw material 10 and the upper glaze layer 30, and having percentage of area of air bubbles based on area of a cut surface by cutting the upper glaze layer 30 in a thickness direction of 3% or less. It is preferable that average air bubble diameter of the air bubbles at the cut surface is 50 μm or less. It is preferable that the number of air bubbles at the cut surface is 120 or less per 1 mm.SELECTED DRAWING: Figure 1

Description

本発明は、衛生陶器及び衛生陶器の製造方法に関する。   The present invention relates to sanitary ware and a method for manufacturing the sanitary ware.

従来、便器、洗面器等の衛生陶器には、汚れの付着を抑制し、又は外観の意匠性を良好にするために、上釉層(釉薬層)が最表面に形成されている。   2. Description of the Related Art Conventionally, an upper glaze layer (glaze layer) is formed on the outermost surface of sanitary ware such as a toilet bowl and a washbasin in order to suppress the adhesion of dirt or improve the design of the appearance.

近年、衛生陶器の設置されるトイレ空間、洗面空間には、衛生性だけではなく、高級感や品位を求めるニーズがある。品位は、色彩や形状といった意匠性だけではない部分で感じ取られるものである。
品位を表す指標の一つに写像性が挙げられる。写像性とは、衛生陶器の表面に映り込んだ像の鮮明さを表現するものであり、映り込んだ像が鮮明であるほど写像性が高いと判断される。写像性が高い衛生陶器は、高品位の印象を与える。
例えば、特許文献1には、陶器素地表面に、写像性を高めた釉薬層が形成された衛生陶器が提案されている。
In recent years, there is a need for not only hygiene but also a sense of quality and quality in the toilet space and washroom space where sanitary ware is installed. Dignity is perceived not only in design properties such as color and shape.
One of the indexes indicating the quality is image clarity. The image clarity expresses the sharpness of the image reflected on the surface of the sanitary ware, and the sharper the image reflected, the higher the image clarity is determined. Sanitary ware with high image clarity gives a high-quality impression.
For example, Patent Literature 1 proposes a sanitary ware in which a glaze layer having improved image clarity is formed on a pottery substrate surface.

特開2012−72609号公報JP 2012-72609 A

品位を表す指標の一つに「深み」が挙げられる。「深み」とは、衛生陶器の表面の上釉層における奥行の深さの表現であり、人間の視覚で認められる。「深み」が認められる衛生陶器は、高品位の印象を与える。
しかしながら、特許文献1の発明では、衛生陶器の「深み」について考慮されていなかった。
One of the indexes indicating quality is “depth”. "Depth" is an expression of the depth of the upper glaze layer on the surface of sanitary ware, and is recognized by human vision. Sanitary ware with a “depth” gives a high-quality impression.
However, in the invention of Patent Literature 1, "depth" of sanitary ware was not considered.

本発明は、このような事情に鑑みてなされたものであって、「深み」をより向上できる衛生陶器及び衛生陶器の製造方法を目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a sanitary ware and a method for manufacturing the sanitary ware, which can further improve “depth”.

一般に、写像性が高い衛生陶器は、衛生陶器の表面に映り込んだ像が鮮明であり、高品位の印象を与えやすい。しかし、本発明者等が鋭意検討した結果、写像性が高い衛生陶器は、奥行の深さが感じられるとは限らず、「深み」との相関性は見出せなかった。本発明は、写像性とは異なる観点から衛生陶器の高級感や品位を求めるものである。   In general, sanitary ware having high image clarity has a clear image reflected on the surface of the sanitary ware, and is likely to give a high-quality impression. However, as a result of intensive studies by the present inventors, sanitary ware having high image clarity does not always have a sense of depth, and no correlation with “depth” was found. The present invention seeks a sense of quality and quality of sanitary ware from a viewpoint different from image clarity.

上記目的を達成するため、本発明は、以下の態様を有する。
[1]陶器素地と、前記陶器素地の表面に位置する上釉層と、前記陶器素地と前記上釉層との間に位置する中間層とを備え、前記上釉層を厚さ方向に切断した切断面の面積に対する気泡の面積の割合が3%以下である、衛生陶器。
[2]陶器素地と、前記陶器素地の表面に位置する上釉層と、前記陶器素地と前記上釉層との間に位置する中間層とを備え、前記上釉層を厚さ方向に切断した切断面における気泡の平均気泡径が50μm以下である、衛生陶器。
[3]前記切断面における気泡数が1mm当たり120個以下である、[1]又は[2]に記載の衛生陶器。
[4]前記切断面における気泡の平均気泡径が50μm以下であり、前記切断面における気泡数が1mm当たり120個以下である、[1]に記載の衛生陶器。
[5]前記中間層を厚さ方向に切断した切断面における気泡数が1mm当たり1000個以下であり、前記中間層の切断面の面積に対する気泡の面積の割合が20%以下であり、前記中間層の切断面における気泡の平均気泡径が25μm以下である、[1]〜[4]のいずれかに記載の衛生陶器。
[6]前記上釉層の厚さが100μm以上である、[1]〜[5]のいずれかに記載の衛生陶器。
[7]前記中間層の厚さが200μm以上である、[1]〜[6]のいずれかに記載の衛生陶器。
In order to achieve the above object, the present invention has the following aspects.
[1] A ceramic body, an upper glaze layer located on the surface of the ceramic body, and an intermediate layer located between the ceramic body and the upper glaze layer, wherein the upper glaze layer is cut in a thickness direction. A sanitary ware, wherein the ratio of the area of the bubbles to the area of the cut section is 3% or less.
[2] A ceramic body, an upper glaze layer located on the surface of the ceramic body, and an intermediate layer located between the ceramic body and the upper glaze layer, wherein the upper glaze layer is cut in a thickness direction. A sanitary ware having an average bubble diameter of 50 μm or less in the cut section.
[3] The sanitary ware according to [1] or [2], wherein the number of bubbles on the cut surface is 120 or less per 1 mm 2 .
[4] The sanitary ware according to [1], wherein the average bubble diameter of the bubbles on the cut surface is 50 μm or less, and the number of bubbles on the cut surface is 120 or less per 1 mm 2 .
[5] The number of air bubbles in a cut surface obtained by cutting the intermediate layer in the thickness direction is 1,000 or less per 1 mm 2 , and a ratio of an area of the air bubble to an area of the cut surface of the intermediate layer is 20% or less, The sanitary ware according to any one of [1] to [4], wherein the average bubble diameter of the bubbles on the cut surface of the intermediate layer is 25 μm or less.
[6] The sanitary ware according to any one of [1] to [5], wherein the thickness of the upper glaze layer is 100 μm or more.
[7] The sanitary ware according to any one of [1] to [6], wherein the thickness of the intermediate layer is 200 μm or more.

[8]前記中間層を形成する中間層組成物を前記陶器素地の表面に、浸し掛け、流し掛け、塗り掛け、又は吹き掛けのいずれかにより塗布し、乾燥し、次いで、前記中間層組成物を塗布した面に、前記上釉層を形成する上釉層組成物を塗布する、[1]〜[7]のいずれかに記載の衛生陶器の製造方法。
[9]前記中間層を形成する中間層組成物を前記陶器素地の表面に、浸し掛け、流し掛け、塗り掛け、又は吹き掛けのいずれかにより塗布した後焼成して一次焼成体を得、前記一次焼成体に前記上釉層を形成する上釉層組成物を塗布して焼成する、[1]〜[7]のいずれかに記載の衛生陶器の製造方法。
[8] The intermediate layer composition for forming the intermediate layer is applied to the surface of the ceramic body by dipping, pouring, painting, or spraying, dried, and then the intermediate layer composition The method for producing sanitary ware according to any one of [1] to [7], wherein an upper glaze layer composition for forming the upper glaze layer is applied to a surface on which the upper glaze layer is applied.
[9] The intermediate layer composition for forming the intermediate layer is applied to the surface of the ceramic body by dipping, pouring, painting, or spraying, and then fired to obtain a primary fired body. The method for producing sanitary ware according to any one of [1] to [7], wherein an upper glaze layer composition for forming the upper glaze layer is applied to the primary fired body and fired.

本発明の衛生陶器及び衛生陶器の製造方法によれば、衛生陶器の「深み」をより向上できる。   According to the sanitary ware and the method for manufacturing the sanitary ware of the present invention, the "depth" of the sanitary ware can be further improved.

本発明の一実施形態による衛生陶器の断面図である。1 is a sectional view of a sanitary ware according to an embodiment of the present invention. 本発明の一実施形態による衛生陶器の上釉層のDTA曲線の一例である。5 is an example of a DTA curve of an upper glaze layer of sanitary ware according to an embodiment of the present invention.

[衛生陶器]
以下、本発明の一実施形態について、図1を参照して説明する。
図1に示す衛生陶器1は、陶器素地10と、陶器素地10の表面に位置する上釉層30と、陶器素地10と上釉層30との間に位置する中間層20とを備える。
[Sanitary ware]
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
The sanitary ware 1 shown in FIG. 1 includes a ceramic body 10, an upper glaze layer 30 located on the surface of the ceramic body 10, and an intermediate layer 20 located between the ceramic body 10 and the upper glaze layer 30.

本明細書において「衛生陶器」とは、トイレ及び洗面所周りで用いられる陶器製品を意味する。衛生陶器1としては、例えば、小便器、大便器、便器タンク、洗面台の洗面器、手洗い器等が挙げられる。
本明細書において「陶器」とは、原料に長石、陶石、カオリン、粘土を用い、表面に釉薬を塗布して焼成したものを意味する。
As used herein, "sanitary ware" refers to pottery products used around toilets and toilets. Examples of the sanitary ware 1 include a urinal, a toilet bowl, a toilet tank, a washbasin of a wash basin, and a handwasher.
In the present specification, “porcelain” means a material obtained by applying glazing to the surface using feldspar, porcelain stone, kaolin, or clay as a raw material.

衛生陶器1の厚さTは、特に限定されないが、例えば、1〜50mmが好ましく、2〜30mmがより好ましく、3〜20mmがさらに好ましい。厚さTが上記下限値以上であると、衛生陶器1の強度が高められやすい。厚さTが上記上限値以下であると、衛生陶器1を軽量にでき、取り扱いが容易になる。
衛生陶器1の厚さTは、例えば、ノギスを用いて測定できる。
The thickness T 1 of the sanitary ware 1 is not particularly limited, for example, preferably from 1 to 50 mm, more preferably from 2 to 30 mm, more preferably 3 to 20 mm. If the thickness T 1 is not less than the above lower limit, the strength of the sanitary ware 1 is likely enhanced. If the thickness T 1 is equal to or less than the above upper limit, can sanitary ware 1 lightweight, it is easy to handle.
The thickness T 1 of the sanitary ware 1, for example, can be measured using calipers.

衛生陶器1の写像性は、80以上が好ましく、85以上がより好ましく、90以上がさらに好ましい。衛生陶器1の写像性が上記下限値以上であると、高品位の印象を与えやすい。衛生陶器1の写像性の上限値は、特に限定されないが、実質的には99以下である。
なお、本明細書において、写像性は、ウェーブスキャンDOI測定装置(BYK Gardner社製、Wave−Scan−DUAL)により測定されるDOI値を意味する。
The image clarity of the sanitary ware 1 is preferably 80 or more, more preferably 85 or more, and even more preferably 90 or more. When the image clarity of the sanitary ware 1 is equal to or more than the lower limit, an impression of high quality is easily given. The upper limit of the image clarity of the sanitary ware 1 is not particularly limited, but is substantially 99 or less.
In the present specification, the image clarity means a DOI value measured by a wave scan DOI measuring device (BYK Gardner, Wave-Scan-DUAL).

陶器素地10としては、長石、陶石、カオリン、粘土等を原料として含む陶器素地組成物(陶器素地泥漿)を石膏型あるいは樹脂型を用いて所定の形状に成形し、1100〜1300℃で焼成した素地が挙げられる。
陶器素地組成物は、水を含有する。陶器素地組成物の総質量に対する水の含有量は、30〜50質量%が好ましく、30〜40質量%がより好ましい。
As the pottery base 10, a pottery base composition (pottery base slurry) containing feldspar, pottery stone, kaolin, clay or the like as a raw material is formed into a predetermined shape using a plaster mold or a resin mold and fired at 1100 to 1300 ° C. The base that did.
The pottery base composition contains water. The content of water based on the total mass of the pottery base composition is preferably 30 to 50% by mass, more preferably 30 to 40% by mass.

陶器素地10の厚さT10は、特に限定されないが、例えば、1〜50mmが好ましく、2〜30mmがより好ましく、3〜20mmがさらに好ましい。厚さT10が上記下限値以上であると、陶器素地10の強度が高められやすい。厚さT10が上記上限値以下であると、陶器素地10を軽量にでき、取り扱いが容易になる。
陶器素地10の厚さT10は、例えば、ノギスを用いて測定できる。
The thickness T 10 of the pottery green body 10 is not particularly limited, for example, preferably from 1 to 50 mm, more preferably from 2 to 30 mm, more preferably 3 to 20 mm. If the thickness T 10 is not less than the above lower limit, the strength of the ware matrix 10 is likely to be enhanced. If the thickness T 10 is less than the above upper limit can pottery green body 10 to the light weight, it becomes easy to handle.
The thickness T 10 of the pottery green body 10, for example, can be measured using calipers.

上釉層30は、本発明の衛生陶器用の上釉層組成物(以下、単に上釉層組成物ともいう。)の焼成物である。上釉層30は、衛生陶器1の最表面に位置する層を形成するための釉(釉薬)からなる層である。上釉層組成物は、いわゆる釉薬である。上釉層組成物は、釉原料であるケイ砂、長石、石灰、粘土等が水に分散されたスラリー(泥漿)である。
上釉層組成物の総質量に対する水の含有量は、40〜80質量%が好ましく、40〜70質量%がより好ましい。
The upper glaze layer 30 is a fired product of the upper glaze layer composition for sanitary ware of the present invention (hereinafter, also simply referred to as upper glaze layer composition). The upper glaze layer 30 is a layer made of glaze (glaze) for forming a layer located on the outermost surface of the sanitary ware 1. The upper glaze layer composition is a so-called glaze. The upper glaze layer composition is a slurry (slurry) in which silica sand, feldspar, lime, clay, and the like, which are glaze raw materials, are dispersed in water.
The content of water based on the total mass of the upper glaze layer composition is preferably from 40 to 80% by mass, and more preferably from 40 to 70% by mass.

上釉層組成物に含まれる固形分の平均粒子径は、20μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましい。上釉層組成物に含まれる固形分の平均粒子径が上記上限値以下であると、上釉層組成物に含まれる固形分の溶融開始温度を低くしやすい。
上釉層組成物に含まれる固形分の平均粒子径の下限値は、特に限定されないが、例えば、0.1μm以上である。
上釉層組成物に含まれる固形分の平均粒子径は、例えば、釉原料を粉砕することにより調整できる。釉原料を粉砕する道具としては、例えば、ボールミルが挙げられる。
The average particle diameter of the solid component contained in the upper glaze layer composition is preferably 20 μm or less, more preferably 15 μm or less, and still more preferably 10 μm or less. When the average particle size of the solid content contained in the upper glaze layer composition is equal to or less than the upper limit, the melting start temperature of the solid content contained in the upper glaze layer composition is easily reduced.
The lower limit of the average particle diameter of the solid component contained in the upper glaze layer composition is not particularly limited, but is, for example, 0.1 μm or more.
The average particle diameter of the solid component contained in the upper glaze layer composition can be adjusted, for example, by grinding the glaze raw material. As a tool for crushing the glaze raw material, for example, a ball mill can be mentioned.

本明細書において、「平均粒子径」とは、50%平均粒子径(D50)を意味する。D50は、個数基準でのメジアン径であり、累積分布における50%の平均粒子径を意味する。粒子径は、例えば、レーザー回折式粒度分布測定器(日機装(株)製、「MT3300EX(型番)」)を用いて測定できる。
なお、上釉層組成物に含まれる固形分は、上釉層組成物の乾燥物である。
In the present specification, the “average particle diameter” means a 50% average particle diameter (D50). D50 is a median diameter on a number basis, and means an average particle diameter of 50% in the cumulative distribution. The particle size can be measured, for example, using a laser diffraction type particle size distribution analyzer (“MT3300EX (model number)” manufactured by Nikkiso Co., Ltd.).
The solid content contained in the upper glaze layer composition is a dried product of the upper glaze layer composition.

上釉層組成物としては、ケイ砂5〜25質量部、長石20〜40質量部、石灰5〜15質量部、粘土1〜5質量部を含有する組成物が挙げられる。
上釉層組成物は、上記の他、フリットを含有することが好ましい。
フリットは、フリット原料を1300℃以上で溶融した後冷却し、非晶質のガラスとしたものである。上釉層組成物がフリットを含有することで、上釉層組成物の溶融開始温度を低くしやすい。加えて、上釉層組成物がフリットを含有することで、上釉層組成物をより均一に溶融しやすく、上釉層中の気泡を減少させやすい。
フリット原料としては、フリット原料の総質量に対して、二酸化ケイ素(SiO)を40〜70質量%、酸化アルミニウム(Al)を5〜15質量%、酸化ナトリウム(NaO)と酸化カリウム(KO)と酸化カルシウム(CaO)と酸化マグネシウム(MgO)と酸化亜鉛(ZnO)と酸化ストロンチウム(SrO)と酸化バリウム(BaO)と酸化ホウ素(B)との合計を10〜50質量%含有する組成物が挙げられる。
なお、フリット原料の各成分の含有量の合計は、フリット原料の総質量に対して100質量%を超えないものとする。
Examples of the upper glaze layer composition include a composition containing 5 to 25 parts by mass of silica sand, 20 to 40 parts by mass of feldspar, 5 to 15 parts by mass of lime, and 1 to 5 parts by mass of clay.
The upper glaze layer composition preferably contains a frit in addition to the above.
The frit is obtained by melting a frit raw material at a temperature of 1300 ° C. or higher and then cooling it to obtain an amorphous glass. When the upper glaze layer composition contains a frit, the melting start temperature of the upper glaze layer composition can be easily lowered. In addition, since the upper glaze layer composition contains a frit, the upper glaze layer composition can be more uniformly melted, and bubbles in the upper glaze layer can be easily reduced.
As the frit raw material, silicon dioxide (SiO 2 ) is 40 to 70 mass%, aluminum oxide (Al 2 O 3 ) is 5 to 15 mass%, and sodium oxide (Na 2 O) is based on the total mass of the frit raw material. The sum of potassium oxide (K 2 O), calcium oxide (CaO), magnesium oxide (MgO), zinc oxide (ZnO), strontium oxide (SrO), barium oxide (BaO), and boron oxide (B 2 O 3 ) A composition containing 10 to 50% by mass is exemplified.
The sum of the contents of the components of the frit raw material does not exceed 100% by mass with respect to the total mass of the frit raw material.

上釉層組成物がフリットを含有する場合、フリットの含有量は、上釉層組成物に含まれる固形分の総質量に対して、50〜100質量%が好ましく、70〜100質量%がより好ましい。フリットの含有量が上記下限値以上であると、上釉層組成物の溶融開始温度を低くしやすい。なお、フリットの含有量は、上釉層組成物に含まれる固形分の総質量に対して100質量%を超えないものとする。   When the upper glaze layer composition contains a frit, the content of the frit is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, based on the total mass of the solid content contained in the upper glaze layer composition. preferable. When the content of the frit is equal to or more than the lower limit, the melting start temperature of the upper glaze layer composition is easily reduced. In addition, the content of the frit shall not exceed 100% by mass with respect to the total mass of the solid content contained in the upper glaze layer composition.

上釉層組成物の溶融開始温度は、第一溶融温度、第二溶融温度又は第三溶融温度のいずれかで規定できる。
第一溶融温度は、下記測定方法1−1により測定される。
<測定方法1−1>
アルミナ粉末を基準物質とし、衛生陶器用の上釉層組成物の乾燥物を試料粉末としてDTA測定を行い、DTA曲線を求める。得られたDTA曲線の700℃超の領域において、試料粉末の温度から基準物質の温度を減じた値ΔTを示す電位差ΔVが、小さくなる最初の変曲点における基準物質の温度を第一溶融温度とする。第一溶融温度よりも高温側の領域において、電位差ΔVが、大きくなる最初の変曲点における基準物質の温度を第二溶融温度とする。
The melting start temperature of the upper glaze layer composition can be defined by any of the first melting temperature, the second melting temperature, and the third melting temperature.
The first melting temperature is measured by the following measurement method 1-1.
<Measurement method 1-1>
DTA measurement is performed using alumina powder as a reference substance and a dried product of the upper glaze layer composition for sanitary ware as a sample powder to obtain a DTA curve. In the region above 700 ° C. of the obtained DTA curve, the potential difference ΔV indicating the value ΔT obtained by subtracting the temperature of the reference substance from the temperature of the sample powder is the temperature of the reference substance at the first inflection point at which the temperature decreases, and the first melting temperature. And In the region on the higher temperature side than the first melting temperature, the temperature of the reference substance at the first inflection point where the potential difference ΔV becomes large is defined as the second melting temperature.

DTA曲線は、示差熱分析(DTA)装置を用いて、DTA測定を行うことにより求められる。DTA測定は、TG−DTA測定(熱重量示差熱分析測定)であってもよい。DTA測定は、アルミナ粉末を基準物質とし、上釉層組成物の乾燥物を試料粉末とする。上釉層組成物の乾燥物は、例えば、上釉層組成物を20〜110℃に加熱して、水分を蒸発させることにより得られる。上釉層組成物の乾燥物の総質量に対する水分量は、例えば、0〜1質量%である。
DTA測定においては、試料粉末の温度及び基準物質の温度を一定のプログラムによって変化させながら、試料粉末の温度から基準物質の温度を減じた値ΔT((試料粉末の温度)−(基準物質の温度))を示す電位差ΔVを温度の関数として測定する。DTA曲線において、基準物質の温度が700℃超の領域で現れる変曲点のうち、電位差ΔVが、小さくなる最初の変曲点を第一変曲点とする。第一変曲点における基準物質の温度を第一溶融温度とする。第一溶融温度よりも高温側の領域で現れる変曲点のうち、電位差ΔVが、大きくなる最初の変曲点を第二変曲点とする。第二変曲点における基準物質の温度を第二溶融温度とする。
The DTA curve is obtained by performing DTA measurement using a differential thermal analysis (DTA) device. The DTA measurement may be a TG-DTA measurement (thermogravimetric differential thermal analysis measurement). In the DTA measurement, alumina powder was used as a reference substance, and a dried product of the upper glaze layer composition was used as a sample powder. The dried product of the upper glaze layer composition is obtained, for example, by heating the upper glaze layer composition to 20 to 110 ° C to evaporate water. The water content based on the total mass of the dried product of the upper glaze layer composition is, for example, 0 to 1% by mass.
In the DTA measurement, a value ΔT ((sample powder temperature) − (reference material temperature) obtained by subtracting the reference material temperature from the sample powder temperature while changing the temperature of the sample powder and the temperature of the reference material by a certain program. )) Is measured as a function of temperature. In the DTA curve, among the inflection points that appear in the region where the temperature of the reference substance exceeds 700 ° C., the first inflection point at which the potential difference ΔV becomes smaller is defined as the first inflection point. The temperature of the reference material at the first inflection point is defined as a first melting temperature. The first inflection point at which the potential difference ΔV becomes large among the inflection points appearing in a region higher than the first melting temperature is defined as a second inflection point. The temperature of the reference substance at the second inflection point is defined as a second melting temperature.

図2は、衛生陶器1の上釉層30を形成する上釉層組成物のTG−DTA測定を行ったときに得られるTG−DTAのグラフである。TG−DTAのグラフにおいて、横軸は基準物質の温度(℃)を表す。縦軸の第一軸は、試料粉末の質量変化(質量%)を表す。縦軸の第二軸は、試料粉末の温度から基準物質の温度を減じた値ΔTを示す電位差ΔV(μV)を表す。
図2において、C1は、TG曲線を表す。C2は、DTA曲線を表す。C2は、基準物質の温度の上昇とともに電位差ΔVが大きくなり、基準物質の温度が700℃超の領域で第一変曲点P1が現れる。第一変曲点P1では、上釉層組成物が溶融を開始し、上釉層組成物のガラス構造が緩み始めているものと考えられる。第一変曲点P1は、C2の傾き(ΔVの増加量/基準物質の温度の増加量)が最大となるときのC2に引いた接線と、C2の傾きが最小となるときのC2に引いた接線との交点で与えられる。第一変曲点P1における基準物質の温度が第一溶融温度である。なお、第一溶融温度は、一般的なTG−DTAのグラフにおける補外溶融開始温度の求め方と同様にして求められる(JIS K7121−1987参照)。
C2は、第一変曲点P1が現れた後、ΔVが減少し、再びΔVが大きくなる第二変曲点P2を有する。第二変曲点P2では、上釉層組成物が溶融し、上釉層組成物のガラス構造が完全に緩んでいるものと考えられる。第二変曲点P2は、C2の傾きが最小となるときのC2に引いた接線と、C2の傾きが正となるときのC2に引いた接線との交点で与えられる。第二変曲点P2における基準物質の温度が第二溶融温度である。なお、第二溶融温度は、一般的なTG−DTAのグラフにおける溶融ピーク温度の求め方と同様にして求められる(JIS K7121−1987参照)。
FIG. 2 is a graph of TG-DTA obtained when TG-DTA measurement of the upper glaze layer composition forming the upper glaze layer 30 of the sanitary ware 1 is performed. In the TG-DTA graph, the horizontal axis represents the temperature (° C.) of the reference material. The first axis on the vertical axis represents the mass change (% by mass) of the sample powder. The second axis of the vertical axis represents a potential difference ΔV (μV) indicating a value ΔT obtained by subtracting the temperature of the reference substance from the temperature of the sample powder.
In FIG. 2, C1 represents a TG curve. C2 represents the DTA curve. In C2, the potential difference ΔV increases as the temperature of the reference material increases, and the first inflection point P1 appears in a region where the temperature of the reference material exceeds 700 ° C. At the first inflection point P1, it is considered that the upper glaze layer composition started to melt and the glass structure of the upper glaze layer composition began to loosen. The first inflection point P1 is drawn to the tangent line drawn to C2 when the slope of C2 (the amount of increase in ΔV / the amount of increase in the temperature of the reference material) is maximum, and to C2 when the slope of C2 is minimum. Given by the intersection with the tangent. The temperature of the reference material at the first inflection point P1 is the first melting temperature. The first melting temperature is determined in the same manner as the method for determining the extrapolation melting start temperature in a general TG-DTA graph (see JIS K7121-1987).
C2 has a second inflection point P2 at which ΔV decreases and ΔV increases again after the first inflection point P1 appears. At the second inflection point P2, it is considered that the upper glaze layer composition has melted and the glass structure of the upper glaze layer composition has been completely loosened. The second inflection point P2 is given by the intersection of the tangent drawn to C2 when the slope of C2 is minimum and the tangent drawn to C2 when the slope of C2 is positive. The temperature of the reference material at the second inflection point P2 is the second melting temperature. The second melting temperature is determined in the same manner as the method for determining the melting peak temperature in a general TG-DTA graph (see JIS K7121-1987).

DTA測定において、基準物質の質量は、例えば、5〜50mgが好ましい。
試料粉末の質量は、例えば、5〜50mgが好ましい。
上釉層組成物の乾燥物を得る際の加熱温度は、例えば、20〜110℃が好ましい。
試料粉末を加熱する際の昇温速度は、例えば、2〜10℃/分が好ましい。
In the DTA measurement, the mass of the reference substance is preferably, for example, 5 to 50 mg.
The mass of the sample powder is preferably, for example, 5 to 50 mg.
The heating temperature for obtaining a dried product of the upper glaze layer composition is preferably, for example, 20 to 110 ° C.
The heating rate when heating the sample powder is, for example, preferably 2 to 10 ° C./min.

上釉層組成物の第一溶融温度は、800〜1050℃が好ましく、820〜1000℃がより好ましく、840〜950℃がさらに好ましい。上釉層組成物の第一溶融温度が上記下限値以上であると、上釉層組成物を焼成するときの気泡の発生を抑制しやすい。上釉層組成物の第一溶融温度が上記上限値以下であると、上釉層組成物を焼成するときに発生した気泡を大気中に拡散しやすい。   The first melting temperature of the upper glaze layer composition is preferably from 800 to 1050C, more preferably from 820 to 1000C, and still more preferably from 840 to 950C. When the first melting temperature of the upper glaze layer composition is equal to or higher than the lower limit, it is easy to suppress generation of bubbles when firing the upper glaze layer composition. When the first melting temperature of the upper glaze layer composition is equal to or lower than the upper limit, bubbles generated when firing the upper glaze layer composition are easily diffused into the atmosphere.

第二溶融温度は、上記測定方法1−1により測定される。
上釉層組成物の第二溶融温度は、850〜1150℃が好ましく、870〜1100℃がより好ましく、900〜1050℃がさらに好ましい。上釉層組成物の第二溶融温度が上記下限値以上であると、上釉層組成物を焼成するときの気泡の発生を抑制しやすい。上釉層組成物の第二溶融温度が上記上限値以下であると、上釉層組成物を焼成するときに発生した気泡を大気中に拡散しやすい。
The second melting temperature is measured by the above measurement method 1-1.
The second melting temperature of the upper glaze layer composition is preferably 850 to 1150C, more preferably 870 to 1100C, and even more preferably 900 to 1050C. When the second melting temperature of the upper glaze layer composition is equal to or higher than the lower limit, it is easy to suppress generation of bubbles when firing the upper glaze layer composition. When the second melting temperature of the upper glaze layer composition is equal to or lower than the above upper limit, bubbles generated when firing the upper glaze layer composition are easily diffused into the atmosphere.

上釉層組成物の第二溶融温度と第一溶融温度との差(上釉層溶融温度差)は、50〜120℃が好ましく、60〜100℃がより好ましく、70〜90℃がさらに好ましい。上釉層溶融温度差が上記下限値以上であると、上釉層組成物を焼成するときに発生する気泡の平均気泡径を小さくしやすい。上釉層溶融温度差が上記上限値以下であると、上釉層組成物を焼成するときの気泡の発生を抑制しやすい。
上釉層溶融温度差は、上釉層組成物の第二溶融温度から、上釉層組成物の第一溶融温度を減じることにより求められる。
The difference between the second melting temperature and the first melting temperature of the upper glaze layer composition (upper glaze layer melting temperature difference) is preferably 50 to 120 ° C, more preferably 60 to 100 ° C, and even more preferably 70 to 90 ° C. . When the upper glaze layer melting temperature difference is equal to or more than the above lower limit, the average bubble diameter of bubbles generated when firing the upper glaze layer composition is easily reduced. When the upper glaze layer melting temperature difference is equal to or less than the above upper limit, it is easy to suppress generation of bubbles when firing the upper glaze layer composition.
The upper glaze layer melting temperature difference is obtained by subtracting the first melting temperature of the upper glaze layer composition from the second melting temperature of the upper glaze layer composition.

上釉層組成物の第一溶融温度は、釉原料の種類、釉原料の配合割合、上釉層組成物の固形分の平均粒子径、及びこれらの組合せにより調整できる。
上釉層組成物の第二溶融温度は、上釉層組成物の第一溶融温度と同様に調整できる。
The first melting temperature of the upper glaze layer composition can be adjusted by the type of glaze raw material, the blending ratio of the glaze raw material, the average particle diameter of the solid content of the upper glaze layer composition, and a combination thereof.
The second melting temperature of the upper glaze layer composition can be adjusted similarly to the first melting temperature of the upper glaze layer composition.

第三溶融温度は、下記測定方法1−2により測定される。
<測定方法1−2>
衛生陶器用の上釉層組成物の乾燥物を加圧成形して円柱状試料を得る。得られた円柱状試料を加熱しつつ、光を照射する。円柱状試料の表面が反射する反射光の光量を測定する。反射光の光量が、光り始めに検出した反射光の光量の10倍以上となる最初の温度を第三溶融温度とする。
The third melting temperature is measured by the following measurement method 1-2.
<Measurement method 1-2>
A dried product of the upper glaze layer composition for sanitary ware is pressure-formed to obtain a cylindrical sample. Light is irradiated while heating the obtained cylindrical sample. The amount of light reflected by the surface of the cylindrical sample is measured. The first temperature at which the amount of reflected light becomes 10 times or more the amount of reflected light detected at the beginning of light emission is defined as a third melting temperature.

測定方法1−2において、円柱状試料は、衛生陶器用の上釉層組成物の乾燥物を加圧成形することにより得られる。
円柱状試料の直径は、例えば、2〜10mmが好ましい。円柱状試料の高さは、例えば、5〜20mmが好ましい。円柱状試料の質量は、例えば、100〜500mgが好ましい。上釉層組成物の乾燥物を加圧成形する際の圧力は、例えば、10〜50MPaが好ましい。
反射光の光量は、望遠レンズ付きデジタルカメラで撮影し、画像処理システムによりピクセル数に換算される値とする。
円柱状試料を加熱する際の反射光の光量は、1℃ごとに測定される。「光り始め」は、円柱状試料の表面が反射する反射光の光量が0でなくなったときを意味する。
円柱状試料を加熱する際の昇温速度は、例えば、1〜10℃/分が好ましい。
円柱状試料に照射する光の光量は、例えば、500〜2000ルーメンが好ましい。
第三溶融温度では、上釉層組成物が溶融を開始し、上釉層組成物のガラス構造が完全に緩んでいるものと考えられる。
In the measurement method 1-2, the columnar sample is obtained by pressure-forming a dried product of the upper glaze layer composition for sanitary ware.
The diameter of the cylindrical sample is preferably, for example, 2 to 10 mm. The height of the columnar sample is preferably, for example, 5 to 20 mm. The mass of the columnar sample is preferably, for example, 100 to 500 mg. The pressure at the time of press-molding the dried product of the upper glaze layer composition is preferably, for example, 10 to 50 MPa.
The amount of reflected light is taken as a value converted into the number of pixels by an image processing system by photographing with a digital camera with a telephoto lens.
The amount of reflected light when heating the cylindrical sample is measured every 1 ° C. "Begins to shine" means that the amount of reflected light reflected by the surface of the cylindrical sample is no longer zero.
The heating rate when heating the cylindrical sample is preferably, for example, 1 to 10 ° C./min.
The amount of light applied to the cylindrical sample is preferably, for example, 500 to 2000 lumens.
At the third melting temperature, it is considered that the upper glaze layer composition starts melting and the glass structure of the upper glaze layer composition is completely loosened.

上釉層組成物の第三溶融温度は、850〜1150℃が好ましく、870〜1100℃がより好ましく、900〜1050℃がさらに好ましい。上釉層組成物の第三溶融温度が上記下限値以上であると、上釉層組成物を焼成するときの気泡の発生を抑制しやすい。上釉層組成物の第三溶融温度が上記上限値以下であると、上釉層組成物を焼成するときに発生した気泡を大気中に拡散しやすい。   The third melting temperature of the upper glaze layer composition is preferably 850 to 1150C, more preferably 870 to 1100C, and even more preferably 900 to 1050C. When the third melting temperature of the upper glaze layer composition is equal to or higher than the lower limit, it is easy to suppress the generation of bubbles when firing the upper glaze layer composition. When the third melting temperature of the upper glaze layer composition is equal to or lower than the upper limit, bubbles generated when firing the upper glaze layer composition are easily diffused into the atmosphere.

上釉層組成物の第三溶融温度は、上釉層組成物の第一溶融温度と同様に調整できる。   The third melting temperature of the upper glaze layer composition can be adjusted similarly to the first melting temperature of the upper glaze layer composition.

上釉層30を備える衛生陶器1から上釉層30の溶融開始温度を求める場合、第一溶融温度、第二溶融温度は、下記測定方法2−1により測定される。
<測定方法2−1>
アルミナ粉末を基準物質とし、上釉層30の粉末を試料粉末としてDTA測定を行い、DTA曲線を求める。得られたDTA曲線の700℃超の領域において、試料粉末の温度から基準物質の温度を減じた値ΔTを示す電位差ΔV(μV)が、小さくなる最初の変曲点における基準物質の温度を第一溶融温度とする。第一溶融温度よりも高温側の領域において、電位差ΔVが、大きくなる最初の変曲点における基準物質の温度を第二溶融温度とする。
When determining the melting start temperature of the upper glaze layer 30 from the sanitary ware 1 having the upper glaze layer 30, the first melting temperature and the second melting temperature are measured by the following measuring method 2-1.
<Measurement method 2-1>
DTA measurement is performed using alumina powder as a reference material and the powder of the upper glaze layer 30 as a sample powder to obtain a DTA curve. In the region above 700 ° C. of the obtained DTA curve, the potential difference ΔV (μV) indicating the value ΔT obtained by subtracting the temperature of the reference substance from the temperature of the sample powder becomes the first inflection point at which the temperature of the reference substance becomes smaller. One melting temperature. In the region on the higher temperature side than the first melting temperature, the temperature of the reference substance at the first inflection point where the potential difference ΔV becomes large is defined as the second melting temperature.

上釉層30の粉末は、上釉層30を適宜切り出し、研磨等することにより得られる。DTA測定の条件は、上記測定方法1−1におけるDTA測定の条件と同様である。
上釉層30の第一溶融温度は、上釉層組成物の第一溶融温度と同様である。
上釉層30の第二溶融温度は、上釉層組成物の第二溶融温度と同様である。
上釉層30の第二溶融温度と第一溶融温度との差は、上釉層組成物の第二溶融温度と第一溶融温度との差(上釉層溶融温度差)と同様である。
The powder of the upper glaze layer 30 is obtained by appropriately cutting out the upper glaze layer 30 and polishing the same. The conditions for the DTA measurement are the same as the conditions for the DTA measurement in the above measurement method 1-1.
The first melting temperature of the upper glaze layer 30 is the same as the first melting temperature of the upper glaze layer composition.
The second melting temperature of the upper glaze layer 30 is the same as the second melting temperature of the upper glaze layer composition.
The difference between the second melting temperature and the first melting temperature of the upper glaze layer 30 is the same as the difference between the second melting temperature and the first melting temperature of the upper glaze layer composition (upper glaze layer melting temperature difference).

上釉層30を備える衛生陶器1から上釉層30の第三溶融温度を求める場合、下記測定方法2−2により測定される。
<測定方法2−2>
上釉層30の粉末を加圧成形して円柱状試料を得る。得られた円柱状試料を加熱しつつ、光を照射する。円柱状試料の表面が反射する反射光の光量を測定する。反射光の光量が、光り始めに検出した反射光の光量の10倍以上となる最初の温度を第三溶融温度とする。
When obtaining the third melting temperature of the upper glaze layer 30 from the sanitary ware 1 having the upper glaze layer 30, it is measured by the following measuring method 2-2.
<Measurement method 2-2>
The powder of the upper glaze layer 30 is pressure-formed to obtain a cylindrical sample. Light is irradiated while heating the obtained cylindrical sample. The amount of light reflected by the surface of the cylindrical sample is measured. The first temperature at which the amount of reflected light becomes 10 times or more the amount of reflected light detected at the beginning of light emission is defined as a third melting temperature.

上釉層30の粉末は、上釉層30を適宜切り出し、研磨等することにより得られる。円柱状試料を得る際の条件は、上記測定方法1−2における円柱状試料を得る際の条件と同様である。
上釉層30の第三溶融温度は、上釉層組成物の第三溶融温度と同様である。
The powder of the upper glaze layer 30 is obtained by appropriately cutting out the upper glaze layer 30 and polishing the same. The conditions for obtaining a columnar sample are the same as the conditions for obtaining a columnar sample in the above measurement method 1-2.
The third melting temperature of the upper glaze layer 30 is the same as the third melting temperature of the upper glaze layer composition.

本明細書において、「気泡」とは、実際に上釉層30又は中間層20に含まれる気泡を意味する。気泡は、例えば、上釉層30、陶器素地10、中間層組成物に含まれる成分の酸化反応、分解反応、上釉層30、陶器素地10、中間層組成物に含まれる空隙等により発生する。気泡は、上釉層30の切断面をマイクロスコープ等により観察した画像において、画像処理ソフトを用いて画像の明るさを2値化し、相対的に暗い箇所を気泡として判断することにより計数される。計数する気泡の大きさは、切断面における気泡を真円換算し、直径2μm以上とする。   In this specification, “bubbles” means bubbles actually contained in the upper glaze layer 30 or the intermediate layer 20. The air bubbles are generated by, for example, an oxidation reaction and a decomposition reaction of the components contained in the upper glaze layer 30, the ceramic body 10, and the intermediate layer composition, and voids contained in the upper glaze layer 30, the ceramic body 10, and the intermediate layer composition. . The bubbles are counted by binarizing the brightness of the image using image processing software and judging relatively dark portions as bubbles in an image obtained by observing the cut surface of the upper glaze layer 30 with a microscope or the like. . The size of the bubbles to be counted is 2 μm or more in terms of a perfect circle converted from the bubbles on the cut surface.

計数する気泡は、例えば、以下の手順で求められる。
衛生陶器1を上釉層30の厚さ方向に小型試料切断機を用いて切断する。切断した切断面をマイクロスコープ(オリンパス(株)製、DSX510)により、倍率125倍で観察する。観察した画像において、画像処理ソフトを用いて画像の明るさを2値化し、相対的に暗い箇所のそれぞれの面積で、πμm(直径2μmの気泡相当面積)以上のものを気泡として検出する。
The bubbles to be counted are obtained, for example, by the following procedure.
The sanitary ware 1 is cut in the thickness direction of the upper glaze layer 30 using a small sample cutter. The cut surface is observed with a microscope (DSX510, manufactured by Olympus Corporation) at a magnification of 125 times. In the observed image, the brightness of the image is binarized using image processing software, and an area having a size of π μm 2 (equivalent area of a bubble having a diameter of 2 μm) or more in each relatively dark area is detected as a bubble.

上釉層30を厚さ方向に切断した切断面の面積に対する気泡の面積の割合(以下、「上釉層30の気泡面積率」ともいう。)は、3%以下であり、2%以下が好ましい。上釉層30の気泡面積率が上記上限値以下であると、上釉層30に入射する光が上釉層30中の気泡で乱反射されることを抑制しやすい。このため、衛生陶器1の「深み」をより向上しやすい。上釉層30の気泡面積率の下限値は、特に限定されないが、通常、0.01%以上である。
上釉層30の気泡面積率(%)は、上述したマイクロスコープ等を用いて観察される画像において検出される気泡の総面積(mm)を、観察される画像における視野面積(mm)で除することにより求められる。
The ratio of the area of the bubbles to the area of the cut surface obtained by cutting the upper glaze layer 30 in the thickness direction (hereinafter, also referred to as “bubble area ratio of the upper glaze layer 30”) is 3% or less, and 2% or less. preferable. When the bubble area ratio of the upper glaze layer 30 is equal to or less than the upper limit, it is easy to suppress light incident on the upper glaze layer 30 from being irregularly reflected by bubbles in the upper glaze layer 30. For this reason, the "depth" of the sanitary ware 1 is more easily improved. Although the lower limit of the cell area ratio of the upper glaze layer 30 is not particularly limited, it is usually 0.01% or more.
The bubble area ratio (%) of the upper glaze layer 30 is obtained by calculating the total area (mm 2 ) of bubbles detected in the image observed using the above-described microscope or the like by the visual field area (mm 2 ) in the observed image. It is obtained by dividing by

上釉層30を厚さ方向に切断した切断面における気泡の平均気泡径(以下、「上釉層30の切断面における気泡の平均気泡径」ともいう。)は、50μm以下であり、40μm以下が好ましく、30μm以下がより好ましい。上釉層30の切断面における気泡の平均気泡径が上記上限値以下であると、上釉層30に入射する光が上釉層30中の気泡で乱反射されることを抑制しやすい。このため、衛生陶器1の「深み」をより向上しやすい。上釉層30の切断面における気泡の平均気泡径の下限値は、2μmとする。
上釉層30の切断面における気泡の平均気泡径(μm)は、上述したマイクロスコープ等を用いて観察される画像において、気泡として検出された部分のそれぞれの面積より真円換算で気泡径(直径)を計算し、気泡径の合計を検出された気泡数で除した平均値である。
The average bubble diameter of the bubbles on the cut surface obtained by cutting the upper glaze layer 30 in the thickness direction (hereinafter, also referred to as “the average bubble diameter of the bubbles on the cut surface of the upper glaze layer 30”) is 50 μm or less, and 40 μm or less. Is preferable, and 30 μm or less is more preferable. When the average bubble diameter of the bubbles on the cut surface of the upper glaze layer 30 is equal to or less than the upper limit, light incident on the upper glaze layer 30 is easily suppressed from being irregularly reflected by the bubbles in the upper glaze layer 30. For this reason, the "depth" of the sanitary ware 1 is more easily improved. The lower limit value of the average bubble diameter of the bubbles on the cut surface of the upper glaze layer 30 is 2 μm.
The average bubble diameter (μm) of the bubbles on the cut surface of the upper glaze layer 30 is calculated from the area of each of the portions detected as bubbles in the image observed using the above-described microscope or the like in terms of a perfect circle in terms of the bubble diameter ( Diameter) is calculated, and the average value is obtained by dividing the total bubble diameter by the number of detected bubbles.

上釉層30を厚さ方向に切断した切断面における気泡数(以下、「上釉層30の切断面における気泡数」ともいう。)は、1mm当たり120個以下が好ましく、100個以下がより好ましく、80個以下がさらに好ましい。上釉層30の切断面における気泡数が上記上限値以下であると、上釉層30に入射する光が上釉層30中の気泡で乱反射されることを抑制しやすい。このため、衛生陶器1の「深み」をより向上しやすい。上釉層30の切断面における気泡数の下限値は、特に限定されないが、通常、1個以上である。
上釉層30の切断面における気泡数(個/mm)は、上述したマイクロスコープ等を用いて観察される画像において検出される気泡の数を、観察される画像における視野面積(mm)で除することにより求められる。
The number of air bubbles in the cut surface obtained by cutting the upper glaze layer 30 in the thickness direction (hereinafter, also referred to as “the number of air bubbles in the cut surface of the upper glaze layer 30”) is preferably 120 or less per 1 mm 2 , and more preferably 100 or less. The number is more preferably 80 or less. When the number of bubbles in the cut surface of the upper glaze layer 30 is equal to or less than the upper limit, light incident on the upper glaze layer 30 is easily suppressed from being irregularly reflected by the bubbles in the upper glaze layer 30. For this reason, the "depth" of the sanitary ware 1 is more easily improved. The lower limit of the number of bubbles on the cut surface of the upper glaze layer 30 is not particularly limited, but is usually one or more.
The number of bubbles (pieces / mm 2 ) on the cut surface of the upper glaze layer 30 is determined by the number of bubbles detected in the image observed using the above-described microscope or the like, and the visual field area (mm 2 ) in the observed image. It is obtained by dividing by

上釉層30の厚さT30は、例えば、100μm以上が好ましく、100〜1000μmがより好ましく、150〜800μmがさらに好ましく、200〜600μmが特に好ましい。厚さT30が上記下限値以上であると、上釉層30の表面を平坦に形成しやすい。厚さT30が上記上限値以下であると、上釉層組成物中の気泡を上釉層30の外部に放出しやすい。 The thickness T30 of the upper glaze layer 30 is, for example, preferably 100 μm or more, more preferably 100 to 1000 μm, further preferably 150 to 800 μm, and particularly preferably 200 to 600 μm. If the thickness T 30 is not less than the above lower limit, tends surface of the upper glaze 30 is formed flat. If the thickness T 30 is less than the above upper limit, it is easy to release the air bubbles above glaze composition outside the top glaze 30.

上釉層30の厚さT30は、例えば、以下の手順で求められる。
衛生陶器1を上釉層30の厚さ方向に小型試料切断機を用いて切断する。切断した切断面をマイクロスコープ(オリンパス(株)製、DSX510)により、倍率125倍で観察する。観察した画像において、上釉層30の表面と、上釉層30と中間層20との境界線(上中境界線)との距離を任意の20か所について測定する。測定した距離の算術平均値を上釉層30の厚さT30とする。
衛生陶器1を切断する部位は特に限定されず、人の目に触れやすい部位が好ましい。人の目に触れやすい部位としては、例えば、洗面器の鉢面、洗面器の天面、小便器の天面、便器のリム部分、便器の鉢面、便器の側面等が挙げられる。
The thickness T30 of the upper glaze layer 30 is determined, for example, by the following procedure.
The sanitary ware 1 is cut in the thickness direction of the upper glaze layer 30 using a small sample cutter. The cut surface is observed with a microscope (DSX510, manufactured by Olympus Corporation) at a magnification of 125 times. In the observed image, the distance between the surface of the upper glaze layer 30 and the boundary (upper-middle boundary) between the upper glaze layer 30 and the intermediate layer 20 is measured at arbitrary 20 points. The arithmetic average value of the measured distance is defined as the thickness T30 of the upper glaze layer 30 .
The site | part which cuts the sanitary ware 1 is not specifically limited, The site | part which a human eye can easily touch is preferable. Examples of the part that can be easily touched by human eyes include a bowl surface of a basin, a ceiling surface of a basin, a ceiling surface of a urinal, a rim portion of a toilet, a bowl surface of a toilet, and a side surface of a toilet.

上釉層30の厚さT30の最大値T30MAXと、上釉層30の厚さT30の最小値T30MINとの差T30Δは、50μm以下であり、40μm以下が好ましく、30μm以下がより好ましい。差T30Δが上記上限値以下であると、上釉層30と中間層20との界面における光の乱反射を抑制しやすい。その結果、衛生陶器1の「深み」をより向上しやすい。差T30Δの下限値は、特に限定されないが、通常、0.1μm以上である。 And the maximum value T 30MAX thickness T 30 of the upper glaze 30, the difference between T 30Deruta between the minimum value T 30MIN thickness T 30 of the upper glaze 30 is 50μm or less, preferably 40μm or less, is 30μm or less More preferred. When the difference T30Δ is equal to or less than the upper limit, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 is easily suppressed. As a result, the “depth” of the sanitary ware 1 is more easily improved. The lower limit of the difference T30Δ is not particularly limited, but is usually 0.1 μm or more.

差T30Δの厚さT30に対する割合(以下、「T30Δ/T30比」ともいう。)は、25%以下が好ましく、20%以下がより好ましく、10%以下がさらに好ましい。T30Δ/T30比が上記上限値以下であると、上釉層30と中間層20との界面における光の乱反射を抑制しやすい。その結果、衛生陶器1の「深み」をより向上しやすい。T30Δ/T30比の下限値は、特に限定されないが、通常、0.01%以上である。 The ratio of the difference T 30Δ to the thickness T 30 (hereinafter, also referred to as “T 30Δ / T 30 ratio”) is preferably 25% or less, more preferably 20% or less, and even more preferably 10% or less. When the T 30Δ / T 30 ratio is equal to or less than the upper limit, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 is easily suppressed. As a result, the “depth” of the sanitary ware 1 is more easily improved. The lower limit of the T 30Δ / T 30 ratio is not particularly limited, but is usually 0.01% or more.

厚さT30の最大値T30MAX厚さT30の最小値T30MINとは、例えば、以下の手順で求められる。
上釉層30の厚さT30を求める手順と同様に、上釉層30の表面と上中境界線との距離を任意の20か所について測定する。測定した20か所のうち、上釉層30の表面と上中境界線との距離が最大となるものを最大値T30MAXとする。測定した20か所のうち、上釉層30の表面と上中境界線との距離が最小となるものを最小値T30MINとする。
And the maximum value T 30MAX thickness T 30, the minimum value T 30MIN thickness T 30, for example, be determined by the following procedure.
Similar to the procedure for obtaining the thickness T 30 of the upper glaze 30, measures the distance between the surface and the top, middle border of the upper glaze 30 for any 20 or plants. Of the 20 measured locations, the one having the largest distance between the surface of the upper glaze layer 30 and the upper middle boundary line is defined as a maximum value T30MAX . Of the 20 places were measured, and what distance between the surface and the top, middle border of the upper glaze 30 is minimized and the minimum value T 30MIN.

差T30Δは、上釉層30と中間層20との界面を平坦に形成することにより制御できる。後述する中間層組成物の溶融開始温度、中間層20を厚さ方向に切断した切断面における平均気泡径、中間層20を厚さ方向に切断した切断面の面積に対する気泡の面積の割合、及びこれらの組合せにより、上釉層30と中間層20との界面の平滑性を制御できる。 The difference T30Δ can be controlled by forming the interface between the upper glaze layer 30 and the intermediate layer 20 flat. The melting start temperature of the intermediate layer composition described below, the average bubble diameter in the cut surface obtained by cutting the intermediate layer 20 in the thickness direction, the ratio of the area of the bubbles to the area of the cut surface obtained by cutting the intermediate layer 20 in the thickness direction, and By these combinations, the smoothness of the interface between the upper glaze layer 30 and the intermediate layer 20 can be controlled.

中間層20は、中間層組成物の焼成物である。中間層20は、陶器素地10と上釉層30との間に位置する釉を含む層である。中間層組成物は、中間層20を形成する原料(中間層原料)が水に分散されたスラリー(泥漿)である。
中間層組成物の総質量に対する水の含有量は、40〜60質量%が好ましく、40〜50質量%がより好ましい。
The intermediate layer 20 is a fired product of the intermediate layer composition. The middle layer 20 is a layer including a glaze located between the ceramic body 10 and the upper glaze layer 30. The intermediate layer composition is a slurry (slurry) in which a raw material (intermediate layer raw material) for forming the intermediate layer 20 is dispersed in water.
The content of water with respect to the total mass of the intermediate layer composition is preferably 40 to 60% by mass, and more preferably 40 to 50% by mass.

中間層組成物に含まれる固形分の平均粒子径は、10μm以下が好ましく、8μm以下がより好ましく、6μm以下がさらに好ましい。中間層組成物に含まれる固形分の平均粒子径が上記上限値以下であると、中間層組成物に含まれる固形分の溶融開始温度を低くしやすい。
中間層組成物に含まれる固形分の平均粒子径の下限値は、特に限定されないが、例えば、0.05μm以上である。
中間層組成物に含まれる固形分の平均粒子径は、例えば、中間層原料を粉砕することにより調整できる。中間層原料を粉砕する道具としては、例えば、ボールミルが挙げられる。
The average particle diameter of the solid component contained in the intermediate layer composition is preferably 10 μm or less, more preferably 8 μm or less, and still more preferably 6 μm or less. When the average particle diameter of the solids contained in the intermediate layer composition is equal to or less than the upper limit, the melting start temperature of the solids contained in the intermediate layer composition is easily lowered.
The lower limit of the average particle diameter of the solid component contained in the intermediate layer composition is not particularly limited, but is, for example, 0.05 μm or more.
The average particle diameter of the solid content contained in the intermediate layer composition can be adjusted, for example, by pulverizing the intermediate layer raw material. As a tool for pulverizing the intermediate layer raw material, for example, a ball mill can be used.

中間層組成物に含まれる固形分の平均粒子径は、上釉層組成物に含まれる固形分の平均粒子径と同様の方法により測定できる。
なお、中間層組成物に含まれる固形分は、中間層組成物の乾燥物である。
The average particle diameter of the solid content contained in the intermediate layer composition can be measured by the same method as the average particle diameter of the solid content contained in the upper glaze layer composition.
The solid content contained in the intermediate layer composition is a dried product of the intermediate layer composition.

中間層組成物としては、中間層組成物に含まれる固形分の総質量に対して、SiOを50〜80質量%、Alを5〜40質量%、NaOとKOとCaOとMgOとZnOとの合計を5〜30質量%含有する組成物が挙げられる。
なお、中間層組成物に含まれる固形分の各成分の含有量の合計は、中間層組成物に含まれる固形分の総質量に対して、100質量%を超えないものとする。
As the intermediate layer composition, 50 to 80% by mass of SiO 2 , 5 to 40% by mass of Al 2 O 3 , Na 2 O and K 2 O are used based on the total mass of the solid content contained in the intermediate layer composition. And a composition containing a total of 5 to 30% by mass of CaO, MgO and ZnO.
The total content of each component of the solid content contained in the intermediate layer composition shall not exceed 100% by mass based on the total mass of the solid content contained in the intermediate layer composition.

中間層組成物の組成としては、NaOとKOとCaOとMgOとZnOとの合計のモル数を1としたときのモル比で、SiOを2〜16モル、Alを0〜5モル含有する組成が好ましい。 The composition of the intermediate layer composition is such that the molar ratio of the total of Na 2 O, K 2 O, CaO, MgO, and ZnO to 1 is 1 to 16 mol of SiO 2 , Al 2 O 3 Is preferably 0 to 5 mol.

中間層組成物は、フリットを含有してもよい。フリットの含有量は、中間層組成物に含まれる固形分の総質量に対して、0〜30質量%が好ましく、0〜20質量%がより好ましい。   The intermediate layer composition may contain a frit. The content of the frit is preferably from 0 to 30% by mass, more preferably from 0 to 20% by mass, based on the total mass of the solid content contained in the intermediate layer composition.

中間層組成物の乾燥物(以下、中間層原料ともいう。)は、陶器素地組成物の乾燥物(以下、陶器素地原料ともいう。)と上釉層組成物の乾燥物(以下、釉原料ともいう。)との混合物であってもよい。
中間層原料が陶器素地原料と釉原料との混合物である場合、陶器素地原料/釉原料で表される質量比(以下、「素地/釉薬比」ともいう。)は、20/80〜80/20が好ましく、30/70〜70/30がより好ましく、40/60〜60/40がさらに好ましい。素地/釉薬比が上記下限値以上であると、陶器素地10と中間層20との結着性を高めやすい。素地/釉薬比が上記上限値以下であると、中間層20と上釉層30との界面を平坦にしやすい。
衛生陶器1の「深み」をより向上する観点から、中間層原料は、陶器素地原料と釉原料との混合物が好ましい。
また、中間層組成物は、陶器素地組成物と上釉層組成物とを上記素地/釉薬比となるように混合した混合物であってもよい。
The dried product of the intermediate layer composition (hereinafter also referred to as “intermediate layer raw material”) is a dried product of the ceramic base material composition (hereinafter also referred to as “porcelain base material”) and a dried product of the upper glaze layer composition (hereinafter referred to as “glaze raw material”). ).
When the intermediate layer raw material is a mixture of the ceramic base material and the glaze raw material, the mass ratio represented by the ceramic base material / glaze raw material (hereinafter, also referred to as “base / glaze ratio”) is 20/80 to 80 /. 20 is preferable, 30/70 to 70/30 is more preferable, and 40/60 to 60/40 is further preferable. When the base / glaze ratio is equal to or more than the lower limit, the binding property between the pottery base 10 and the intermediate layer 20 is easily increased. When the substrate / glaze ratio is equal to or less than the upper limit, the interface between the intermediate layer 20 and the upper glaze layer 30 is easily flattened.
From the viewpoint of further improving the "depth" of the sanitary ware 1, the intermediate layer raw material is preferably a mixture of a ceramic base material and a glaze material.
Further, the intermediate layer composition may be a mixture obtained by mixing the pottery base composition and the upper glaze layer composition so as to have the above-described base / glaze ratio.

中間層組成物は、顔料を含有することが好ましい。中間層組成物が顔料を含有することで、中間層20を着色できる。中間層20を着色することで、陶器素地10の色を隠蔽できる。
顔料としては、ケイ酸ジルコニウム、酸化アルミニウム等が挙げられる。
中間層組成物が顔料を含有する場合、顔料の含有量は、中間層組成物に含まれる固形分の総質量に対して、3〜15質量%が好ましく、6〜15質量%がより好ましい。
The intermediate layer composition preferably contains a pigment. When the intermediate layer composition contains a pigment, the intermediate layer 20 can be colored. By coloring the intermediate layer 20, the color of the pottery substrate 10 can be hidden.
Examples of the pigment include zirconium silicate and aluminum oxide.
When the intermediate layer composition contains a pigment, the content of the pigment is preferably from 3 to 15% by mass, more preferably from 6 to 15% by mass, based on the total mass of the solid content contained in the intermediate layer composition.

中間層組成物の溶融開始温度は、第一溶融温度で規定できる。
中間層組成物の第一溶融温度は、850〜960℃が好ましく、910〜950℃がより好ましく、930〜950℃がさらに好ましい。中間層組成物の第一溶融温度が上記下限値以上であると、中間層組成物を焼成するときの気泡の発生を抑制しやすい。中間層組成物の第一溶融温度が上記上限値以下であると、上釉層30と中間層20との界面を平坦にしやすい。
中間層組成物の第一溶融温度は、上釉層組成物の第一溶融温度と同様の方法で測定できる。
The melting start temperature of the intermediate layer composition can be defined by the first melting temperature.
The first melting temperature of the intermediate layer composition is preferably 850 to 960 ° C, more preferably 910 to 950 ° C, and even more preferably 930 to 950 ° C. When the first melting temperature of the intermediate layer composition is equal to or higher than the lower limit, it is easy to suppress generation of bubbles when firing the intermediate layer composition. When the first melting temperature of the intermediate layer composition is equal to or lower than the upper limit, the interface between the upper glaze layer 30 and the intermediate layer 20 is easily flattened.
The first melting temperature of the intermediate layer composition can be measured in the same manner as the first melting temperature of the upper glaze layer composition.

上釉層組成物の第一溶融温度と中間層組成物の第一溶融温度との温度差(第一温度差)は、10〜120℃が好ましく、30〜115℃がより好ましく、60〜110℃がさらに好ましい。第一温度差が上記数値範囲内であると、上釉層30と中間層20との界面を平坦にしやすい。その結果、上釉層30と中間層20との界面における光の乱反射を抑制でき、衛生陶器1の「深み」をより向上しやすい。   The temperature difference (first temperature difference) between the first melting temperature of the upper glaze layer composition and the first melting temperature of the intermediate layer composition is preferably 10 to 120 ° C, more preferably 30 to 115 ° C, and 60 to 110 ° C. C is more preferred. When the first temperature difference is within the above numerical range, the interface between the upper glaze layer 30 and the intermediate layer 20 is easily flattened. As a result, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 can be suppressed, and the “depth” of the sanitary ware 1 can be more easily improved.

中間層組成物の第二溶融温度は、1090〜1230℃が好ましく、1095〜1225℃がより好ましく、1100〜1220℃がさらに好ましい。中間層組成物の第二溶融温度が上記下限値以上であると、中間層組成物を焼成するときの気泡の発生を抑制しやすい。中間層組成物の第二溶融温度が上記上限値以下であると、上釉層30と中間層20との界面を平坦にしやすい。
中間層組成物の第二溶融温度は、上釉層組成物の第二溶融温度と同様の方法で測定できる。
The second melting temperature of the intermediate layer composition is preferably from 1900 to 1230 ° C, more preferably from 1095 to 1225 ° C, and still more preferably from 1100 to 1220 ° C. When the second melting temperature of the intermediate layer composition is equal to or higher than the lower limit, it is easy to suppress generation of bubbles when firing the intermediate layer composition. When the second melting temperature of the intermediate layer composition is equal to or lower than the upper limit, the interface between the upper glaze layer 30 and the intermediate layer 20 is easily flattened.
The second melting temperature of the intermediate layer composition can be measured in the same manner as the second melting temperature of the upper glaze layer composition.

上釉層組成物の第二溶融温度と中間層組成物の第二溶融温度との温度差(第二温度差)は、10〜330℃が好ましく、100〜325℃がより好ましく、200〜320℃がさらに好ましい。第二温度差が上記数値範囲内であると、上釉層30と中間層20との界面を平坦にしやすい。その結果、上釉層30と中間層20との界面における光の乱反射を抑制でき、衛生陶器1の「深み」をより向上しやすい。   The temperature difference (second temperature difference) between the second melting temperature of the upper glaze layer composition and the second melting temperature of the intermediate layer composition is preferably from 10 to 330 ° C, more preferably from 100 to 325 ° C, and from 200 to 320 ° C. C is more preferred. When the second temperature difference is within the above numerical range, the interface between the upper glaze layer 30 and the intermediate layer 20 is easily flattened. As a result, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 can be suppressed, and the “depth” of the sanitary ware 1 can be more easily improved.

中間層組成物の第二溶融温度と第一溶融温度との差(中間層溶融温度差)は、50〜300℃が好ましく、100〜300℃がより好ましく、230〜300℃がさらに好ましい。中間層溶融温度差が上記下限値以上であると、中間層組成物を焼成するときに発生する気泡の平均気泡径を小さくしやすい。中間層溶融温度差が上記上限値以下であると、中間層組成物を焼成するときの気泡の発生を抑制しやすい。
中間層溶融温度差は、中間層組成物の第二溶融温度から、中間層組成物の第一溶融温度を減じることにより求められる。
The difference (intermediate layer melting temperature difference) between the second melting temperature and the first melting temperature of the intermediate layer composition is preferably 50 to 300 ° C, more preferably 100 to 300 ° C, and even more preferably 230 to 300 ° C. When the intermediate layer melting temperature difference is equal to or more than the lower limit, the average bubble diameter of the bubbles generated when the intermediate layer composition is fired is easily reduced. When the intermediate layer melting temperature difference is equal to or less than the above upper limit, it is easy to suppress generation of bubbles when firing the intermediate layer composition.
The intermediate layer melting temperature difference is determined by subtracting the first melting temperature of the intermediate layer composition from the second melting temperature of the intermediate layer composition.

中間層組成物の第一溶融温度は、中間層原料の種類、中間層原料の配合割合、中間層組成物の固形分の平均粒子径、及びこれらの組合せにより調整できる。
中間層組成物の第二溶融温度は、中間層組成物の第一溶融温度と同様に調整できる。
The first melting temperature of the intermediate layer composition can be adjusted by the type of the intermediate layer raw material, the mixing ratio of the intermediate layer raw material, the average particle diameter of the solid content of the intermediate layer composition, and a combination thereof.
The second melting temperature of the intermediate layer composition can be adjusted similarly to the first melting temperature of the intermediate layer composition.

中間層20を備える衛生陶器1から中間層20の溶融開始温度を求める場合、第一溶融温度、第二溶融温度は、中間層20の粉末を試料粉末として、上記測定方法2−1と同様の方法により測定される。
中間層20の粉末は、中間層20を適宜切り出し、研磨等することにより得られる。
中間層20の第一溶融温度は、中間層組成物の第一溶融温度と同様である。
中間層20の第二溶融温度は、中間層組成物の第二溶融温度と同様である。
中間層20の第二溶融温度と第一溶融温度との差は、中間層組成物の第二溶融温度と第一溶融温度との差(中間層溶融温度差)と同様である。
When obtaining the melting start temperature of the intermediate layer 20 from the sanitary ware 1 including the intermediate layer 20, the first melting temperature and the second melting temperature are the same as those in the above-described measurement method 2-1 using the powder of the intermediate layer 20 as the sample powder. Measured by the method.
The powder of the intermediate layer 20 is obtained by appropriately cutting out the intermediate layer 20 and polishing the same.
The first melting temperature of the intermediate layer 20 is the same as the first melting temperature of the intermediate layer composition.
The second melting temperature of the intermediate layer 20 is the same as the second melting temperature of the intermediate layer composition.
The difference between the second melting temperature and the first melting temperature of the intermediate layer 20 is the same as the difference between the second melting temperature and the first melting temperature of the intermediate layer composition (intermediate layer melting temperature difference).

中間層20を厚さ方向に切断した切断面の面積に対する気泡の面積の割合(以下、「中間層20の気泡面積率」ともいう。)は、20%以下が好ましく、15%以下がより好ましく、12%以下がさらに好ましい。中間層20の気泡面積率が上記上限値以下であると、上釉層30に入射する光が中間層20中の気泡で乱反射されることを抑制しやすい。その結果、上釉層30と中間層20との界面における光の乱反射を抑制でき、衛生陶器1の「深み」をより向上しやすい。中間層20の気泡面積率の下限値は、特に限定されないが、通常、1.0%以上である。
中間層20の気泡面積率は、上釉層30の気泡面積率と同様の方法により求められる。
The ratio of the area of the bubbles to the area of the cut surface obtained by cutting the intermediate layer 20 in the thickness direction (hereinafter, also referred to as “the bubble area ratio of the intermediate layer 20”) is preferably 20% or less, more preferably 15% or less. , 12% or less is more preferable. When the bubble area ratio of the intermediate layer 20 is equal to or less than the upper limit, light incident on the upper glaze layer 30 is easily suppressed from being irregularly reflected by bubbles in the intermediate layer 20. As a result, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 can be suppressed, and the “depth” of the sanitary ware 1 can be more easily improved. The lower limit of the bubble area ratio of the intermediate layer 20 is not particularly limited, but is usually 1.0% or more.
The bubble area ratio of the intermediate layer 20 is obtained by the same method as the bubble area ratio of the upper glaze layer 30.

中間層20を厚さ方向に切断した切断面における気泡の平均気泡径(以下、「中間層20の切断面における気泡の平均気泡径」ともいう。)は、25μm以下が好ましく、20μm以下がより好ましく、15μm以下がさらに好ましい。中間層20の切断面における気泡の平均気泡径が上記上限値以下であると、上釉層30に入射する光が中間層20中の気泡で乱反射されることを抑制しやすい。その結果、上釉層30と中間層20との界面における光の乱反射を抑制でき、衛生陶器1の「深み」をより向上しやすい。中間層20の切断面における気泡の平均気泡径の下限値は、2μmとする。
中間層20の切断面における気泡の平均気泡径は、上釉層30の切断面における気泡の平均気泡径と同様の方法により求められる。
The average bubble diameter of the bubbles on the cut surface obtained by cutting the intermediate layer 20 in the thickness direction (hereinafter, also referred to as the “average bubble diameter of the bubbles on the cut surface of the intermediate layer 20”) is preferably 25 μm or less, more preferably 20 μm or less. It is more preferably 15 μm or less. When the average bubble diameter of the bubbles on the cut surface of the intermediate layer 20 is equal to or less than the upper limit, light incident on the upper glaze layer 30 is easily suppressed from being irregularly reflected by the bubbles in the intermediate layer 20. As a result, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 can be suppressed, and the “depth” of the sanitary ware 1 can be more easily improved. The lower limit of the average bubble diameter of the bubbles on the cut surface of the intermediate layer 20 is 2 μm.
The average bubble diameter of the bubbles on the cut surface of the intermediate layer 20 is determined by the same method as the average bubble diameter of the bubbles on the cut surface of the upper glaze layer 30.

中間層20を厚さ方向に切断した切断面における気泡数(以下、「中間層20の切断面における気泡数」ともいう。)は、1mm当たり1000個以下が好ましく、700個以下がより好ましく、500個以下がさらに好ましい。中間層20の切断面における気泡数が上記上限値以下であると、上釉層30に入射する光が中間層20中の気泡で乱反射されることを抑制しやすい。その結果、上釉層30と中間層20との界面における光の乱反射を抑制でき、衛生陶器1の「深み」をより向上しやすい。中間層20の切断面における気泡数の下限値は、特に限定されないが、通常、1個以上である。
中間層20の切断面における気泡数は、上釉層30の切断面における気泡数と同様の方法により計数できる。
The number of bubbles on the cut surface obtained by cutting the intermediate layer 20 in the thickness direction (hereinafter, also referred to as “the number of bubbles on the cut surface of the intermediate layer 20”) is preferably 1,000 or less per mm 2 , more preferably 700 or less. , 500 or less is more preferable. When the number of bubbles on the cut surface of the intermediate layer 20 is equal to or less than the upper limit, light incident on the upper glaze layer 30 is easily suppressed from being irregularly reflected by the bubbles in the intermediate layer 20. As a result, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 can be suppressed, and the “depth” of the sanitary ware 1 can be more easily improved. The lower limit of the number of bubbles on the cut surface of the intermediate layer 20 is not particularly limited, but is usually one or more.
The number of bubbles on the cut surface of the intermediate layer 20 can be counted by the same method as the number of bubbles on the cut surface of the upper glaze layer 30.

中間層20の厚さT20は、例えば、200μm以上が好ましく、200〜1000μmがより好ましく、250〜800μmがさらに好ましく、300〜600μmが特に好ましい。厚さT20が上記下限値以上であると、中間層20と上釉層30との界面を平坦にしやすい。厚さT20が上記上限値以下であると、中間層組成物中の気泡を中間層20の外部に放出しやすい。 The thickness T 20 of the intermediate layer 20 is, for example, is preferably at least 200 [mu] m, more preferably 200 to 1,000, more preferably 250~800μm, 300~600μm is particularly preferred. If the thickness T 20 is not less than the above lower limit, tends to flatten the interface between the intermediate layer 20 and the upper glaze 30. If the thickness T 20 is less than the above upper limit, it is easy to release the air bubbles in the intermediate layer composition to the outside of the intermediate layer 20.

中間層20の厚さT20は、例えば、以下の手順で求められる。
衛生陶器1を中間層20の厚さ方向に小型試料切断機を用いて切断する。切断した切断面をマイクロスコープ(オリンパス(株)製、DSX510)により、倍率125倍で観察する。観察した画像において、上釉層30と中間層20との境界線(上中境界線)と、中間層20と陶器素地10との境界線(中素境界線)との距離を任意の20か所について測定する。測定した距離の算術平均値を中間層20の厚さT20とする。
The thickness T 20 of the intermediate layer 20, for example, be determined by the following procedure.
The sanitary ware 1 is cut in the thickness direction of the intermediate layer 20 using a small sample cutting machine. The cut surface is observed with a microscope (DSX510, manufactured by Olympus Corporation) at a magnification of 125 times. In the observed image, the distance between the boundary line between the upper glaze layer 30 and the intermediate layer 20 (upper middle boundary line) and the boundary line between the intermediate layer 20 and the pottery base material 10 (center boundary line) is an arbitrary distance. Measure the location. The arithmetic mean value of the measured distance and the thickness T 20 of the intermediate layer 20.

中間層20の厚さT20の最大値T20MAXと、中間層20の厚さT20の最小値T20MINとの差T20Δは、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。差T20Δが上記上限値以下であると、上釉層30と中間層20との界面における光の乱反射を抑制しやすい。その結果、衛生陶器1の「深み」をより向上しやすい。差T20Δの下限値は、特に限定されないが、通常、0.1μm以上である。 And the maximum value T 20MAX thickness T 20 of the intermediate layer 20, the difference T 20Deruta minimum value of the T 20min thickness T 20 of the intermediate layer 20 is preferably 50μm or less, more preferably 40μm or less, still is 30μm or less preferable. When the difference T20Δ is equal to or less than the upper limit, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 is easily suppressed. As a result, the “depth” of the sanitary ware 1 is more easily improved. The lower limit of the difference T20Δ is not particularly limited, but is usually 0.1 μm or more.

差T20Δの厚さT20に対する割合(以下、「T20Δ/T20比」ともいう。)は、25%以下が好ましく、20%以下がより好ましく、10%以下がさらに好ましい。T20Δ/T20比が上記上限値以下であると、上釉層30と中間層20との界面における光の乱反射を抑制しやすい。その結果、衛生陶器1の「深み」をより向上しやすい。T20Δ/T20比の下限値は、特に限定されないが、通常、0.01%以上である。 The ratio of the difference T 20Δ to the thickness T 20 (hereinafter, also referred to as “T 20Δ / T 20 ratio”) is preferably 25% or less, more preferably 20% or less, and even more preferably 10% or less. When the T 20Δ / T 20 ratio is equal to or less than the upper limit, irregular reflection of light at the interface between the upper glaze layer 30 and the intermediate layer 20 is easily suppressed. As a result, the “depth” of the sanitary ware 1 is more easily improved. The lower limit of the T 20Δ / T 20 ratio is not particularly limited, but is usually 0.01% or more.

厚さT20の最大値T20MAX厚さT20の最小値T20MINとは、例えば、以下の手順で求められる。
中間層20の厚さT20を求める手順と同様に、上中境界線と中素境界線との距離を任意の20か所について測定する。測定した20か所のうち、上中境界線と中素境界線との距離が最大となるものを最大値T20MAXとする。測定した20か所のうち、上中境界線と中素境界線との距離が最小となるものを最小値T20MINとする。
And the maximum value T 20MAX thickness T 20, the minimum value T 20min thickness T 20, for example, be determined by the following procedure.
Similar to the procedure for obtaining the thickness T 20 of the intermediate layer 20, to measure the distance between the upper, middle border and Chumoto boundaries for any 20 or plants. Of the 20 measured locations, the one having the largest distance between the upper middle boundary line and the middle element boundary line is defined as the maximum value T20MAX . Of the 20 locations measured, the one that minimizes the distance between the upper middle boundary line and the middle boundary line is defined as the minimum value T20MIN .

[衛生陶器の製造方法]
次に、本実施形態の衛生陶器1の製造方法について説明する。
まず、陶器素地10を用意する。陶器素地10は、陶器素地組成物を成形したもの以外に、焼成して成形したものでもよく、予め成形された、又は成形して焼成された市販品であってもよい。
陶器素地組成物を焼成する場合、焼成温度は、例えば、1100〜1300℃が好ましく、1150〜1250℃がより好ましい。焼成温度が上記下限値以上であると、陶器素地10の強度を高めやすい。焼成温度が上記上限値以下であると、陶器素地10の変形を抑制しやすい。
[Manufacturing method of sanitary ware]
Next, a method for manufacturing the sanitary ware 1 of the present embodiment will be described.
First, the pottery substrate 10 is prepared. The pottery substrate 10 may be a product obtained by firing and molding other than the product obtained by molding the pottery substrate composition, or may be a pre-formed or molded and fired commercial product.
When firing the ceramic body composition, the firing temperature is preferably, for example, 1100 to 1300C, and more preferably 1150 to 1250C. When the firing temperature is equal to or higher than the lower limit, the strength of the ceramic body 10 is easily increased. When the firing temperature is equal to or lower than the upper limit, the deformation of the ceramic body 10 is easily suppressed.

次に、中間層組成物を陶器素地10の表面に塗布する。中間層組成物を陶器素地10の表面に塗布する方法は、特に限定されず、浸し掛け、流し掛け、吹き掛け、塗り掛け等、一般的な方法を適宜選択できる。中間層20の厚さを確保する観点から、中間層組成物を陶器素地10の表面に塗布する方法は、浸し掛け、流し掛け、塗り掛け、又は吹き掛けのうちのいずれかが好ましい。中間層20の厚さを均一にしやすい観点から、中間層組成物を陶器素地10の表面に塗布する方法は、吹き掛けが好ましい。
浸し掛けとしては、ディップコーティング法が挙げられる。吹き掛けとしては、スプレーコーティング法が挙げられる。
Next, the intermediate layer composition is applied to the surface of the ceramic body 10. The method of applying the intermediate layer composition to the surface of the pottery substrate 10 is not particularly limited, and a general method such as dipping, pouring, spraying, or painting can be appropriately selected. From the viewpoint of ensuring the thickness of the intermediate layer 20, the method of applying the intermediate layer composition to the surface of the ceramic body 10 is preferably one of dipping, pouring, painting, or spraying. From the viewpoint of making the thickness of the intermediate layer 20 uniform, it is preferable to spray the intermediate layer composition on the surface of the ceramic body 10.
The dip coating method includes a dip coating method. Spraying includes a spray coating method.

中間層組成物の塗布量は、特に限定されず、焼成後の中間層20の厚さを200μm以上にできるように調整することが好ましい。中間層組成物の塗布量は、中間層組成物の水の含有量、中間層組成物の粘度、中間層組成物に含まれる固形分の平均粒子径等を適宜調整することにより調整できる。
中間層組成物を陶器素地10の表面に塗布することにより、一次塗布体が得られる。
The application amount of the intermediate layer composition is not particularly limited, and is preferably adjusted so that the thickness of the intermediate layer 20 after firing can be 200 μm or more. The application amount of the intermediate layer composition can be adjusted by appropriately adjusting the water content of the intermediate layer composition, the viscosity of the intermediate layer composition, the average particle diameter of the solid content contained in the intermediate layer composition, and the like.
By applying the intermediate layer composition to the surface of the pottery substrate 10, a primary coated body is obtained.

一次塗布体を乾燥することにより、一次塗布体の表面に上釉層組成物を塗布しやすくなる。このため、一次塗布体は、乾燥することが好ましい。
一次塗布体を乾燥する際の温度は、20〜110℃が好ましく、30〜100℃がより好ましく、40〜90℃がさらに好ましい。一次塗布体を乾燥する際の温度が上記下限値以上であると、中間層組成物の水の含有量を低減しやすい。一次塗布体を乾燥する際の温度が上記上限値以下であると、中間層20の表面を平坦にしやすい。
一次塗布体を乾燥する時間は、0.5〜48時間が好ましい。一次塗布体を乾燥する時間が上記下限値以上であると、中間層組成物を充分に乾燥しやすい。一次塗布体を乾燥する時間が上記上限値以下であると、衛生陶器1の生産性を向上しやすい。
By drying the primary coating, the upper glaze layer composition can be easily applied to the surface of the primary coating. For this reason, it is preferable that the primary application body is dried.
The temperature at the time of drying the primary coating body is preferably from 20 to 110 ° C, more preferably from 30 to 100 ° C, and still more preferably from 40 to 90 ° C. When the temperature at which the primary coated body is dried is equal to or higher than the lower limit, the water content of the intermediate layer composition is easily reduced. When the temperature at the time of drying the primary coated body is equal to or lower than the upper limit, the surface of the intermediate layer 20 is easily flattened.
The time for drying the primary coated body is preferably 0.5 to 48 hours. When the time for drying the primary coated body is not less than the above lower limit, the intermediate layer composition is easily dried sufficiently. When the time for drying the primary application body is equal to or less than the upper limit, the productivity of the sanitary ware 1 is easily improved.

次に、一次塗布体の表面に上釉層組成物を塗布する。上釉層組成物を塗布する方法は、上釉層30の厚さを調整しやすくする観点から、吹き掛け(スプレー掛け)が好ましい。   Next, the upper glaze layer composition is applied to the surface of the primary application body. The method of applying the upper glaze layer composition is preferably spraying (spraying) from the viewpoint of easily adjusting the thickness of the upper glaze layer 30.

上釉層組成物の塗布量は、特に限定されず、焼成後の上釉層30の厚さを100μm以上にできるように調整することが好ましい。上釉層組成物の塗布量は、上釉層組成物の水の含有量、上釉層組成物の粘度、上釉層組成物に含まれる固形分の平均粒子径等を適宜調整することにより調整できる。
上釉層組成物を一次塗布体の表面に塗布することにより、二次塗布体が得られる。
The application amount of the upper glaze layer composition is not particularly limited, and is preferably adjusted so that the thickness of the upper glaze layer 30 after firing can be made 100 μm or more. The coating amount of the upper glaze layer composition is determined by appropriately adjusting the water content of the upper glaze layer composition, the viscosity of the upper glaze layer composition, the average particle diameter of the solid content contained in the upper glaze layer composition, and the like. Can be adjusted.
By applying the upper glaze layer composition to the surface of the primary coating, a secondary coating is obtained.

次に、二次塗布体を焼成する。二次塗布体を焼成する際の焼成温度としては、陶器素地10が焼結し、かつ、中間層組成物と上釉層組成物とが軟化する温度が好ましい。二次塗布体を焼成する際の焼成温度は、例えば、1100〜1300℃が好ましく、1150〜1250℃がより好ましい。二次塗布体を焼成する際の焼成温度が上記下限値以上であると、上釉層組成物を充分に溶融しやすい。加えて、二次塗布体を焼成する際の焼成温度が上記下限値以上であると、中間層組成物を充分に溶融しやすい。二次塗布体を焼成する際の焼成温度が上記上限値以下であると、上釉層30の表面を平坦に形成しやすい。加えて、二次塗布体を焼成する際の焼成温度が上記上限値以下であると、中間層20と上釉層30との界面を平坦にしやすい。   Next, the secondary coated body is fired. The firing temperature at the time of firing the secondary coated body is preferably a temperature at which the ceramic body 10 is sintered and the intermediate layer composition and the upper glaze layer composition are softened. The firing temperature at the time of firing the secondary coating body is, for example, preferably from 1100 to 1300 ° C, and more preferably from 1150 to 1250 ° C. When the firing temperature at the time of firing the secondary coating body is equal to or higher than the lower limit, the upper glaze layer composition is easily melted sufficiently. In addition, when the firing temperature at the time of firing the secondary coating body is equal to or higher than the lower limit, the intermediate layer composition is easily melted sufficiently. When the firing temperature at the time of firing the secondary coating body is equal to or lower than the upper limit, the surface of the upper glaze layer 30 is easily formed flat. In addition, if the firing temperature at the time of firing the secondary coated body is equal to or lower than the upper limit, the interface between the intermediate layer 20 and the upper glaze layer 30 is easily flattened.

二次塗布体を焼成する焼成時間は、1〜168時間が好ましく、2〜72時間がより好ましく、3〜24時間がさらに好ましい。二次塗布体を焼成する焼成時間が上記下限値以上であると、上釉層30の表面を平坦に形成しやすい。加えて、二次塗布体を焼成する焼成時間が上記下限値以上であると、中間層20と上釉層30との界面を平坦にしやすい。二次塗布体を焼成する焼成時間が上記上限値以下であると、衛生陶器1の生産性を向上しやすい。   The firing time for firing the secondary coating body is preferably 1 to 168 hours, more preferably 2 to 72 hours, and still more preferably 3 to 24 hours. If the baking time for baking the secondary coating body is equal to or longer than the lower limit, the surface of the upper glaze layer 30 is easily formed flat. In addition, when the firing time for firing the secondary coating body is equal to or longer than the lower limit, the interface between the intermediate layer 20 and the upper glaze layer 30 is easily flattened. When the sintering time for sintering the secondary application body is equal to or less than the above upper limit, the productivity of the sanitary ware 1 is easily improved.

二次塗布体を焼成することにより、焼成品が得られる。焼成品は、冷却することにより、衛生陶器1となる。衛生陶器1は、焼成品を自然放冷することにより得てもよく、送風する等、冷却することにより得てもよい。
焼成品を冷却する際の温度域は、800〜1300℃が好ましく、900〜1250℃がより好ましい。焼成品を冷却する際の温度域が上記下限値以上であると、気泡を上釉層30の外部に放出しやすい。焼成品を冷却する際の温度域が上記上限値以下であると、上釉層30の表面を平坦に形成しやすい。
焼成品を冷却する際の降温速度は、30℃/分以下が好ましく、10℃/分以下がより好ましく、0.1℃/分以下がさらに好ましい。焼成品を冷却する際の降温速度が上記上限値以下であると、気泡を上釉層30の外部に放出しやすい。加えて、焼成品を冷却する際の降温速度が上記上限値以下であると、上釉層30の表面を平坦に形成しやすい。
By firing the secondary coating, a fired product is obtained. The fired product becomes the sanitary ware 1 by cooling. The sanitary ware 1 may be obtained by naturally cooling a fired product, or may be obtained by cooling such as blowing.
The temperature range for cooling the calcined product is preferably from 800 to 1300C, more preferably from 900 to 1250C. When the temperature range for cooling the fired product is equal to or higher than the lower limit, bubbles are easily released to the outside of the upper glaze layer 30. When the temperature range for cooling the fired product is equal to or less than the upper limit, the surface of the upper glaze layer 30 is easily formed flat.
The cooling rate when cooling the fired product is preferably 30 ° C./min or less, more preferably 10 ° C./min or less, and even more preferably 0.1 ° C./min or less. When the temperature decreasing rate at the time of cooling the fired product is equal to or lower than the upper limit, bubbles are easily released to the outside of the upper glaze layer 30. In addition, when the rate of temperature decrease when cooling the fired product is equal to or lower than the upper limit, the surface of the upper glaze layer 30 is easily formed flat.

衛生陶器1は、中間層組成物を陶器素地10の表面に、浸し掛け、流し掛け、塗り掛け、又は吹き掛けのいずれかにより塗布した後焼成して一次焼成体を得(第一焼成工程)、前記一次焼成体に上釉層組成物を塗布して焼成すること(第二焼成工程)によって得てもよい。   The sanitary ware 1 is applied with any of the intermediate layer composition on the surface of the pottery substrate 10 by dipping, pouring, painting, or spraying, and then fired to obtain a primary fired body (first firing step). Alternatively, it may be obtained by applying an upper glaze layer composition to the primary fired body and firing it (second firing step).

第一焼成工程の焼成温度は、800〜1000℃が好ましく、850〜950℃がより好ましい。第一焼成工程の焼成温度が上記下限値以上であると、中間層組成物を充分に溶融しやすい。加えて、陶器素地10、中間層20のガス抜きがされ、上釉層30への気泡の混入を抑制しやすい。第一焼成工程の焼成温度が上記上限値以下であると、中間層20の表面を平坦に形成しやすく、上釉層組成物との密着性を向上しやすい。
第一焼成工程の焼成時間は、1〜168時間が好ましく、2〜72時間がより好ましく、3〜24時間がさらに好ましい。第一焼成工程の焼成時間が上記下限値以上であると、中間層20の表面を平坦に形成しやすい。加えて、陶器素地10、中間層20のガス抜きがされ、上釉層30への気泡の混入を抑制しやすい。第一焼成工程の焼成時間が上記上限値以下であると、衛生陶器1の生産性を向上しやすい。
一次塗布体を焼成することにより一次焼成体が得られる。
The firing temperature in the first firing step is preferably from 800 to 1000C, more preferably from 850 to 950C. When the firing temperature in the first firing step is equal to or higher than the above lower limit, the intermediate layer composition is easily melted sufficiently. In addition, the ceramic body 10 and the middle layer 20 are degassed, and it is easy to suppress air bubbles from entering the upper glaze layer 30. When the firing temperature in the first firing step is equal to or lower than the upper limit, the surface of the intermediate layer 20 is easily formed flat, and the adhesion to the upper glaze layer composition is easily improved.
The firing time in the first firing step is preferably 1 to 168 hours, more preferably 2 to 72 hours, and still more preferably 3 to 24 hours. When the firing time of the first firing step is equal to or longer than the lower limit, the surface of the intermediate layer 20 is easily formed flat. In addition, the ceramic body 10 and the middle layer 20 are degassed, and it is easy to suppress air bubbles from entering the upper glaze layer 30. When the firing time of the first firing step is equal to or less than the upper limit, the productivity of the sanitary ware 1 is easily improved.
By firing the primary applied body, a primary fired body is obtained.

一次焼成体は、上釉層組成物を塗布する前に冷却することが好ましい。一次焼成体を冷却する際の温度は、800〜1000℃が好ましく、850〜950℃がより好ましい。一次焼成体を冷却する際の温度が上記下限値以上であると、気泡を中間層20の外部に放出しやすい。一次焼成体を冷却する際の温度が上記上限値以下であると、中間層20の表面を平坦に形成しやすい。
一次焼成体を冷却する際の降温速度は、30℃/分以下が好ましく、10℃/分以下がより好ましい。一次焼成体を冷却する際の降温速度が上記上限値以下であると、気泡を中間層20の外部に放出しやすい。加えて、一次焼成体を冷却する際の降温速度が上記上限値以下であると、中間層20の表面を平坦に形成しやすい。
The primary fired body is preferably cooled before applying the upper glaze layer composition. The temperature at the time of cooling the primary fired body is preferably from 800 to 1000C, more preferably from 850 to 950C. When the temperature at which the primary fired body is cooled is equal to or higher than the lower limit, bubbles are easily released to the outside of the intermediate layer 20. When the temperature at which the primary fired body is cooled is equal to or lower than the upper limit, the surface of the intermediate layer 20 is easily formed flat.
The cooling rate of the primary fired body is preferably 30 ° C./min or less, more preferably 10 ° C./min or less. When the rate of temperature decrease when cooling the primary fired body is equal to or lower than the upper limit, bubbles are easily released to the outside of the intermediate layer 20. In addition, when the rate of temperature decrease when cooling the primary fired body is equal to or lower than the upper limit, the surface of the intermediate layer 20 is easily formed flat.

次に、一次焼成体の表面に上釉層組成物を塗布する。一次焼成体の表面に上釉層組成物を塗布する方法は、上釉層30の厚さを調整しやすくする観点から、吹き掛け(スプレー掛け)が好ましい。
一次焼成体の表面に上釉層組成物を塗布する際の塗布量は、一次塗布体の表面に上釉層組成物を塗布する際の塗布量と同様である。
上釉層組成物を一次焼成体の表面に塗布することにより、二次塗布体が得られる。
Next, the upper glaze layer composition is applied to the surface of the primary fired body. As a method of applying the upper glaze layer composition to the surface of the primary fired body, spraying (spraying) is preferable from the viewpoint of easily adjusting the thickness of the upper glaze layer 30.
The application amount when applying the upper glaze layer composition to the surface of the primary fired body is the same as the application amount when applying the upper glaze layer composition to the surface of the primary application body.
By applying the upper glaze layer composition to the surface of the primary fired body, a secondary coated body is obtained.

次に、二次塗布体を焼成する(第二焼成工程)。第二焼成工程の焼成温度は、1100〜1300℃が好ましく、1150〜1250℃がより好ましい。第二焼成工程の焼成温度が上記下限値以上であると、上釉層組成物を充分に溶融しやすい。第二焼成工程の焼成温度が上記上限値以下であると、上釉層30の表面を平坦に形成しやすい。
第二焼成工程の焼成時間は、1〜168時間が好ましく、2〜72時間がより好ましく、3〜24時間がさらに好ましい。第二焼成工程の焼成時間が上記下限値以上であると、上釉層30の表面を平坦に形成しやすい。第二焼成工程の焼成時間が上記上限値以下であると、衛生陶器1の生産性を向上しやすい。
第二焼成工程により焼成品が得られる。焼成品は、冷却することにより、衛生陶器1となる。焼成品を冷却する際の温度は、上述した焼成品を冷却する際の温度と同様である。焼成品を冷却する際の降温速度は、上述した焼成品を冷却する際の降温速度と同様である。
Next, the secondary coated body is fired (second firing step). The firing temperature in the second firing step is preferably from 1100 to 1300 ° C, more preferably from 1150 to 1250 ° C. When the firing temperature in the second firing step is equal to or higher than the above lower limit, the upper glaze layer composition is easily melted sufficiently. When the firing temperature in the second firing step is equal to or lower than the upper limit, the surface of the upper glaze layer 30 is easily formed flat.
The firing time in the second firing step is preferably 1 to 168 hours, more preferably 2 to 72 hours, and still more preferably 3 to 24 hours. When the baking time of the second baking step is equal to or longer than the lower limit, the surface of the upper glaze layer 30 is easily formed flat. When the firing time of the second firing step is equal to or less than the upper limit, the productivity of the sanitary ware 1 is easily improved.
A fired product is obtained by the second firing step. The fired product becomes the sanitary ware 1 by cooling. The temperature for cooling the fired product is the same as the temperature for cooling the fired product described above. The temperature lowering rate when cooling the fired product is the same as the above-described temperature lowering rate when cooling the fired product.

一次焼成体を経由して衛生陶器1を得ることにより、中間層20と上釉層30との界面をより平坦に形成しやすい。また、中間層20及び上釉層30に含まれる気泡の数を減らしやすい。このため、衛生陶器1の「深み」をより向上しやすい。
衛生陶器1の「深み」をより向上しやすい観点から、本発明の衛生陶器の製造方法は、一次焼成体を経由して衛生陶器1を得ることが好ましい。
By obtaining the sanitary ware 1 via the primary fired body, the interface between the intermediate layer 20 and the upper glaze layer 30 can be more easily formed. Further, the number of bubbles contained in the intermediate layer 20 and the upper glaze layer 30 can be easily reduced. For this reason, the "depth" of the sanitary ware 1 is more easily improved.
From the viewpoint that the "depth" of the sanitary ware 1 is more easily improved, it is preferable that the sanitary ware manufacturing method of the present invention obtain the sanitary ware 1 via a primary fired body.

以上、本発明の実施の形態について図面を参照して詳細に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。また、上記の実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to the above embodiments, and can be appropriately changed without departing from the spirit of the present invention. . Further, it is possible to appropriately replace the components in the above-described embodiment with known components.

上述した実施形態では、衛生陶器1は、陶器素地10と中間層20と上釉層30とを備える。しかしながら、本発明は上述した実施形態に限定されず、例えば、衛生陶器は、中間層を有していなくてもよい。すなわち、衛生陶器は、陶器素地の表面に上釉層(釉薬層)を備える形態であってもよい。また、上釉層30と中間層20の間に他の釉薬層を有していても良く、釉薬層は、複数層になってもよい。すなわち、衛生陶器は、陶器素地の表面に、中間層、次いで、単層又は複層の釉薬層、さらにその上に、上釉層(釉薬層)を備える形態であってもよい。
衛生陶器の「深み」をより向上しやすい観点から、衛生陶器は、中間層を備えることが好ましい。
なお、衛生陶器が中間層を有していない場合、上釉層(釉薬層)の厚さは、例えば、以下の手順で求められる。
衛生陶器を上釉層の厚さ方向に小型試料切断機を用いて切断する。切断した切断面をマイクロスコープ(オリンパス(株)製、DSX510)により、倍率125倍で観察する。観察した画像において、上釉層の表面と、上釉層と陶器素地との境界線(上素境界線)との距離を任意の20か所について測定する。測定した距離の算術平均値を上釉層の厚さとする。
In the embodiment described above, the sanitary ware 1 includes the pottery base material 10, the intermediate layer 20, and the upper glaze layer 30. However, the present invention is not limited to the embodiments described above. For example, sanitary ware may not have an intermediate layer. That is, the sanitary ware may have a form in which an upper glaze layer (glaze layer) is provided on the surface of the ceramic body. Further, another glaze layer may be provided between the upper glaze layer 30 and the intermediate layer 20, and the glaze layer may be a plurality of layers. That is, the sanitary ware may have a form in which an intermediate layer, a single-layer or multiple-layer glaze layer, and a further upper glaze layer (glaze layer) are further provided on the surface of the ceramic body.
From the viewpoint that the “depth” of the sanitary ware is more easily improved, the sanitary ware preferably includes an intermediate layer.
When the sanitary ware does not have an intermediate layer, the thickness of the upper glaze layer (glaze layer) can be determined by, for example, the following procedure.
The sanitary ware is cut in the thickness direction of the upper glaze layer using a small sample cutter. The cut surface is observed with a microscope (DSX510, manufactured by Olympus Corporation) at a magnification of 125 times. In the observed image, the distance between the surface of the upper glaze layer and the boundary line between the upper glaze layer and the ceramic body (upper boundary line) is measured at any 20 places. The arithmetic average value of the measured distance is defined as the thickness of the upper glaze layer.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
本実施例において使用した原料は、下記の[使用原料]に示す通りである。
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
The raw materials used in this example are as shown in [Used raw materials] below.

[使用原料]
<陶器素地原料>
A−1:陶石10質量部、長石40質量部、粘土50質量部(SiO70質量%、Al25質量%、NaOとKOとCaOとMgOとZnOとの合計5質量%)。
A−2:陶石30質量部、粘土70質量部(SiO65質量%、Al30質量%、NaOとKOとCaOとMgOとZnOとの合計5質量%)。
[Raw materials]
<Pottery base material>
A-1: 10 parts by mass of pottery stone, 40 parts by mass of feldspar, 50 parts by mass of clay (70% by mass of SiO 2, 25% by mass of Al 2 O 3, total of Na 2 O, K 2 O, CaO, MgO, and ZnO) 5% by mass).
A-2: 30 parts by mass of porcelain stone, 70 parts by mass of clay (65% by mass of SiO 2, 30% by mass of Al 2 O 3 , total of 5% by mass of Na 2 O, K 2 O, CaO, MgO, and ZnO).

<中間層原料>
B−1:SiO65質量%、Al20質量%、NaOとKOとCaOとMgOとZnOとの合計12質量%、その他3質量%。
B−2:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)80/20で混合した混合物。
B−3:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)70/30で混合した混合物。
B−4:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)60/40で混合した混合物。
B−5:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)50/50で混合した混合物。
B−6:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)40/60で混合した混合物。
B−7:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)30/70で混合した混合物。
B−8:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)20/80で混合した混合物。
B−9:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)10/90で混合した混合物。
B−10:陶器素地原料A−2と、下記釉原料C−9とを質量比(素地/釉薬比)0/100で混合した混合物。
<Middle layer material>
B-1: SiO 2 65 wt%, Al 2 O 3 20 wt%, a total of 12 mass% of Na 2 O and K 2 O, CaO and MgO and ZnO, other 3% by weight.
B-2: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 80/20.
B-3: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 70/30.
B-4: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 60/40.
B-5: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 50/50.
B-6: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 40/60.
B-7: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 30/70.
B-8: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 20/80.
B-9: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 10/90.
B-10: A mixture obtained by mixing the ceramic raw material A-2 and the following glaze raw material C-9 at a mass ratio (base / glaze ratio) of 0/100.

<釉原料>
C−1:SiO63質量%、Al12質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計24質量%、その他1質量%。
C−2:SiO62質量%、Al13質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計24質量%、その他1質量%。
C−3:SiO62質量%、Al13質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計24質量%、その他1質量%。
C−4:SiO64質量%、Al12質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計24質量%。
C−5:SiO57質量%、Al10質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計32質量%、その他1質量%。
C−6:SiO63質量%、Al12質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計24質量%、その他1質量%。
C−7:SiO66質量%、Al12質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計22質量%。
C−8:SiO70質量%、Al11質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計19質量%。
C−9:SiO63質量%、Al10質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計20質量%、その他7質量%。
C−10:SiO61質量%、Al12質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計27質量%。
C−11:SiO57質量%、Al11質量%、NaOとKOとCaOとMgOとZnOとSrOとBaOとBとの合計25質量%、その他7質量%。
<Glass raw material>
C-1: SiO 2 63 wt%, Al 2 O 3 12 wt%, total 24% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 1 mass %.
C-2: SiO 2 62 wt%, Al 2 O 3 13 wt%, total 24% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 1 mass %.
C-3: SiO 2 62 wt%, Al 2 O 3 13 wt%, total 24% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 1 mass %.
C-4: SiO 2 64 wt%, Al 2 O 3 12 wt%, total 24% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3.
C-5: SiO 2 57 wt%, Al 2 O 3 10 wt%, total 32% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 1 mass %.
C-6: SiO 2 63 wt%, Al 2 O 3 12 wt%, total 24% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 1 mass %.
C-7: SiO 2 66 wt%, Al 2 O 3 12 wt%, a total of 22 mass% of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3.
C-8: SiO 2 70 wt%, Al 2 O 3 11 wt%, total 19% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3.
C-9: SiO 2 63 wt%, Al 2 O 3 10 wt%, a total of 20 mass% of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 7 mass %.
C-10: SiO 2 61 wt%, Al 2 O 3 12 wt%, total 27% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3.
C-11: SiO 2 57 wt%, Al 2 O 3 11 wt%, total 25% by weight of Na 2 O and K 2 O, CaO and MgO and ZnO, SrO, BaO and B 2 O 3, other 7 mass %.

[陶器素地の調製]
陶器素地原料A−1を1kg、水を0.4kg混合し、混合物を得た。その混合物をボールミルにより20時間粉砕し、陶器素地組成物を得た。レーザー回折式粒度分布測定器(日機装(株)製、「MT3300EX(型番)」)を用いて、陶器素地組成物の固形分の粒子径を測定したところ、D50が12μmであった。
[Preparation of ceramic body]
1 kg of the pottery base material A-1 and 0.4 kg of water were mixed to obtain a mixture. The mixture was pulverized by a ball mill for 20 hours to obtain a ceramic base composition. Using a laser diffraction particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., “MT3300EX (model number)”), the particle diameter of the solid matter of the ceramic body composition was measured and found to be 12 μm.

次に、長さ100mm、幅100mm、厚さ10mmの石膏型に前記陶器素地組成物を流し込み、陶器素地を得た。   Next, the pottery base composition was poured into a gypsum mold having a length of 100 mm, a width of 100 mm, and a thickness of 10 mm to obtain a pottery base.

[フリットの調製]
フリット原料として釉原料C−1〜C−11を1500℃で溶融させてフリットF−1〜F−11を得た。
[Preparation of frit]
Glaze raw materials C-1 to C-11 were melted at 1500 ° C. as frit raw materials to obtain frit F-1 to F-11.

[中間層組成物の調製]
中間層原料B−1を1kg、水を0.4kg混合し、混合物を得た。その混合物をボールミルにより20時間粉砕し、中間層組成物M−1を得た。前記レーザー回折式粒度分布測定器を用いて、中間層組成物M−1の固形分の粒子径を測定したところ、D50が8μmであった。
[Preparation of intermediate layer composition]
1 kg of the intermediate layer raw material B-1 and 0.4 kg of water were mixed to obtain a mixture. The mixture was pulverized by a ball mill for 20 hours to obtain an intermediate layer composition M-1. When the particle size of the solid component of the intermediate layer composition M-1 was measured using the laser diffraction type particle size distribution analyzer, D50 was 8 μm.

中間層原料B−1の代わりに中間層原料B−2〜B−10を用いた以外は、中間層組成物M−1と同様の方法で、中間層組成物M−2〜M−10を得た。中間層組成物M−11は、中間層原料として釉原料C−11を1kg、水を0.6kg混合し、混合物を得ることにより調製した。
なお、表1〜2中、中間層組成物の「種類」は、上記中間層組成物M−1〜M−11のいずれかを表す。中間層組成物の「D50(μm)」は、上記中間層組成物M−1〜M−11のいずれかの50%平均粒子径(D50)を表す。
Except that the intermediate layer raw materials B-2 to B-10 were used instead of the intermediate layer raw material B-1, the intermediate layer compositions M-2 to M-10 were prepared in the same manner as the intermediate layer composition M-1. Obtained. The intermediate layer composition M-11 was prepared by mixing 1 kg of the glaze raw material C-11 as the intermediate layer raw material and 0.6 kg of water to obtain a mixture.
In Tables 1 and 2, "kind" of the intermediate layer composition indicates any of the above-described intermediate layer compositions M-1 to M-11. “D50 (μm)” of the intermediate layer composition represents a 50% average particle diameter (D50) of any of the above-described intermediate layer compositions M-1 to M-11.

[上釉層組成物の調製]
フリットF−1を1kg、水を0.6kg混合し、混合物を得た。その混合物をボールミルにより30時間粉砕し、粘性調整のため、カルボキシメチルセルロース等の粘性調整剤を添加し、上釉層組成物G−1を得た。前記レーザー回折式粒度分布測定器を用いて、上釉層組成物G−1の固形分の粒子径を測定したところ、D50が15μmであった。
[Preparation of upper glaze layer composition]
1 kg of frit F-1 and 0.6 kg of water were mixed to obtain a mixture. The mixture was pulverized with a ball mill for 30 hours, and a viscosity modifier such as carboxymethylcellulose was added for viscosity control, thereby obtaining an upper glaze layer composition G-1. When the particle diameter of the solid component of the upper glaze layer composition G-1 was measured using the laser diffraction particle size distribution analyzer, D50 was 15 μm.

フリットF−1の代わりにフリットF−2〜F−10を用いた以外は、上釉層組成物G−1と同様の方法で、上釉層組成物G−2〜G−10を得た。
なお、表1〜2中、上釉層組成物の「種類」は、上記上釉層組成物G−1〜G−10のいずれかを表す。上釉層組成物の「D50(μm)」は、上記上釉層組成物G−1〜G−10のいずれかの50%平均粒子径(D50)を表す。
Except that frit F-2 to F-10 was used instead of frit F-1, upper glaze layer compositions G-2 to G-10 were obtained in the same manner as upper glaze layer composition G-1. .
In Tables 1 and 2, the “type” of the upper glaze layer composition indicates any of the above upper glaze layer compositions G-1 to G-10. “D50 (μm)” of the upper glaze layer composition represents the 50% average particle diameter (D50) of any of the above upper glaze layer compositions G-1 to G-10.

[実施例1〜18、比較例1〜2]
[衛生陶器の調製]
上記陶器素地に表1〜2に記載の中間層組成物をスプレーコーティング法により塗布して、60℃で1時間乾燥させた後、表1〜2に記載の上釉層組成物をスプレーコーティング法により塗布して二次塗布体を得た。二次塗布体を1220℃で20時間焼成し、直方体の衛生陶器の試料を得た。
[Examples 1 to 18, Comparative Examples 1 and 2]
[Preparation of sanitary ware]
The intermediate layer compositions described in Tables 1 and 2 are applied to the ceramic body by a spray coating method, dried at 60 ° C. for 1 hour, and then the upper glaze layer composition described in Tables 1 and 2 is spray coated. To obtain a secondary coated body. The secondary coated body was fired at 1220 ° C. for 20 hours to obtain a rectangular parallelepiped sanitary ware sample.

<上釉層の厚さの測定>
小型試料切断機を用いて、各例の試料を試料の長さ方向の一辺の中点を通り試料の幅方向と平行な面で厚さ方向に切断した。切断した切断面をマイクロスコープ(オリンパス(株)製、DSX510)により、倍率125倍で観察した。観察した画像の幅方向の一端から他端までを幅方向に10等分して、それぞれ2か所の上釉層の表面と上中境界線との距離(L30)を測定した。一つの試料につき合計20か所の上記距離(L30)を測定し、上釉層の厚さの最大値、最小値、最大値と最小値との差、平均値を求めた。上記距離(L30)の平均値を上釉層の厚さとした。結果を表1〜2に示す。表中、「差」は、上釉層の厚さの最大値と最小値との差を表す。
<Measurement of thickness of upper glaze layer>
Using a small sample cutter, each sample was cut in the thickness direction on a plane passing through the midpoint of one side in the length direction of the sample and parallel to the width direction of the sample. The cut surface was observed with a microscope (DSX510, manufactured by Olympus Corporation) at a magnification of 125 times. The observed image was divided into ten equal parts in the width direction from one end to the other end in the width direction, and the distance (L 30 ) between the surface of the two upper glaze layers and the upper middle boundary line was measured. The distance (L 30 ) was measured at a total of 20 places for one sample, and the maximum value, the minimum value, the difference between the maximum value and the minimum value, and the average value of the thickness of the upper glaze layer were determined. The average value of the distance (L 30 ) was defined as the thickness of the upper glaze layer. The results are shown in Tables 1 and 2. In the table, “difference” represents a difference between the maximum value and the minimum value of the thickness of the upper glaze layer.

<中間層の厚さの測定>
上釉層の厚さで観察した画像を用いて、観察した画像の幅方向の一端から他端までを幅方向に10等分して、それぞれ2か所の上中境界線と中素境界線との距離(L20)を測定した。一つの試料につき合計20か所の上記距離(L20)を測定し、平均値を求め、中間層の厚さとした。結果を表1〜2に示す。
<Measurement of thickness of intermediate layer>
Using the image observed with the thickness of the upper glaze layer, one end to the other end in the width direction of the observed image is divided into 10 equal parts in the width direction, and two upper and middle boundary lines and two elementary boundary lines, respectively. (L 20 ) was measured. The distance (L 20 ) was measured at a total of 20 points for one sample, and the average value was determined to be the thickness of the intermediate layer. The results are shown in Tables 1 and 2.

<平均気泡径、気泡面積率、気泡数の測定>
上記のマイクロスコープにより観察した画像を用いて、装置処理ソフト(三谷商事(株)、WinROOF2015)により、画像を2値化し、画像解析により、上釉層の切断面における平均気泡径、気泡面積率、気泡数を求めた。加えて、中間層の切断面における平均気泡径、気泡面積率、気泡数を求めた。結果を表1〜2に示す。
<Measurement of average cell diameter, cell area ratio, and cell number>
Using the image observed by the above microscope, the image was binarized by device processing software (Mitani Shoji Co., Ltd., WinROOF2015), and the average cell diameter and cell area ratio at the cut surface of the upper glaze layer were analyzed by image analysis. And the number of air bubbles was determined. In addition, the average cell diameter, cell area ratio, and cell number on the cut surface of the intermediate layer were determined. The results are shown in Tables 1 and 2.

<写像性の測定>
各例の試料を準備し、ウェーブスキャンDOI測定装置(BYK Gardner社製、Wave−Scan−DUAL)によって、DOI値を測定した。結果を表1〜2に示す。
<Measurement of image clarity>
The sample of each example was prepared, and the DOI value was measured by a wave scan DOI measuring device (BYK Gardner, Wave-Scan-DUAL). The results are shown in Tables 1 and 2.

<「深み」の評価>
各例の試料を準備し、室内で蛍光灯にかざし、「深み」として光の奥行感、表面の綺麗さを感じるか、という観点から、外観感応評価を実施した。外観感応評価は、被験者10人で実施し、下記評価基準に基づいて、「深み」を評価した。結果を表1〜2に示す。
《評価基準》
○:「深み」を感じる被験者の数が5人以上。
×:「深み」を感じる被験者の数が4人以下。
<Evaluation of "depth">
The sample of each example was prepared, held over a fluorescent lamp in a room, and evaluated for appearance sensitivity from the viewpoint of feeling the depth of light and the cleanness of the surface as “depth”. The appearance response evaluation was performed by 10 subjects, and "depth" was evaluated based on the following evaluation criteria. The results are shown in Tables 1 and 2.
"Evaluation criteria"
:: The number of subjects who felt “depth” was 5 or more.
×: The number of subjects who felt “depth” was 4 or less.

Figure 2019218242
Figure 2019218242

Figure 2019218242
Figure 2019218242

表1〜2に示すように、本発明を適用した実施例1〜18は、「深み」の評価が「○」で、「深み」をより向上できていることが分かった。
一方、上釉層の切断面における平均気泡径、気泡面積率、気泡数のいずれかが本発明の適用範囲外である比較例1〜2は、「深み」の評価が「×」だった。
As shown in Tables 1 and 2, in Examples 1 to 18 to which the present invention was applied, the evaluation of “depth” was “○”, and it was found that “depth” could be further improved.
On the other hand, in Comparative Examples 1 and 2 in which any of the average cell diameter, cell area ratio, and cell number on the cut surface of the upper glaze layer was out of the applicable range of the present invention, the evaluation of “depth” was “x”.

本発明の衛生陶器によれば、衛生陶器の「深み」をより向上できることが分かった。   According to the sanitary ware of the present invention, it was found that the "depth" of the sanitary ware can be further improved.

1 衛生陶器
10 陶器素地
20 中間層
30 上釉層
C1 TG曲線
C2 DTA曲線
P1 第一変曲点
P2 第二変曲点
DESCRIPTION OF SYMBOLS 1 Sanitary ware 10 Pottery base material 20 Intermediate layer 30 Upper glaze layer C1 TG curve C2 DTA curve P1 First inflection point P2 Second inflection point

Claims (9)

陶器素地と、前記陶器素地の表面に位置する上釉層と、前記陶器素地と前記上釉層との間に位置する中間層とを備え、
前記上釉層を厚さ方向に切断した切断面の面積に対する気泡の面積の割合が3%以下である、衛生陶器。
Pottery substrate, an upper glaze layer located on the surface of the pottery substrate, and an intermediate layer located between the pottery substrate and the upper glaze layer,
A sanitary ware, wherein a ratio of a bubble area to an area of a cut surface obtained by cutting the upper glaze layer in a thickness direction is 3% or less.
陶器素地と、前記陶器素地の表面に位置する上釉層と、前記陶器素地と前記上釉層との間に位置する中間層とを備え、
前記上釉層を厚さ方向に切断した切断面における気泡の平均気泡径が50μm以下である、衛生陶器。
Pottery substrate, an upper glaze layer located on the surface of the pottery substrate, and an intermediate layer located between the pottery substrate and the upper glaze layer,
A sanitary ware, wherein an average bubble diameter of bubbles in a cut surface obtained by cutting the upper glaze layer in a thickness direction is 50 μm or less.
前記切断面における気泡数が1mm当たり120個以下である、請求項1又は2に記載の衛生陶器。 The sanitary ware according to claim 1, wherein the number of bubbles in the cut surface is 120 or less per 1 mm 2 . 前記切断面における気泡の平均気泡径が50μm以下であり、
前記切断面における気泡数が1mm当たり120個以下である、請求項1に記載の衛生陶器。
The average bubble diameter of the bubbles on the cut surface is 50 μm or less,
The cell count in the cut surface is not more than 120 per 1 mm 2, sanitary ware according to claim 1.
前記中間層を厚さ方向に切断した切断面における気泡数が1mm当たり1000個以下であり、
前記中間層の切断面の面積に対する気泡の面積の割合が20%以下であり、
前記中間層の切断面における気泡の平均気泡径が25μm以下である、請求項1〜4のいずれか一項に記載の衛生陶器。
The number of bubbles on a cut surface obtained by cutting the intermediate layer in the thickness direction is 1,000 or less per 1 mm 2 ,
The ratio of the area of the bubbles to the area of the cut surface of the intermediate layer is 20% or less,
The sanitary ware according to any one of claims 1 to 4, wherein the average bubble diameter of the bubbles on the cut surface of the intermediate layer is 25 µm or less.
前記上釉層の厚さが100μm以上である、請求項1〜5のいずれか一項に記載の衛生陶器。   The sanitary ware according to any one of claims 1 to 5, wherein the thickness of the upper glaze layer is 100 µm or more. 前記中間層の厚さが200μm以上である、請求項1〜6のいずれか一項に記載の衛生陶器。   The sanitary ware according to any one of claims 1 to 6, wherein the thickness of the intermediate layer is 200 µm or more. 前記中間層を形成する中間層組成物を前記陶器素地の表面に、浸し掛け、流し掛け、塗り掛け、又は吹き掛けのいずれかにより塗布し、乾燥し、次いで、前記中間層組成物を塗布した面に、前記上釉層を形成する上釉層組成物を塗布する、請求項1〜7のいずれか一項に記載の衛生陶器の製造方法。   The intermediate layer composition for forming the intermediate layer was applied to the surface of the ceramic body by dipping, pouring, coating, or spraying, dried, and then the intermediate layer composition was applied. The method for manufacturing sanitary ware according to any one of claims 1 to 7, wherein an upper glaze layer composition for forming the upper glaze layer is applied to a surface. 前記中間層を形成する中間層組成物を前記陶器素地の表面に、浸し掛け、流し掛け、塗り掛け、又は吹き掛けのいずれかにより塗布した後焼成して一次焼成体を得、前記一次焼成体に前記上釉層を形成する上釉層組成物を塗布して焼成する、請求項1〜7のいずれか一項に記載の衛生陶器の製造方法。   The intermediate layer composition for forming the intermediate layer is applied to the surface of the ceramic body by dipping, pouring, painting, or spraying, and then fired to obtain a primary fired body, and the primary fired body is obtained. The method for producing sanitary ware according to any one of claims 1 to 7, wherein a composition of the upper glaze layer for forming the upper glaze layer is applied and baked.
JP2018117446A 2018-06-20 2018-06-20 Sanitary earthenware and manufacturing method of sanitary earthenware Pending JP2019218242A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018117446A JP2019218242A (en) 2018-06-20 2018-06-20 Sanitary earthenware and manufacturing method of sanitary earthenware
CN201910510250.2A CN110615664A (en) 2018-06-20 2019-06-13 Sanitary ware and method for producing sanitary ware
US16/443,588 US20190389780A1 (en) 2018-06-20 2019-06-17 Sanitary ware and method of manufacturing sanitary ware
DE102019116358.7A DE102019116358A1 (en) 2018-06-20 2019-06-17 Sanitary articles and process for the manufacture of sanitary articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117446A JP2019218242A (en) 2018-06-20 2018-06-20 Sanitary earthenware and manufacturing method of sanitary earthenware

Publications (1)

Publication Number Publication Date
JP2019218242A true JP2019218242A (en) 2019-12-26

Family

ID=69095644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117446A Pending JP2019218242A (en) 2018-06-20 2018-06-20 Sanitary earthenware and manufacturing method of sanitary earthenware

Country Status (1)

Country Link
JP (1) JP2019218242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190250A1 (en) * 2022-03-31 2023-10-05 Agcセラミックス株式会社 Formed body, formed body with glaze layer, and method for manufacturing formed body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469582A (en) * 1987-09-09 1989-03-15 Inax Corp Glazing of ceramic plate
JPH05262581A (en) * 1992-03-16 1993-10-12 Toto Ltd Production of decorative ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469582A (en) * 1987-09-09 1989-03-15 Inax Corp Glazing of ceramic plate
JPH05262581A (en) * 1992-03-16 1993-10-12 Toto Ltd Production of decorative ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190250A1 (en) * 2022-03-31 2023-10-05 Agcセラミックス株式会社 Formed body, formed body with glaze layer, and method for manufacturing formed body

Similar Documents

Publication Publication Date Title
JP5099531B2 (en) Sanitary ware having a glaze layer with excellent surface hiding
JP3069790B1 (en) Method for producing frit for ceramic glaze
US20190389780A1 (en) Sanitary ware and method of manufacturing sanitary ware
JP2019218242A (en) Sanitary earthenware and manufacturing method of sanitary earthenware
JP2019218241A (en) Middle layer composition for sanitary earthenware, sanitary earthenware, and manufacturing method of sanitary earthenware
JP2019218243A (en) Sanitary earthenware and manufacturing method of sanitary earthenware
JP7329908B2 (en) basin
JP5158168B2 (en) Sanitary ware with excellent image clarity
JP2019218240A (en) Upper glaze layer composition for sanitary earthenware, and sanitary earthenware
JP4254975B2 (en) Lead-free green glaze for low-temperature firing
JP7517566B1 (en) Ceramic with excellent appearance and stain resistance
JP4711209B2 (en) Manufacturing method of sanitary ware
JP7375974B1 (en) Ceramic with excellent appearance and stain resistance
JP7375973B1 (en) Ceramic with excellent appearance and stain resistance
JP7375972B1 (en) Ceramic with excellent appearance and stain resistance
JP7375971B1 (en) Ceramic with excellent appearance and stain resistance
JP2024146943A (en) Ceramic with excellent appearance and stain resistance
JP2024146703A (en) Ceramic with excellent appearance and stain resistance
JP2024146304A (en) Ceramic with excellent appearance and stain resistance
JP2000128672A (en) Ceramic ware and its production
JP2024146727A (en) Aesthetically pleasing pottery and the pottery base that gives it
JP2001278684A (en) Method for manufacturing sanitary pottery
JP2015025186A (en) Enameled article, and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230117