JP7422986B2 - Undiluted solution processing equipment and how to operate the undiluted solution processing equipment - Google Patents

Undiluted solution processing equipment and how to operate the undiluted solution processing equipment Download PDF

Info

Publication number
JP7422986B2
JP7422986B2 JP2022029652A JP2022029652A JP7422986B2 JP 7422986 B2 JP7422986 B2 JP 7422986B2 JP 2022029652 A JP2022029652 A JP 2022029652A JP 2022029652 A JP2022029652 A JP 2022029652A JP 7422986 B2 JP7422986 B2 JP 7422986B2
Authority
JP
Japan
Prior art keywords
liquid
concentrator
flow path
filter
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022029652A
Other languages
Japanese (ja)
Other versions
JP2022060589A5 (en
JP2022060589A (en
Inventor
稔也 岡久
正弘 曽我部
徹 村島
啓子 駒井
弥生 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takatori Corp
University of Tokushima NUC
Original Assignee
Takatori Corp
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takatori Corp, University of Tokushima NUC filed Critical Takatori Corp
Priority to JP2022029652A priority Critical patent/JP7422986B2/en
Publication of JP2022060589A publication Critical patent/JP2022060589A/en
Publication of JP2022060589A5 publication Critical patent/JP2022060589A5/ja
Application granted granted Critical
Publication of JP7422986B2 publication Critical patent/JP7422986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、原液処理装置および原液処理装置の操作方法に関する。さらに詳しくは、癌性胸腹膜炎、肝硬変などにおいて胸部や腹部に溜まる胸腹水や血漿交換療法の廃液血漿などの原液を濾過したり濃縮したりして点滴静注する処理液を得る原液処理装置および原液処理装置の操作方法に関する。 The present invention relates to a stock solution processing device and a method of operating the stock solution processing device. More specifically, we will introduce a stock solution processing device that filters and concentrates stock solutions such as pleural and ascitic fluid that accumulates in the chest and abdomen due to cancerous pleural peritonitis, liver cirrhosis, etc., and waste plasma from plasma exchange therapy to obtain a processed solution for intravenous infusion. The present invention relates to a method of operating a stock solution processing device.

癌性胸腹膜炎、肝硬変などでは、胸腔や腹腔に胸水や腹水が溜まる場合があり、このような胸腹水が溜まった状態では、胸腹水が周囲の臓器を圧迫するなどの問題が生じる。かかる問題を改善するために、穿刺により胸腹水を抜く処理が行われる場合がある。 In cases such as cancerous pleural peritonitis and liver cirrhosis, pleural effusion and ascites may accumulate in the thoracic and abdominal cavities, and when such pleural and ascitic effusion accumulates, problems arise such as the pleural and ascitic effusion presses on surrounding organs. In order to improve this problem, treatment to drain the thoracic and ascitic fluid through puncture may be performed.

一方、胸腹水には、血液から漏出した血漿成分の一部または全てが含まれており、この血漿中には主要な蛋白質(例えば、アルブミンやグロブリンなど)が含まれている。胸腹水を抜くことによって上記症状は改善されるものの、水分とともに蛋白質などの人体に有用な成分などが失われてしまう。このため、アルブミン製剤やグロブリン製剤などを静脈から投与するなどして失われた成分を補給することが必要になる。 On the other hand, pleural and ascitic fluid contains some or all of the plasma components leaked from the blood, and this plasma contains major proteins (eg, albumin, globulin, etc.). Although the above symptoms are improved by draining the pleural and ascitic fluid, components useful to the human body such as protein are lost along with water. Therefore, it is necessary to replenish the lost components by intravenously administering albumin preparations, globulin preparations, etc.

しかし、アルブミン製剤やグロブリン製剤などを静脈から投与することによって、特定の成分を補給することはできるものの、製剤が高価であり、治療費が高くなる。
しかも、失われた成分のうち特定の成分を限られた量しか供給できないので、低栄養や易感染性などの問題が生じる可能性もある。
However, although it is possible to replenish specific components by intravenously administering albumin preparations, globulin preparations, etc., the preparations are expensive and treatment costs increase.
Moreover, since only a limited amount of a specific component among the lost components can be supplied, problems such as malnutrition and susceptibility to infection may occur.

そこで、胸腔や腹腔から抜いた胸水または腹水(以下原液という場合がある)を処理した処理液を静脈内へ投与する治療方法、いわゆる胸腹水濾過濃縮再静注法(Cell-free and Concentrated Ascites Reinfusion Therapy;CART)が開発されている。かかるCARTの場合、胸水や腹水に含まれる細胞成分以外の有効な成分の大部分を患者の体内に戻すことができるので、特定の成分に限定することなく、血液から失われた成分を効果的に患者に供給できる。しかも、濃縮液を投与しても不足する成分を不足する量だけ製剤によって補えばよいので、アルブミン製剤などの使用量を極力少なくすることができ、治療費を抑えることができる。 Therefore, a treatment method in which pleural fluid or ascites (hereinafter referred to as undiluted fluid) that has been removed from the pleural cavity or abdominal cavity is treated and administered intravenously is the so-called Cell-free and Concentrated Ascites Reinfusion method. Therapy (CART) has been developed. In the case of CART, most of the effective components other than cellular components contained in pleural effusion and ascites can be returned to the patient's body, so it is not limited to specific components, and can effectively replace the components lost from the blood. can be supplied to patients. Furthermore, even if a concentrated solution is administered, the insufficient amount of components can be supplemented with a preparation, so the amount of albumin preparations and the like to be used can be minimized, and treatment costs can be kept down.

CARTにおいて、患者の体内に戻す処理液は胸水や腹水を濾過濃縮することによって生成される。このような処理液を生成する処理装置では、胸水や腹水等の原液を中空糸膜や板状の透過膜などの濾過部材を有する濾過器に供給して液体成分(以下濾過液という場合がある)を分離する。分離された濾過液を濃縮器に通すことによって濾過液から水分を除去すれば濾過液を濃縮した濃縮液、つまり、上述した処理液を得ることができる(特許文献1、2参照)。 In CART, the treatment fluid returned to the patient's body is produced by filtering and concentrating pleural fluid and ascites fluid. In a treatment device that generates such a treatment liquid, the raw liquid such as pleural effusion or ascites is supplied to a filter having a filtration member such as a hollow fiber membrane or a plate-shaped permeable membrane to extract the liquid component (hereinafter sometimes referred to as filtrate). ) to separate. If water is removed from the filtrate by passing the separated filtrate through a concentrator, a concentrated solution obtained by concentrating the filtrate, that is, the above-mentioned treated solution can be obtained (see Patent Documents 1 and 2).

特許5062631号公報Patent No. 5062631 特開2015-126763号公報Japanese Patent Application Publication No. 2015-126763

上述したように、CARTでは、患者の体内から抜いた原液を処理した処理液を患者の体内に戻している。すると、処理液を戻すまでの間は、患者の体内では必要な成分等は不足している状況となるので、できるだけ早く処理液を患者に戻すことが要求される。つまり、CARTにおいては、できるだけ早く原液から処理液を生成することが非常に重要である。 As described above, in CART, the treated solution is returned to the patient's body after processing the undiluted solution extracted from the patient's body. Then, until the treatment liquid is returned, the patient's body will be in a state where necessary components are insufficient, so it is required to return the treatment liquid to the patient as soon as possible. In other words, in CART, it is very important to generate the processing liquid from the stock solution as quickly as possible.

本発明はかかる事情に鑑み、患者の体内から抜いた原液の処理時間を短くすることができ、しかも、作業者の作業性を向上できる原液処理装置および原液処理装置の操作方法を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a stock solution processing device and a method for operating the stock solution processing device, which can shorten the processing time of the stock solution extracted from the body of a patient and improve the workability of the operator. purpose.

<原液処理装置の操作方法>
第1発明の原液処理装置の操作方法は、原液を濃縮して濃縮液を形成する装置の使用方法であって、装置が、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記給液流路に設けられた給液流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量を増加させ、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濾過器への原液の送液量を維持し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量を減少させることを特徴とする。
第2発明の原液処理装置の操作方法は、原液を濃縮して濃縮液を形成する装置の使用方法であって、装置が、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記濾過液供給流路に設けられた濾過液供給流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量を増加させ、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮器への濾過液の送液量を維持し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量を減少させることを特徴とする。
第3発明の原液処理装置の操作方法は、原液を濃縮して濃縮液を形成する装置の使用方法であって、装置が、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記給液流路に設けられた給液流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を減少または前記廃液流路の廃液の送液量を増加させ、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液または前記廃液流路の送液量を維持し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を増加または前記廃液流路の廃液の送液量を減少させることを特徴とする。
第4発明の原液処理装置の操作方法は、原液を濃縮して濃縮液を形成する装置の使用方法であって、装置が、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記濾過液供給流路に設けられた濾過液供給流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を減少または前記廃液流路の廃液の送液量を増加させ、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液または前記廃液流路の送液量を維持し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を増加または前記廃液流路の廃液の送液量を減少させることを特徴とする。
第5発明の原液処理装置の操作方法は、原液を濃縮して濃縮液を形成する装置の使用方法であって、装置が、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、前記濃縮液流路に設けられた濃縮液流路送液部と、前記廃液流路に設けられた廃液流路送液部と、を備えており、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を減少および/または前記廃液流路の廃液の送液量を増加させ、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量および/または前記廃液流路の廃液の送液量を維持し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を増加および/または前記廃液流路の廃液の送液量を減少させることを特徴とする。
第6発明の原液処理装置は、原液を濃縮して濃縮液を形成する装置であって、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、各流路の送液を行う送液部と、該送液部を制御する制御部と、を備えており、前記送液部が、前記給液流路に設けられた給液流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、前記制御部は、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量が増加するように前記給液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濾過器への原液の送液量を維持するように前記給液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量が減少するように前記給液流路送液部を制御することを特徴とする。
第7発明の原液処理装置は、原液を濃縮して濃縮液を形成する装置であって、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、各流路の送液を行う送液部と、該送液部を制御する制御部と、を備えており、前記送液部が、前記濾過液供給流路に設けられた濾過液供給流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、前記制御部は、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量が増加するように前記濾過液供給流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮器への濾過液の送液量を維持するように前記濾過液供給流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量が減少するように前記給液流路送液部を制御することを特徴とする。
第8発明の原液処理装置は、原液を濃縮して濃縮液を形成する装置であって、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、各流路の送液を行う送液部と、該送液部を制御する制御部と、を備えており、前記送液部が、前記給液流路に設けられた給液流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、前記制御部は、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が減少または前記廃液流路の廃液の送液量が増加するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量または前記廃液流路の廃液の送液量を維持するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が増加または前記廃液流路の廃液の送液量が減少するように前記濃縮液流路送液部または前記廃液流路送液部を制御することを特徴とする。
第9発明の原液処理装置は、原液を濃縮して濃縮液を形成する装置であって、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、各流路の送液を行う送液部と、該送液部を制御する制御部と、を備えており、前記送液部が、前記濾過液供給流路に設けられた濾過液供給流路送液部と、前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、前記制御部は、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が減少または前記廃液流路の廃液の送液量が増加するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量または前記廃液流路の廃液の送液量を維持するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が増加または前記廃液流路の廃液の送液量が減少するように前記濃縮液流路送液部または前記廃液流路送液部を制御することを特徴とする。
第10発明の原液処理装置は、原液を濃縮して濃縮液を形成する装置であって、前記原液を濾過する濾過部材を有する濾過器と、該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、前記濾過器に前記原液を供給する原液供給部と、該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、前記濃縮器の濃縮液排出口に接続された濃縮液流路と、前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、各流路の送液を行う送液部と、該送液部を制御する制御部と、を備えており、前記送液部が、前記濃縮液流路に設けられた濃縮液流路送液部と、前記廃液流路に設けられた廃液流路送液部と、を有しており、前記制御部は、前記濾過器の濾過器膜間差圧および/または前記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が減少および/または前記廃液流路の廃液の送液量が増加するように前記濃縮液流路送液部および/または前記廃液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量および/または前記廃液流路の廃液の送液量を維持するように前記濃縮液流路送液部および/または前記廃液流路送液部を制御し、前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が増加および/または前記廃液流路の廃液の送液量が減少するように前記濃縮液流路送液部および/または前記廃液流路送液部を制御することを特徴とする。
<How to operate the stock solution processing device>
A method of operating a stock solution processing device according to a first aspect of the invention is a method of using the device for concentrating a stock solution to form a concentrated solution, the device comprising: a filter having a filter member for filtering the stock solution; a concentrator to which a filtered filtrate is supplied and which concentrates the filtrate to form the concentrate; a stock solution supply section that supplies the stock solution to the filter; a stock solution supply section and the stock solution in the filter; a filtrate supply flow path that communicates with a stock solution supply port that communicates with one end of the flow path through which the filtrate is supplied; and a filtrate supply flow that communicates between a filtrate discharge port of the filter and a filtrate supply port of the concentrator. a concentrate flow path connected to a concentrate discharge port of the concentrator; a waste liquid flow path connected to a waste liquid discharge port for discharging waste liquid separated from the concentrate in the concentrator; A supply liquid flow path liquid sending section provided in the liquid flow path, and a concentrated liquid flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path. The amount of liquid to be fed through each flow path is adjusted based on the filter transmembrane differential pressure of the filter and/or the concentrator transmembrane differential pressure of the concentrator, and the concentrator transmembrane differential pressure is adjusted. If the pressure is lower than the set differential pressure of the concentrator, the amount of raw solution sent to the filter is increased until the concentrator transmembrane differential pressure reaches the set differential pressure , and the concentrator transmembrane differential is increased. If the pressure is within the set differential pressure of the concentrator, maintain the amount of raw solution sent to the filter, and if the concentrator transmembrane differential pressure is greater than the set differential pressure of the concentrator. The present invention is characterized in that the amount of the raw solution sent to the filter is reduced until the transmembrane pressure difference of the concentrator reaches a set pressure difference .
A method of operating a stock solution processing device according to a second aspect of the invention is a method of using a device for concentrating a stock solution to form a concentrated solution, the device comprising: a filter having a filter member for filtering the stock solution; a concentrator to which a filtered filtrate is supplied and which concentrates the filtrate to form the concentrate; a stock solution supply section that supplies the stock solution to the filter; a stock solution supply section and the stock solution in the filter; a filtrate supply flow path that communicates with a stock solution supply port that communicates with one end of the flow path through which the filtrate is supplied; and a filtrate supply flow that communicates between a filtrate discharge port of the filter and a filtrate supply port of the concentrator. a concentrate flow path connected to the concentrate discharge port of the concentrator; a waste liquid flow path connected to the waste liquid discharge port for discharging the waste liquid separated from the concentrate in the concentrator; and the filtration method. a filtrate supply flow path liquid sending section provided in the liquid supply flow path; a concentrate flow path liquid sending section provided in the concentrate flow path; or a waste liquid flow path liquid sending section provided in the waste liquid flow path; , which adjusts the amount of liquid to be sent through each channel based on the filter transmembrane differential pressure of the filter and/or the concentrator transmembrane differential pressure of the concentrator, and When the transmembrane pressure difference is smaller than the set differential pressure of the concentrator, the amount of filtrate sent to the concentrator is increased until the concentrator transmembrane differential pressure reaches the set differential pressure , and the concentrator When the transmembrane differential pressure is within the set differential pressure of the concentrator, the amount of filtrate sent to the concentrator is maintained, and the concentrator transmembrane differential pressure is within the set differential pressure of the concentrator. If the pressure is higher than the predetermined pressure, the amount of filtrate sent to the concentrator is reduced until the concentrator transmembrane differential pressure reaches a set differential pressure .
A method of operating a stock solution processing device according to a third aspect of the invention is a method of using the device for concentrating a stock solution to form a concentrated solution, the device comprising: a filter having a filter member for filtering the stock solution; a concentrator to which a filtered filtrate is supplied and which concentrates the filtrate to form the concentrate; a stock solution supply section that supplies the stock solution to the filter; a stock solution supply section and the stock solution in the filter; a filtrate supply flow path that communicates with a stock solution supply port that communicates with one end of the flow path through which the filtrate is supplied; and a filtrate supply flow that communicates between a filtrate discharge port of the filter and a filtrate supply port of the concentrator. a concentrate flow path connected to a concentrate discharge port of the concentrator; a waste liquid flow path connected to a waste liquid discharge port for discharging waste liquid separated from the concentrate in the concentrator; A supply liquid flow path liquid sending section provided in the liquid flow path, and a concentrated liquid flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path. The amount of liquid to be fed through each flow path is adjusted based on the filter transmembrane differential pressure of the filter and/or the concentrator transmembrane differential pressure of the concentrator, and the concentrator transmembrane differential pressure is adjusted. If the pressure is lower than the set differential pressure of the concentrator, reduce the amount of concentrated liquid sent to the concentrate flow path or reduce the amount of concentrated liquid sent to the waste liquid flow path until the concentrator transmembrane differential pressure reaches the set differential pressure. When the amount of waste liquid to be fed is increased and the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, the amount of concentrated liquid in the concentrate flow path or the liquid feed amount in the waste liquid flow path is increased. is maintained, and if the concentrator transmembrane differential pressure is greater than the set differential pressure of the concentrator, the concentrate is fed through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure. The present invention is characterized in that the amount of waste liquid is increased or the amount of waste liquid sent through the waste liquid flow path is decreased.
A method of operating a stock solution processing device according to a fourth aspect of the invention is a method of using the device for concentrating a stock solution to form a concentrated solution, the device comprising: a filter having a filter member for filtering the stock solution; a concentrator to which a filtered filtrate is supplied and which concentrates the filtrate to form the concentrate; a stock solution supply section that supplies the stock solution to the filter; a stock solution supply section and the stock solution in the filter; a filtrate supply flow path that communicates with a stock solution supply port that communicates with one end of the flow path through which the filtrate is supplied; and a filtrate supply flow that communicates between a filtrate discharge port of the filter and a filtrate supply port of the concentrator. a concentrate flow path connected to the concentrate discharge port of the concentrator; a waste liquid flow path connected to the waste liquid discharge port for discharging the waste liquid separated from the concentrate in the concentrator; and the filtration method. a filtrate supply flow path liquid sending section provided in the liquid supply flow path; a concentrate flow path liquid sending section provided in the concentrate flow path; or a waste liquid flow path liquid sending section provided in the waste liquid flow path; , which adjusts the amount of liquid to be sent through each channel based on the filter transmembrane differential pressure of the filter and/or the concentrator transmembrane differential pressure of the concentrator, and If the transmembrane pressure difference is smaller than the set differential pressure of the concentrator, reduce the amount of concentrated liquid sent through the concentrate flow path or reduce the amount of concentrated liquid sent to the waste liquid flow path until the concentrator transmembrane differential pressure reaches the set differential pressure. If the concentrator transmembrane differential pressure is within the range of the set differential pressure of the concentrator, the concentrated liquid in the concentrate channel or the waste liquid in the waste channel is increased. If the liquid volume is maintained and the concentrator transmembrane differential pressure is greater than the set differential pressure of the concentrator, the concentrate in the concentrate flow path is increased until the concentrator transmembrane differential pressure reaches the set differential pressure. The present invention is characterized in that the amount of liquid sent is increased or the amount of waste liquid sent through the waste liquid flow path is decreased.
A method of operating a stock solution processing device according to a fifth aspect of the invention is a method of using the device for concentrating a stock solution to form a concentrated solution, the device comprising: a filter having a filter member for filtering the stock solution; a concentrator to which a filtered filtrate is supplied and which concentrates the filtrate to form the concentrate; a stock solution supply section that supplies the stock solution to the filter; a stock solution supply section and the stock solution in the filter; a filtrate supply flow path that communicates with a stock solution supply port that communicates with one end of the flow path through which the filtrate is supplied; and a filtrate supply flow that communicates between a filtrate discharge port of the filter and a filtrate supply port of the concentrator. a concentrate flow path connected to a concentrate discharge port of the concentrator; a waste liquid flow path connected to a waste liquid discharge port for discharging waste liquid separated from the concentrate in the concentrator; It includes a concentrate flow path liquid sending section provided in the liquid flow path and a waste liquid flow path liquid sending section provided in the waste liquid flow path, and the filter membrane differential pressure and/or the filter transmembrane pressure of the filter is The amount of liquid sent through each channel is adjusted based on the concentrator transmembrane differential pressure of the concentrator, and when the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the The amount of concentrated liquid fed through the concentrate flow path is decreased and/or the amount of waste liquid fed through the waste liquid flow path is increased until the differential pressure between the concentrator membranes reaches the set differential pressure. When the pressure is within the range of the set differential pressure of the concentrator, the amount of concentrated liquid sent in the concentrated liquid flow path and/or the amount of waste liquid sent in the waste liquid flow path is maintained, and the amount of liquid sent to the concentrator is maintained. If the transmembrane pressure difference is larger than the set differential pressure of the concentrator, increase the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure, and/or It is characterized by reducing the amount of waste liquid sent through the waste liquid channel.
A stock solution processing device according to a sixth aspect of the invention is a device for concentrating a stock solution to form a concentrated solution, and is provided with a filter having a filtration member for filtering the stock solution, and a filtrate filtered by the filter, a concentrator that concentrates the filtrate to form the concentrated solution; a stock solution supply section that supplies the stock solution to the filter; and an end of a flow path between the stock solution supply section and the filter to which the stock solution is supplied. a liquid supply channel that communicates with the connected stock solution supply ports; a filtrate supply channel that communicates the filtrate discharge port of the filter with the filtrate supply port of the concentrator; and a concentrated solution of the concentrator. A concentrate flow path connected to the discharge port, a waste liquid flow path connected to the waste liquid discharge port that discharges the waste liquid separated from the concentrate in the concentrator, and a liquid sending unit that sends liquid to each flow path. and a control unit that controls the liquid feeding unit, and the liquid feeding unit includes a liquid supply channel liquid feeding unit provided in the liquid supply channel and a control unit that controls the liquid feeding unit. a concentrated liquid flow path liquid sending section provided in the waste liquid flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path, and the control section controls the filter transmembrane differential pressure of the filter and/or the waste liquid flow path liquid sending section provided in the waste liquid flow path. Each liquid sending section is controlled based on the concentrator transmembrane differential pressure of the concentrator, and when the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the concentrator transmembrane differential pressure is controlled. The liquid supply channel liquid feeding section is controlled so that the amount of raw solution sent to the filter increases until the differential pressure reaches a set differential pressure, and the concentrator transmembrane differential pressure becomes equal to the set differential pressure of the concentrator. If the pressure is within the range, the feed liquid flow path liquid feeding section is controlled to maintain the amount of raw solution fed to the filter, and the concentrator transmembrane differential pressure is adjusted to the setting of the concentrator. If the differential pressure is higher than the differential pressure, the liquid supply flow path liquid sending section is controlled so that the amount of the raw solution sent to the filter is reduced until the concentrator transmembrane differential pressure reaches a set differential pressure. Features.
A stock solution processing device according to a seventh aspect of the invention is a device for concentrating a stock solution to form a concentrated solution, and is provided with a filter having a filtration member for filtering the stock solution, and a filtrate filtered by the filter, a concentrator that concentrates the filtrate to form the concentrated solution; a stock solution supply section that supplies the stock solution to the filter; and an end of a flow path between the stock solution supply section and the filter to which the stock solution is supplied. a liquid supply channel that communicates with the connected stock solution supply ports; a filtrate supply channel that communicates the filtrate discharge port of the filter with the filtrate supply port of the concentrator; and a concentrated solution of the concentrator. A concentrate flow path connected to the discharge port, a waste liquid flow path connected to the waste liquid discharge port that discharges the waste liquid separated from the concentrate in the concentrator, and a liquid sending unit that sends liquid to each flow path. and a control unit that controls the liquid sending unit, and the liquid sending unit includes a filtrate supply channel liquid sending unit provided in the filtrate supply channel, and a control unit that controls the liquid sending unit, and a control unit that controls the liquid sending unit. a concentrate flow path liquid sending section provided in the waste liquid flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path, and the control section controls the filter transmembrane differential pressure of the filter and/or the waste liquid flow path liquid sending section provided in the waste liquid flow path. Alternatively, each liquid feeding section is controlled based on the concentrator transmembrane differential pressure of the concentrator, and when the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the concentrator The filtrate supply channel liquid sending section is controlled so that the amount of filtrate sent to the concentrator is increased until the transmembrane pressure difference reaches a set pressure difference , and the concentrator transmembrane pressure difference reaches the concentration If the differential pressure is within the range of the set differential pressure of the concentrator, the filtrate supply flow channel is controlled to maintain the amount of filtrate sent to the concentrator, and the concentrator transmembrane differential pressure is increased. is larger than the set differential pressure of the concentrator, the feed liquid flow path is adjusted such that the amount of filtrate sent to the concentrator is reduced until the concentrator transmembrane differential pressure reaches the set differential pressure. It is characterized by controlling the liquid part.
The undiluted solution processing device of the eighth invention is an apparatus for concentrating a undiluted solution to form a concentrated solution, and is provided with a filter having a filter member for filtering the undiluted solution, and a filtrate filtered by the filter, a concentrator that concentrates the filtrate to form the concentrated solution; a stock solution supply section that supplies the stock solution to the filter; and an end of a flow path between the stock solution supply section and the filter to which the stock solution is supplied. a liquid supply channel that communicates with the connected stock solution supply ports; a filtrate supply channel that communicates the filtrate discharge port of the filter with the filtrate supply port of the concentrator; and a concentrated solution of the concentrator. A concentrate flow path connected to the discharge port, a waste liquid flow path connected to the waste liquid discharge port that discharges the waste liquid separated from the concentrate in the concentrator, and a liquid sending unit that sends liquid to each flow path. and a control unit that controls the liquid feeding unit, and the liquid feeding unit includes a liquid supply channel liquid feeding unit provided in the liquid supply channel and a control unit that controls the liquid feeding unit. a concentrated liquid flow path liquid sending section provided in the waste liquid flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path, and the control section controls the filter transmembrane differential pressure of the filter and/or the waste liquid flow path liquid sending section provided in the waste liquid flow path. Each liquid sending section is controlled based on the concentrator transmembrane differential pressure of the concentrator, and when the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the concentrator transmembrane differential pressure is controlled. The concentrate flow path liquid sending section or the waste liquid is configured such that the amount of concentrated liquid sent through the concentrate flow path is decreased or the amount of waste liquid sent through the waste liquid path is increased until the differential pressure reaches a set differential pressure. When the concentrator transmembrane differential pressure is within the range of the set differential pressure of the concentrator, the flow channel liquid sending section is controlled, and when the concentrator transmembrane differential pressure is within the range of the set differential pressure of the concentrator, the amount of concentrated solution sent in the concentrate channel or the waste liquid channel is controlled. controlling the concentrate flow path liquid sending section or the waste liquid flow path liquid sending section so as to maintain the amount of waste liquid fed, and when the concentrator transmembrane pressure difference is larger than the set differential pressure of the concentrator; The concentrate flow is controlled such that the amount of concentrated liquid sent through the concentrated liquid flow path increases or the amount of waste liquid sent through the waste liquid flow path decreases until the differential pressure between the membranes of the concentrator reaches a set differential pressure. The present invention is characterized in that the channel liquid feeding section or the waste liquid channel liquid feeding section is controlled.
The undiluted solution processing device of the ninth invention is an apparatus for concentrating a undiluted solution to form a concentrated solution, and is provided with a filter having a filter member for filtering the undiluted solution, and a filtrate filtered by the filter, a concentrator that concentrates the filtrate to form the concentrated solution; a stock solution supply section that supplies the stock solution to the filter; and an end of a flow path between the stock solution supply section and the filter to which the stock solution is supplied. a liquid supply channel that communicates with the connected stock solution supply ports; a filtrate supply channel that communicates the filtrate discharge port of the filter with the filtrate supply port of the concentrator; and a concentrated solution of the concentrator. A concentrate flow path connected to the discharge port, a waste liquid flow path connected to the waste liquid discharge port that discharges the waste liquid separated from the concentrate in the concentrator, and a liquid sending unit that sends liquid to each flow path. and a control unit that controls the liquid sending unit, and the liquid sending unit includes a filtrate supply channel liquid sending unit provided in the filtrate supply channel, and a control unit that controls the liquid sending unit, and a control unit that controls the liquid sending unit. a concentrate flow path liquid sending section provided in the waste liquid flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path, and the control section controls the filter transmembrane differential pressure of the filter and/or the waste liquid flow path liquid sending section provided in the waste liquid flow path. Alternatively, each liquid feeding section is controlled based on the concentrator transmembrane differential pressure of the concentrator, and when the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the concentrator The concentrate flow path liquid sending unit or The waste liquid flow path liquid sending section is controlled, and when the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, the amount of concentrated liquid sent in the concentrate flow path or the waste liquid is controlled. The concentrate flow path liquid sending unit or the waste liquid flow path liquid sending unit is controlled to maintain the amount of waste liquid sent in the flow path, and the concentrator transmembrane pressure difference is greater than the set differential pressure of the concentrator. In this case, the concentration is performed such that the amount of concentrated liquid sent through the concentrate flow path increases or the amount of waste liquid sent through the waste liquid flow path decreases until the differential pressure between the membranes of the concentrator reaches a set pressure difference. The present invention is characterized in that the liquid flow path liquid sending section or the waste liquid flow path liquid sending section is controlled.
The undiluted solution processing device of the tenth invention is an apparatus for concentrating a undiluted solution to form a concentrated solution, and is provided with a filter having a filter member for filtering the undiluted solution, and a filtrate filtered by the filter, a concentrator that concentrates the filtrate to form the concentrated solution; a stock solution supply section that supplies the stock solution to the filter; and an end of a flow path between the stock solution supply section and the filter to which the stock solution is supplied. a liquid supply channel that communicates with the connected stock solution supply ports; a filtrate supply channel that communicates the filtrate discharge port of the filter with the filtrate supply port of the concentrator; and a concentrated solution of the concentrator. A concentrated liquid flow path connected to the discharge port, a waste liquid flow path connected to the waste liquid discharge port that discharges the waste liquid separated from the concentrated liquid in the concentrator, and a liquid sending unit that sends liquid to each flow path. and a control unit that controls the liquid sending unit, and the liquid sending unit includes a concentrate flow path liquid sending unit provided in the concentrate flow path and a control unit that controls the liquid sending unit. a waste liquid channel liquid sending section, and the control section controls each liquid sending section based on the filter transmembrane differential pressure of the filter and/or the concentrator transmembrane differential pressure of the concentrator. When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the concentrate in the concentrate flow path is controlled until the concentrator transmembrane differential pressure reaches the set differential pressure. The concentrate flow path liquid sending unit and/or the waste liquid flow path liquid sending unit are controlled so that the amount of liquid sent through the waste liquid flow path is decreased and/or the amount of waste liquid sent through the waste liquid flow path is increased, When the differential pressure is within a set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrated liquid flow path and/or the amount of waste liquid sent through the waste liquid flow path is maintained. The concentrate flow path liquid sending section and/or the waste liquid flow path liquid sending section are controlled, and when the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, the concentrator transmembrane differential pressure is controlled. The concentrate flow path liquid sending unit and /or the concentrate flow path liquid sending portion and/or The present invention is characterized in that the waste liquid channel liquid sending section is controlled.

<濾過濃縮>
第1~第10発明によれば、濃縮器膜間差圧に基づいて送液部を制御するので、濾過器や濃縮器の能力を効果的に活用でき、さらに原液から濃縮液を生成する時間を短くでき、濃縮効率を向上させることができる。
<Filtration concentration>
According to the first to tenth inventions, since the liquid feeding section is controlled based on the pressure difference between the membranes of the concentrator, the capacity of the filter and the concentrator can be effectively utilized, and furthermore, the time required to generate the concentrated liquid from the stock solution can be reduced. can be made shorter and the concentration efficiency can be improved.

本実施形態の原液処理装置1の回路図であって濾過濃縮作業の概略説明図である。It is a circuit diagram of the stock solution processing apparatus 1 of this embodiment, and is a schematic explanatory diagram of filtration concentration work. 本実施形態の原液処理装置1の回路図であって準備洗浄作業の概略説明図である。It is a circuit diagram of the stock solution processing apparatus 1 of this embodiment, and is a schematic explanatory diagram of preparatory cleaning work. 本実施形態の原液処理装置1の回路図であって再濃縮作業の概略説明図である。It is a circuit diagram of the stock solution processing apparatus 1 of this embodiment, and is a schematic explanatory diagram of reconcentration work. 本実施形態の原液処理装置1の回路図であって廃液チューブ5に廃液チューブ送液部5pを設けた例である。It is a circuit diagram of the stock solution processing apparatus 1 of this embodiment, and is an example in which the waste solution tube 5 is provided with a waste solution tube liquid feeding section 5p. 濾過器10の概略説明図である。1 is a schematic explanatory diagram of a filter 10. FIG. 第2実施形態の原液処理装置1Bの回路図であって準備洗浄作業の概略説明図である。It is a circuit diagram of the stock solution processing apparatus 1B of 2nd Embodiment, and is a schematic explanatory drawing of the preparatory cleaning work. 第2実施形態の原液処理装置1Bの回路図であって濾過濃縮作業の概略説明図である。It is a circuit diagram of the stock solution processing apparatus 1B of 2nd Embodiment, and is a schematic explanatory drawing of filtration concentration work. 第2実施形態の原液処理装置1Bの回路図であって再濃縮作業の概略説明図である。It is a circuit diagram of the stock solution processing apparatus 1B of 2nd Embodiment, and is a schematic explanatory drawing of reconcentration work. 本実施形態の原液処理装置1Bの回路図であって廃液チューブ5に廃液チューブ送液部5pを設けた例である。It is a circuit diagram of the stock solution processing apparatus 1B of this embodiment, and is an example in which the waste solution tube 5 is provided with a waste solution tube liquid feeding section 5p. 第3実施形態の原液処理装置1Cの回路図であって準備洗浄作業の概略説明図である。It is a circuit diagram of 1C of undiluted solution processing apparatuses of 3rd Embodiment, and is a schematic explanatory drawing of preparatory cleaning work. 第3実施形態の原液処理装置1Cの回路図であって濾過濃縮作業の概略説明図である。It is a circuit diagram of 1C of stock solution processing apparatuses of 3rd Embodiment, and is a schematic explanatory drawing of filtration concentration work. 第3実施形態の原液処理装置1Cの回路図であって再濃縮作業の概略説明図である。It is a circuit diagram of 1C of stock solution processing apparatuses of 3rd Embodiment, and is a schematic explanatory drawing of reconcentration work. 本実施形態の原液処理装置1の概略説明図であって、ローラーポンプ110,120の蓋部112を閉じた状態の概略説明図である。It is a schematic explanatory view of the stock solution processing apparatus 1 of this embodiment, and is a schematic explanatory view in a state where the lid portions 112 of the roller pumps 110 and 120 are closed. 本実施形態の原液処理装置1の概略説明図であって、ローラーポンプ110,120の蓋部112を開いた状態の概略説明図である。It is a schematic explanatory view of the stock solution processing apparatus 1 of this embodiment, and is a schematic explanatory view in a state where the lid portions 112 of the roller pumps 110 and 120 are opened. ローラーポンプ110の概略説明図であって、(A)は蓋部112を開いた状態の概略斜視図であり、(B)は蓋部112を開いた状態の概略側面図である。FIG. 2 is a schematic explanatory diagram of the roller pump 110, in which (A) is a schematic perspective view with the lid 112 opened, and (B) is a schematic side view with the lid 112 opened. チューブTを取り付けた状態のチューブ位置決め部材160の概略説明図であって、(A)は曲げた状態の概略斜視図であり、(B)は曲げた状態の概略平面図であり、(C)は曲げた状態の概略背面図である。FIG. 3 is a schematic explanatory diagram of the tube positioning member 160 with the tube T attached, in which (A) is a schematic perspective view in a bent state, (B) is a schematic plan view in a bent state, and (C) is a schematic perspective view in a bent state. is a schematic rear view in a bent state. (A)はチューブ位置決め部材160を分解した概略説明図であり、(B)はチューブTを取り付けた状態のチューブ位置決め部材160の概略説明図である。(A) is an exploded schematic explanatory diagram of the tube positioning member 160, and (B) is a schematic explanatory diagram of the tube positioning member 160 with the tube T attached. (A)はチューブホルダー150の概略斜視図であり、(B)はチューブホルダー150をバケツに取り付けた状態の概略説明図である。(A) is a schematic perspective view of the tube holder 150, and (B) is a schematic explanatory view of the tube holder 150 attached to a bucket. 本実施形態の原液処理装置1の概略説明図である。FIG. 1 is a schematic explanatory diagram of a stock solution processing apparatus 1 according to the present embodiment.

本発明の原液処理装置は、胸腹水などの原液を濾過濃縮して点滴静注や腹腔内投与などの方法によって患者に投与できる処理液を得るための装置である。 The stock solution processing device of the present invention is a device for filtering and concentrating a stock solution such as pleural and ascitic fluid to obtain a processing solution that can be administered to a patient by intravenous drip injection, intraperitoneal administration, or the like.

本発明の原液処理装置によって処理される対象となる原液はとくに限定されないが、例えば、胸腹水や血漿、血液などを挙げることができる。胸腹水とは、癌性胸腹膜炎、肝硬変などにおいて胸腔や腹腔に溜まる胸水や腹水のことである。この胸腹水には、血管や臓器から漏出した血漿成分(蛋白質、ホルモン、糖、脂質、電解質、ビタミン、ビリルビン、アミノ酸など)、ヘモグロビン、癌細胞、マクロファージ、組織球、白血球、赤血球、血小板、細菌などが含まれている。本発明の原液処理装置では、この胸腹水から、癌細胞、マクロファージ、組織球、白血球、赤血球、血小板、細菌などの固形分を除去して、胸腹水中に含まれる水分や有用成分を含む濃縮液を生成することができる。 The stock solution to be processed by the stock solution processing device of the present invention is not particularly limited, but examples include pleural and ascitic fluid, plasma, and blood. Pleural and ascitic effusion refers to pleural effusion and ascites that accumulate in the pleural and abdominal cavities due to cancerous pleural peritonitis, liver cirrhosis, and the like. This pleural and ascitic fluid contains plasma components leaked from blood vessels and organs (proteins, hormones, sugars, lipids, electrolytes, vitamins, bilirubin, amino acids, etc.), hemoglobin, cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, and bacteria. etc. are included. The undiluted solution processing device of the present invention removes solid contents such as cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, and bacteria from this pleural and ascitic fluid, and concentrates water and useful components contained in the pleural and ascitic fluid. liquid can be produced.

血漿とは、血漿交換療法の廃液血漿などを、血液とは、手術中に回収した血液などを挙げることができる。つまり、廃液血漿や手術中に回収した血液などを本発明の原液処理装置を利用して浄化すれば、再利用可能な再生血漿を製造することができる。なお、本発明の原液処理装置において、血漿交換療法の廃液血漿を処理する場合には、濾過器に代えて血漿成分分離器を、手術中に回収した血液を処理する場合には、濾過器に代えて血漿分離器を使用すればよい。 Examples of plasma include waste plasma from plasma exchange therapy, and examples of blood include blood collected during surgery. That is, by purifying waste plasma, blood collected during surgery, etc. using the stock solution processing apparatus of the present invention, reusable regenerated plasma can be produced. In addition, in the stock solution processing device of the present invention, when processing waste plasma from plasma exchange therapy, a plasma component separator is installed instead of the filter, and when processing blood collected during surgery, a plasma component separator is installed in place of the filter. A plasma separator may be used instead.

また、本発明の原液処理装置の濾過器に使用する濾過部材はとくに限定されない。また、濃縮器における濾過液の濃縮にも同様の濾過部材を使用する場合がある。かかる濾過や濃縮に使用する濾過部材は、胸腹水中に含まれる血漿、水分および上述したような有用な成分は透過するが、癌細胞、マクロファージ、組織球、白血球、赤血球、血小板、細菌などの細胞成分(つまり固形分)は透過しないものであって、気体を透過しないものであればよく、その素材やサイズ、形状はとくに限定されない。例えば、濾過部材の形状は、中空糸膜、平膜、積層型膜などを使用することができる。また、濾過部材は、液体で濡らした際に気体を透過しない機能を発揮する素材によって形成されたものを使用することができる。もちろん、液体で濡らさない状態でも気体を透過しない機能を発揮する素材で形成されたものを使用してもよい。なお、本明細書において、濾過部材を透過しない気体とは、窒素などの不活性気体や、空気、酸素等であるが、一般的なリークチェックなどに使用される気体を意味している。 Moreover, the filtration member used in the filter of the undiluted solution processing apparatus of the present invention is not particularly limited. Moreover, a similar filter member may be used for concentrating a filtrate in a concentrator. The filtration member used for such filtration and concentration allows plasma, water, and the above-mentioned useful components contained in pleural and ascitic fluid to pass through, but it does not allow cancer cells, macrophages, histiocytes, white blood cells, red blood cells, platelets, bacteria, etc. The cell component (that is, solid content) may be any material that does not permeate gas, and its material, size, and shape are not particularly limited. For example, the shape of the filtration member may be a hollow fiber membrane, a flat membrane, a laminated membrane, or the like. Furthermore, the filter member may be made of a material that does not allow gas to pass through when wetted with liquid. Of course, it is also possible to use a material made of a material that does not allow gas to pass through even when not wetted with liquid. Note that in this specification, the gas that does not pass through the filter member includes inert gases such as nitrogen, air, oxygen, etc., and refers to gases used for general leak checks.

一例としては、CARTの腹水濾過器や血漿交換用血漿分離器、血漿交換用血漿成分分離器などに使用されている中空糸膜を、本発明の原液処理装置の濾過器や濃縮器に使用することができる。 As an example, hollow fiber membranes used in CART's ascites filter, plasma separator for plasma exchange, plasma component separator for plasma exchange, etc. can be used for the filter and concentrator of the stock solution processing device of the present invention. be able to.

<本実施形態の原液処理装置1>
図13~図19に基づいて、本実施形態の原液処理装置1を説明する。
図13、図14、図19に示すように、本実施形態の原液処理装置1は、本体部100と、この本体部100に設けられた一対のローラーポンプ110,120と、濾過器10を保持する濾過器保持部101と、濃縮器20を保持する濃縮器保持部102と、チューブホルダー150や各バッグBが吊り下げられる一対の吊り下げ部103,103と、を備えている。
<Stock solution processing device 1 of this embodiment>
The stock solution processing apparatus 1 of this embodiment will be explained based on FIGS. 13 to 19.
As shown in FIGS. 13, 14, and 19, the stock solution processing apparatus 1 of this embodiment includes a main body 100, a pair of roller pumps 110 and 120 provided in the main body 100, and a filter 10. A filter holding section 101 that holds the concentrator 20, a concentrator holding section 102 that holds the concentrator 20, and a pair of hanging sections 103, 103 from which the tube holder 150 and each bag B are hung.

そして、本実施形態の原液処理装置1では、原液を処理する場合には、一対の吊り下げ部103,103に各バッグBを吊り下げて、濾過器保持部101および濃縮器保持部102に濾過器10および濃縮器20を保持させる。そして、各バッグB、濾過器10、濃縮器20を複数のチューブTによって適切に接続し、適切なチューブTを一対のローラーポンプ110,120にセットする。その状態で、一対のローラーポンプ110,120を作動させれば、原液バッグUBの原液を濾過濃縮して、濃縮液を得ることができる。 In the undiluted solution processing apparatus 1 of this embodiment, when processing an undiluted solution, each bag B is suspended from a pair of hanging parts 103, 103, and the filtration is carried out in the filter holding part 101 and the concentrator holding part 102. The container 10 and the concentrator 20 are held. Then, each bag B, filter 10, and concentrator 20 are appropriately connected by a plurality of tubes T, and appropriate tubes T are set in a pair of roller pumps 110 and 120. In this state, by operating the pair of roller pumps 110 and 120, the stock solution in the stock solution bag UB can be filtered and concentrated to obtain a concentrated solution.

また、一対のローラーポンプ110,120の作動状態の変更や、各チューブTに接続する各バッグBの変更、液を流すチューブTの変更等をすれば、濃縮液を得るだけでなく、濃縮液の再濃縮、濾過器10や濃縮器20の洗浄、濾過器10や濃縮器20等に存在する液の回収等を実施することができる。 In addition, by changing the operating state of the pair of roller pumps 110, 120, changing each bag B connected to each tube T, changing the tube T through which the liquid flows, etc., it is possible to not only obtain a concentrated liquid, but also to obtain a concentrated liquid. re-concentration, cleaning of the filter 10 and concentrator 20, recovery of liquid present in the filter 10, concentrator 20, etc. can be carried out.

<本実施形態の原液処理装置1の各構成の説明>
以下では、本実施形態の原液処理装置1の装置各部について説明する。
<Description of each configuration of the stock solution processing apparatus 1 of this embodiment>
Below, each part of the stock solution processing apparatus 1 of this embodiment will be explained.

<本体部100>
図13、図14、図19に示すように、本体部100は、その中央部に制御部106を備えている。この制御部106は、一対のローラーポンプ110,120や装置全体の作動を制御する機能を有している。また、制御部106には、装置を操作する操作用パネルと、各種表示が表示される表示パネルと、を兼ねるパネル部106pが設けられている。つまり、パネル部106pから制御部106に指示を与えることによって、作業者が本実施形態の原液処理装置1に対して実施する処理を指示することができるようになっている。また、制御部106からの指示によってパネル部106pに表示される数値や警告などを確認することによって、作業者が本実施形態の原液処理装置1の状況を把握できるようになっている。
<Main body part 100>
As shown in FIGS. 13, 14, and 19, the main body 100 includes a control section 106 in the center thereof. This control unit 106 has a function of controlling the operation of the pair of roller pumps 110, 120 and the entire device. The control unit 106 is also provided with a panel unit 106p that serves as an operation panel for operating the device and a display panel on which various displays are displayed. That is, by giving instructions to the control section 106 from the panel section 106p, the operator can instruct the processing to be performed on the stock solution processing apparatus 1 of this embodiment. Further, by checking numerical values, warnings, etc. displayed on the panel section 106p according to instructions from the control section 106, the operator can grasp the status of the stock solution processing apparatus 1 of this embodiment.

なお、制御部106は、パネル部106pに加えて、各種操作を行うためのボタンを備えていてもよい。 Note that the control unit 106 may include buttons for performing various operations in addition to the panel unit 106p.

<ローラーポンプ110,120>
図13、図14、図19に示すように、本体部100の制御部106の両側には、一対のローラーポンプ110,120が設けられている。一対のローラーポンプ110,120は、実質的に同じ構造を有しているので、以下では、ローラーポンプ110について説明する。
<Roller pump 110, 120>
As shown in FIGS. 13, 14, and 19, a pair of roller pumps 110 and 120 are provided on both sides of the control section 106 of the main body section 100. Since the pair of roller pumps 110 and 120 have substantially the same structure, the roller pump 110 will be explained below.

なお、図15には、ローラーポンプ110を分かりやすくするために、本体部100からローラーポンプ110として機能する部分を取り出した状態を示している。以下、図15に基づいて、ローラーポンプ110について説明する。 Note that, in order to make the roller pump 110 easier to understand, FIG. 15 shows a state in which a portion functioning as the roller pump 110 is removed from the main body portion 100. The roller pump 110 will be described below based on FIG. 15.

図15に示すように、ローラーポンプ110は、フレーム111と、このフレーム111に開閉可能に取り付けられた蓋部112と、を備えている。具体的には、蓋部112を開くと後述するローラー部115が露出し、蓋部112を閉じるとローラー部115を蓋部112で覆うことができるように、蓋部112が設けられている。そして、蓋部112を閉じた状態では、蓋部112の内面とフレーム111の上面との間にローラー部115を収容する空間が形成されるように、蓋部112が設けられている。 As shown in FIG. 15, the roller pump 110 includes a frame 111 and a lid 112 attached to the frame 111 so as to be openable and closable. Specifically, the lid part 112 is provided so that when the lid part 112 is opened, a roller part 115, which will be described later, is exposed, and when the lid part 112 is closed, the roller part 115 can be covered with the lid part 112. The lid 112 is provided so that a space for accommodating the roller portion 115 is formed between the inner surface of the lid 112 and the upper surface of the frame 111 when the lid 112 is closed.

フレーム111の上面には、2つのローラー116を備えたローラー部115が設けられている(図16参照)。このローラー部115は、一つの軸117に2つのローラー116が取り付けられており、この軸117はモータ等の駆動源114によって回転されるようになっている。つまり、駆動源114によって軸117が回転すると、2つのローラー116が回転するようになっている。なお、ローラー部115に設けられるローラー116は2つに限られず、1つでもよいし3つ以上でもよい。処理作業に適した数のローラー116が設けられていればよい。 A roller section 115 including two rollers 116 is provided on the upper surface of the frame 111 (see FIG. 16). In this roller section 115, two rollers 116 are attached to one shaft 117, and this shaft 117 is rotated by a drive source 114 such as a motor. In other words, when the shaft 117 is rotated by the drive source 114, the two rollers 116 are rotated. Note that the number of rollers 116 provided in the roller section 115 is not limited to two, and may be one or three or more. It is only necessary to provide a number of rollers 116 suitable for the processing operation.

また、フレーム111の上面には、ローラー部115と対向する位置にホルダー113が設けられている。このホルダー113は、ローラー部115の2つのローラー116と対向する面に、2つのローラー116との間にチューブTを挟む凹み面113aが設けられている。そして、このホルダー113は、スライダー機構等によって、蓋部112の開閉に連動してローラー部115に接近離間できるようになっている。具体的には、蓋部112を開くと、ホルダー113はローラー部115から離間して、ホルダー113の凹み面113aと2つのローラー116との間の空間がチューブTの直径よりも広くなるように移動するようになっている。また、蓋部112を閉じると、ホルダー113はローラー部115に接近し、ホルダー113の凹み面113aと2つのローラー116との間の隙間がチューブTの直径よりも狭くなるように移動するようになっている。つまり、蓋部112を開くとローラー部115との間にチューブTを配置したり取り外したりでき、蓋部112を閉じるとホルダー113の凹み面113aと2つのローラー116との間にチューブTを挟むことができるようになっている。 Further, a holder 113 is provided on the upper surface of the frame 111 at a position facing the roller section 115. This holder 113 is provided with a recessed surface 113a on the surface of the roller portion 115 facing the two rollers 116, which sandwiches the tube T between the two rollers 116. The holder 113 can move toward and away from the roller section 115 in conjunction with the opening and closing of the lid section 112 using a slider mechanism or the like. Specifically, when the lid part 112 is opened, the holder 113 is separated from the roller part 115 so that the space between the concave surface 113a of the holder 113 and the two rollers 116 is wider than the diameter of the tube T. It is supposed to move. Furthermore, when the lid part 112 is closed, the holder 113 approaches the roller part 115 and moves so that the gap between the concave surface 113a of the holder 113 and the two rollers 116 becomes narrower than the diameter of the tube T. It has become. In other words, when the lid part 112 is opened, the tube T can be placed between it and the roller part 115 and removed, and when the lid part 112 is closed, the tube T is sandwiched between the recessed surface 113a of the holder 113 and the two rollers 116. It is now possible to do so.

したがって、蓋部112を開いてローラー部115とホルダー113の凹み面113aとの間にチューブTを配置し蓋部112を閉じれば、チューブTをローラー部115とホルダー113によってクランプできるようになっている。また、チューブTをローラー部115とホルダー113によってクランプした状態で駆動源114を作動させれば、チューブT内の液体を送液できるようになっている。 Therefore, if the lid part 112 is opened, the tube T is placed between the roller part 115 and the recessed surface 113a of the holder 113, and the lid part 112 is closed, the tube T can be clamped by the roller part 115 and the holder 113. There is. Furthermore, by operating the drive source 114 while the tube T is clamped by the roller portion 115 and the holder 113, the liquid within the tube T can be fed.

なお、ローラー116は、一般的なローラーポンプに使用されるローラーと同じ構造を有していればよい。例えば、図16(C)に示すように、ローラー116は、一対のカバープレート116a間に複数のローラー116b(例えば3つのローラー116b)が設けられたものを使用することができる。かかるローラー116を使用した場合には、複数のローラー116bとホルダー113の凹み面113aとの間にチューブTを挟むことができ、ローラー116が回転するとローラー116bがチューブTを扱くように移動してチューブT内の液体を送液することができる。 Note that the roller 116 only needs to have the same structure as a roller used in a general roller pump. For example, as shown in FIG. 16(C), the roller 116 may include a plurality of rollers 116b (for example, three rollers 116b) provided between a pair of cover plates 116a. When such a roller 116 is used, the tube T can be sandwiched between the plurality of rollers 116b and the recessed surface 113a of the holder 113, and when the roller 116 rotates, the roller 116b moves to handle the tube T. The liquid inside the tube T can be fed by using the tube T.

なお、蓋部112を閉じた際にホルダー113の凹み面113aと2つのローラー116との間に形成される隙間の大きさはローラー116に配置されるチューブTに合わせて適切な隙間となるようにすればよい。適切な隙間とは、ローラー116が回転していないときには、チューブT内を液体がながれないようにクランプでき、ローラー116が回転したときにローラー116の回転抵抗がそれほど大きくならない隙間を意味している。
また、複数のチューブTをローラー116に配置する場合であって、配置するチューブTの径が異なる場合には、各チューブTが配置される位置に応じて、隙間が異なるようになっていてもよい。例えば、ホルダー113の凹み面113aに段差を設けてホルダー113の凹み面113aからローラー116までの距離が異なるようにすれば、各チューブTが配置される位置(つまり配置されるローラー116)に応じて隙間を変更することができる。一方、複数のローラー116を設けており各ローラー116で配置するチューブTの径が異なる場合であれば、ローラー116の直径を変更することによってチューブTに合わせた隙間に変更することができる。
The size of the gap formed between the concave surface 113a of the holder 113 and the two rollers 116 when the lid part 112 is closed is set to be an appropriate gap according to the tube T placed on the roller 116. Just do it. An appropriate gap means a gap that can be clamped to prevent liquid from flowing inside the tube T when the roller 116 is not rotating, and that does not increase rotational resistance of the roller 116 so much when the roller 116 rotates. .
In addition, when a plurality of tubes T are arranged on the roller 116 and the diameters of the tubes T to be arranged are different, the gaps may be different depending on the position where each tube T is arranged. good. For example, if the recessed surface 113a of the holder 113 is provided with a step so that the distance from the recessed surface 113a of the holder 113 to the roller 116 is different, the distance from the recessed surface 113a of the holder 113 to the roller 116 can be changed depending on the position where each tube T is placed (that is, the roller 116 placed). You can change the gap by On the other hand, if a plurality of rollers 116 are provided and the diameters of the tubes T arranged by each roller 116 are different, the gap can be changed to match the tubes T by changing the diameter of the rollers 116.

<ローラーポンプ110の制御>
ここで、ローラー部115とホルダー113の凹み面113aとの間にチューブTを配置した際に、チューブTが適切な位置に配置されない場合がある。このような状態で駆動源114を作動させた際に、チューブTがローラー116におけるローラー部115以外と干渉してしまう可能性がある。チューブTがローラー116におけるローラー部115以外と干渉した場合、送液ができなかったり、チューブTやローラー116が損傷したりする恐れがある。
<Control of roller pump 110>
Here, when the tube T is placed between the roller portion 115 and the recessed surface 113a of the holder 113, the tube T may not be placed at an appropriate position. When the drive source 114 is operated in such a state, the tube T may interfere with other parts of the roller 116 than the roller portion 115. If the tube T interferes with a portion of the roller 116 other than the roller portion 115, there is a risk that liquid feeding may not be possible or that the tube T or the roller 116 may be damaged.

そこで、制御部106は、蓋部112が閉じられたことを検出すると、駆動源114を操作して、ローラー116を正転逆転させる機能を有していてもよい。ローラー116を正転逆転させれば、チューブTの配置が適正な位置から若干ずれていても、適正な位置にチューブTを移動させることができる。すると、チューブTの配置をやり直さなくてもよいので、作業時間を短くすることができる。 Therefore, the control unit 106 may have a function of operating the drive source 114 to rotate the rollers 116 in the forward and reverse directions when detecting that the lid 112 is closed. By rotating the rollers 116 in the normal and reverse directions, the tube T can be moved to the proper position even if the arrangement of the tube T is slightly deviated from the proper position. Then, since there is no need to re-arrange the tube T, the working time can be shortened.

また、ローラー116を正転逆転させてもチューブTが適正な位置に配置されない場合がある。そこで、制御部106は、チューブTを適正な位置に配置できなかったことを検出すると、駆動源114が作動できないようにする安全機能と、チューブTの配置が適正でないことを作業者に知らせる警報機能と、を有していることが望ましい。すると、チューブTの配置が適正でない状態となったことによる装置の損傷を防止できるし、作業者がチューブTの配置の異常に迅速に気が付くことができる。 Further, even if the roller 116 is rotated in the normal or reverse direction, the tube T may not be placed in the proper position. Therefore, when the control unit 106 detects that the tube T cannot be placed in an appropriate position, it provides a safety function that prevents the drive source 114 from operating, and an alarm that alerts the operator that the tube T is not placed in an appropriate position. It is desirable to have the following functions. This can prevent damage to the device due to improper arrangement of the tubes T, and also allow the operator to quickly notice abnormalities in the arrangement of the tubes T.

例えば、警報機能としては、チューブTが適正な位置に配置されなかったことを制御部106が検出すると、制御部106が、パネル部106pに異常警報の表示をさせたり、異常警報音を発したりする機能等を挙げることができる。 For example, as an alarm function, when the control section 106 detects that the tube T is not placed in the proper position, the control section 106 displays an abnormality alarm on the panel section 106p, or emits an abnormality alarm sound. The following functions can be mentioned.

また、チューブTが適正な位置に配置されなかったことを検出する方法としては、例えば、駆動部114の駆動力を検出する方法を採用できる。この場合、駆動部114の駆動力が一定以上になった場合には、チューブTの配置に異常が生じていると制御部106が判断するようにすればよい。駆動部114がモータであれば、その主軸に加わる回転抵抗が所定の値以上になった場合にチューブTの配置に異常が生じていると制御部106が判断するようにすることができる。主軸に加わる回転抵抗は、例えば、モータに供給する電流値等を検出することによって判断することができる。 Further, as a method for detecting that the tube T is not placed at an appropriate position, for example, a method of detecting the driving force of the driving section 114 can be adopted. In this case, if the driving force of the drive unit 114 exceeds a certain level, the control unit 106 may determine that there is an abnormality in the arrangement of the tube T. If the drive unit 114 is a motor, the control unit 106 can determine that an abnormality has occurred in the arrangement of the tube T when the rotational resistance applied to its main shaft exceeds a predetermined value. The rotational resistance applied to the main shaft can be determined, for example, by detecting the current value supplied to the motor.

<チューブ位置決め部材160>
チューブTを適正な位置に配置する方法として、以下のようなチューブ位置決め部材160を使用することができる。以下のようなチューブ位置決め部材160を使用すれば、ローラー116にチューブTを巻き掛けた際に、チューブTとローラー116とを密着させやすくなるし、2つのローラー116に2本のチューブTをそれぞれ適切に巻き掛け易くなる。
<Tube positioning member 160>
As a method for arranging the tube T at a proper position, the following tube positioning member 160 can be used. If the following tube positioning member 160 is used, when the tube T is wound around the roller 116, it will be easier to bring the tube T and roller 116 into close contact with each other, and the two tubes T can be attached to the two rollers 116, respectively. It becomes easier to wrap properly.

以下に、チューブ位置決め部材160の構成を説明する。
図16および図17に示すように、チューブ位置決め部材160は、一対の保持部材161,161と、連結部材165と、を備えている。
The configuration of the tube positioning member 160 will be explained below.
As shown in FIGS. 16 and 17, the tube positioning member 160 includes a pair of holding members 161, 161 and a connecting member 165.

<一対の保持部材161,161>
図16および図17に示すように、一対の保持部材161,161は、2本のチューブTを保持するものであり、2本のチューブTの軸方向に沿って互いに間隔を空けた状態(距離を離した状態)で配置されるものである。この一対の保持部材161,161は同じ構造を有するものであり、ベース部材162とガイド部材163とを組み合わせて形成されている。
<Pair of holding members 161, 161>
As shown in FIGS. 16 and 17, the pair of holding members 161, 161 hold two tubes T, and the two tubes T are spaced apart from each other along the axial direction (distance). (separated from each other). The pair of holding members 161, 161 have the same structure and are formed by combining a base member 162 and a guide member 163.

ベース部材162は短冊状の板状の部材であるベース部162bを備えている。ベース部材162は、このベース部162bの長軸方向とチューブTの軸方向とが直交するようにチューブTを保持する構造を有している。具体的には、ベース部材162の短軸方向の側方には、ベース部162bから延設されたチューブ配置部162cが設けられている。このチューブ配置部162cには、チューブ配置部162cの表面から立設された一対の外方保持部d,dと、一対の外方保持部d,dとベース部162bとの間に位置する一対の内方保持部c,cと、が設けられている。この一対の内方保持部c,cは、一対の外方保持部d,dよりもベース部162bの長軸方向の内方に配置されている。そして、一対の内方保持部c,cは、チューブ配置部162cの表面から立設した立設部と立設部に対してベース部162bの長軸方向外方に向かって屈曲した屈曲部と有している。しかも、一対の内方保持部c,cは、ベース部162bの長軸方向において、立設部の外面と一対の外方保持部d,dの内面との間の距離がチューブTの直径とほぼ同じに形成されている。また、一対の内方保持部c,cは、屈曲部の下面とベース部162bの表面との距離もチューブTの直径とほぼ同じに形成されている。 The base member 162 includes a base portion 162b that is a rectangular plate-like member. The base member 162 has a structure that holds the tube T such that the longitudinal direction of the base portion 162b and the axial direction of the tube T are perpendicular to each other. Specifically, a tube placement portion 162c extending from the base portion 162b is provided on the side of the base member 162 in the short axis direction. The tube placement portion 162c includes a pair of outer holding portions d, d standing upright from the surface of the tube placement portion 162c, and a pair of outer holding portions d, d located between the pair of outer holding portions d, d and the base portion 162b. Inner holding portions c, c are provided. The pair of inner holding parts c, c are arranged further inward in the longitudinal direction of the base part 162b than the pair of outer holding parts d, d. The pair of inner holding parts c and c include an upright part that stands up from the surface of the tube placement part 162c, and a bent part that is bent outward in the longitudinal direction of the base part 162b with respect to the upright part. have. Furthermore, the distance between the outer surface of the upright portion and the inner surface of the pair of outer holding portions d, d is equal to the diameter of the tube T in the longitudinal direction of the base portion 162b. are formed almost identically. Further, the distance between the lower surface of the bent portion and the surface of the base portion 162b of the pair of inner holding portions c, c is also formed to be approximately the same as the diameter of the tube T.

すると、ベース部162bを短軸方向から見た際に、一対の外方保持部d,dの内面、一対の内方保持部c,cの立設部の外面およびの屈曲部の下面、ベース部162bの表面、によって2つの孔(以下仮想孔という)が形成されるようになる。 Then, when the base portion 162b is viewed from the minor axis direction, the inner surfaces of the pair of outer holding portions d, d, the outer surfaces of the standing portions and the lower surfaces of the bent portions of the pair of inner holding portions c, and the base Two holes (hereinafter referred to as virtual holes) are formed by the surface of the portion 162b.

一方、ガイド部材163は、ベース部材162のベース部162bの表面に重ねるように配設されるものである。このガイド部材163において、ベース部162bの表面に重ねた際にベース部162bの表面側に位置する面には、チューブTを収容する一対の溝163g,163gが設けられている。この一対の溝163g,163gは、その軸方向が互いに平行となるように設けられている。しかも、この一対の溝163g,163gは、ガイド部材163をベース部162bの表面に重ねた際に、ベース部162bの短軸方向から見ると、一対の溝163g,163gと2つの仮想孔とが重なる(好ましくは一致する)ように形成されている。 On the other hand, the guide member 163 is disposed so as to overlap the surface of the base portion 162b of the base member 162. In this guide member 163, a pair of grooves 163g, 163g for accommodating the tube T are provided on the surface located on the surface side of the base portion 162b when stacked on the surface of the base portion 162b. The pair of grooves 163g, 163g are provided so that their axial directions are parallel to each other. Furthermore, when the guide member 163 is placed on the surface of the base portion 162b, the pair of grooves 163g, 163g and the two virtual holes are seen from the short axis direction of the base portion 162b. They are formed to overlap (preferably coincide).

したがって、ベース部材162の2つの仮想孔に2本のチューブTをそれぞれ配置すれば、2本のチューブTが互いに平行になるようにベース部材162に配置することができる。その状態で、ガイド部材163をベース部162bの表面に重ねれば、2本のチューブTを一対の溝163g,163gに配置でき、2本のチューブTが外れないように2本のチューブTを保持部材161に保持させることができる。 Therefore, by arranging the two tubes T in the two virtual holes of the base member 162, the two tubes T can be arranged in the base member 162 so as to be parallel to each other. In this state, if the guide member 163 is stacked on the surface of the base part 162b, the two tubes T can be placed in the pair of grooves 163g, 163g, and the two tubes T can be placed in place so that the two tubes T do not come off. It can be held by the holding member 161.

上述したベース部材162のチューブ配置部162cとガイド部材163の一対の溝163g,163gが特許請求の範囲にいう「複数のチューブ保持部」に相当する。また、ベース部162bの長軸方向が特許請求の範囲にいう「複数のチューブ保持部が並ぶ方向」に相当する。さらに、ベース部162bの短軸方向が特許請求の範囲にいう「複数のチューブ保持部に保持された複数のチューブの軸方向」に相当する。 The tube placement portion 162c of the base member 162 and the pair of grooves 163g, 163g of the guide member 163 described above correspond to "a plurality of tube holding portions" in the claims. Further, the long axis direction of the base portion 162b corresponds to the “direction in which the plurality of tube holding portions are lined up” in the claims. Further, the short axis direction of the base portion 162b corresponds to "the axial direction of the plurality of tubes held by the plurality of tube holding parts" in the claims.

<連結部材165>
図16および図17に示すように、連結部材165は、上述した一対のチューブ保持部161,161を連結するものである。より具体的には、連結部材165は、一対のチューブ保持部161,161をチューブTの軸方向に沿って所定の距離だけ離した状態に維持するために、一対のチューブ保持部161,161間に設けられている。
<Connecting member 165>
As shown in FIGS. 16 and 17, the connecting member 165 connects the pair of tube holding parts 161, 161 described above. More specifically, the connecting member 165 connects the pair of tube holding parts 161, 161 between the pair of tube holding parts 161, 161 in order to maintain the pair of tube holding parts 161, 161 separated by a predetermined distance along the axial direction of the tube T. It is set in.

この連結部材165は、その両端に一対のチューブ保持部161,161に連結する連結構造を有しており、上述したチューブ保持部161のガイド部材163と着脱可能に連結できるようになっている。具体的には、ガイド部材163において、一対の溝163g,163g間の部分に連結部材165の端部が連結されるように設けられている。つまり、連結部材165を伸ばした状態において、ベース部162bの長軸方向および短軸方向と交差する方向から見た際に、チューブ保持部161に保持されている隣接するチューブT間に位置するように、連結部材165はガイド部材163に連結されている。 This connecting member 165 has a connecting structure connected to the pair of tube holding parts 161, 161 at both ends thereof, and can be detachably connected to the guide member 163 of the tube holding part 161 described above. Specifically, the guide member 163 is provided so that the end of the connecting member 165 is connected to a portion between the pair of grooves 163g, 163g. In other words, when the connecting member 165 is stretched out, it is positioned between the adjacent tubes T held by the tube holding part 161 when viewed from a direction intersecting the long axis direction and the short axis direction of the base part 162b. In addition, the connecting member 165 is connected to the guide member 163.

しかも、連結部材165を伸ばした状態において、チューブ保持部161に保持されたチューブTの中心軸よりもベース部162bと反対側に偏った位置に連結部材165が位置するように、連結部材165はガイド部材163に連結されている。 Moreover, the connecting member 165 is arranged in such a way that, when the connecting member 165 is extended, the connecting member 165 is located at a position that is biased toward the opposite side of the base portion 162b with respect to the central axis of the tube T held by the tube holding portion 161. It is connected to a guide member 163.

そして、連結部材165は、一対のチューブ保持部161,161に両端が連結された状態において、一対のチューブ保持部161,161間で曲げることができる構造を有している。より詳しくいえば、連結部材165は、一対のチューブ保持部161,161間において、ベース部162bの長軸方向および短軸方向と交差する方向に曲げることができる構造を有している。 The connecting member 165 has a structure that can be bent between the pair of tube holding parts 161, 161 in a state where both ends are connected to the pair of tube holding parts 161, 161. More specifically, the connecting member 165 has a structure that can be bent between the pair of tube holding parts 161, 161 in a direction intersecting the long axis direction and the short axis direction of the base part 162b.

例えば、連結部材165をプラスチック製の板状の部材で形成する。そして、連結部材165の幅方向がベース部162bの長軸方向と平行になるように連結部材165の両端を一対のチューブ保持部161,161のガイド部材163に連結するようにする。すると、連結部材165は、一対のチューブ保持部161,161間でベース部162bの長軸方向および短軸方向と交差する方向に曲げることができる(図17)。 For example, the connecting member 165 is formed of a plate-shaped member made of plastic. Then, both ends of the connecting member 165 are connected to the guide members 163 of the pair of tube holding parts 161, 161 so that the width direction of the connecting member 165 is parallel to the longitudinal direction of the base part 162b. Then, the connecting member 165 can be bent between the pair of tube holding parts 161, 161 in a direction intersecting the long axis direction and the short axis direction of the base part 162b (FIG. 17).

かかるチューブ位置決め部材160を2本のチューブTに取り付けると、この2本のチューブTをローラーポンプ110に配置した際に、以下のような利点が得られる。 When such tube positioning member 160 is attached to two tubes T, the following advantages can be obtained when these two tubes T are arranged in roller pump 110.

まず、ローラーポンプ110のローラー部115の2つの116,116にチューブTを巻き掛けた際に、適切な長さだけ離れた位置に配置されるようにストッパー部材T1,T2を設けておく(図16参照)。一方、ストッパー部材T1,T2間に一対のチューブ保持部161,161を配置して、一対のチューブ保持部161,161の外面がそれぞれストッパー部材T1,T2と接触する状態となるように配置する。そして、チューブTを伸ばした状態かつ一対のチューブ保持部161,161の外面がそれぞれストッパー部材T1,T2と接触した状態(以下では適正配置状態という)において、伸びた状態となるように連結部材165を一対のチューブ保持部161,161間に配置する(図17(B)参照)。
一方、ローラーポンプ110には、一対のチューブ保持部161,161を収容する一対の収容部を設けておく。具体的には、ローラー部115の回転軸117を含む面を挟む位置に、一対のチューブ保持部161,161を収容する一対の収容部を設けておく。しかも、一対の収容部は、一対のチューブ保持部161,161をそれぞれ一対の収容部に収容すると、チューブTが適正な状態でローラー部115の2つの116,116に巻き掛けられる状態となるように設けておく。
すると、一対の収容部に一対のチューブ保持部161,161を配置するだけで、2本のチューブTをローラー部115の2つの116,116に適正に巻き掛けることができる(図15参照)。
First, stopper members T1 and T2 are provided so that when the tube T is wound around the two 116 and 116 of the roller part 115 of the roller pump 110, the tube T is placed at a position separated by an appropriate length (Fig. 16). On the other hand, a pair of tube holding parts 161, 161 are arranged between stopper members T1, T2 so that the outer surfaces of the pair of tube holding parts 161, 161 are in contact with stopper members T1, T2, respectively. Then, when the tube T is stretched and the outer surfaces of the pair of tube holding parts 161 and 161 are in contact with the stopper members T1 and T2, respectively (hereinafter referred to as the proper arrangement state), the connecting member 165 is moved so that it is in the stretched state. is placed between the pair of tube holding parts 161, 161 (see FIG. 17(B)).
On the other hand, the roller pump 110 is provided with a pair of accommodating parts for accommodating the pair of tube holding parts 161, 161. Specifically, a pair of accommodating parts for accommodating the pair of tube holding parts 161, 161 are provided at positions sandwiching the surface of the roller part 115 that includes the rotating shaft 117. Moreover, the pair of housing parts is configured such that when the pair of tube holding parts 161, 161 are respectively stored in the pair of housing parts, the tube T can be wound around the two 116, 116 of the roller part 115 in an appropriate state. Set it in
Then, just by arranging the pair of tube holding parts 161, 161 in the pair of storage parts, the two tubes T can be properly wound around the two 116, 116 of the roller part 115 (see FIG. 15).

しかも、連結部材165は、連結部材165がチューブ保持部161に保持されたチューブTの中心軸よりもベース部162bと反対側に位置するようにガイド部材163に連結されている。すると、ガイド部材163がローラー116側に位置するようにチューブTをローラー部115のローラー116に巻き掛ければ、連結部材165は、その両端間の中央部が若干撓んで2つのチューブT間に位置するようになる(図16(A)、(B)参照)。すると、2本のチューブTが上下方向に並ぶように配設しても、連結部材165によって上方のチューブTが下方のチューブTと接触することを防止できる。 Furthermore, the connecting member 165 is connected to the guide member 163 such that the connecting member 165 is located on the opposite side of the base portion 162b with respect to the central axis of the tube T held by the tube holding portion 161. Then, if the tube T is wound around the roller 116 of the roller portion 115 so that the guide member 163 is positioned on the roller 116 side, the connecting member 165 will be positioned between the two tubes T with the center portion between both ends thereof being slightly bent. (See FIGS. 16(A) and 16(B)). Then, even if the two tubes T are arranged vertically side by side, the connecting member 165 can prevent the upper tube T from coming into contact with the lower tube T.

なお、連結部材165は、必ずしもチューブTの中心軸よりもベース部162bと反対側に位置するようになっていなくてもよい。しかし、かかる構造とすれば、上述したような効果が得られる。 Note that the connecting member 165 does not necessarily have to be located on the side opposite to the base portion 162b with respect to the central axis of the tube T. However, with such a structure, the effects described above can be obtained.

また、チューブ保持部161は、ベース部162bの長軸方向の中間に対して対称でなくてもよい。言い換えれば、ベース部162bの長軸方向において、チューブ保持部161に保持された2本のチューブTの中間に対して、チューブ保持部161は非対称となるように形成してもよい。例えば、図17に示すように、ガイド部材163は、一対の溝163g,163gよりも外方に位置する部分の長さが異なるようにしてもよい。この様にすれば、一対のチューブ保持部161,161を一対の収容部に配置する際に、一対のチューブ保持部161,161の入れ間違いを防止できる。つまり、間違った方向から一対のチューブ保持部161,161を一対の収容部に配置しようとしても、一対のチューブ保持部161,161を一対の収容部に収容できない状態とすることができる。すると、チューブTをローラーポンプ110にセットする際の作業ミスを防止できる。例えば、ローラーポンプにチューブTをセットする際に、チューブTが捩じれたり2本のチューブが逆のローラー116にセットされたりすることを防止することができる。 Moreover, the tube holding part 161 does not have to be symmetrical with respect to the middle of the base part 162b in the longitudinal direction. In other words, the tube holding part 161 may be formed asymmetrically with respect to the middle of the two tubes T held by the tube holding part 161 in the longitudinal direction of the base part 162b. For example, as shown in FIG. 17, the guide member 163 may have different lengths at portions located outward from the pair of grooves 163g, 163g. In this way, when placing the pair of tube holding parts 161, 161 in the pair of storage parts, it is possible to prevent the pair of tube holding parts 161, 161 from being inserted incorrectly. In other words, even if an attempt is made to arrange the pair of tube holding parts 161, 161 in the pair of housing parts from the wrong direction, the pair of tube holding parts 161, 161 cannot be stored in the pair of housing parts. This can prevent operational errors when setting the tube T to the roller pump 110. For example, when setting the tube T on a roller pump, it is possible to prevent the tube T from being twisted or from setting two tubes on opposite rollers 116.

なお、複数のローラーポンプを有している場合には、チューブ保持部161は、セットするローラーポンプによってサイズや形状を変更してもよい。すると、チューブをセットするローラーポンプを間違えることを防止できる。 In addition, when it has a plurality of roller pumps, the size and shape of the tube holding part 161 may be changed depending on the roller pump to be set. This will prevent you from setting the tube in the wrong roller pump.

また、チューブ保持部161が一対の収容部に適切にセットされなかった場合に、ローラーポンプ装置を作動できないような機能を設けてもよい。この場合、チューブTが適正にセットされなかった場合に、誤ってローラー116が回転してもチューブTやローラー116が損傷することを防止できる。例えば、適切なチューブ保持部161が配置された場合に押されるボタン式のセンサ等を一対の収容部に設けておけば、上記機能を発揮させることができる。 Further, a function may be provided that prevents the roller pump device from operating if the tube holding portion 161 is not properly set in the pair of storage portions. In this case, it is possible to prevent the tube T and roller 116 from being damaged even if the roller 116 is rotated by mistake when the tube T is not set properly. For example, if a button-type sensor or the like is provided in the pair of housing parts, which is pressed when an appropriate tube holding part 161 is placed, the above function can be achieved.

また、上記例では、チューブ位置決め部材160が2本のチューブTを保持する場合を説明した。しかし、チューブ位置決め部材160が保持するチューブTは、3本以上でもよく、とくに限定されない。なお、チューブ位置決め部材160が3本以上のチューブTを保持する場合には、隣接するチューブT間にそれぞれ連結部材165が設けられていることが望ましい。 Furthermore, in the above example, the case where the tube positioning member 160 holds two tubes T has been described. However, the number of tubes T held by the tube positioning member 160 may be three or more, and is not particularly limited. In addition, when the tube positioning member 160 holds three or more tubes T, it is desirable that a connecting member 165 is provided between each adjacent tube T.

また、保持部材161や複数のチューブ保持部の構造は上記構造に限られない。保持部材161および複数のチューブ保持部は、複数本のチューブを互いに平行かつ一列に並んで保持できるようになっていればよい。例えば、板状の保持部材に、単に貫通孔を一列に並ぶように形成して複数のチューブ保持部としてもよい。ここでいう一列とは、複数のチューブ保持部に複数のチューブを配置すると複数のチューブの中心軸がほぼ同一平面上に並ぶ場合と、複数のチューブ保持部に保持されたチューブTをその軸方向からみたときに、ベース部材162の表面の法線方向においてチューブTの中心軸の位置がズレている場合も含んでいる。例えば、複数のチューブ保持部に保持されたチューブTをその軸方向からみたときに、チューブTの中心軸の位置が千鳥配置のように並んでいる場合も、上述した複数本のチューブが一列に並んで保持されている状態に含まれている。 Further, the structure of the holding member 161 and the plurality of tube holding parts is not limited to the above structure. The holding member 161 and the plurality of tube holding parts only need to be able to hold a plurality of tubes parallel to each other and in a line. For example, a plurality of tube holding parts may be formed by simply forming through holes in a line in a plate-shaped holding member. Here, "in a row" refers to cases in which when multiple tubes are arranged in multiple tube holders, the central axes of the multiple tubes are aligned on almost the same plane, and tubes T held in multiple tube holders in the axial direction. This also includes a case where the central axis of the tube T is misaligned in the normal direction of the surface of the base member 162 when viewed from above. For example, when the tubes T held by a plurality of tube holding parts are viewed from the axial direction, even if the positions of the center axes of the tubes T are lined up in a staggered arrangement, the plurality of tubes mentioned above are arranged in a line. Included in the state of being held side by side.

<濾過器保持部101および濃縮器保持部102>
図13、図14および図19に示すように、一対のローラーポンプ110,120の外方には、それぞれ濾過器保持部101や濃縮器保持部102が設けられている。図13および図14であれば、制御部106の左側に設けられているローラーポンプ110が濾過器保持部101を備えており、制御部106の右側に設けられているローラーポンプ120が濃縮器保持部102を備えている。
<Filter holding section 101 and concentrator holding section 102>
As shown in FIGS. 13, 14, and 19, a filter holder 101 and a concentrator holder 102 are provided outside the pair of roller pumps 110 and 120, respectively. 13 and 14, the roller pump 110 provided on the left side of the control section 106 is equipped with the filter holding section 101, and the roller pump 120 provided on the right side of the control section 106 is provided with the concentrator holding section 101. 102.

濾過器保持部101および濃縮器保持部102は、その表面にクランプ部101c,102cが設けられており、そのクランプ部101c,102cによって濾過器10および濃縮器20を着脱可能に保持できるようになっている。 The filter holding part 101 and the concentrator holding part 102 are provided with clamp parts 101c and 102c on their surfaces, and the filter 10 and the concentrator 20 can be detachably held by the clamp parts 101c and 102c. ing.

また、濾過器保持部101および濃縮器保持部102は、その基端が一対のローラーポンプ110,120のフレームに揺動可能に連結されている。具体的には、濾過器保持部101および濃縮器保持部102を外方に揺動させればクランプ部101c,102cが露出した状態となるように、濾過器保持部101および濃縮器保持部102は一対のローラーポンプ110,120のフレームに連結されている。逆に、濾過器保持部101および濃縮器保持部102を内方に揺動させれば、クランプ部101c,102cが一対のローラーポンプ110,120の一対のローラー116,116と対向した状態となるように、濾過器保持部101および濃縮器保持部102は一対のローラーポンプ110,120のフレームに連結されている。つまり、原液を処理する作業を行わない場合には、濾過器保持部101および濃縮器保持部102が、ローラーポンプ110,120内に収納できるようになっている。なお、濾過器保持部101および濃縮器保持部102は、必ずしも一対のローラーポンプ110,120のフレームに揺動可能に連結されていなくてもよく、常時ローラーポンプ110,120の外方に露出していてもよい。しかし、上記のごとき構成とすれば、本実施形態の原液処理装置1を使用しないときに、本実施形態の原液処理装置1をコンパクトに収納できるという利点が得られる。 Further, the base ends of the filter holding section 101 and the concentrator holding section 102 are swingably connected to the frames of the pair of roller pumps 110 and 120. Specifically, the filter holding part 101 and the concentrator holding part 102 are moved so that when the filter holding part 101 and the concentrator holding part 102 are rocked outward, the clamp parts 101c and 102c are exposed. are connected to the frames of a pair of roller pumps 110 and 120. Conversely, if the filter holding part 101 and the concentrator holding part 102 are swung inward, the clamp parts 101c and 102c will be in a state facing the pair of rollers 116 and 116 of the pair of roller pumps 110 and 120. As such, the filter holding part 101 and the concentrator holding part 102 are connected to the frames of a pair of roller pumps 110 and 120. That is, when the work of processing the stock solution is not performed, the filter holding section 101 and the concentrator holding section 102 can be housed in the roller pumps 110 and 120. Note that the filter holding part 101 and the concentrator holding part 102 do not necessarily have to be swingably connected to the frames of the pair of roller pumps 110, 120, and are always exposed to the outside of the roller pumps 110, 120. You can leave it there. However, with the above configuration, there is an advantage that the undiluted solution processing apparatus 1 of this embodiment can be stored compactly when the undiluted solution processing apparatus 1 of this embodiment is not used.

なお、本実施形態の原液処理装置1は、必ずしも濾過器保持部101や濃縮器保持部102を有していなくてもよい。しかし、本体部100が濾過器保持部101や濃縮器保持部102を有していれば、濾過器10や濃縮器20を保持するホルダーなどを別に準備しなくてもよいという利点が得られる。 Note that the stock solution processing apparatus 1 of this embodiment does not necessarily have the filter holding section 101 or the concentrator holding section 102. However, if the main body part 100 has the filter holding part 101 and the concentrator holding part 102, there is an advantage that there is no need to separately prepare a holder for holding the filter 10 and the concentrator 20.

<一対の吊り下げ部103,103>
図13、図14および図19に示すように、本体部100の背面には、一対の吊り下げ部103,103が設けられている。この一対の吊り下げ部103,103は軸状の部材で形成されており、その軸の基端が本体部100の背面に設けられた一対の取付部100h,100hに着脱可能に取り付けられている。より具体的には、この一対の吊り下げ部103,103の基端を一対の取付部100h,100hに取り付けると一対の吊り下げ部103,103の軸方向がほぼ鉛直になるように、一対の取付部100h,100hが設けられている。
<Pair of hanging parts 103, 103>
As shown in FIGS. 13, 14, and 19, a pair of hanging parts 103, 103 are provided on the back surface of the main body part 100. The pair of hanging parts 103, 103 are formed of shaft-shaped members, and the base ends of the shafts are removably attached to a pair of mounting parts 100h, 100h provided on the back surface of the main body part 100. . More specifically, the pair of hanging parts 103, 103 are attached so that when the base ends of the pair of hanging parts 103, 103 are attached to the pair of mounting parts 100h, 100h, the axial direction of the pair of hanging parts 103, 103 becomes almost vertical. Attachment portions 100h, 100h are provided.

この一対の吊り下げ部103,103には、一般的な点滴ホルダーと同様に、引っ掛け部103bが設けられている。そして、一対の吊り下げ部103,103は、この引っ掛け部103bに各バッグBを吊り下げることができるようになっている。 The pair of hanging parts 103, 103 are provided with a hook part 103b like a general drip holder. The pair of hanging parts 103, 103 are such that each bag B can be hung from the hook part 103b.

また、一対の吊り下げ部103,103にはフック部103fが設けられており、このフック部103fにチューブホルダー150を吊り下げることができるようになっている。 Further, a hook portion 103f is provided on the pair of hanging portions 103, 103, and the tube holder 150 can be hung from the hook portion 103f.

なお、一対の吊り下げ部103,103は必ずしも本体部100に着脱可能としなくてもよい。しかし、一対の吊り下げ部103,103を着脱可能とすれば、本実施形態の原液処理装置1を使用しないときに一対の吊り下げ部103,103を外すことによって、本実施形態の原液処理装置1をコンパクトに収納できるという利点が得られる。 Note that the pair of hanging parts 103, 103 do not necessarily have to be detachable from the main body part 100. However, if the pair of hanging parts 103, 103 are made removable, the undiluted solution processing apparatus 1 of this embodiment can be removed by removing the pair of hanging parts 103, 103 when the undiluted solution processing apparatus 1 of this embodiment is not in use. 1 can be stored compactly.

また、本実施形態の原液処理装置1に設ける吊り下げ部103の数は2本に限られず、1本でもよいし、3本以上でもよい。本実施形態の原液処理装置1で実施する処理に使用するバッグBの数やチューブTの本数などに合わせて適切な数の吊り下げ部103を設ければよい。 Moreover, the number of hanging parts 103 provided in the stock solution processing apparatus 1 of this embodiment is not limited to two, but may be one, or three or more. An appropriate number of hanging portions 103 may be provided in accordance with the number of bags B, the number of tubes T, etc. used in the processing performed by the stock solution processing apparatus 1 of this embodiment.

また、本実施形態の原液処理装置1は、必ずしも一対の吊り下げ部103,103を有していなくてもよい。この場合、点滴を吊り下げる一般的な点滴ホルダーを使用すればよい。しかし、本体部100が一対の吊り下げ部103,103を有していれば、点滴ホルダーなどを別に準備しなくてもよいという利点が得られる。 Moreover, the stock solution processing apparatus 1 of this embodiment does not necessarily have to have the pair of hanging parts 103, 103. In this case, a general drip holder for suspending the drip may be used. However, if the main body part 100 has the pair of hanging parts 103, 103, there is an advantage that there is no need to separately prepare a drip holder or the like.

<チューブホルダー150>
図18に示すように、チューブホルダー150は複数本のチューブTを保持するための部材である。このチューブホルダー150に複数本のチューブTを保持させておけば、図18に示すように、複数本のチューブTを一対の吊り下げ部103,103に吊り下げておくことができる(図19参照)。すると、複数本のチューブTを、本体部100の制御部106や、濾過器10、濃縮器20、一対のローラーポンプ110,120にセットする際に、必要なチューブTだけをチューブホルダー150から外して作業することができる。つまり、複数本のチューブTを装置にセットする際に、すぐに使用しないチューブTを作業者が保持しておく必要がないので、作業者の作業が行いやすくなる。
<Tube holder 150>
As shown in FIG. 18, the tube holder 150 is a member for holding a plurality of tubes T. If this tube holder 150 holds a plurality of tubes T, the plurality of tubes T can be suspended from a pair of hanging parts 103, 103, as shown in FIG. ). Then, when setting a plurality of tubes T to the control unit 106 of the main body 100, the filter 10, the concentrator 20, or the pair of roller pumps 110, 120, only the necessary tubes T are removed from the tube holder 150. be able to work. That is, when setting a plurality of tubes T in the apparatus, the operator does not have to hold the tubes T that will not be used immediately, making it easier for the operator to perform the work.

<本体部151>
図18に示すように、チューブホルダー150は、板状の本体部151を備えている。本体部151には、その上端縁151aに連結部152が設けられている。この連結部152は、表裏を貫通する貫通孔152hが形成されており、この貫通孔152hに一対の吊り下げ部103,103のフック部103fを通せば、チューブホルダー150をその上端縁151aが上方を向いた状態で吊り下げ部103に吊り下げることができる。
<Main body part 151>
As shown in FIG. 18, the tube holder 150 includes a plate-shaped main body 151. As shown in FIG. The main body portion 151 is provided with a connecting portion 152 at its upper edge 151a. This connecting portion 152 has a through hole 152h that passes through the front and back sides, and if the hook portions 103f of the pair of hanging portions 103, 103 are passed through the through hole 152h, the tube holder 150 is held so that its upper edge 151a is upward. It can be hung from the hanging part 103 with the camera facing the direction of the camera.

なお、チューブホルダー150の上端縁151aが上方を向いた状態で安定して一対の吊り下げ部103,103に吊り下げるには、貫通孔152hおよび一対の吊り下げ部103,103のフック部103fは横長の形状になっていることが望ましい。つまり、連結部152の貫通孔152hは上端縁151aに沿った方向に長い横長の孔となっていることが望ましい。また、一対の吊り下げ部103,103のフック部103fも、一対の吊り下げ部103,103の軸方向と直交する方向に長い横長の形状となっていることが望ましい。 In addition, in order to stably suspend the tube holder 150 from the pair of hanging parts 103, 103 with the upper end edge 151a facing upward, the through hole 152h and the hook part 103f of the pair of hanging parts 103, 103 are It is desirable that the shape be horizontally long. That is, it is desirable that the through hole 152h of the connecting portion 152 be a horizontally long hole that is long in the direction along the upper edge 151a. Further, it is desirable that the hook portions 103f of the pair of hanging portions 103, 103 also have a horizontally elongated shape that is long in the direction orthogonal to the axial direction of the pair of hanging portions 103, 103.

<保持部155>
本体部151の表面151c(第一面)には、チューブTを着脱可能に保持する保持部155が複数設けられている。この保持部155は、上下方向を貫通する貫通孔155hを有する筒状構造を有しており、その前面にスリット状の開口155sが形成されたものである。この保持部155は、その貫通孔155hの開口155sの幅は、チューブTの直径よりも小さくなっている。つまり、開口155sからチューブTを貫通孔155hに押し込めばチューブTを保持部155の貫通孔155hに配置して保持させることができ、チューブTを引っ張ればチューブTを保持部155から取り外すことができるようになっている。
<Holding section 155>
A plurality of holding parts 155 that removably hold the tube T are provided on the surface 151c (first surface) of the main body part 151. This holding part 155 has a cylindrical structure having a through hole 155h passing through it in the vertical direction, and a slit-shaped opening 155s is formed in the front surface thereof. In this holding portion 155, the width of the opening 155s of the through hole 155h is smaller than the diameter of the tube T. That is, by pushing the tube T into the through hole 155h from the opening 155s, the tube T can be placed and held in the through hole 155h of the holding part 155, and by pulling the tube T, the tube T can be removed from the holding part 155. It looks like this.

複数の保持部155は、本体部151の上端縁151aに沿って一列に並ぶように配設されている。しかも、複数の保持部155は、貫通孔155hの中心軸が互いに平行となるように設けられている。したがって、複数の保持部155に複数のチューブTを保持させると、複数のチューブTはその軸方向が互いに平行かつ本体部155の表面151cに沿って一列に並ぶように配設することができる。すると、複数の保持部155に決められた順番で複数のチューブTを取り付けておけば、作業者が複数のチューブTの取違いなどのミスをすることを防止できる。例えば、複数の保持部155の左から右に向かって、装置に連結する順番に複数のチューブTが並ぶように、複数のチューブTを複数の保持部155に取り付けておく。すると、作業者は左から順番にチューブTを取り外せば、接続するチューブTを間違えることが無いので、作業ミスを防止できるし作業者の作業負担も軽減できる。 The plurality of holding parts 155 are arranged in a line along the upper edge 151a of the main body part 151. Moreover, the plurality of holding parts 155 are provided so that the central axes of the through holes 155h are parallel to each other. Therefore, when the plurality of tubes T are held by the plurality of holding parts 155, the plurality of tubes T can be arranged so that their axial directions are parallel to each other and lined up in a line along the surface 151c of the main body part 155. Then, by attaching the plurality of tubes T to the plurality of holding parts 155 in a predetermined order, it is possible to prevent the operator from making a mistake such as mixing up the plurality of tubes T. For example, the plurality of tubes T are attached to the plurality of holding parts 155 so that the plurality of tubes T are lined up from left to right of the plurality of holding parts 155 in the order of connection to the device. Then, if the operator removes the tubes T in order from the left, he will not be able to connect the wrong tube T, thereby preventing work errors and reducing the work burden on the operator.

なお、「複数の保持部155は、本体部151の上端縁151aに沿って一列に並ぶ」とは、複数の保持部155が千鳥配置になっている場合や、本体部151の上端縁151aと交差する方向において若干のずれがある場合も含んでいる。 Note that "the plurality of holding parts 155 are lined up in a row along the upper edge 151a of the main body part 151" means that the plurality of holding parts 155 are arranged in a staggered manner, or when the plurality of holding parts 155 are aligned along the upper edge 151a of the main body part 151. This also includes cases where there is a slight deviation in the intersecting direction.

<係合部材153>
また、連結部152は、本体部151の裏面151d(つまり表面151cと反対側の第二面)側に係合部材153を備えている。この係合部材153は、本体部151の裏面151dに突出した状態となるように設けられており、その一端(上端)に開口153sを有しており、この開口153sと連続する隙間153hを備えている。
<Engagement member 153>
Further, the connecting portion 152 includes an engaging member 153 on the back surface 151d (that is, the second surface opposite to the front surface 151c) of the main body portion 151. This engagement member 153 is provided so as to protrude from the back surface 151d of the main body portion 151, and has an opening 153s at one end (upper end), and a gap 153h continuous with the opening 153s. ing.

かかる係合部材153を設けておけば、本体部151の複数の保持部155に保持されたチューブTを一度に下向きにしたり、チューブTを下向きにした状態に維持したりしておくことができる。例えば、開口153sを通してバケツ等の縁を隙間153hに挿入すれば、本体部151の上端縁115aが下を向いた状態となるように、チューブホルダー150をバケツ等に取り付けることができる。すると、複数のチューブTをその先端が本体部151の上端縁115a側(吊り下げ部103に本体部151を吊り下げた状態で上方)を向くように複数の保持部155に取り付けておけば、複数のチューブTの先端を一度に下方を向くように配置できる。つまり、複数のチューブTからバケツ等に排液する場合には、係合部材153をバケツ等の縁に取り付けるだけで、簡単に複数のチューブTから排液できる状態にすることができる。 By providing such an engaging member 153, the tube T held by the plurality of holding parts 155 of the main body part 151 can be turned downward at once, or the tube T can be maintained in a downward state. . For example, by inserting the edge of a bucket or the like into the gap 153h through the opening 153s, the tube holder 150 can be attached to the bucket or the like so that the upper edge 115a of the main body 151 faces downward. Then, if the plurality of tubes T are attached to the plurality of holding parts 155 with their tips facing the upper edge 115a side of the main body part 151 (upward when the main body part 151 is suspended from the hanging part 103), The tips of a plurality of tubes T can be arranged so as to face downward at the same time. That is, when draining liquid from a plurality of tubes T into a bucket or the like, it is possible to easily drain liquid from the plurality of tubes T by simply attaching the engaging member 153 to the edge of the bucket or the like.

なお、連結部152の形状等は上記の形状等に限定されない。本体部151を一対の吊り下げ部103,103等に連結しておくことができる形状であればよい。
また、係合部材153の形状等も上記の形状等に限定されず、上述したような機能を有するような形状であればよい。そして、係合部材153は必ずしも設けなくてもよい。
さらに、上記例では、係合部材153を本体部151の裏面151dに設けた場合を説明したが、係合部材153は本体部151の表面151cに設けてもよいし、本体部151の表面151cと裏面151dの両方に設けてもよい。
Note that the shape of the connecting portion 152 is not limited to the above shape. Any shape may be used as long as the main body portion 151 can be connected to the pair of hanging portions 103, 103, etc.
Further, the shape of the engaging member 153 is not limited to the above-mentioned shape, but may be any shape as long as it has the above-mentioned functions. Furthermore, the engaging member 153 does not necessarily need to be provided.
Furthermore, in the above example, the case where the engaging member 153 is provided on the back surface 151d of the main body section 151 has been described, but the engaging member 153 may be provided on the surface 151c of the main body section 151, or and the back surface 151d.

<濾過器10および濃縮器20>
本実施形態の原液処理装置1の回路を説明する前に、本実施形態の原液処理装置1で使用する濾過器および濃縮器の一例を説明する。なお、以下では、濾過部材として中空糸膜を使用した濾過器および濃縮器を説明するが、本実施形態の原液処理装置1で使用する濾過器および濃縮器は濾過部材として中空糸膜を使用したものに限定されず、中空糸膜以外の公知の濾過部材を使用した濾過器および濃縮器も使用できる。
<Filter 10 and concentrator 20>
Before explaining the circuit of the stock solution processing device 1 of this embodiment, an example of a filter and a concentrator used in the stock solution processing device 1 of this embodiment will be described. Note that although a filter and a concentrator using a hollow fiber membrane as a filtration member will be described below, the filter and concentrator used in the stock solution processing device 1 of this embodiment use a hollow fiber membrane as a filtration member. The present invention is not limited thereto, and filters and concentrators using known filtration members other than hollow fiber membranes can also be used.

<濾過器10>
濾過器10は、例えば、CARTに使用されている腹水濾過器や、血漿交換に使用される血漿分離器、血漿成分分離器などである。この濾過器10は、濾過部材が内部に収容されたものであり、濾過部材によって胸腹水を濾過して、濾過液と細胞等を含む分離液とに分離することができるものである。
<Filter 10>
The filter 10 is, for example, an ascites filter used in CART, a plasma separator used in plasma exchange, a plasma component separator, or the like. This filter 10 has a filtering member housed therein, and is capable of filtering pleural and ascitic fluid using the filtering member and separating it into a filtrate and a separated liquid containing cells and the like.

図5に示すように、この濾過器10は、本体部11と、この本体部11内に配置された中空糸膜束15と、を有している。 As shown in FIG. 5, the filter 10 includes a main body 11 and a hollow fiber membrane bundle 15 disposed within the main body 11.

<中空糸膜束15>
図5に示すように、中空糸膜束15は、複数本の中空糸膜16を束ねて構成されたものである。
<Hollow fiber membrane bundle 15>
As shown in FIG. 5, the hollow fiber membrane bundle 15 is constructed by bundling a plurality of hollow fiber membranes 16.

中空糸膜16は、断面環状の壁16wを有しその壁16wの内部に中空糸膜16の軸方向を貫通する貫通流路16hが形成された管状の部材である。この中空糸膜16の壁16wは、細胞などの固形分や気体は透過しないが液体は透過する機能を有している。 The hollow fiber membrane 16 is a tubular member having a wall 16w having an annular cross section and a through flow path 16h that penetrates the hollow fiber membrane 16 in the axial direction inside the wall 16w. The wall 16w of the hollow fiber membrane 16 has a function of not allowing solid matter such as cells or gas to pass therethrough, but allowing liquid to pass therethrough.

中空糸膜束15は、複数の中空糸膜16の一端部同士、および、他端部同士が束ねられている。つまり、各中空糸膜16の貫通流路16hが中空糸膜束15の一端部と他端部との間を貫通するように複数の中空糸膜16を束ねて中空糸膜束15が形成されている。 In the hollow fiber membrane bundle 15, one ends of the plurality of hollow fiber membranes 16 and the other ends thereof are bundled together. That is, the hollow fiber membrane bundle 15 is formed by bundling a plurality of hollow fiber membranes 16 such that the through flow path 16h of each hollow fiber membrane 16 passes between one end and the other end of the hollow fiber membrane bundle 15. ing.

なお、複数本の中空糸膜16はその両端部同士が必ずしも束ねられていなくてもよい。その場合には、複数本の中空糸膜16の貫通流路16hの両端がそれぞれ本体部11の一対のヘッダ部13,14に連通されるように配置される。 Note that the plurality of hollow fiber membranes 16 do not necessarily have to be bundled at both ends. In that case, the plurality of hollow fiber membranes 16 are arranged such that both ends of the through passages 16h are communicated with the pair of header parts 13 and 14 of the main body part 11, respectively.

<本体部11>
図5に示すように、本体部11には、外部と気密かつ液密に隔離された空間である内部空間12hを有する胴部12を備えている。この胴部12の内部空間12は、後述するポートのみで外部と連通されるように形成されており、上述した中空糸膜束15を内部に収容している。この内部空間12は、上述した中空糸膜束15を内部に収容した状態において、複数本の中空糸膜16の貫通流路16hと気密に分離されているが、壁16wを通して両者間を液体が通過できるようになっている。つまり、内部空間12内の液体を貫通流路16hに供給できるし、貫通流路16h内の液体を内部空間12に供給できるようになっている。
<Main body part 11>
As shown in FIG. 5, the main body 11 includes a body 12 having an internal space 12h that is airtightly and liquidtightly isolated from the outside. The internal space 12 of the body portion 12 is formed so as to communicate with the outside only through a port described later, and accommodates the hollow fiber membrane bundle 15 described above therein. This internal space 12 is airtightly separated from the passage channels 16h of the plurality of hollow fiber membranes 16 when the above-mentioned hollow fiber membrane bundle 15 is accommodated therein, but liquid can flow between them through the wall 16w. It is now possible to pass. In other words, the liquid in the internal space 12 can be supplied to the through passage 16h, and the liquid in the through passage 16h can be supplied to the internal space 12.

なお、内部空間12の大きさや形状はとくに限定されない。中空糸膜束15を収容した状態において、ポートを介して内部空間12に流入した液体が、中空糸膜束15と胴部12の内面(つまり内部空間12の内面)との間および複数本の中空糸膜16同士の間を流れて、中空糸膜16の壁16wを通して貫通流路16h内に流入できる程度の大きさがあればよい。加えて、中空糸膜16の壁16wを通して貫通流路16hから内部空間12に流出した液体が、複数本の中空糸膜16同士の間および中空糸膜束15と内部空間12の内面との間を流れて、ポートから流出できる程度の大きさがあればよい。 Note that the size and shape of the internal space 12 are not particularly limited. When the hollow fiber membrane bundle 15 is accommodated, liquid flowing into the internal space 12 through the port flows between the hollow fiber membrane bundle 15 and the inner surface of the body 12 (that is, the inner surface of the internal space 12) and between the plurality of It only needs to be large enough to flow between the hollow fiber membranes 16 and into the through channel 16h through the wall 16w of the hollow fiber membrane 16. In addition, the liquid that has flowed into the internal space 12 from the through channel 16h through the wall 16w of the hollow fiber membrane 16 flows between the plurality of hollow fiber membranes 16 and between the hollow fiber membrane bundle 15 and the inner surface of the internal space 12. It only needs to be large enough to flow through the port and flow out from the port.

図5に示すように、本体部11には、胴部12を挟むように、つまり、内部空間12hを挟むように一対のヘッダ部13,14が設けられている。この一対のヘッダ部13,14は、上述した胴部12の内部空間12hおよび外部と気密かつ液密に隔離された空間であって、外部とは後述するポートのみで連通される空間を有するように形成されている。また、一対のヘッダ部13,14には、上述した中空糸膜束15の各端部がそれぞれ連結されている。具体的には、中空糸膜束15を構成する複数本の中空糸膜16の貫通流路16hの両端の開口が一対のヘッダ部13,14の内部の空間と連通されるように、中空糸膜束15の両端部がそれぞれ一対のヘッダ部13,14に連結されている。したがって、一対のヘッダ部13,14の内部の空間同士が中空糸膜束15を構成する複数本の中空糸膜16の貫通流路16hによって連通された状態となっている。
As shown in FIG. 5, a pair of header parts 13 and 14 are provided in the main body part 11 so as to sandwich the body part 12, that is, to sandwich the internal space 12h. The pair of header sections 13 and 14 are airtightly and liquid-tightly isolated from the interior space 12h of the body section 12 described above and the outside, and have a space that communicates with the outside only through a port, which will be described later. is formed. Furthermore, each end of the hollow fiber membrane bundle 15 described above is connected to the pair of header parts 13 and 14, respectively. Specifically, the hollow fibers are arranged so that the openings at both ends of the through passages 16h of the plurality of hollow fiber membranes 16 constituting the hollow fiber membrane bundle 15 are communicated with the spaces inside the pair of header sections 13 and 14. Both ends of the membrane bundle 15 are connected to a pair of header parts 13 and 14, respectively. Therefore, the spaces inside the pair of header sections 13 and 14 are communicated with each other by the passage passages 16h of the plurality of hollow fiber membranes 16 constituting the hollow fiber membrane bundle 15.

<各ポート11a~11c>
また、本体部11には、上述したように、本体部11に形成されている胴部12の内部空間12hおよび一対のヘッダ部13,14の内部の空間と外部との間を連通するポート11a~11cが設けられている。
<Each port 11a to 11c>
Further, as described above, the main body part 11 includes a port 11a that communicates between the internal space 12h of the body part 12 formed in the main body part 11 and the internal spaces of the pair of header parts 13 and 14, and the outside. -11c are provided.

図5に示すように、本体部11の一端部には、ヘッダ部13と外部とを連通する原液供給ポート11aが設けられている。この原液供給ポート11aには、他端が原液バッグUBの液体排出口に連結された給液チューブ2の一端が連結されている(図1参照)。 As shown in FIG. 5, a stock solution supply port 11a is provided at one end of the main body 11 to communicate the header 13 with the outside. One end of the liquid supply tube 2, the other end of which is connected to the liquid outlet of the stock solution bag UB, is connected to the stock solution supply port 11a (see FIG. 1).

また、原液供給ポート11aには、給液チューブ2を介して、または、原液供給ポート11aに直接、洗浄液回収バッグFBが連通されている。具体的には、洗浄液回収バッグFBに他端が連結された洗浄液回収チューブ7の一端が給液チューブ2または原液供給ポート11aに連結されている(図1参照)。 Further, a cleaning liquid recovery bag FB is connected to the stock solution supply port 11a via the solution supply tube 2 or directly to the stock solution supply port 11a. Specifically, one end of the cleaning liquid recovery tube 7, the other end of which is connected to the cleaning liquid collection bag FB, is connected to the liquid supply tube 2 or the stock solution supply port 11a (see FIG. 1).

本体部11の胴部12の側面には、内部空間12hと外部とを連通する濾過液排出ポート11cが設けられている。この濾過液排出ポート11cには、他端が濃縮器20の濾過液供給口20aに連結された濾過液供給チューブ3の一端が連結されている(図1参照)。なお、図5では、濾過液排出ポート11cが2つ設けられているが、濾過液排出ポート11cは1つでもよい。 A filtrate discharge port 11c is provided on the side surface of the trunk 12 of the main body 11 to communicate the internal space 12h with the outside. One end of the filtrate supply tube 3, the other end of which is connected to the filtrate supply port 20a of the concentrator 20, is connected to the filtrate discharge port 11c (see FIG. 1). In addition, although two filtrate discharge ports 11c are provided in FIG. 5, the number of filtrate discharge ports 11c may be one.

本体部11の他端部には、ヘッダ部14と外部とを連通する洗浄液供給ポート11bが設けられている。この洗浄液供給ポート11bには、他端が洗浄液バッグSBに連結された洗浄液供給チューブ6の一端が連結されている(図1参照)。 A cleaning liquid supply port 11b is provided at the other end of the main body 11 to communicate the header 14 with the outside. One end of the cleaning liquid supply tube 6, the other end of which is connected to the cleaning liquid bag SB, is connected to the cleaning liquid supply port 11b (see FIG. 1).

<濾過器10の機能>
濾過器10は以上のごとき構成を有し、かつ、上記のように本体部11の各ポート11a~11cに各チューブを介して原液バッグUBや洗浄液バッグSBが連通されている。このため、給液チューブ送液部2pを作動させて原液バッグUBから給液チューブ2と原液供給ポート11aを介して本体部11のヘッダ部13に原液を供給すれば(図1参照)、中空糸膜束15の中空糸膜16の貫通流路16h内に原液が供給されるので、中空糸膜16によって原液が濾過される。つまり、原液に含まれる固形分は中空糸膜16を通過できないので貫通流路16h内に残り、液体分、つまり、濾過液のみが中空糸膜16の壁16wを通過するので、原液を濾過した濾過液を得ることができる。
<Function of filter 10>
The filter 10 has the above configuration, and as described above, the stock solution bag UB and the cleaning solution bag SB are communicated with each port 11a to 11c of the main body 11 via each tube. Therefore, if the liquid supply tube liquid sending part 2p is operated to supply the liquid from the liquid bag UB to the header part 13 of the main body part 11 via the liquid supply tube 2 and the liquid liquid supply port 11a (see FIG. 1), the hollow Since the stock solution is supplied into the through channel 16h of the hollow fiber membranes 16 of the fiber membrane bundle 15, the stock solution is filtered by the hollow fiber membranes 16. In other words, the solid content contained in the stock solution cannot pass through the hollow fiber membrane 16 and remains in the through channel 16h, and only the liquid content, that is, the filtrate passes through the wall 16w of the hollow fiber membrane 16, so the stock solution is filtered. A filtrate can be obtained.

なお、濾過液は中空糸膜16から本体部11の胴部12の内部空間12hに排出されたのち、濾過液排出ポート11c、濾過液供給チューブ3および濃縮器20の濾過液供給口20aを通って、内部空間12hから濃縮器20に供給される。 The filtrate is discharged from the hollow fiber membrane 16 into the internal space 12h of the body 12 of the main body 11, and then passes through the filtrate discharge port 11c, the filtrate supply tube 3, and the filtrate supply port 20a of the concentrator 20. The water is then supplied to the concentrator 20 from the internal space 12h.

一方、洗浄液回収チューブ送液部7p(または給液チューブ送液部2p)を濾過器10から液体を吸い出すように作動させれば、濾過器10を洗浄することができる。つまり、洗浄液バッグSBから洗浄液供給チューブ6と洗浄液供給ポート11bを介して本体部11のヘッダ部14に洗浄液を供給することができるので、ヘッダ部14から中空糸膜16の貫通流路16h内に洗浄液を供給できる(図5参照)。つまり、ヘッダ部14からヘッダ部13に向かって洗浄液が流れるので、中空糸膜16の貫通流路16h内、とくに、貫通流路16の内面(壁16wの内面)を、貫通流路16の内面に沿って流れる洗浄液によって洗浄することができる。すると、中空糸膜16の貫通流路16hの内壁に付着している固形分などを効果的に流すことができる。 On the other hand, the filter 10 can be cleaned by operating the cleaning liquid recovery tube liquid sending section 7p (or the liquid supply tube liquid sending section 2p) to suck out the liquid from the filter 10. That is, since the cleaning liquid can be supplied from the cleaning liquid bag SB to the header part 14 of the main body part 11 via the cleaning liquid supply tube 6 and the cleaning liquid supply port 11b, the cleaning liquid can be supplied from the header part 14 into the through passage 16h of the hollow fiber membrane 16. Cleaning liquid can be supplied (see Figure 5). That is, since the cleaning liquid flows from the header part 14 toward the header part 13, the inside of the through-flow path 16h of the hollow fiber membrane 16, especially the inner surface of the through-flow path 16 (the inner surface of the wall 16w), is can be cleaned by a cleaning liquid flowing along the Then, the solid matter adhering to the inner wall of the through-flow channel 16h of the hollow fiber membrane 16 can be effectively flushed away.

とくに、以下のようにすれば、中空糸膜16の洗浄を効果的に実施することができる。 In particular, the hollow fiber membrane 16 can be effectively cleaned in the following manner.

まず、濾過液供給チューブ3に設けられた流量調整手段3cおよび連結チューブ9に設けられた連結チューブ送液部9pによって、濾過液供給チューブ3および連結チューブ9を閉塞する。一方、流量調整手段6cによって洗浄液供給チューブ6を開放する。その状態で、洗浄液回収チューブ7の洗浄液回収チューブ送液部7pを作動させる。 First, the filtrate supply tube 3 and the connection tube 9 are closed by the flow rate adjusting means 3c provided in the filtrate supply tube 3 and the connection tube liquid feeding section 9p provided in the connection tube 9. On the other hand, the cleaning liquid supply tube 6 is opened by the flow rate adjusting means 6c. In this state, the cleaning liquid recovery tube liquid feeding section 7p of the cleaning liquid recovery tube 7 is operated.

すると、洗浄液回収チューブ7において洗浄液回収チューブ送液部7pよりも上流側、つまり、濾過器10側の部分には負圧が発生することになる。かかる負圧が発生すれば、この負圧によって、洗浄液供給チューブ6に接続された洗浄液バッグSBから洗浄液が、洗浄液供給チューブ6、洗浄液供給ポート11b、ヘッダ部14、中空糸膜16の貫通流路16h、ヘッダ部13、原液供給ポート11aを通って、洗浄液回収チューブ7に流入することになる。 Then, negative pressure is generated in the portion of the cleaning liquid recovery tube 7 on the upstream side of the cleaning liquid recovery tube liquid feeding section 7p, that is, on the filter 10 side. If such a negative pressure is generated, the cleaning liquid will flow from the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 to the passage through the cleaning liquid supply tube 6, the cleaning liquid supply port 11b, the header part 14, and the hollow fiber membrane 16. 16h, the header section 13, and the stock solution supply port 11a to flow into the cleaning solution recovery tube 7.

このとき、濾過液供給チューブ3および連結チューブ9が閉塞されているので、洗浄液は、中空糸膜16から内部空間12hには流れず、中空糸膜16の貫通流路16h内だけを流れる。すると、洗浄液によって一対のヘッダ部13,14と中空糸膜16の貫通流路16h内だけを洗浄することができるので、濾過器10の洗浄に使用する洗浄液を少なくできる。 At this time, since the filtrate supply tube 3 and the connection tube 9 are closed, the cleaning liquid does not flow from the hollow fiber membrane 16 to the internal space 12h, but flows only within the through passage 16h of the hollow fiber membrane 16. Then, only the pair of header parts 13 and 14 and the inside of the through flow path 16h of the hollow fiber membrane 16 can be cleaned with the cleaning liquid, so that the amount of cleaning liquid used for cleaning the filter 10 can be reduced.

しかも、内部空間12hを洗浄しないので、濾過濃縮を実施した後で濾過器10を洗浄した場合でも、内部空間12h内には濾過液が残った状態とすることができる。すると、内部空間12h内の濾過液が洗浄液とともに排出されることを防ぐことができるから、濾過液の回収率の低下を防ぐことができる。 Moreover, since the internal space 12h is not washed, even if the filter 10 is washed after performing filtration and concentration, the filtrate can remain in the internal space 12h. Then, it is possible to prevent the filtrate in the internal space 12h from being discharged together with the cleaning liquid, thereby preventing a decrease in the recovery rate of the filtrate.

なお、濾過器10の洗浄の際には、給液チューブ2の給液チューブ送液部2pと洗浄液回収チューブ7の洗浄液回収チューブ送液部7pの両方を作動させてもよい。
また、濾過器10の洗浄の際に、洗浄液回収チューブ送液部7pに代えて給液チューブ送液部2pを作動してもよい。この場合、洗浄液とともに中空糸膜16の貫通流路16h内の原液も原液バッグUBに回収できるので、回収された原液を含む洗浄液を再度濾過器10に供給するようにすれば、濾過液の回収率の低下を防ぐことができる。
In addition, when cleaning the filter 10, both the liquid supply tube liquid feeding part 2p of the liquid supply tube 2 and the cleaning liquid recovery tube liquid feeding part 7p of the cleaning liquid recovery tube 7 may be operated.
Moreover, when cleaning the filter 10, the liquid supply tube liquid feeding part 2p may be operated instead of the cleaning liquid recovery tube liquid feeding part 7p. In this case, the undiluted solution in the through-flow channel 16h of the hollow fiber membrane 16 can be collected together with the cleaning solution into the undiluted solution bag UB.If the cleaning solution containing the recovered undiluted solution is supplied to the filter 10 again, the filtrate can be recovered. This can prevent the rate from decreasing.

また、上記のように、給液チューブ送液部2pおよび洗浄液回収チューブ送液部7pの両方または一方を作動させた場合には、中空糸膜16の貫通流路16h内にも負圧が発生する。すると、中空糸膜16の壁16wの内部に固形分が詰まっていても、この固形分を吸い出すことができるので、中空糸膜16の壁16wの詰りも解消することができる。 In addition, as described above, when both or one of the liquid supply tube liquid feeding section 2p and the cleaning liquid recovery tube liquid feeding section 7p is operated, negative pressure is also generated in the through passage 16h of the hollow fiber membrane 16. do. Then, even if the inside of the wall 16w of the hollow fiber membrane 16 is clogged with solid content, this solid content can be sucked out, so that the clogging of the wall 16w of the hollow fiber membrane 16 can also be eliminated.

なお、中空糸膜16の壁16wの詰りも解消することを主目的とする場合には、連結チューブ9に洗浄液バッグSBを連結しておき、洗浄液バッグSBから濾過器10に向かって洗浄液が流れるように連結チューブ送液部9pを作動させてもよい。この場合、実質的に内部空間12hの洗浄を実施することになるので、使用する洗浄液の量は多くなるが、中空糸膜16の壁16wの詰りをより一層解消しやすくなる。つまり、上述した負圧による吸い出し効果に加えて、連結チューブ送液部9pによる洗浄液の押し込み効果も生じるので、中空糸膜16の壁16wの詰りをより一層解消しやすくなる。 Note that if the main purpose is also to eliminate clogging of the wall 16w of the hollow fiber membrane 16, a cleaning liquid bag SB is connected to the connecting tube 9, and the cleaning liquid flows from the cleaning liquid bag SB toward the filter 10. The connecting tube liquid feeding section 9p may be operated in this manner. In this case, since the internal space 12h is essentially cleaned, the amount of cleaning liquid used increases, but it becomes easier to eliminate clogging of the wall 16w of the hollow fiber membrane 16. That is, in addition to the suction effect due to the negative pressure described above, the cleaning liquid is pushed in by the connecting tube liquid feeding section 9p, so that clogging of the wall 16w of the hollow fiber membrane 16 can be more easily eliminated.

さらに、上記のように洗浄操作を実施すれば、原液が供給されるヘッダ部13の詰りを解消しやすくなる。 Furthermore, by carrying out the cleaning operation as described above, it becomes easier to eliminate clogging of the header section 13 to which the stock solution is supplied.

原液が供給されるヘッダ部13では、原液に含まれる固形分がそのまま給液チューブ2に供給されるので、固形分が大きい場合には、中空糸膜16の貫通流路16hの開口が固形分で塞がれてしまう可能性がある。しかし、上記のように、洗浄液回収チューブ7において洗浄液回収チューブ送液部7pよりも濾過器10側に負圧が発生するようになっていれば、この負圧によって固形分をヘッダ部13から洗浄液回収チューブ7に吸い出すことができるので、ヘッダ部13の詰りを解消することができる。この場合も、連結チューブ9に洗浄液バッグSBを連結しておき、洗浄液バッグSBから濾過器10に向かって洗浄液が流れるように連結チューブ送液部9pを作動させてもよい。すると、上述した負圧による吸い出し効果に加えて、連結チューブ送液部9pによる洗浄液の押し込み効果も生じるので、ヘッダ部13の詰りをより一層解消しやすくなる。なお、上記構成の場合、洗浄液回収チューブ送液部7pが特許請求の範囲にいう負圧発生部に相当するものとなる。 In the header section 13 to which the stock solution is supplied, the solid content contained in the stock solution is directly supplied to the liquid supply tube 2. Therefore, if the solid content is large, the opening of the through channel 16h of the hollow fiber membrane 16 will be closed to the solid content. There is a possibility that it will be blocked. However, as described above, if negative pressure is generated in the cleaning liquid recovery tube 7 on the side of the filter 10 rather than the cleaning liquid recovery tube liquid feeding part 7p, this negative pressure will cause solids to be removed from the header part 13 of the cleaning liquid. Since it can be sucked out into the recovery tube 7, clogging of the header section 13 can be eliminated. In this case as well, the cleaning liquid bag SB may be connected to the connecting tube 9, and the connecting tube liquid feeding section 9p may be operated so that the cleaning liquid flows from the cleaning liquid bag SB toward the filter 10. Then, in addition to the suction effect due to the negative pressure described above, the cleaning liquid is pushed in by the connecting tube liquid feeding section 9p, so that clogging of the header section 13 can be cleared even more easily. In the case of the above configuration, the cleaning liquid recovery tube liquid feeding section 7p corresponds to the negative pressure generating section in the claims.

<濃縮器20の詳細な説明>
本実施形態の原液処理装置1では、濃縮器20に対する各チューブが以下のように接続されていることが望ましい。以下、濃縮器20の構成と濃縮器20に対する各チューブの接続について説明する。
<Detailed description of concentrator 20>
In the stock solution processing apparatus 1 of this embodiment, it is desirable that each tube to the concentrator 20 be connected as follows. The configuration of the concentrator 20 and the connection of each tube to the concentrator 20 will be described below.

濃縮器20は、濾過器10から濾過液が供給され、この濾過液を濃縮するものである。この濃縮器20は、前述した濾過器10と実質的に同様の構造を有しており、濾過液から水分を分離して濃縮液とする機能を有している。つまり、濃縮器20は、濾過器10の分離部材に代えて、濾過液から水分を分離する機能を有する水分分離部材が内部に収容された構造を有している。例えば、濃縮器20には、CARTに使用されている腹水濃縮器や、透析に使用される透析用フィルター、二重濾過血漿交換療法に用いられる膜型血漿成分分画器などを使用することができる。 The concentrator 20 is supplied with the filtrate from the filter 10 and concentrates the filtrate. This concentrator 20 has substantially the same structure as the filter 10 described above, and has a function of separating water from a filtrate to form a concentrated liquid. In other words, the concentrator 20 has a structure in which a water separation member having a function of separating water from the filtrate is housed in place of the separation member of the filter 10. For example, as the concentrator 20, an ascites concentrator used in CART, a dialysis filter used in dialysis, a membrane-type plasma component fractionator used in double filtration plasma exchange therapy, etc. can be used. can.

この濃縮器20を具体的に説明すると、濃縮器20は、濾過器10の濾過液排出ポート11cと濾過液供給チューブ3によって連通された濾過液供給口20aを備えている。つまり、この濾過液供給口20aから、濃縮すべき液体である濾過液が濃縮器20に供給されるようになっている。 To specifically describe the concentrator 20, the concentrator 20 includes a filtrate supply port 20a that communicates with the filtrate discharge port 11c of the filter 10 through the filtrate supply tube 3. That is, the filtrate, which is the liquid to be concentrated, is supplied to the concentrator 20 from the filtrate supply port 20a.

また、濃縮器20は、濾過液から分離された液体(分離液)、つまり、水分などを排出するための廃液排出口20cを備えている。この廃液排出口20cは、廃液チューブ5を介して廃液バッグDBと連通されている。また、濃縮器20は、濃縮液が排出される濃縮液排出口20bを備えている。この濃縮液排出口20bは、濃縮液チューブ4を介して濃縮液バッグCBと連通されている。 Further, the concentrator 20 includes a waste liquid discharge port 20c for discharging liquid separated from the filtrate (separated liquid), that is, water and the like. This waste liquid outlet 20c is communicated with the waste liquid bag DB via the waste liquid tube 5. The concentrator 20 also includes a concentrated liquid outlet 20b through which the concentrated liquid is discharged. This concentrate outlet 20b is communicated with the concentrate bag CB via the concentrate tube 4.

そして、濃縮器20は、水分分離部材を備えている。この水分分離部材は、水分は透過するが、血漿中に含まれる有用な蛋白質などの有用成分は透過しない機能を有している。 The concentrator 20 is equipped with a water separation member. This water separation member has the function of allowing water to pass through it but not allowing useful components such as useful proteins contained in plasma to pass therethrough.

このため、濾過液供給口20aから濃縮器20内に濾過液を供給すれば、水分分離部材によって濾過液から水分が分離され、分離された水分は、廃液排出口20cから排出され廃液チューブ5を通して廃液バッグDBに供給される。一方、水分の一部が除去されて濃縮された濃縮液は、濃縮液排出口20bから排出され、排出された濃縮液は、濃縮液チューブ4を通して濃縮液バッグCBに供給される(図1参照)。 Therefore, when the filtrate is supplied into the concentrator 20 from the filtrate supply port 20a, water is separated from the filtrate by the water separation member, and the separated water is discharged from the waste liquid discharge port 20c and passes through the waste liquid tube 5. Supplied to waste liquid bag DB. On the other hand, the concentrated liquid from which part of the water has been removed is discharged from the concentrated liquid outlet 20b, and the discharged concentrated liquid is supplied to the concentrated liquid bag CB through the concentrated liquid tube 4 (see FIG. 1). ).

<本実施形態の原液処理装置1の回路構成>
つぎに、図1に基づいて、本実施形態の原液処理装置1の回路構成を説明する。
<Circuit configuration of stock solution processing device 1 of this embodiment>
Next, the circuit configuration of the stock solution processing apparatus 1 of this embodiment will be explained based on FIG.

なお、以下では、処理対象となる原液が胸腹水である場合を代表として説明する。 In addition, below, the case where the stock solution to be processed is pleural and ascitic fluid will be described as a representative case.

また、以下の説明では、特許請求の範囲にいう各流路(給液流路、濾過液供給流路、濃縮液流路、廃液流路、洗浄液供給流路、洗浄液回収流路、連結流路)が可撓性や柔軟性を有するチューブ(給液チューブ2、濾過液供給チューブ3、濃縮液チューブ4、廃液チューブ5、洗浄液供給チューブ6、洗浄液回収チューブ7、連結チューブ9)で形成されている場合を説明する。しかし、各流路は可撓性や柔軟性を有しない管(例えば、硬質プラスチック製の管や鋼管、塩ビ管等)や、樹脂成型された一体型回路等で形成されていてもよい。 In addition, in the following description, each flow path (liquid supply flow path, filtrate supply flow path, concentrated liquid flow path, waste liquid flow path, cleaning liquid supply flow path, cleaning liquid recovery flow path, connection flow path) in the claims will be used. ) is formed of flexible and pliable tubes (liquid supply tube 2, filtrate supply tube 3, concentrate tube 4, waste liquid tube 5, cleaning liquid supply tube 6, cleaning liquid recovery tube 7, connection tube 9). Explain when there is. However, each channel may be formed of a tube that does not have flexibility or pliability (for example, a hard plastic tube, a steel tube, a PVC tube, etc.), an integrated circuit molded with resin, or the like.

さらに、本実施形態の原液処理装置1が一対のローラーポンプ110,120を有しているので、以下の説明では、各流路を可撓性や柔軟性を有するチューブで形成し、各流路の送液部としてローラーポンプを使用することを前提に説明する。しかし、本実施形態の原液処理装置1では、送液部は必ずしもローラーポンプに限られず、各流路内の液体を送液できるものを採用することができる。送液部は、各流路を構成する管の素材や流路内を流れる液体に合わせて適宜選択すればよい。例えば、送液部として、輸液ポンプやダイヤフラムポンプ等を使用することもできる。また、ローラーポンプは、作動を停止すればクランプ機能(流路を閉塞して液体が流れないようにする機能)を発揮するため、下記説明では送液部を設けた流路にはクランプ機能を有する器具は設けていない。しかし、送液部として、作動を停止してもクランプ機能を発揮しない装置やクランプ機能を有しない装置を使用する場合には、送液部を設けた流路に、別途、クランプ機能を有する器具(例えばクレンメやクリップ等)を設けて、送液部の作動を停止した際にクランプ機能を有する器具にクランプ機能を発揮させればよい。
また、各送液部は、上述した制御部によってその作動が制御されているので、以下では、各送液部が制御部によって制御されていることを前提に説明する。
Furthermore, since the stock solution processing apparatus 1 of this embodiment has a pair of roller pumps 110 and 120, in the following description, each flow path is formed with a tube having flexibility or flexibility, and each flow path is The following explanation assumes that a roller pump is used as the liquid feeding section. However, in the stock solution processing apparatus 1 of the present embodiment, the liquid feeding section is not necessarily limited to a roller pump, and any device capable of feeding the liquid in each channel can be adopted. The liquid feeding section may be appropriately selected depending on the material of the pipes constituting each flow path and the liquid flowing in the flow path. For example, an infusion pump, a diaphragm pump, or the like may be used as the liquid feeding section. In addition, roller pumps perform a clamp function (a function that blocks the flow path to prevent liquid from flowing) when they stop operating, so in the following explanation, the clamp function is not applied to the flow path where the liquid feeding section is installed. No equipment is provided. However, when using a device that does not perform the clamping function even when the operation is stopped or a device that does not have the clamping function as the liquid feeding section, a separate device with a clamping function must be installed in the flow path where the liquid feeding section is installed. (For example, a clamp or a clip) may be provided to allow a device having a clamping function to perform the clamping function when the operation of the liquid feeding section is stopped.
Furthermore, since the operation of each liquid feeding section is controlled by the control section described above, the following description will be made on the premise that each liquid feeding section is controlled by the control section.

<本実施形態の原液処理装置1の概略構成>
まず、本実施形態の原液処理装置1の概略構成を説明する。
<Schematic configuration of stock solution processing device 1 of this embodiment>
First, the schematic configuration of the stock solution processing apparatus 1 of this embodiment will be explained.

図1において、符号UBは、原液、つまり、胸部や腹部から抜いた胸腹水を収容する原液バッグを示している。また、符号CBは、原液を濾過濃縮した濃縮液を収容する濃縮液バッグを示している。さらに、符号DBは、濃縮液から分離された廃液(つまり水分)を収容する廃液バッグを示している。さらに、符号SBは生理食塩水や輸液(細胞外液)等の洗浄液が収容された洗浄液バッグ、符号FBは洗浄液を回収するための洗浄液回収バッグを示している。 In FIG. 1, the symbol UB indicates an undiluted solution bag that stores undiluted solution, that is, thoracic and ascitic fluid extracted from the chest or abdomen. Moreover, the code|symbol CB has shown the concentrate bag which accommodates the concentrate obtained by filtering and concentrating the stock solution. Further, the reference numeral DB indicates a waste liquid bag that stores waste liquid (that is, water) separated from the concentrated liquid. Further, the reference numeral SB indicates a washing liquid bag containing a washing liquid such as physiological saline or an infusion (extracellular fluid), and the reference numeral FB indicates a washing liquid collection bag for collecting the washing liquid.

図1に示すように、本実施形態の原液処理装置1では、原液バッグUBは濾過器10に給液チューブ2を介して接続されている。給液チューブ2は、原液バッグUB内の原液を濾過器10に供給するチューブである。この給液チューブ2には、給液チューブ2内の液体を送液する給液チューブ送液部2pが設けられている。 As shown in FIG. 1, in the stock solution processing apparatus 1 of this embodiment, the stock solution bag UB is connected to a filter 10 via a liquid supply tube 2. The liquid supply tube 2 is a tube that supplies the stock solution in the stock solution bag UB to the filter 10. The liquid supply tube 2 is provided with a liquid supply tube liquid feeding section 2p that feeds the liquid within the liquid supply tube 2.

濾過器10は、原液を濾過して濾過液を生成するものである。この濾過器10は、濾過液供給チューブ3を介して濃縮器20に接続されている。濾過液供給チューブ3は、濾過器10で生成された濾過液を濃縮器20に供給するチューブである。この濾過液供給チューブ3には、濾過液供給チューブ3内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段3cが設けられている。 The filter 10 filters the stock solution to produce a filtrate. This filter 10 is connected to a concentrator 20 via a filtrate supply tube 3. The filtrate supply tube 3 is a tube that supplies the filtrate produced by the filter 10 to the concentrator 20. The filtrate supply tube 3 is provided with a flow rate adjusting means 3c, such as a clamp or a clip, for stopping and opening the flow of liquid within the filtrate supply tube 3.

この濾過液供給チューブ3には、濾過器10と流量調整手段3cの間の部分に連結チューブ9の一端が連結されている。この連結チューブ9には、連結チューブ9内の液体を送液する連結チューブ送液部9pが設けられている。 One end of a connecting tube 9 is connected to the filtrate supply tube 3 at a portion between the filter 10 and the flow rate adjusting means 3c. This connecting tube 9 is provided with a connecting tube liquid feeding section 9p that feeds the liquid inside the connecting tube 9.

また、濾過器10には、洗浄液供給チューブ6を介して洗浄液バッグSBが接続されている。洗浄液供給チューブ6は、洗浄液バッグSBから洗浄液を濾過器10に供給するチューブである。この洗浄液供給チューブ6には、洗浄液供給チューブ6内における液体の流れを停止開放する、例えば、クレンメやクリップ等の流量調整手段6cが設けられている。 Further, a cleaning liquid bag SB is connected to the filter 10 via a cleaning liquid supply tube 6. The cleaning liquid supply tube 6 is a tube that supplies the cleaning liquid from the cleaning liquid bag SB to the filter 10. The cleaning liquid supply tube 6 is provided with a flow rate adjusting means 6c, such as a clamp or a clip, for stopping and opening the flow of liquid within the cleaning liquid supply tube 6.

さらに、濾過器10には、洗浄液回収チューブ7を介して濾過器10を洗浄した洗浄液を回収する洗浄液回収バッグFBが接続されている。この洗浄液回収チューブ7には、洗浄液回収チューブ7内の液体を送液する洗浄液回収チューブ送液部7pが設けられている。 Further, a cleaning liquid collection bag FB is connected to the filter 10 through a cleaning liquid collection tube 7 to recover the cleaning liquid that has been used to clean the filter 10 . The cleaning liquid recovery tube 7 is provided with a cleaning liquid recovery tube liquid feeding section 7p that feeds the liquid in the cleaning liquid recovery tube 7.

なお、洗浄液回収チューブ7は、給液チューブ2を介して濾過器10に接続されてもよいし、直接濾過器10に接続されてもよい。 Note that the cleaning liquid recovery tube 7 may be connected to the filter 10 via the liquid supply tube 2 or directly to the filter 10.

濃縮器20は、濾過液を濃縮した濃縮液を生成するものである。この濃縮器20は、濃縮液チューブ4を介して濃縮液バッグCBが接続されている。濃縮液チューブ4は、濃縮器20で濃縮された濃縮液を濃縮液バッグCBに供給するチューブである。この濃縮液チューブ4には、濃縮液チューブ4内の液体を送液する濃縮液チューブ送液部4pが設けられている。なお、濃縮液チューブ送液部4pに代えて、廃液チューブ5に廃液チューブ送液部5pを設けてもよい(図4参照)。この場合でも、濃縮液チューブ送液部4pが濃縮液の送液量を増加させる条件では廃液チューブ送液部5pが廃液の送液量を減少させ、濃縮液チューブ送液部4pが濃縮液の送液量を減少させる条件では廃液チューブ送液部5pが廃液の送液量を増加させれば、濃縮液チューブ4に濃縮液チューブ送液部4pを設けた場合と同様に機能させることができる。以下では、濃縮液チューブ4に濃縮液チューブ送液部4pを設けた場合を説明する。 The concentrator 20 is for producing a concentrated liquid by concentrating the filtrate. This concentrator 20 is connected to a concentrate bag CB via a concentrate tube 4. The concentrate tube 4 is a tube that supplies the concentrate concentrated in the concentrator 20 to the concentrate bag CB. This concentrated liquid tube 4 is provided with a concentrated liquid tube liquid feeding section 4p that feeds the liquid in the concentrated liquid tube 4. Note that instead of the concentrated liquid tube feeding part 4p, a waste liquid tube feeding part 5p may be provided in the waste liquid tube 5 (see FIG. 4). Even in this case, under the condition that the concentrate tube liquid sending section 4p increases the amount of concentrated liquid sent, the waste liquid tube feeding section 5p decreases the amount of waste liquid sent, and the concentrated liquid tube feeding section 4p increases the amount of concentrated liquid sent. If the waste liquid tube liquid sending part 5p increases the liquid sending amount of waste liquid under the condition that the amount of liquid sent is decreased, it can function in the same way as when the concentrated liquid tube 4 is provided with the concentrated liquid tube liquid sending part 4p. . Below, the case where the concentrate tube 4 is provided with the concentrate tube liquid feeding part 4p will be explained.

また、濃縮器20には、廃液チューブ5を介して廃液バッグDBが接続されている。廃液チューブ5は、濃縮器20で濃縮液から分離された廃液(水分)を廃液バッグDBに供給するチューブである。 Further, a waste liquid bag DB is connected to the concentrator 20 via a waste liquid tube 5. The waste liquid tube 5 is a tube that supplies waste liquid (water) separated from the concentrated liquid by the concentrator 20 to the waste liquid bag DB.

以上のごとき構成であるので、本実施形態の原液処理装置1では、原液バッグUBから給液チューブ2を介して原液を濾過器10に供給すれば、濾過器10で原液を濾過して濾過液を生成することができる。そして、生成された濾過液を濾過液供給チューブ3を介して濃縮器20に供給すれば、濃縮器20によって濃縮液を生成することができ、この濃縮液を濃縮液チューブ4を介して濃縮液バッグCBに回収することができる。 With the above configuration, in the stock solution processing apparatus 1 of this embodiment, if the stock solution is supplied from the stock solution bag UB to the filter 10 via the liquid supply tube 2, the stock solution is filtered by the filter 10 and the filtrate is can be generated. Then, if the generated filtrate is supplied to the concentrator 20 via the filtrate supply tube 3, a concentrate can be generated by the concentrator 20, and this concentrate is passed through the concentrate tube 4 to the concentrator 20. It can be collected in bag CB.

一方、洗浄液供給チューブ6に接続された洗浄液バッグSBから洗浄液を濾過器10に供給すれば、洗浄液によって濾過器10を洗浄することができる。また、濃縮液バッグCBに代えて洗浄液バッグSBを濃縮液チューブ4に接続すれば、洗浄液によって濃縮器20を洗浄することができる(図2参照)。 On the other hand, if the cleaning liquid is supplied to the filter 10 from the cleaning liquid bag SB connected to the cleaning liquid supply tube 6, the filter 10 can be cleaned with the cleaning liquid. Furthermore, if a cleaning liquid bag SB is connected to the concentrated liquid tube 4 instead of the concentrated liquid bag CB, the concentrator 20 can be cleaned with the cleaning liquid (see FIG. 2).

以下、本実施形態の原液処理装置1による作業を説明する。 Hereinafter, operations performed by the stock solution processing apparatus 1 of this embodiment will be explained.

<準備洗浄作業>
図2に示すように、本実施形態の原液処理装置1の準備洗浄作業では、濃縮液チューブ4の他端に濃縮液バッグCBに代えて洗浄液バッグSBを接続して、廃液チューブ5の他端には廃液バッグDBに代えて洗浄液回収バッグFBを接続する。なお、廃液チューブ5の他端は廃液バッグDBを接続したままでもよいし、廃液チューブ5の他端を単なるバケツなどに配置してもよい。
また、給液チューブ2の他端にも原液バッグUBに代えて洗浄液回収バッグFBを接続する。なお、給液チューブ2の他端には廃液バッグDBを接続してもよいし、給液チューブ2の他端を単なるバケツなどに配置してもよい。
そして、連結チューブ9の他端にも洗浄液回収バッグFBを接続する。なお、連結チューブ9の他端には廃液バッグDBを接続してもよいし、連結チューブ9の他端を単なるバケツなどに配置してもよい。
<Preparation cleaning work>
As shown in FIG. 2, in the preparatory cleaning work of the stock solution processing device 1 of this embodiment, a cleaning solution bag SB is connected to the other end of the concentrate tube 4 instead of the concentrate bag CB, and the other end of the waste solution tube 5 is Connect a cleaning liquid collection bag FB instead of the waste liquid bag DB. Note that the other end of the waste liquid tube 5 may be connected to the waste liquid bag DB, or the other end of the waste liquid tube 5 may be placed in a simple bucket or the like.
Furthermore, a cleaning liquid collection bag FB is connected to the other end of the liquid supply tube 2 instead of the stock solution bag UB. Note that a waste liquid bag DB may be connected to the other end of the liquid supply tube 2, or the other end of the liquid supply tube 2 may be placed in a simple bucket or the like.
Then, the cleaning liquid collection bag FB is also connected to the other end of the connecting tube 9. Note that a waste liquid bag DB may be connected to the other end of the connecting tube 9, or the other end of the connecting tube 9 may be placed in a simple bucket or the like.

ついで、流量調整手段3cおよび流量調整手段6cを開放して、濾過液供給チューブ3および洗浄液供給チューブ6内を洗浄液が流れるようにする。 Then, the flow rate adjustment means 3c and the flow rate adjustment means 6c are opened to allow the cleaning liquid to flow through the filtrate supply tube 3 and the cleaning liquid supply tube 6.

上記状態で、濃縮液チューブ4に接続された洗浄液バッグSBから濃縮器20に洗浄液を流すように濃縮液チューブ送液部4pを作動させ、濃縮器20(つまり濾過液供給チューブ3)から連結チューブ9に接続された洗浄液回収バッグFBに洗浄液を流すように連結チューブ送液部9pを作動させる。すると、濃縮液チューブ4に接続された洗浄液バッグSBから濃縮液チューブ4を通して濃縮器20に洗浄液が供給される。供給された洗浄液は、濃縮器20を通過した後、濾過液供給チューブ3、連結チューブ9を通過して連結チューブ9に接続された洗浄液回収バッグFBに回収される。なお、一部の洗浄液は廃液チューブ5を通って、廃液チューブ5の他端に接続された洗浄液回収バッグFBに回収される。 In the above state, the concentrate tube liquid feeding section 4p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the concentrate tube 4 to the concentrator 20, and from the concentrator 20 (that is, the filtrate supply tube 3) to the connecting tube The connecting tube liquid feeding section 9p is operated so that the cleaning liquid flows into the cleaning liquid collection bag FB connected to the cleaning liquid collection bag FB. Then, the cleaning liquid is supplied from the cleaning liquid bag SB connected to the concentrated liquid tube 4 to the concentrator 20 through the concentrated liquid tube 4. The supplied cleaning liquid passes through the concentrator 20 , passes through the filtrate supply tube 3 and the connecting tube 9 , and is collected into the cleaning liquid recovery bag FB connected to the connecting tube 9 . Note that a part of the cleaning liquid passes through the waste liquid tube 5 and is collected into the cleaning liquid collection bag FB connected to the other end of the waste liquid tube 5.

また、濃縮器20から連結チューブ9に接続された洗浄液回収バッグFBに洗浄液を流すように連結チューブ送液部9pを作動させるとともに、濾過器10から給液チューブ2に接続された洗浄液回収バッグFBに洗浄液を流すように給液チューブ送液部2pを作動させる。すると、洗浄液供給チューブ6に接続された洗浄液バッグSBから洗浄液供給チューブ6を通して濾過器10に洗浄液が供給される。供給された洗浄液は、濾過器10を通過した後、一部は濾過液供給チューブ3、連結チューブ9を通過して連結チューブ9に接続された洗浄液回収バッグFBに回収され、一部は給液チューブ2を通過して給液チューブ2に接続された洗浄液回収バッグFBに回収される。また、洗浄液回収チューブ送液部7pも作動させることによって、洗浄液回収チューブ7にも濾過器10に供給された洗浄液の一部を流すことができる。 Further, the connecting tube liquid feeding section 9p is operated to flow the cleaning liquid from the concentrator 20 to the cleaning liquid collection bag FB connected to the connecting tube 9, and the cleaning liquid collection bag FB connected from the filter 10 to the liquid supply tube 2 is operated. The liquid supply tube liquid feeding section 2p is operated so that the cleaning liquid flows through the liquid supply tube. Then, the cleaning liquid is supplied from the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 to the filter 10 through the cleaning liquid supply tube 6. After the supplied cleaning liquid passes through the filter 10, part of the supplied cleaning liquid passes through the filtrate supply tube 3 and the connecting tube 9 and is collected into the cleaning liquid recovery bag FB connected to the connecting tube 9, and a part of the supplied cleaning liquid passes through the filter 10. The liquid passes through the tube 2 and is collected into the cleaning liquid collection bag FB connected to the liquid supply tube 2. Further, by also operating the cleaning liquid recovery tube liquid feeding section 7p, a part of the cleaning liquid supplied to the filter 10 can also flow into the cleaning liquid recovery tube 7.

すると、濾過器10と濃縮器20および全てのチューブに洗浄液を流すことができるので、本実施形態の原液処理装置1全体を洗浄することができる。 Then, since the cleaning liquid can be flowed through the filter 10, the concentrator 20, and all the tubes, the entire stock solution processing apparatus 1 of this embodiment can be cleaned.

なお、図2では、給液チューブ送液部2pおよび洗浄液回収チューブ送液部7pを作動させて、濾過器10から洗浄液を吸い出して、濾過器10内に洗浄液の流れを発生させることによって濾過器10内を洗浄している。しかし、濾過器10に洗浄液を押し込んで濾過器10内に洗浄液の流れを発生させて濾過器10内を洗浄してもよい。 In addition, in FIG. 2, the filter is operated by operating the liquid supply tube liquid sending part 2p and the cleaning liquid recovery tube liquid sending part 7p to suck out the cleaning liquid from the filter 10 and generate a flow of the cleaning liquid in the filter 10. Cleaning the inside of 10. However, the inside of the filter 10 may be cleaned by forcing the cleaning liquid into the filter 10 to generate a flow of the cleaning liquid within the filter 10.

例えば、図2において、流量調整手段6cに代えて洗浄液供給チューブ6に洗浄液供給チューブ送液部6pを設け、洗浄液回収チューブ送液部7pに代えて洗浄液回収チューブ7に流量調整手段7cを設ける。そして、流量調整手段7cによって洗浄液回収チューブ7を開放し、洗浄液バッグSBから濾過器10に向かって洗浄液供給チューブ6内を洗浄液が流れるように洗浄液供給チューブ送液部6pを作動させる。すると、濾過器10に洗浄液を押し込んで、濾過器10内に洗浄液の流れを発生させることができるから、洗浄液によって濾過器10内を洗浄することもできる。この場合、濾過器10から洗浄液を吸い出すように給液チューブ2の給液チューブ送液部2pを作動させて、給液チューブ2に洗浄液を流すようにしてもよい。また、給液チューブ送液部2pは作動させず、洗浄液回収チューブ7にのみ洗浄液を流すようにしてもよい。 For example, in FIG. 2, a cleaning liquid supply tube feeding section 6p is provided in the cleaning liquid supply tube 6 instead of the flow rate adjusting means 6c, and a flow rate adjusting means 7c is provided in the cleaning liquid recovery tube 7 in place of the cleaning liquid recovery tube feeding section 7p. Then, the cleaning liquid recovery tube 7 is opened by the flow rate adjusting means 7c, and the cleaning liquid supply tube liquid sending part 6p is operated so that the cleaning liquid flows in the cleaning liquid supply tube 6 from the cleaning liquid bag SB toward the filter 10. Then, since the cleaning liquid can be forced into the filter 10 and a flow of the cleaning liquid can be generated inside the filter 10, the inside of the filter 10 can also be cleaned with the cleaning liquid. In this case, the cleaning liquid may be caused to flow into the liquid supply tube 2 by operating the liquid supply tube liquid feeding section 2p of the liquid supply tube 2 so as to suck out the cleaning liquid from the filter 10. Alternatively, the cleaning liquid may be made to flow only into the cleaning liquid recovery tube 7 without operating the liquid supply tube liquid feeding section 2p.

(濾過濃縮作業)
準備洗浄作業が終了すると、濾過濃縮作業が実施される。
(filtration concentration work)
After the preparatory cleaning work is completed, filtration and concentration work is carried out.

図1に示すように、本実施形態の原液処理装置1の濾過濃縮作業では、準備洗浄作業の状態から(図2参照)、洗浄液バッグSBに代えて濃縮液バッグCBが濃縮液チューブ4に接続され、洗浄液回収バッグFBに代えて廃液バッグDBが廃液チューブ5に接続される。
一方、給液チューブ2には、洗浄液回収バッグFBに代えて原液バッグUBが接続される。
また、流量調整手段3cによって濾過液供給チューブ3内を液体が流れることができる状態を維持する一方、流量調整手段6cによって洗浄液供給チューブ6内は液体が流れないように閉塞する。加えて、洗浄液回収チューブ送液部7pおよび連結チューブ送液部9pを作動させず、クランプとして機能させる。
As shown in FIG. 1, in the filtration and concentration work of the stock solution processing apparatus 1 of this embodiment, from the preparatory cleaning work state (see FIG. 2), the concentrate bag CB is connected to the concentrate tube 4 instead of the washing liquid bag SB. A waste liquid bag DB is connected to the waste liquid tube 5 instead of the cleaning liquid collection bag FB.
On the other hand, an undiluted solution bag UB is connected to the solution supply tube 2 instead of the cleaning solution collection bag FB.
Further, while the flow rate adjustment means 3c maintains a state in which the liquid can flow in the filtrate supply tube 3, the flow rate adjustment means 6c closes the inside of the cleaning liquid supply tube 6 so that the liquid does not flow therein. In addition, the cleaning liquid recovery tube liquid feeding section 7p and the connecting tube liquid feeding section 9p are not operated and are made to function as a clamp.

上記状態で、給液チューブ2に接続された原液バッグUBから濾過器10に原液を流すように給液チューブ送液部2pを作動させ、かつ、濃縮器20から濃縮液チューブ4に接続された濃縮液バッグCBに濃縮液を流すように濃縮液チューブ送液部4pを作動させる。 In the above state, the liquid supply tube liquid feeding part 2p is operated so as to flow the liquid from the liquid bag UB connected to the liquid supply tube 2 to the filter 10, and the liquid supply tube 2p is operated to flow the liquid liquid from the liquid supply tube 2 to the concentrate tube 4. The concentrate tube liquid feeding section 4p is operated to flow the concentrate into the concentrate bag CB.

すると、原液バッグUBから給液チューブ2を通して濾過器10に原液が供給される。供給された原液は濾過器10によって濾過され、生成された濾過液が濾過液供給チューブ3を通して濃縮器20に供給される。そして、濃縮器20に供給された濾過液は、濃縮器20によって濃縮されて、生成された濃縮液が濃縮液チューブ4を通して濃縮液バッグCBに回収される。一方、濃縮液から分離された水分は、廃液チューブ5を通して廃液バッグDBに回収される。 Then, the stock solution is supplied from the stock solution bag UB to the filter 10 through the liquid supply tube 2. The supplied stock solution is filtered by the filter 10, and the generated filtrate is supplied to the concentrator 20 through the filtrate supply tube 3. The filtrate supplied to the concentrator 20 is concentrated by the concentrator 20, and the generated concentrate is collected into the concentrate bag CB through the concentrate tube 4. On the other hand, the water separated from the concentrated liquid is collected through the waste liquid tube 5 into the waste liquid bag DB.

<濾過濃縮操作について>
ここで、濾過濃縮作業では、濃縮割合が所定の範囲になるように、給液チューブ送液部2pおよび濃縮液チューブ送液部4pの作動が制御されている。しかし、以下のように、濾過器膜間差圧や濃縮器膜間差圧を利用して、給液チューブ送液部2pおよび濃縮液チューブ送液部4pの作動、つまり、給液チューブ送液部2pおよび濃縮液チューブ送液部4p内の液体の流量を制御してもよい。すると、濾過器10や濃縮器20の能力を有効に活用して、濾過濃縮を行うことができるので、濃縮液を生成するまでの時間を短縮でき、濃縮作業の効率を高くできる。
以下では、濾過器膜間差圧や濃縮器膜間差圧を利用して、給液チューブ送液部2pおよび濃縮液チューブ送液部4pの作動を制御して濾過濃縮する作業を説明する。
<About filtration concentration operation>
Here, in the filtration and concentration work, the operations of the liquid supply tube liquid feeding section 2p and the concentrated liquid tube liquid feeding section 4p are controlled so that the concentration ratio is within a predetermined range. However, as described below, the liquid supply tube liquid feeding section 2p and the concentrated liquid tube liquid feeding section 4p are operated by using the filter transmembrane pressure differential and the concentrator transmembrane differential pressure. The flow rate of the liquid in the portion 2p and the concentrated liquid tube feeding portion 4p may be controlled. Then, since the capacity of the filter 10 and the concentrator 20 can be effectively utilized to perform filtration and concentration, the time required to generate a concentrated liquid can be shortened and the efficiency of the concentration work can be increased.
In the following, a process of filtering and concentrating by controlling the operations of the liquid supply tube liquid feeding section 2p and the concentrated liquid tube liquid feeding section 4p using the filter transmembrane pressure differential and the concentrator transmembrane pressure differential will be described.

なお、濾過器膜間差圧とは、濾過器10の濾過部材(中空糸膜等)等の給液側と排液側の差圧を意味している。
また、濃縮器膜間差圧とは、濃縮器20の水分分離部材(中空糸膜等)等の給液側と排液側の差圧を意味している。
Note that the differential pressure between the membranes of the filter means the differential pressure between the liquid supply side and the drain side of the filtration member (hollow fiber membrane, etc.) of the filter 10.
Moreover, the concentrator membrane differential pressure means the differential pressure between the liquid supply side and the drain side of the water separation member (hollow fiber membrane, etc.) of the concentrator 20.

なお、濾過器膜間差圧や濃縮器膜間差圧は、濾過器10や濃縮器20に接続されているチューブ内圧を測定することによって算出することができる。例えば、給液チューブ2と濾過液供給チューブ3に圧力計を設けておき、その信号が制御部106に供給されるようになっていれば、制御部106が濾過器膜間差圧を算出できる。また、濾過液供給チューブ3と廃液チューブ5に圧力計を設けておき、その信号が制御部106に供給されるようになっていれば、制御部106が濃縮器膜間差圧を算出できる。 Note that the filter transmembrane pressure difference and the concentrator transmembrane pressure difference can be calculated by measuring the internal pressure of tubes connected to the filter 10 and the concentrator 20. For example, if pressure gauges are provided in the liquid supply tube 2 and the filtrate supply tube 3 and their signals are supplied to the control unit 106, the control unit 106 can calculate the filter transmembrane pressure. . Further, if pressure gauges are provided in the filtrate supply tube 3 and waste liquid tube 5 and their signals are supplied to the control unit 106, the control unit 106 can calculate the concentrator transmembrane pressure.

なお、濾過器10や濃縮器20において、給液側と排液側のいずれか一方が大気開放に近い状態であれば、給液側と排液側のうち大気開放となっていない側と連通されたチューブ内圧を測定するだけでも、制御部106が濾過器膜間差圧や濃縮器膜間差圧を算出できる。言い換えれば、濾過器膜間差圧や濃縮器膜間差圧に代えて、制御部106は、大気開放となっていない側と連通されたチューブ内圧だけを利用して、送液部の作動を制御することもできる。例えば、濾過器10や濃縮器20に接続されているチューブが、バッグにつながっておりかつ送液部や流量調整手段によって閉塞されていない状態であれば、そのチューブは大気開放に近い状態と考えることができる。図1の状態であれば、濾過器10に接続されているチューブ2,3のうち原液バッグUBに接続されている給液チューブ2は大気開放と見做すこともできる。また、濃縮器20に接続されているチューブ3,5のうち、廃液バッグDBに接続されている排液チューブ5は大気開放と見做すこともできる。すると、図1の状態であれば、濾過器供給チューブ3のチューブ内圧だけを利用して、制御部106は送液部の作動を制御することもできる。 In addition, in the filter 10 or the concentrator 20, if either the liquid supply side or the drain side is in a state close to being open to the atmosphere, the liquid supply side or the drain side is in communication with the side that is not open to the atmosphere. The control unit 106 can calculate the filter transmembrane differential pressure and the concentrator transmembrane differential pressure by simply measuring the tube internal pressure. In other words, instead of using the filter transmembrane pressure differential or the concentrator transmembrane differential pressure, the control unit 106 operates the liquid feeding unit using only the internal pressure of the tube that is communicated with the side that is not open to the atmosphere. It can also be controlled. For example, if the tube connected to the filter 10 or concentrator 20 is connected to the bag and is not blocked by the liquid feeding section or flow rate adjustment means, the tube is considered to be in a state close to being open to the atmosphere. be able to. In the state shown in FIG. 1, of the tubes 2 and 3 connected to the filter 10, the liquid supply tube 2 connected to the stock solution bag UB can be considered to be open to the atmosphere. Further, among the tubes 3 and 5 connected to the concentrator 20, the drain tube 5 connected to the waste liquid bag DB can also be considered to be open to the atmosphere. Then, in the state shown in FIG. 1, the control section 106 can also control the operation of the liquid feeding section using only the tube internal pressure of the filter supply tube 3.

また、給液チューブ2や濾過液供給チューブ3内を流れる液体の流量は、給液チューブ送液部2pおよび濃縮液チューブ送液部4pの作動から推定してもよいし、給液チューブ送液部2pおよび濃縮液チューブ送液部4pに流量計を設けて直接流量を測定してもよい。 Further, the flow rate of the liquid flowing through the liquid supply tube 2 and the filtrate supply tube 3 may be estimated from the operation of the liquid supply tube liquid feeding section 2p and the concentrated liquid tube liquid feeding section 4p, or A flow meter may be provided in the section 2p and the concentrated liquid tube feeding section 4p to directly measure the flow rate.

<濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業の説明>
濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容差圧を設定する。つまり、濾過器10や濃縮器20に応じて、濾過器10や濃縮器20が許容できる差圧(許容差圧)をそれぞれ設定する。この許容差圧は、所定の幅を有していてもよいし、特定の値に設定してもよい。
<Explanation of filtration and concentration work using filter transmembrane pressure differential and concentrator transmembrane pressure differential pressure>
When performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane differential pressure, an allowable differential pressure is set in advance. That is, depending on the filter 10 and the concentrator 20, the differential pressure (allowable differential pressure) that the filter 10 and the concentrator 20 can tolerate is set respectively. This allowable differential pressure may have a predetermined width or may be set to a specific value.

なお、濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容流量を設定することが望ましい。つまり、給液チューブ2内の原液の許容できる流量(許容流量)を設定することが望ましい。この許容流量は、所定の幅を有していてもよいし、特定の値に設定してもよい。かかる許容流量は必ずしも設定しなくてもよい。しかし、給液チューブ2内の原液の流量が少なくなりすぎると、濾過濃縮にかかる時間が長くなりすぎる。したがって、原液の処理時間が長くなることを防止する上では、許容流量を設定しておくことが望ましい。
さらに、濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容濃縮倍率を設定することが望ましい。つまり、給液チューブ2内の原液の流量に対する濃縮液チューブ4を流れる濃縮液の流量の比率(許容濃縮倍率)を設定することが望ましい。この許容濃縮倍率は、所定の幅を有していてもよいし、特定の値に設定してもよい。かかる許容濃縮倍率は必ずしも設定しなくてもよい。しかし、給液チューブ2内の原液の流量に対する濃縮液チューブ4を流れる濃縮液の流量の比率である濃縮倍率が低下しすぎると、再濃縮処理に時間を要する。したがって、濃縮倍率が低下しすぎることを防止する上では、許容濃縮倍率を設定しておくことが望ましい。
Note that when performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane pressure differential, it is desirable to set an allowable flow rate in advance. In other words, it is desirable to set an allowable flow rate (allowable flow rate) of the stock solution in the liquid supply tube 2. This allowable flow rate may have a predetermined width or may be set to a specific value. Such an allowable flow rate does not necessarily have to be set. However, if the flow rate of the stock solution in the liquid supply tube 2 becomes too low, the time required for filtration and concentration becomes too long. Therefore, in order to prevent the processing time of the stock solution from increasing, it is desirable to set an allowable flow rate.
Further, when performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane pressure differential, it is desirable to set an allowable concentration magnification in advance. That is, it is desirable to set the ratio of the flow rate of the concentrate flowing through the concentrate tube 4 to the flow rate of the stock solution in the liquid supply tube 2 (allowable concentration magnification). This allowable concentration factor may have a predetermined range or may be set to a specific value. Such an allowable concentration factor does not necessarily need to be set. However, if the concentration ratio, which is the ratio of the flow rate of the concentrate flowing through the concentrate tube 4 to the flow rate of the stock solution in the liquid supply tube 2, decreases too much, the reconcentration process will take time. Therefore, in order to prevent the concentration ratio from decreasing too much, it is desirable to set an allowable concentration ratio.

濾過濃縮の開始時は、濾過器10への原液の送液量を増加させるように給液チューブ送液部2pが作動される。このとき、濃縮液チューブ送液部4pは、給液チューブ2内の原液の流量に合わせて、濃縮液が所定の濃縮倍率となるように作動される。例えば、濃縮倍率が10倍の濃縮液を生成する場合には、濃縮液チューブ送液部4pは、濃縮液チューブ4を流れる濃縮液の流量が給液チューブ2内を流れる原液の流量の1/10となるようにその作動が調整される。また、濃縮液チューブ送液部4pは、濃縮器膜間差圧が設定値となるようにその作動が調整される場合もある。なお、濾過器10への原液の送液量を増加している間は、上記いずれかの状態となるように、濃縮液チューブ送液部4pはその作動が制御される。 At the start of filtration and concentration, the liquid supply tube liquid feeding section 2p is operated to increase the amount of the raw solution fed to the filter 10. At this time, the concentrate tube liquid feeding section 4p is operated in accordance with the flow rate of the stock solution in the liquid supply tube 2 so that the concentrate reaches a predetermined concentration ratio. For example, when producing a concentrate with a concentration ratio of 10 times, the concentrate tube liquid feeding section 4p is configured such that the flow rate of the concentrate flowing through the concentrate tube 4 is 1/1/of the flow rate of the stock solution flowing inside the liquid supply tube 2. Its operation is adjusted so that it becomes 10. Further, the operation of the concentrate tube liquid feeding section 4p may be adjusted so that the concentrator transmembrane differential pressure becomes a set value. Incidentally, while the amount of the raw solution to be fed to the filter 10 is being increased, the operation of the concentrate tube liquid feeding section 4p is controlled so as to be in any of the above states.

濾過濃縮が進行すると、徐々に濾過器10や濃縮器20の詰りが発生してくる。すると、濾過器膜間差圧や濃縮器膜間差圧が上昇する。しかし、濾過器膜間差圧や濃縮器膜間差圧が許容差圧になるまでは、濾過器10への原液の送液量を増加させるように給液チューブ送液部2pは作動する。 As filtration and concentration proceed, the filter 10 and concentrator 20 gradually become clogged. Then, the filter transmembrane pressure difference and the concentrator transmembrane pressure difference increase. However, until the filter transmembrane pressure difference and the concentrator transmembrane pressure difference reach the allowable pressure difference, the liquid supply tube liquid feeding section 2p operates to increase the amount of the raw solution fed to the filter 10.

なお、後述するように、濾過器膜間差圧が濾過器10の設定差圧の範囲内にある場合には、濃縮器20への濾過液の送液量、言い換えれば、濾過器10への原液の送液量が維持されるように給液チューブ送液部2pが作動される。一方、濾過器膜間差圧が濾過器10の設定差圧よりも大きくなると、濾過器10への原液の送液量が減少するように給液チューブ送液部2pが作動される。また、濾過器膜間差圧が濾過器10の設定差圧より小さくなると、濾過器10への原液の送液量が増加するように給液チューブ送液部2pが作動される。 As will be described later, when the filter transmembrane pressure difference is within the range of the set pressure difference of the filter 10, the amount of filtrate sent to the concentrator 20, in other words, the amount of filtrate sent to the filter 10. The liquid supply tube liquid feeding section 2p is operated so that the amount of the stock solution to be fed is maintained. On the other hand, when the pressure difference between the membranes of the filter becomes larger than the set pressure difference of the filter 10, the liquid supply tube liquid sending part 2p is operated so that the amount of the raw solution sent to the filter 10 is reduced. Further, when the pressure difference between the membranes of the filter becomes smaller than the set pressure difference of the filter 10, the liquid supply tube liquid sending section 2p is operated so that the amount of the raw solution sent to the filter 10 is increased.

<第一方法>
濾過器10への原液の送液量の増加は、濾過器膜間差圧が濾過器10の許容差圧になるまで継続される。そして、濾過器膜間差圧が濾過器10の許容差圧になると、給液チューブ2内の原液の流量を濾過器膜間差圧が濾過器10の許容差圧となった状態の流量に維持するように給液チューブ送液部2pが制御される。一方、濃縮液チューブ送液部4pが操作され、濃縮液チューブ4を流れる濃縮液の流量が調整される。
<First method>
The increase in the amount of the raw solution sent to the filter 10 is continued until the filter transmembrane pressure difference reaches the allowable pressure difference of the filter 10. When the pressure difference between the membranes of the filter reaches the allowable pressure difference of the filter 10, the flow rate of the stock solution in the liquid supply tube 2 is changed to the flow rate when the pressure difference between the filter membranes becomes the allowable pressure difference of the filter 10. The liquid supply tube liquid feeding section 2p is controlled so as to maintain the temperature. On the other hand, the concentrate tube liquid feeding section 4p is operated, and the flow rate of the concentrate flowing through the concentrate tube 4 is adjusted.

<ステップ1>
まず、濃縮器膜間差圧が濃縮器20の設定差圧よりも小さい場合には、濃縮液チューブ送液部4pは、濃縮液バッグCBへの濃縮液の送液量が減少するように作動される。つまり、濃縮液の濃度を高くするように濃縮液チューブ送液部4pの作動が制御される。
<Step 1>
First, when the concentrator transmembrane pressure difference is smaller than the set differential pressure of the concentrator 20, the concentrate tube liquid feeding section 4p operates to reduce the amount of concentrated liquid sent to the concentrate bag CB. be done. In other words, the operation of the concentrate tube liquid feeding section 4p is controlled so as to increase the concentration of the concentrate.

<ステップ2>
そして、濃縮器膜間差圧が濃縮器20の設定差圧になるまで濃縮液バッグCBへの濃縮液の送液量が減少される。濃縮器膜間差圧が濃縮器20の設定差圧になると、濃縮液チューブ4内の濃縮液の流量を濃縮器膜間差圧が濃縮器20の設定差圧となった状態の流量に維持するように濃縮液チューブ送液部4pが制御される。
<Step 2>
Then, the amount of concentrated liquid sent to the concentrated liquid bag CB is reduced until the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20. When the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20, the flow rate of the concentrate in the concentrate tube 4 is maintained at the flow rate where the concentrator transmembrane pressure difference becomes the set differential pressure of the concentrator 20. The concentrated liquid tube liquid feeding section 4p is controlled so as to.

<ステップ3>
やがて、濃縮器20の詰り等によって、濃縮器膜間差圧が濃縮器20の設定差圧よりも大きくなると、濃縮液バッグCBへの濃縮液の送液量が増加するように濃縮液チューブ送液部4pが制御される。なお、濃縮液の送液量が増加すると濃縮倍率が低下するが、許容濃縮倍率を満たしつつ濃縮倍率が低下するように(濃縮液の濃度が低くなるように)濃縮液チューブ送液部4pの作動が制御される。
なお、濃縮器膜間差圧を設定差圧に維持するために濃縮液の送液量を増加させた際に、濃縮倍率が許容濃縮倍率より小さくなってしまう場合には、下記方法(第二方法)で対応することができる。
<Step 3>
Eventually, when the concentrator transmembrane pressure becomes larger than the set differential pressure of the concentrator 20 due to clogging of the concentrator 20, etc., the concentrate tube is transferred so that the amount of concentrate sent to the concentrate bag CB increases. The liquid part 4p is controlled. In addition, as the amount of concentrated liquid sent increases, the concentration ratio decreases, but the concentration ratio of the concentrated liquid tube feeding part 4p is adjusted so that the concentration ratio decreases while satisfying the allowable concentration ratio (so that the concentration of the concentrated liquid becomes low). Actuation is controlled.
In addition, if the concentration ratio becomes smaller than the allowable concentration ratio when increasing the amount of concentrated liquid fed in order to maintain the concentrator transmembrane pressure difference at the set pressure difference, use the following method (Second method). method).

濃縮液バッグCBへの濃縮液の送液量が増加すると濃縮器膜間差圧は小さくなるので、濃縮器膜間差圧が濃縮器20の設定差圧よりも低くなると、再び濃縮液チューブ送液部4pは、濃縮液バッグCBへの濃縮液の送液量が減少するように作動される。 As the amount of concentrate sent to the concentrate bag CB increases, the concentrator transmembrane differential pressure decreases, so when the concentrator transmembrane differential pressure becomes lower than the set differential pressure of the concentrator 20, the concentrate tube is again transferred. The liquid part 4p is operated so that the amount of concentrated liquid sent to the concentrated liquid bag CB is reduced.

つまり、濾過器膜間差圧が濾過器10の許容差圧となっている間は、上記ステップ1~3が繰り返される。この方法を採用すれば、濾過器膜間差圧や濃縮器膜間差圧に関係なく濾過器10や濃縮液バッグCBへの送液量が一定の場合では不可能な、濾過器10や濃縮器20の濾過膜の膜面積や詰りの状態に応じた、また、原液の状態(濾過器や濃縮器の詰りの原因物資の濃度、回収する有用物質の濃度、液体の粘度など)に応じた、最大の濾過流量および最大の濃縮倍率を確保することが可能となる。つまり、濾過効率と濃縮効率を向上させることによって、原液から濃縮液を生成する時間を短くでき、再濃縮作業を防ぐことや再濃縮作業にかかる時間を短縮することができる。
しかも、上記のように作動すれば、濾過濃縮開始時に濾過器10、濃縮器20および回路内に充填された洗浄液や濾過器10を洗浄した直後の濾過器10および回路内の洗浄液を、濃縮器20の廃液として短時間に除去することが可能となる。つまり、上述したような、開始時および濾過器洗浄直後の洗浄液による濃縮液の希釈を効率的に防ぐことができる。
That is, as long as the filter transmembrane pressure difference is within the allowable pressure difference of the filter 10, steps 1 to 3 are repeated. If this method is adopted, the filter 10 and concentration Depending on the membrane area of the filtration membrane of the container 20 and the state of clogging, and the state of the stock solution (concentration of substances that cause clogging of the filter or concentrator, concentration of useful substances to be recovered, viscosity of the liquid, etc.) , it becomes possible to ensure the maximum filtration flow rate and the maximum concentration ratio. In other words, by improving the filtration efficiency and concentration efficiency, it is possible to shorten the time it takes to generate a concentrated liquid from the stock solution, thereby making it possible to prevent reconcentration work and shorten the time required for reconcentration work.
Moreover, if the operation is performed as described above, the cleaning liquid filled in the filter 10, concentrator 20, and the circuit at the start of filtration and concentration, and the cleaning liquid in the filter 10 and the circuit immediately after cleaning the filter 10, can be transferred to the concentrator. It becomes possible to remove the liquid as waste liquid in a short time. In other words, it is possible to efficiently prevent dilution of the concentrated liquid by the cleaning liquid at the start and immediately after cleaning the filter as described above.

なお、上記方法(第一方法)は、濾過器膜間差圧が濃縮器膜間差圧よりも大きい場合に採用することが望ましいが、この条件に限定されない。濾過器膜間差圧が濃縮器膜間差圧よりも小さい場合にも採用することができる。
また、濾過器膜間差圧が許容差圧よりも大きい場合や、濾過器膜間差圧が許容差圧よりも小さい場合、さらに、濾過器10への原液の送液量が濾過器膜間差圧に関係なく一定の場合にも、上記ステップ1~3を繰り返して、濃縮器20への濃縮液の送液量を調整してもよい。
Note that the above method (first method) is preferably employed when the filter transmembrane pressure difference is larger than the concentrator transmembrane pressure difference, but the method is not limited to this condition. This method can also be adopted when the filter transmembrane pressure difference is smaller than the concentrator transmembrane pressure difference.
In addition, if the differential pressure between the filter membranes is larger than the allowable differential pressure, or if the differential pressure between the filter membranes is smaller than the allowable differential pressure, the amount of raw solution sent to the filter 10 may be lower than the allowable differential pressure. Even when the differential pressure is constant regardless of the differential pressure, the amount of concentrated liquid sent to the concentrator 20 may be adjusted by repeating steps 1 to 3 above.

<第二方法>
第一方法では、濃縮器膜間差圧に基づいて濃縮液チューブ4内の濃縮液の流量を調整したが、以下のように、濃縮器膜間差圧に基づいて給液チューブ2内の原液の流量を調整することもできる。
<Second method>
In the first method, the flow rate of the concentrate in the concentrate tube 4 was adjusted based on the concentrator transmembrane pressure difference. It is also possible to adjust the flow rate.

<ステップ1>
まず、濃縮器膜間差圧が濃縮器20の設定差圧よりも小さい場合には、給液チューブ送液部2pは、濾過器10への原液の送液量が増加するように作動される。つまり、濃縮器20に送られる濾過液の生成量が多くなるように給液チューブ送液部2pの作動が制御される。
<Step 1>
First, when the concentrator transmembrane pressure difference is smaller than the set differential pressure of the concentrator 20, the liquid supply tube liquid sending part 2p is operated so that the amount of the raw solution sent to the filter 10 is increased. . In other words, the operation of the liquid supply tube liquid sending section 2p is controlled so that the amount of filtrate produced to be sent to the concentrator 20 is increased.

<ステップ2>
そして、濃縮器膜間差圧が濃縮器20の設定差圧になるまで濃縮器20に送られる濾過液の生成量(言い換えれば濾過器10への原液の送液量)が増加される。そして、濃縮器膜間差圧が濃縮器20の設定差圧になると、給液チューブ2内の原液の流量を濃縮器膜間差圧が濃縮器20の設定差圧となった状態の流量に維持するように給液チューブ送液部2pの作動が制御される。
<Step 2>
Then, the amount of filtrate produced to be sent to the concentrator 20 (in other words, the amount of raw solution sent to the filter 10) is increased until the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20. When the concentrator transmembrane pressure difference reaches the set pressure difference of the concentrator 20, the flow rate of the stock solution in the liquid supply tube 2 is changed to the flow rate when the concentrator transmembrane pressure difference becomes the set pressure difference of the concentrator 20. The operation of the liquid supply tube liquid feeding section 2p is controlled so as to maintain the liquid supply tube liquid feeding section 2p.

<ステップ3>
やがて、濃縮器20の詰り等によって、濃縮器膜間差圧が濃縮器20の設定差圧よりも大きくなると、給液チューブ2内の原液の流量が減少するように給液チューブ送液部2pの作動が制御される。つまり、濃縮器20に送られる濾過液の生成量が少なくなるように給液チューブ送液部2pの作動が制御される。
<Step 3>
Eventually, when the concentrator transmembrane pressure becomes larger than the set differential pressure of the concentrator 20 due to clogging of the concentrator 20, etc., the liquid supply tube liquid feeding section 2p is adjusted so that the flow rate of the stock solution in the liquid supply tube 2 decreases. operation is controlled. In other words, the operation of the liquid supply tube liquid sending section 2p is controlled so that the amount of filtrate produced to be sent to the concentrator 20 is reduced.

給液チューブ2内の原液の流量が減少すると濃縮器膜間差圧は小さくなるので、濃縮器膜間差圧が濃縮器20の設定差圧よりも低くなると、再び給液チューブ送液部2pは、給液チューブ2内の原液の流量が増加するように作動される。 When the flow rate of the stock solution in the liquid supply tube 2 decreases, the concentrator transmembrane pressure difference decreases, so when the concentrator transmembrane pressure difference becomes lower than the set differential pressure of the concentrator 20, the liquid supply tube liquid feeding section 2p is operated so that the flow rate of the stock solution in the liquid supply tube 2 increases.

つまり、濾過器膜間差圧が濾過器10の許容差圧となっている間は、上記ステップ1~3が繰り返される。この方法を採用すれば、濾過器膜間差圧や濃縮器膜間差圧に関係なく濾過器10や濃縮液バッグCBへの送液量が一定の場合では不可能な、濾過器10や濃縮器20の濾過膜の膜面積や詰りの状態に応じた、また、原液の状態(濾過器や濃縮器の詰りの原因物資の濃度、回収する有用物質の濃度、液体の粘度など)に応じた、最大の濾過流量および最大の濃縮倍率を確保することが可能となる。つまり、濾過効率と濃縮効率とを向上させることによって、原液から濃縮液を生成する時間を短くでき、再濃縮作業を防ぐことや再濃縮作業にかかる時間を短縮することができる。
しかも、上記のように作動すれば、濾過濃縮開始時に濾過器10、濃縮器20および回路内に充填された洗浄液や濾過器10を洗浄した直後の濾過器10および回路内の洗浄液を、濃縮器20の廃液として短時間に除去することが可能となる。つまり、上述したような、開始時および濾過器洗浄直後の洗浄液による濃縮液の希釈を効率的に防ぐことができる。
That is, as long as the filter transmembrane pressure difference is within the allowable pressure difference of the filter 10, steps 1 to 3 are repeated. If this method is adopted, the filter 10 and concentration Depending on the membrane area of the filtration membrane of the container 20 and the state of clogging, and the state of the stock solution (concentration of substances that cause clogging of the filter or concentrator, concentration of useful substances to be recovered, viscosity of the liquid, etc.) , it becomes possible to ensure the maximum filtration flow rate and the maximum concentration ratio. In other words, by improving the filtration efficiency and concentration efficiency, it is possible to shorten the time required to generate a concentrated liquid from the stock solution, thereby preventing reconcentration work and shortening the time required for reconcentration work.
Moreover, if the operation is performed as described above, the cleaning liquid filled in the filter 10, concentrator 20, and the circuit at the start of filtration and concentration, and the cleaning liquid in the filter 10 and the circuit immediately after cleaning the filter 10, can be transferred to the concentrator. It becomes possible to remove the liquid as waste liquid in a short time. In other words, it is possible to efficiently prevent dilution of the concentrated liquid by the cleaning liquid at the start and immediately after cleaning the filter as described above.

なお、上記方法(第二方法)は、濾過器膜間差圧よりも濃縮器膜間差圧が大きい場合に採用することが望ましいが、この条件に限定されない。濾過器膜間差圧よりも濃縮器膜間差圧が小さい場合にも採用することができる。
また、濾過器膜間差圧が許容差圧よりも大きい場合や、濾過器膜間差圧が許容差圧よりも小さい場合、さらに、濾過器10への原液の送液量が濾過器膜間差圧に関係なく一定の場合にも、上記ステップ1~3を繰り返して、濃縮器20への濃縮液の送液量を調整してもよい。
Note that the above method (second method) is preferably employed when the concentrator transmembrane pressure difference is larger than the filter transmembrane pressure difference, but the method is not limited to this condition. It can also be adopted when the concentrator transmembrane pressure difference is smaller than the filter transmembrane pressure difference.
In addition, if the differential pressure between the filter membranes is larger than the allowable differential pressure, or if the differential pressure between the filter membranes is smaller than the allowable differential pressure, the amount of raw solution sent to the filter 10 may be lower than the allowable differential pressure. Even when the differential pressure is constant regardless of the differential pressure, the amount of concentrated liquid sent to the concentrator 20 may be adjusted by repeating steps 1 to 3 above.

<濾過器洗浄について>
上述したような濾過濃縮作業を実施していると、濾過器10の詰り等によって、濾過器膜間差圧が濾過器10の許容差圧よりも大きくなる。この場合、給液チューブ送液部2pの作動を制御して給液チューブ2内の原液の流量を減少させれば、濾過器膜間差圧を濾過器10の許容差圧よりも小さくできる。しかし、濾過器10の詰り等がひどくなると、濾過器膜間差圧を濾過器10の許容差圧に維持するために給液チューブ2内の原液の流量が減少し、給液チューブ2内の原液の流量が許容流量よりも小さくなる。かかる状態になると、本実施形態の原液処理装置1の濾過濃縮作業の途中に、濾過器10の洗浄作業が実施される。
<About filter cleaning>
When the above-described filtration and concentration work is performed, the filter transmembrane pressure difference becomes larger than the allowable pressure difference of the filter 10 due to clogging of the filter 10 or the like. In this case, if the flow rate of the stock solution in the liquid supply tube 2 is reduced by controlling the operation of the liquid supply tube liquid sending section 2p, the filter membrane transmembrane pressure difference can be made smaller than the allowable pressure difference of the filter 10. However, when the filter 10 becomes severely clogged, the flow rate of the stock solution in the liquid supply tube 2 decreases in order to maintain the filter transmembrane pressure differential to the allowable differential pressure of the filter 10. The flow rate of the stock solution becomes smaller than the allowable flow rate. In such a state, the cleaning work of the filter 10 is performed during the filtration and concentration work of the stock solution processing apparatus 1 of this embodiment.

濾過器10の洗浄作業では、流量調整手段3cによって濾過液供給チューブ3内を液体が流れないように閉塞する。加えて給液チューブ送液部2pの作動を停止し、クランプとして機能させる。一方、流量調整手段6cによって洗浄液供給チューブ6内に液体が流れることができるようにする。 In the cleaning operation of the filter 10, the flow rate adjusting means 3c closes the inside of the filtrate supply tube 3 to prevent liquid from flowing therein. In addition, the operation of the liquid supply tube liquid feeding section 2p is stopped to function as a clamp. On the other hand, the flow rate adjustment means 6c allows the liquid to flow into the cleaning liquid supply tube 6.

上記状態で、濾過器10から洗浄液回収チューブ7に接続された洗浄液回収バッグFBに液体を流すように洗浄液回収チューブ送液部7pを作動させれば、濾過器10の原液が流れる流路を、濾過濃縮の際に原液が流れる方向と逆方向に洗浄液を流すことができるので、濾過器10の原液が流れる流路内部を洗浄することができる。 In the above state, if the cleaning liquid recovery tube liquid feeding section 7p is operated to flow the liquid from the filter 10 to the cleaning liquid recovery bag FB connected to the cleaning liquid recovery tube 7, the flow path through which the undiluted solution in the filter 10 flows, Since the cleaning liquid can be flowed in the direction opposite to the direction in which the stock solution flows during filtration and concentration, the inside of the channel in the filter 10 through which the stock solution flows can be cleaned.

また、上記状態に加えて、連結チューブ9に接続された洗浄液バッグSBから濾過器10に洗浄液が流れるように連結チューブ送液部9pを作動させれば、連結チューブ9に接続された洗浄液バッグSBからも濾過器10に洗浄液が供給される。すると、この洗浄液は、濾過部材を濾過液が透過する方向と逆方向に濾過部材を透過するので、濾過部材の詰りを解消できる。この場合、洗浄液供給チューブ6に接続された洗浄液バッグSBと連結チューブ9に接続された洗浄液バッグSBの両方から濾過器10に洗浄液が供給されるので、洗浄液回収チューブ送液部7pによって洗浄液回収チューブ7を流れる洗浄液の流量が、連結チューブ送液部9pによって連結チューブ9を流れる洗浄液の流量よりも大きくなるように、洗浄液回収チューブ送液部7pおよび連結チューブ送液部9pの作動が調整される。 In addition to the above state, if the connecting tube liquid feeding section 9p is operated so that the cleaning liquid flows from the cleaning liquid bag SB connected to the connecting tube 9 to the filter 10, the cleaning liquid bag SB connected to the connecting tube 9 Washing liquid is also supplied to the filter 10 from the filter 10 . Then, this cleaning liquid passes through the filter member in the opposite direction to the direction in which the filtrate passes through the filter member, so that clogging of the filter member can be eliminated. In this case, since the cleaning liquid is supplied to the filter 10 from both the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 and the cleaning liquid bag SB connected to the connecting tube 9, the cleaning liquid collection tube The operations of the cleaning liquid recovery tube liquid feeding section 7p and the connecting tube liquid feeding section 9p are adjusted so that the flow rate of the cleaning liquid flowing through the connecting tube liquid feeding section 7 is larger than the flow rate of the cleaning liquid flowing through the connecting tube 9 by the connecting tube liquid feeding section 9p. .

なお、流量調整手段6cを閉塞させた状態で洗浄液回収チューブ送液部7pと連結チューブ送液部9pとを作動させてもよい。この場合には、連結チューブ送液部9pに接続された洗浄液バッグSBからのみ濾過液10に洗浄液が供給される。この場合も、濾過部材を濾過液が透過する方向と逆方向に、洗浄液が濾過部材を透過するので、濾過部材の詰りを解消できる。 Note that the cleaning liquid recovery tube liquid feeding section 7p and the connecting tube liquid feeding section 9p may be operated with the flow rate adjusting means 6c closed. In this case, the cleaning liquid is supplied to the filtrate 10 only from the cleaning liquid bag SB connected to the connecting tube liquid feeding section 9p. Also in this case, since the cleaning liquid passes through the filter member in the opposite direction to the direction in which the filtrate passes through the filter member, clogging of the filter member can be eliminated.

<濾過液回収>
一方、上記方法で濾過器洗浄を実施した場合、濾過器10の本体部11の内部空間12h内に残留していた濾過液は洗浄液と混合して排出されてしまう。すると、濾過濃縮によって回収される有効成分の量が減少することになる。
<Filtrate recovery>
On the other hand, when the filter is cleaned using the above method, the filtrate remaining in the internal space 12h of the main body 11 of the filter 10 is mixed with the cleaning liquid and discharged. This will reduce the amount of active ingredient recovered by filtration and concentration.

そこで、濾過器洗浄を行う際には、予め濾過器10の本体部11の内部空間12h内に存在する濾過液を濃縮器20に送液して、その後、濾過器洗浄を行う方が望ましい。 Therefore, when cleaning the filter, it is preferable to send the filtrate existing in the internal space 12h of the main body 11 of the filter 10 to the concentrator 20 in advance, and then wash the filter.

図1に示すように、濾過器10の本体部11のポート11cにチューブを介して洗浄液バッグSBを接続する。そして、流量調整手段3cによって濾過液供給チューブ3内は液体が流れる状態を維持し、かつ、濃縮液チューブ送液部4pの作動を継続したまま、給液チューブ送液部2pの作動を停止し、クランプとして機能させる。その状態で、チューブに設けられているポンプによって洗浄液バッグSBから濾過器10に洗浄液を供給すれば、濾過器10の本体部11の内部空間12h内の濾過液は濃縮器20に供給され、代わりに洗浄液バッグSBから洗浄液が内部空間12hに供給される。やがて、内部空間12h内の濾過液が全て洗浄液に置換されると、流量調整手段3cによって濾過液供給チューブ3を閉塞し、濃縮液チューブ送液部4pの作動を停止する。その状態となったのち、上述したような方法で濾過器10を洗浄すれば、洗浄液とともに排出される濾過液の再濃縮を抑制することができる。 As shown in FIG. 1, a cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 via a tube. Then, the flow rate adjustment means 3c maintains the state in which the liquid flows in the filtrate supply tube 3, and stops the operation of the liquid supply tube liquid feeding section 2p while continuing the operation of the concentrated liquid tube liquid feeding section 4p. , to function as a clamp. In this state, if the cleaning liquid is supplied from the cleaning liquid bag SB to the filter 10 using the pump provided in the tube, the filtrate in the internal space 12h of the main body 11 of the filter 10 will be supplied to the concentrator 20 and replaced. The cleaning liquid is supplied from the cleaning liquid bag SB to the internal space 12h. Eventually, when all of the filtrate in the internal space 12h is replaced with the cleaning liquid, the flow rate adjusting means 3c closes the filtrate supply tube 3 and stops the operation of the concentrated liquid tube feeding section 4p. After this state is reached, if the filter 10 is washed in the manner described above, re-concentration of the filtrate discharged together with the washing liquid can be suppressed.

なお、濾過器10の本体部11のポート11cに接続されるチューブには必ずしもポンプを設けなくてもよい。この場合でも、濃縮液チューブ送液部4を作動させれば、濾過器10の本体部11の内部空間12h内の濾過液を洗浄液と置換することができる。 Note that the tube connected to the port 11c of the main body 11 of the filter 10 does not necessarily need to be provided with a pump. Even in this case, the filtrate in the internal space 12h of the main body 11 of the filter 10 can be replaced with the cleaning liquid by operating the concentrate tube liquid feeding section 4.

また、上記説明では、濾過器10の本体部11のポート11cにチューブを介して洗浄液バッグSBを接続した場合を説明したが、濾過器10の本体部11のポート11cにチューブを介して空気を供給してもよい。この場合でも、空気圧によって濾過器10の本体部11の内部空間12h内の濾過液を濃縮器20に供給することができる。この場合、濾過器10の本体部11の内部空間12h内は空気によって満たされるので、洗浄を実施する前には、内部空間12h内を洗浄液で満たす。例えば、濾過器10の本体部11のポート11cに洗浄液バッグSBを接続して洗浄液を供給すれば、内部空間12h内を洗浄液で満たすことができる。 In addition, in the above description, the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 via the tube, but air is connected to the port 11c of the main body 11 of the filter 10 via the tube. May be supplied. Even in this case, the filtrate in the internal space 12h of the main body 11 of the filter 10 can be supplied to the concentrator 20 by air pressure. In this case, the interior space 12h of the main body 11 of the filter 10 is filled with air, so before cleaning, the interior space 12h is filled with a cleaning liquid. For example, if the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 and the cleaning liquid is supplied, the interior space 12h can be filled with the cleaning liquid.

さらに、上記説明では、原液が濾過器10の中空糸膜束15の複数本の中空糸膜16の貫通流路16h内に供給され、濾過液が濾過器10の本体部11の胴部12の内部空間12h内に排出される場合を説明している。しかし、原液が濾過液排出ポート11cから本体部11の胴部12の内部空間12h内に供給され、濾過された濾過液が中空糸膜束15の複数本の中空糸膜16の貫通流路16h内に排出され、原液供給ポート11aから外部に排出されるようになっていてもよい。この場合には、濾過液供給チューブ3は原液供給ポート11aに接続され、給液チューブ2が濾過液排出ポート11cに接続される。かかる構成において濾過器洗浄を行う際にも、上記と同様の方法で、濾過器10の本体部11の胴部12の内部空間12h内に存在する濾過液を予め濃縮器20に送液しておき、その後、濾過器洗浄を行う方が望ましい。 Furthermore, in the above description, the stock solution is supplied into the through passage 16h of the plurality of hollow fiber membranes 16 of the hollow fiber membrane bundle 15 of the filter 10, and the filtrate is supplied to the body 12 of the main body 11 of the filter 10. The case where the liquid is discharged into the internal space 12h is explained. However, the stock solution is supplied from the filtrate discharge port 11c into the internal space 12h of the body 12 of the main body 11, and the filtered filtrate is passed through the flow path 16h of the plurality of hollow fiber membranes 16 of the hollow fiber membrane bundle 15. The liquid may be discharged into the interior and discharged to the outside from the stock solution supply port 11a. In this case, the filtrate supply tube 3 is connected to the stock solution supply port 11a, and the liquid supply tube 2 is connected to the filtrate discharge port 11c. When cleaning the filter in such a configuration, the filtrate present in the internal space 12h of the body 12 of the main body 11 of the filter 10 is sent to the concentrator 20 in advance in the same manner as described above. It is preferable to wash the filter and then wash the filter.

<再濃縮作業>
濾過濃縮作業によって得られた濃縮液をさらに濃縮する場合には、再濃縮作業が実施される。
<Reconcentration work>
When further concentrating the concentrate obtained by the filtration and concentration operation, a reconcentration operation is performed.

図3に示すように、本実施形態の原液処理装置1の再濃縮作業では、洗浄液バッグSBから連結チューブ9の他端が外されて、連結チューブ9の他端が濃縮液バッグCBに接続される。
また、流量調整手段3cによって濾過液供給チューブ3内を液体が流れることができる状態を維持する一方、給液チューブ送液部2pおよび洗浄液回収チューブ送液部7pを作動させず、クランプとして機能させる。加えて、流量調整手段6cによって洗浄液供給チューブ6内は液体が流れないように閉塞する。すると、濾過器10には液体が流れない状態となる。
As shown in FIG. 3, in the reconcentration work of the stock solution processing apparatus 1 of this embodiment, the other end of the connecting tube 9 is removed from the cleaning liquid bag SB, and the other end of the connecting tube 9 is connected to the concentrated liquid bag CB. Ru.
In addition, while maintaining the state in which the liquid can flow in the filtrate supply tube 3 by the flow rate adjustment means 3c, the liquid supply tube liquid feeding section 2p and the cleaning liquid recovery tube liquid feeding section 7p are not operated and are made to function as a clamp. . In addition, the inside of the cleaning liquid supply tube 6 is closed by the flow rate adjusting means 6c so that no liquid can flow therein. Then, the liquid will not flow into the filter 10.

上記状態で、濃縮液バッグCBから連結チューブ9を通して濃縮器20に濃縮液が流れるように連結チューブ送液部9pを作動させ、かつ、濃縮器20から濃縮液チューブ4を通して濃縮液バッグCBに濃縮液が流れるように濃縮液チューブ送液部4pを作動させる。 In the above state, the connecting tube liquid sending part 9p is operated so that the concentrated liquid flows from the concentrate bag CB to the concentrator 20 through the connecting tube 9, and the concentrate is concentrated from the concentrator 20 to the concentrate bag CB through the concentrate tube 4. The concentrated liquid tube liquid feeding section 4p is operated so that the liquid flows.

すると、連結チューブ9に接続された濃縮液バッグCBから連結チューブ9を通して濃縮器20に濃縮液が供給されるので、濃縮器20によってさらに濃縮された再濃縮液が濃縮液チューブ4を通して濃縮液バッグCBに回収される。一方、濃縮液から分離された水分は、廃液チューブ5を通して廃液バッグDBに回収される。つまり、濃縮割合を高めた濃縮液(再濃縮液)を得ることができる。 Then, the concentrate is supplied from the concentrate bag CB connected to the connecting tube 9 to the concentrator 20 through the connecting tube 9, so that the reconcentrate further concentrated by the concentrator 20 passes through the concentrate tube 4 to the concentrate bag. Collected by CB. On the other hand, the water separated from the concentrated liquid is collected through the waste liquid tube 5 into the waste liquid bag DB. In other words, a concentrated liquid (reconcentrated liquid) with an increased concentration ratio can be obtained.

<第2実施形態の原液処理装置1B>
上述した本実施形態の原液処理装置1では、濾過濃縮の際に、原液を押し込むように濾過器10に供給する構成としているが、濾過器10から原液を吸い出すようにして濾過器10に原液を供給する構成としてもよい。
<Stock solution processing device 1B of second embodiment>
In the above-described undiluted solution processing apparatus 1 of the present embodiment, the undiluted solution is supplied to the filter 10 by being forced into it during filtration and concentration. It is also possible to have a configuration in which it is supplied.

つまり、図7に示すように、本実施形態の原液処理装置1Bでは、濾過器10から原液を吸い出すようにして濾過器10に原液を供給する構成としている。つまり、濾過液供給チューブ3には流量調整手段3cに代えて、濾過液供給チューブ送液部3pを設けており、給液チューブ2には給液チューブ送液部2pに代えて流量調整手段2cを設けている。 That is, as shown in FIG. 7, the undiluted solution processing apparatus 1B of this embodiment is configured to supply the undiluted solution to the filter 10 by sucking out the undiluted solution from the filter 10. That is, the filtrate supply tube 3 is provided with a filtrate supply tube liquid sending section 3p instead of the flow rate adjustment means 3c, and the liquid supply tube 2 is provided with a flow rate adjustment means 2c instead of the liquid supply tube liquid sending section 2p. has been established.

この原液処理装置1Bでは、濾過濃縮時に、濾過器10から濃縮器20に液体(濾過液)が流れるように濾過液供給チューブ送液部3pを作動させる。濾過液供給チューブ送液部3pが作動すれば、濾過液供給チューブ3における濾過液供給チューブ送液部3pよりも上流側、つまり、濾過器10側が負圧になり、濾過器10内(例えば本体部11の胴部12の内部空間12h)も負圧になる。すると、流量調整手段2cによって給液チューブ2が送液できる状態としておけば、給液チューブ2を通して原液バッグUB内の原液を濾過器10内に吸引し、かつ、吸引した原液を濾過液供給チューブ3に吸引できる。 In this stock solution processing apparatus 1B, the filtrate supply tube liquid sending section 3p is operated so that the liquid (filtrate) flows from the filter 10 to the concentrator 20 during filtration and concentration. When the filtrate supply tube liquid sending part 3p operates, negative pressure is created in the filtrate supply tube 3 upstream of the filtrate supply tube liquid sending part 3p, that is, on the filter 10 side, and the inside of the filter 10 (for example, the main body The internal space 12h) of the body 12 of the section 11 also becomes negative pressure. Then, if the liquid supply tube 2 is set in a state where the liquid can be fed by the flow rate adjustment means 2c, the liquid in the liquid bag UB is sucked into the filter 10 through the liquid feed tube 2, and the sucked liquid is transferred to the filtrate supply tube. Can be absorbed into 3.

この原液処理装置1Bでも、各チューブに接続するバッグを適切に変更し、各チューブに設けられた流量調整手段および送液部の作動を調整すれば、準備洗浄作業、濾過濃縮作業および再濃縮作業を行うことができる。なお、原液処理装置1Bにおいて、濃縮液チューブ送液部4pに代えて、廃液チューブ5に廃液チューブ送液部5pを設けてもよい(図9参照)。この場合でも、濃縮液チューブ送液部4pが濃縮液の送液量を増加させる条件では廃液チューブ送液部5pが廃液の送液量を減少させ、濃縮液チューブ送液部4pが濃縮液の送液量を減少させる条件では廃液チューブ送液部5pが廃液の送液量を増加させれば、濃縮液チューブ4に濃縮液チューブ送液部4pを設けた場合と同様に機能させることができる。以下では、濃縮液チューブ4に濃縮液チューブ送液部4pを設けた場合を説明する。 Even with this stock solution processing apparatus 1B, if the bags connected to each tube are appropriately changed and the operation of the flow rate adjustment means and liquid feeding section provided in each tube is adjusted, preparatory cleaning work, filtration concentration work, and reconcentration work can be performed. It can be performed. In addition, in the stock solution processing apparatus 1B, a waste liquid tube liquid feeding part 5p may be provided in the waste liquid tube 5 instead of the concentrated liquid tube liquid feeding part 4p (see FIG. 9). Even in this case, under the condition that the concentrate tube liquid sending section 4p increases the amount of concentrated liquid sent, the waste liquid tube feeding section 5p decreases the amount of waste liquid sent, and the concentrated liquid tube feeding section 4p increases the amount of concentrated liquid sent. If the waste liquid tube liquid sending part 5p increases the liquid sending amount of waste liquid under the condition that the amount of liquid sent is decreased, it can function in the same way as when the concentrated liquid tube 4 is provided with the concentrated liquid tube liquid sending part 4p. . Below, the case where the concentrate tube 4 is provided with the concentrate tube liquid feeding part 4p will be explained.

<準備洗浄作業>
図6に示すように、濃縮液チューブ4の他端に濃縮液バッグCBに代えて洗浄液バッグSBを接続して、廃液チューブ5の他端には廃液バッグDBに代えて洗浄液回収バッグFBを接続する。なお、廃液チューブ5の他端は、廃液バッグDBを接続したままでもよいし、単なるバケツなどに配置してもよい。
また、給液チューブ2の他端にも原液バッグUBに代えて洗浄液回収バッグFBを接続する。なお、給液チューブ2の他端には廃液バッグDBを接続してもよいし、給液チューブ2の他端を単なるバケツなどに配置してもよい。
そして、連結チューブ9の他端にも洗浄液回収バッグFBを接続する。なお、連結チューブ9の他端には廃液バッグDBを接続してもよいし、連結チューブ9の他端を単なるバケツなどに配置してもよい。
さらに、洗浄液供給チューブ6の他端には洗浄液バッグSBに代えて洗浄液回収バッグFBを接続し、洗浄液回収チューブ7の他端には洗浄液回収バッグFBに代えて洗浄液バッグSBを接続する。なお、洗浄液供給チューブ6の他端および洗浄液回収チューブ7の他端にも廃液バッグDBを接続してもよいし、洗浄液供給チューブ6の他端および洗浄液回収チューブ7の他端を単なるバケツなどに配置してもよい。
<Preparation cleaning work>
As shown in FIG. 6, a washing liquid bag SB is connected to the other end of the concentrate tube 4 instead of the concentrate bag CB, and a washing liquid collection bag FB is connected to the other end of the waste liquid tube 5 instead of the waste liquid bag DB. do. Note that the other end of the waste liquid tube 5 may be connected to the waste liquid bag DB, or may be placed in a simple bucket or the like.
Furthermore, a cleaning liquid collection bag FB is connected to the other end of the liquid supply tube 2 instead of the stock solution bag UB. Note that a waste liquid bag DB may be connected to the other end of the liquid supply tube 2, or the other end of the liquid supply tube 2 may be placed in a simple bucket or the like.
Then, the cleaning liquid collection bag FB is also connected to the other end of the connecting tube 9. Note that a waste liquid bag DB may be connected to the other end of the connecting tube 9, or the other end of the connecting tube 9 may be placed in a simple bucket or the like.
Furthermore, a cleaning liquid collection bag FB is connected to the other end of the cleaning liquid supply tube 6 instead of the cleaning liquid bag SB, and a cleaning liquid bag SB is connected to the other end of the cleaning liquid collection tube 7 instead of the cleaning liquid collection bag FB. Note that a waste liquid bag DB may be connected to the other end of the cleaning liquid supply tube 6 and the other end of the cleaning liquid recovery tube 7, or the other end of the cleaning liquid supply tube 6 and the other end of the cleaning liquid recovery tube 7 may be connected to a simple bucket or the like. May be placed.

ついで、流量調整手段2cおよび流量調整手段9cを開放して、給液チューブ2および連結チューブ9内を洗浄液が流れるようにする。 Next, the flow rate adjustment means 2c and the flow rate adjustment means 9c are opened to allow the cleaning liquid to flow through the liquid supply tube 2 and the connection tube 9.

上記状態で、濃縮液チューブ4に接続された洗浄液バッグSBから濃縮液20に洗浄液を流すように濃縮液チューブ送液部4pを作動させ、濃縮器20(つまり濾過液供給チューブ3)から連結チューブ9に接続された洗浄液回収バッグFBに洗浄液を流すように濾過液供給チューブ送液部3pを作動させる。すると、濃縮液チューブ4に接続された洗浄液バッグSBから濃縮液チューブ4を通して濃縮器20に洗浄液が供給される。供給された洗浄液は、濃縮器20を通過した後、濾過液供給チューブ3、連結チューブ9を通過して連結チューブ9に接続された洗浄液回収バッグFBに回収される。なお、一部の洗浄液は廃液チューブ5を通って、廃液チューブ5の他端に接続された洗浄液回収バッグFBに回収される。 In the above state, the concentrate tube liquid feeding section 4p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the concentrate tube 4 to the concentrate 20, and the concentrator 20 (that is, the filtrate supply tube 3) is connected to the connecting tube. The filtrate supply tube liquid feeding section 3p is operated so that the cleaning liquid flows into the cleaning liquid collection bag FB connected to the filtrate supply tube 9. Then, the cleaning liquid is supplied from the cleaning liquid bag SB connected to the concentrated liquid tube 4 to the concentrator 20 through the concentrated liquid tube 4. The supplied cleaning liquid passes through the concentrator 20 , passes through the filtrate supply tube 3 and the connecting tube 9 , and is collected into the cleaning liquid recovery bag FB connected to the connecting tube 9 . Note that a part of the cleaning liquid passes through the waste liquid tube 5 and is collected into the cleaning liquid collection bag FB connected to the other end of the waste liquid tube 5.

また、洗浄液回収チューブ7に接続された洗浄液バッグSBから濾過器10に洗浄液を流すように洗浄液回収チューブ送液部7pを作動させる。すると、洗浄液回収チューブ7に接続された洗浄液バッグSBから洗浄液回収チューブ7を通して濾過器10に一部の洗浄液が供給される。濾過器10に供給された洗浄液は、濾過器10を通過した後、濾過液供給チューブ3、連結チューブ9を通過して連結チューブ9に接続された洗浄液回収バッグFBに回収される。また、洗浄液供給チューブ送液部6pも作動させることによって、洗浄液供給チューブ6にも濾過器10に供給された洗浄液の一部を流すことができる。さらに、一部の洗浄液は、洗浄液回収チューブ7から給液チューブ2を通過して給液チューブ2に接続された洗浄液回収バッグFBに回収される。 Further, the cleaning liquid recovery tube liquid feeding section 7p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the cleaning liquid recovery tube 7 to the filter 10. Then, a part of the cleaning liquid is supplied from the cleaning liquid bag SB connected to the cleaning liquid recovery tube 7 to the filter 10 through the cleaning liquid recovery tube 7. After passing through the filter 10, the cleaning liquid supplied to the filter 10 passes through the filtrate supply tube 3 and the connecting tube 9, and is collected in the cleaning liquid recovery bag FB connected to the connecting tube 9. Further, by also operating the cleaning liquid supply tube liquid sending section 6p, a part of the cleaning liquid supplied to the filter 10 can also flow into the cleaning liquid supply tube 6. Further, a part of the cleaning liquid passes through the liquid supply tube 2 from the cleaning liquid recovery tube 7 and is collected into the cleaning liquid recovery bag FB connected to the liquid supply tube 2.

すると、濾過器10と濃縮器20および全てのチューブに洗浄液を流すことができるので、本実施形態の原液処理装置1B全体を洗浄することができる。 Then, the cleaning liquid can be flowed through the filter 10, the concentrator 20, and all the tubes, so the entire stock solution processing apparatus 1B of this embodiment can be cleaned.

<濾過濃縮作業>
準備洗浄作業が終了すると、濾過濃縮作業が実施される。
<Filtration and concentration work>
After the preparatory cleaning work is completed, filtration and concentration work is carried out.

図7に示すように、本実施形態の原液処理装置1Bの濾過濃縮作業では、準備洗浄作業の状態から(図6参照)、洗浄液バッグSBに代えて濃縮液バッグCBが濃縮液チューブ4の他端に接続され、洗浄液回収バッグFBに代えて廃液バッグDBが廃液チューブ5の他端に接続される。
一方、給液チューブ2の他端には、洗浄液回収バッグFBに代えて原液バッグUBが接続される。
また、流量調整手段2cを開放して給液チューブ2内を液体が流れることができる状態を維持する一方、流量調整手段9cによって連結チューブ9内は液体が流れないように閉塞する。加えて、洗浄液回収チューブ送液部7pおよび洗浄液供給チューブ送液部6pを作動させず、クランプとして機能させる。
As shown in FIG. 7, in the filtration and concentration work of the stock solution processing apparatus 1B of the present embodiment, from the preparatory cleaning work state (see FIG. 6), the concentrate bag CB is used in place of the washing liquid bag SB in addition to the concentrate tube 4. A waste liquid bag DB is connected to the other end of the waste liquid tube 5 instead of the cleaning liquid collection bag FB.
On the other hand, an undiluted solution bag UB is connected to the other end of the liquid supply tube 2 instead of the cleaning liquid collection bag FB.
Further, while the flow rate adjustment means 2c is opened to maintain a state in which the liquid can flow in the liquid supply tube 2, the flow rate adjustment means 9c closes the inside of the connecting tube 9 so that the liquid does not flow. In addition, the cleaning liquid recovery tube feeding section 7p and the cleaning liquid supply tube feeding section 6p are not operated and are made to function as a clamp.

上記状態で、濾過器10から濃縮器20に濾過液を流すように濾過液供給チューブ送液部3pを作動させ、かつ、濃縮器20から濃縮液バッグCBに濃縮液を流すように濃縮液チューブ送液部4pを作動させる。 In the above state, the filtrate supply tube liquid sending section 3p is operated to flow the filtrate from the filter 10 to the concentrator 20, and the concentrate tube is operated to flow the concentrate from the concentrator 20 to the concentrate bag CB. Activate the liquid feeding section 4p.

すると、原液バッグUBから給液チューブ2を通して濾過器10に原液が供給される。供給された原液は、濾過器10によって濾過され、生成された濾過液が濾過液供給チューブ3を通して濃縮器20に供給される。そして、濃縮器20に供給された濾過液は、濃縮器20によって濃縮されて、生成された濃縮液が濃縮液チューブ4を通して濃縮液バッグCBに回収される。一方、濃縮液から分離された水分は、廃液チューブ5を通して廃液バッグDBに回収される。 Then, the stock solution is supplied from the stock solution bag UB to the filter 10 through the liquid supply tube 2. The supplied stock solution is filtered by the filter 10, and the generated filtrate is supplied to the concentrator 20 through the filtrate supply tube 3. The filtrate supplied to the concentrator 20 is concentrated by the concentrator 20, and the generated concentrate is collected into the concentrate bag CB through the concentrate tube 4. On the other hand, the water separated from the concentrated liquid is collected through the waste liquid tube 5 into the waste liquid bag DB.

<濾過濃縮操作について>
ここで、濾過濃縮作業では、濃縮割合が所定の範囲になるように、濾過液供給チューブ送液部3pおよび濃縮液チューブ送液部4pの作動が制御されている。しかし、以下のように、濾過器膜間差圧や濃縮器膜間差圧を利用して、濾過液供給チューブ送液部3pおよび濃縮液チューブ送液部4pの作動、つまり、濾過液供給チューブ3および濃縮液チューブ4内の液体の流量を制御してもよい。すると、濾過器10や濃縮器20の能力を有効に活用して、濾過濃縮を行うことができるので、濃縮液を生成するまでの時間を短縮でき、濃縮作業の効率を高くできる。
以下では、濾過器膜間差圧や濃縮器膜間差圧を利用して、濾過液供給チューブ送液部3pおよび濃縮液チューブ送液部4pの作動を制御して濾過濃縮する作業を説明する。
<About filtration concentration operation>
In the filtration and concentration work, the operations of the filtrate supply tube feeding section 3p and the concentrate tube feeding section 4p are controlled so that the concentration ratio falls within a predetermined range. However, as described below, the filtrate supply tube liquid sending part 3p and the concentrate tube liquid sending part 4p are operated by using the filter transmembrane pressure difference and the concentrator transmembrane pressure difference, that is, the filtrate supply tube 3 and concentrate tube 4 may be controlled. Then, since the capacity of the filter 10 and the concentrator 20 can be effectively utilized to perform filtration and concentration, the time required to generate a concentrated liquid can be shortened and the efficiency of the concentration work can be increased.
Below, we will explain the operation of controlling the operation of the filtrate supply tube liquid sending part 3p and the concentrate tube liquid sending part 4p to perform filtration and concentration using the filter transmembrane pressure difference and the concentrator transmembrane pressure difference. .

なお、濾過器膜間差圧や濃縮器膜間差圧は、濾過器10や濃縮器20に接続されているチューブ内圧を測定することによって算出することができる。例えば、給液チューブ2と濾過液供給チューブ3に圧力計を設けておき、その信号が制御部106に供給されるようになっていれば、制御部106が濾過器膜間差圧を算出できる。また、濾過液供給チューブ3と廃液チューブ5に圧力計を設けておき、その信号が制御部106に供給されるようになっていれば、制御部106が濃縮器膜間差圧を算出できる。 Note that the filter transmembrane pressure difference and the concentrator transmembrane pressure difference can be calculated by measuring the internal pressure of tubes connected to the filter 10 and the concentrator 20. For example, if pressure gauges are provided in the liquid supply tube 2 and the filtrate supply tube 3 and their signals are supplied to the control unit 106, the control unit 106 can calculate the filter transmembrane pressure. . Further, if pressure gauges are provided in the filtrate supply tube 3 and waste liquid tube 5 and their signals are supplied to the control unit 106, the control unit 106 can calculate the concentrator transmembrane pressure.

なお、濾過器10や濃縮器20において、給液側と排液側のいずれか一方が大気開放に近い状態であれば、給液側と排液側のうち大気開放となっていない側と連通されたチューブ内圧を測定するだけでも、制御部106が濾過器膜間差圧や濃縮器膜間差圧を算出できる。言い換えれば、濾過器膜間差圧や濃縮器膜間差圧に代えて、制御部106は、大気開放となっていない側と連通されたチューブ内圧だけを利用して、送液部の作動を制御することもできる。例えば、濾過器10や濃縮器20に接続されているチューブが、バッグにつながっておりかつ送液部や流量調整手段によって閉塞されていない状態であれば、そのチューブは大気開放に近い状態と考えることができる。図7の状態であれば、濾過器10に接続されているチューブ2,3のうち原液バッグUBに接続されている給液チューブ2は大気開放と見做すこともできる。また、濃縮器20に接続されているチューブ3,5のうち、廃液バッグDBに接続されている排液チューブ5は大気開放と見做すこともできる。すると、図7の状態であれば、濾過器供給チューブ3のチューブ内圧だけを利用して、制御部106は送液部の作動を制御することもできる。 In addition, in the filter 10 or the concentrator 20, if either the liquid supply side or the drain side is in a state close to being open to the atmosphere, the liquid supply side or the drain side is in communication with the side that is not open to the atmosphere. The control unit 106 can calculate the filter transmembrane differential pressure and the concentrator transmembrane differential pressure by simply measuring the tube internal pressure. In other words, instead of using the filter transmembrane pressure differential or the concentrator transmembrane differential pressure, the control unit 106 operates the liquid feeding unit using only the internal pressure of the tube that is communicated with the side that is not open to the atmosphere. It can also be controlled. For example, if the tube connected to the filter 10 or concentrator 20 is connected to the bag and is not blocked by the liquid feeding section or flow rate adjustment means, the tube is considered to be in a state close to being open to the atmosphere. be able to. In the state shown in FIG. 7, of the tubes 2 and 3 connected to the filter 10, the liquid supply tube 2 connected to the stock solution bag UB can be considered to be open to the atmosphere. Further, among the tubes 3 and 5 connected to the concentrator 20, the drain tube 5 connected to the waste liquid bag DB can also be considered to be open to the atmosphere. Then, in the state shown in FIG. 7, the control section 106 can also control the operation of the liquid feeding section using only the tube internal pressure of the filter supply tube 3.

また、濾過液供給チューブ3および濃縮液チューブ4内を流れる液体の流量は、濾過液供給チューブ送液部3pおよび濃縮液チューブ送液部4pの作動から推定してもよいし、濾過液供給チューブ3や濾過液供給チューブ送液部3p、濃縮液チューブ4や濃縮液チューブ4pに流量計を設けて直接流量を測定してもよい。 Further, the flow rate of the liquid flowing through the filtrate supply tube 3 and the concentrate tube 4 may be estimated from the operation of the filtrate supply tube liquid supply section 3p and the concentrate tube liquid supply section 4p, or 3, the filtrate supply tube feeding section 3p, the concentrate tube 4, and the concentrate tube 4p may be provided with flowmeters to directly measure the flow rate.

<濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業の説明>
濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容差圧を設定する。つまり、濾過器10や濃縮器20に応じて、濾過器10や濃縮器20が許容できる差圧(許容差圧)をそれぞれ設定する。この許容差圧は、所定の幅を有していてもよいし、特定の値に設定してもよい。
<Explanation of filtration and concentration work using filter transmembrane pressure differential and concentrator transmembrane pressure differential pressure>
When performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane differential pressure, an allowable differential pressure is set in advance. That is, depending on the filter 10 and the concentrator 20, the differential pressure (allowable differential pressure) that the filter 10 and the concentrator 20 can tolerate is set respectively. This allowable differential pressure may have a predetermined width or may be set to a specific value.

なお、濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容流量を設定することが望ましい。つまり、給液チューブ2内の原液の許容できる流量(許容流量)を設定することが望ましい。この許容流量は、所定の幅を有していてもよいし、特定の値に設定してもよい。かかる許容流量は必ずしも設定しなくてもよい。しかし、給液チューブ2内の原液の流量が少なくなりすぎると、濾過濃縮にかかる時間が長くなりすぎる。したがって、原液の処理時間が長くなることを防止する上では、許容流量を設定しておくことが望ましい。
さらに、濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容濃縮倍率を設定することが望ましい。つまり、給液チューブ2内の原液の流量に対する濃縮液チューブ4を流れる濃縮液の流量の比率(許容濃縮倍率)を設定することが望ましい。この許容濃縮倍率は、所定の幅を有していてもよいし、特定の値に設定してもよい。かかる許容濃縮倍率は必ずしも設定しなくてもよい。しかし、給液チューブ2内の原液の流量に対する濃縮液チューブ4を流れる濃縮液の流量の比率である濃縮倍率が低下しすぎると(つまり濃縮液の流量が大きくなりすぎると)、再濃縮処理に時間を要する。したがって、濃縮倍率が低下しすぎることを防止する上では、許容濃縮倍率を設定しておくことが望ましい。
Note that when performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane pressure differential, it is desirable to set an allowable flow rate in advance. In other words, it is desirable to set an allowable flow rate (allowable flow rate) of the stock solution in the liquid supply tube 2. This allowable flow rate may have a predetermined width or may be set to a specific value. Such an allowable flow rate does not necessarily have to be set. However, if the flow rate of the stock solution in the liquid supply tube 2 becomes too low, the time required for filtration and concentration becomes too long. Therefore, in order to prevent the processing time of the stock solution from increasing, it is desirable to set an allowable flow rate.
Furthermore, when performing filtration and concentration work using the filter transmembrane pressure differential or the concentrator transmembrane pressure differential, it is desirable to set an allowable concentration magnification in advance. In other words, it is desirable to set the ratio of the flow rate of the concentrate flowing through the concentrate tube 4 to the flow rate of the stock solution in the liquid supply tube 2 (allowable concentration magnification). This allowable concentration factor may have a predetermined range or may be set to a specific value. Such an allowable concentration factor does not necessarily need to be set. However, if the concentration ratio, which is the ratio of the flow rate of the concentrate flowing through the concentrate tube 4 to the flow rate of the stock solution in the liquid supply tube 2, decreases too much (in other words, if the flow rate of the concentrate becomes too large), the reconcentration process will fail. It takes time. Therefore, in order to prevent the concentration ratio from decreasing too much, it is desirable to set an allowable concentration ratio.

濾過濃縮の開始時は、濾過器10への原液の送液量を増加させるように濾過液供給チューブ送液部3pが作動される。このとき、濃縮液チューブ送液部4pは、濾過液供給チューブ3内の濾過液の流量に合わせて、濃縮液が所定の濃縮倍率となるように作動される。例えば、濃縮倍率が10倍の濃縮液を生成する場合には、濃縮液チューブ送液部4pは、濃縮液チューブ4を流れる濃縮液の流量が濾過液供給チューブ3内を流れる濾過液の流量の1/10となるようにその作動が調整される。また、濃縮液チューブ送液部4pは、濃縮器膜間差圧が設定値となるようにその作動が調整される場合もある。なお、濃縮器20への濾過液の送液量を増加している間は、上記いずれかの状態となるように、濃縮液チューブ送液部4pはその作動が制御される。 At the start of filtration and concentration, the filtrate supply tube liquid feeding section 3p is operated so as to increase the amount of raw solution fed to the filter 10. At this time, the concentrate tube liquid feeding section 4p is operated in accordance with the flow rate of the filtrate in the filtrate supply tube 3 so that the concentrate has a predetermined concentration ratio. For example, when producing a concentrate with a concentration ratio of 10 times, the concentrate tube liquid feeding section 4p determines that the flow rate of the concentrate flowing through the concentrate tube 4 is equal to the flow rate of the filtrate flowing inside the filtrate supply tube 3. Its operation is adjusted so that it becomes 1/10. Further, the operation of the concentrate tube liquid feeding section 4p may be adjusted so that the concentrator transmembrane differential pressure becomes a set value. Note that while the amount of filtrate sent to the concentrator 20 is being increased, the operation of the concentrated liquid tube liquid feeding section 4p is controlled so as to be in any of the above states.

濾過濃縮が進行すると、徐々に濾過器10や濃縮器20の詰りが発生してくる。すると、濾過器膜間差圧や濃縮器膜間差圧が上昇する。しかし、濾過器膜間差圧や濃縮器膜間差圧が許容差圧になるまでは、濃縮器20への濾過液の送液量(言い換えれば濾過器10への原液の送液量)を増加させるように濾過液供給チューブ送液部3pは作動する。 As filtration and concentration proceed, the filter 10 and concentrator 20 gradually become clogged. Then, the filter transmembrane pressure difference and the concentrator transmembrane pressure difference increase. However, until the filter transmembrane differential pressure and the concentrator transmembrane differential pressure reach the allowable differential pressure, the amount of filtrate sent to the concentrator 20 (in other words, the amount of raw solution sent to the filter 10) is reduced. The filtrate supply tube liquid sending section 3p operates to increase the amount of water.

なお、後述するように、濾過器膜間差圧が濾過器10の設定差圧の範囲内にある場合には、濃縮器20への濾過液の送液量、言い換えれば、濾過器10への原液の送液量が維持されるように濾過液供給チューブ送液部3pが作動される。一方、濾過器膜間差圧が濾過器10の設定差圧よりも大きくなると、濾過器10への原液の送液量が減少するように濾過液供給チューブ送液部3pが作動される。また、濾過器膜間差圧が濾過器10の設定差圧より小さくなると、濾過器10への原液の送液量が増加するように濾過液供給チューブ送液部3pが作動される。 As will be described later, when the filter transmembrane pressure difference is within the range of the set pressure difference of the filter 10, the amount of filtrate sent to the concentrator 20, in other words, the amount of filtrate sent to the filter 10. The filtrate supply tube liquid feeding section 3p is operated so that the amount of the stock solution to be fed is maintained. On the other hand, when the pressure difference between the membranes of the filter becomes larger than the set pressure difference of the filter 10, the filtrate supply tube liquid sending part 3p is operated so that the amount of the raw solution sent to the filter 10 is reduced. Further, when the pressure difference between the membranes of the filter becomes smaller than the set pressure difference of the filter 10, the filtrate supply tube liquid sending section 3p is operated so that the amount of the raw solution sent to the filter 10 is increased.

<第一方法>
濃縮器20への濾過液の送液量の増加は、濾過器膜間差圧が濾過器10の許容差圧になるまで継続される。そして、濾過器膜間差圧が濾過器10の許容差圧になると、濃縮器20への濾過液の送液量が濾過器膜間差圧が濾過器10の許容差圧となった状態の流量に維持するように濾過液供給チューブ送液部3pが制御される。一方、濃縮液チューブ送液部4pが操作され、濃縮液チューブ4を流れる濃縮液の流量が調整される。
<First method>
The increase in the amount of filtrate sent to the concentrator 20 is continued until the filter transmembrane pressure difference reaches the allowable pressure difference of the filter 10. When the pressure difference between the filter membranes reaches the allowable pressure difference of the filter 10, the amount of filtrate sent to the concentrator 20 is reduced to the level where the pressure difference between the filter membranes reaches the allowable pressure difference of the filter 10. The filtrate supply tube liquid sending section 3p is controlled to maintain the flow rate. On the other hand, the concentrate tube liquid feeding section 4p is operated, and the flow rate of the concentrate flowing through the concentrate tube 4 is adjusted.

<ステップ1>
まず、濃縮器膜間差圧が濃縮器20の設定差圧よりも小さい場合には、濃縮液チューブ送液部4pは、濃縮液バッグCBへの濃縮液の送液量が減少するように作動される。つまり、濃縮液の濃度を高くするように濃縮液チューブ送液部4pの作動が制御される。
<Step 1>
First, when the concentrator transmembrane pressure difference is smaller than the set differential pressure of the concentrator 20, the concentrate tube liquid feeding section 4p operates to reduce the amount of concentrated liquid sent to the concentrate bag CB. be done. In other words, the operation of the concentrate tube liquid feeding section 4p is controlled so as to increase the concentration of the concentrate.

<ステップ2>
そして、濃縮器膜間差圧が濃縮器20の設定差圧になるまで濃縮液バッグCBへの濃縮液の送液量が減少される。濃縮器膜間差圧が濃縮器20の設定差圧になると、濃縮液チューブ4内の濃縮液の流量が濃縮器膜間差圧が濃縮器20の設定差圧となった状態の流量に維持するように濃縮液チューブ送液部4pが制御される。
<Step 2>
Then, the amount of concentrated liquid sent to the concentrated liquid bag CB is reduced until the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20. When the concentrator transmembrane differential pressure reaches the set differential pressure of the concentrator 20, the flow rate of the concentrate in the concentrate tube 4 is maintained at the flow rate where the concentrator transmembrane differential pressure becomes the set differential pressure of the concentrator 20. The concentrated liquid tube liquid feeding section 4p is controlled so as to.

<ステップ3>
やがて、濃縮器20の詰り等によって、濃縮器膜間差圧が濃縮器20の設定差圧よりも大きくなると、濃縮液バッグCBへの濃縮液の送液量が増加するように濃縮液チューブ送液部4pが制御される。なお、濃縮液の送液量が増加すると濃縮倍率が低下するが、許容濃縮倍率を満たしつつ濃縮倍率が低下するように(濃縮液の濃度が低くなるように)濃縮液チューブ送液部4pの作動が制御される。
なお、濃縮器膜間差圧を設定差圧に維持するために濃縮液の送液量を増加させた際に、濃縮倍率が許容濃縮倍率より小さくなってしまう場合には、下記方法(第二方法)で対応することができる。
<Step 3>
Eventually, when the concentrator transmembrane pressure becomes larger than the set differential pressure of the concentrator 20 due to clogging of the concentrator 20, etc., the concentrate tube is transferred so that the amount of concentrate sent to the concentrate bag CB increases. The liquid part 4p is controlled. Note that as the amount of concentrated liquid fed increases, the concentration ratio decreases, but the concentration ratio of the concentrated liquid tube liquid feeding section 4p is adjusted so that the concentration ratio decreases while satisfying the allowable concentration ratio (so that the concentration of the concentrated liquid becomes low). Actuation is controlled.
In addition, if the concentration ratio becomes smaller than the allowable concentration ratio when increasing the amount of concentrated liquid sent in order to maintain the concentrator transmembrane pressure difference at the set pressure difference, use the following method (second method). method).

濃縮液バッグCBへの濃縮液の送液量が増加すると濃縮器膜間差圧は小さくなるので、濃縮器膜間差圧が濃縮器20の設定差圧よりも低くなると、再び濃縮液チューブ送液部4pは、濃縮液バッグCBへの濃縮液の送液量が減少するように作動される。 As the amount of concentrate sent to the concentrate bag CB increases, the concentrator transmembrane differential pressure decreases, so when the concentrator transmembrane differential pressure becomes lower than the set differential pressure of the concentrator 20, the concentrate tube is again transferred. The liquid part 4p is operated so that the amount of concentrated liquid sent to the concentrated liquid bag CB is reduced.

つまり、濾過器膜間差圧が濾過器10の許容差圧となっている間は、上記ステップ1~3が繰り返される。この方法を採用すれば、濾過器膜間差圧や濃縮器膜間差圧に関係なく濾過器10や濃縮液バッグCBへの送液量が一定の場合では不可能な、濾過器10や濃縮器20の濾過膜の膜面積や詰りの状態に応じた、また、原液の状態(濾過器や濃縮器の詰りの原因物資の濃度、回収する有用物質の濃度、液体の粘度など)に応じた、最大の濾過流量および最大の濃縮倍率を確保することが可能となる。つまり、濾過効率と濃縮効率とを向上させることによって、原液から濃縮液を生成する時間を短くでき、再濃縮作業を防ぐことや再濃縮作業にかかる時間を短縮することができる。
しかも、上記のように作動すれば、濾過濃縮開始時に濾過器10、濃縮器20および回路内に充填された洗浄液や濾過器10を洗浄した直後の濾過器10および回路内の洗浄液を、濃縮器20の廃液として短時間に除去することが可能となる。つまり、上述したような、開始時および濾過器洗浄直後の洗浄液による濃縮液の希釈を効率的に防ぐことができる。
That is, as long as the filter transmembrane pressure difference is within the allowable pressure difference of the filter 10, steps 1 to 3 are repeated. If this method is adopted, the filter 10 and concentration Depending on the membrane area of the filtration membrane of the container 20 and the state of clogging, and the state of the stock solution (concentration of substances that cause clogging of the filter or concentrator, concentration of useful substances to be recovered, viscosity of the liquid, etc.) , it becomes possible to ensure the maximum filtration flow rate and the maximum concentration ratio. In other words, by improving the filtration efficiency and concentration efficiency, it is possible to shorten the time required to generate a concentrated liquid from the stock solution, thereby preventing reconcentration work and shortening the time required for reconcentration work.
Moreover, if the operation is performed as described above, the cleaning liquid filled in the filter 10, concentrator 20, and the circuit at the start of filtration and concentration, and the cleaning liquid in the filter 10 and the circuit immediately after cleaning the filter 10, can be transferred to the concentrator. It becomes possible to remove the liquid as waste liquid in a short time. In other words, it is possible to efficiently prevent dilution of the concentrated liquid by the cleaning liquid at the start and immediately after cleaning the filter as described above.

なお、上記方法(第一方法)は、濾過器膜間差圧が濃縮器膜間差圧よりも大きい場合に採用することが望ましいが、この条件に限定されない。濾過器膜間差圧が濃縮器膜間差圧よりも小さい場合にも採用することができる。
また、濾過器膜間差圧が許容差圧よりも大きい場合や、濾過器膜間差圧が許容差圧よりも小さい場合、さらに、濾過器10への原液の送液量が濾過器膜間差圧に関係なく一定の場合にも、上記ステップ1~3を繰り返して、濃縮器20への濃縮液の送液量を調整してもよい。
Note that the above method (first method) is preferably employed when the filter transmembrane pressure difference is larger than the concentrator transmembrane pressure difference, but the method is not limited to this condition. It can also be adopted when the filter transmembrane pressure difference is smaller than the concentrator transmembrane pressure difference.
In addition, if the differential pressure between the filter membranes is larger than the allowable differential pressure, or if the differential pressure between the filter membranes is smaller than the allowable differential pressure, the amount of raw solution sent to the filter 10 may be lower than the allowable differential pressure. Even when the differential pressure is constant regardless of the differential pressure, the amount of concentrated liquid sent to the concentrator 20 may be adjusted by repeating steps 1 to 3 above.

<第二方法>
第一方法では、濃縮器膜間差圧に基づいて濃縮液チューブ4内の濃縮液の流量を調整したが、以下のように、濃縮器膜間差圧に基づいて濃縮器20への濾過液の送液量を調整することもできる。
<Second method>
In the first method, the flow rate of the concentrate in the concentrate tube 4 was adjusted based on the concentrator transmembrane pressure difference, but as described below, the flow rate of the filtrate to the concentrator 20 is It is also possible to adjust the amount of liquid sent.

<ステップ1>
まず、濃縮器膜間差圧が濃縮器20の設定差圧よりも小さい場合には、濾過液供給チューブ送液部3pは、濃縮器20への濾過液の送液量(言い換えれば濾過器10への原液の送液量)が増加するように作動される。つまり、濃縮器20に送られる濾過液の生成量が多くなるように濾過液供給チューブ送液部3pの作動が制御される。
<Step 1>
First, when the concentrator transmembrane pressure difference is smaller than the set differential pressure of the concentrator 20, the filtrate supply tube liquid sending part 3p sends the amount of filtrate to the concentrator 20 (in other words, The pump is operated to increase the amount of stock solution sent to the pump. That is, the operation of the filtrate supply tube liquid sending section 3p is controlled so that the amount of filtrate produced to be sent to the concentrator 20 is increased.

<ステップ2>
そして、濃縮器膜間差圧が濃縮器20の設定差圧になるまで濃縮器20へ送られる濾過液の生成量(言い換えれば濾過器10への原液の送液量)が増加される。そして、濃縮器膜間差圧が濃縮器20の設定差圧になると、濃縮器20への濾過液の送液量が濃縮器膜間差圧が濃縮器20の設定差圧となった状態の流量に維持するように濾過液供給チューブ送液部3pの作動が制御される。
<Step 2>
Then, the amount of filtrate produced to be sent to the concentrator 20 (in other words, the amount of raw solution sent to the filter 10) is increased until the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20. Then, when the concentrator transmembrane differential pressure reaches the set differential pressure of the concentrator 20, the amount of filtrate sent to the concentrator 20 is reduced to the level where the concentrator transmembrane differential pressure becomes the set differential pressure of the concentrator 20. The operation of the filtrate supply tube liquid sending section 3p is controlled to maintain the flow rate.

<ステップ3>
やがて、濃縮器20の詰り等によって、濃縮器膜間差圧が濃縮器20の設定差圧よりも大きくなると、濃縮器20への濾過液の送液量が減少するように濾過液供給チューブ送液部3pの作動が制御される。つまり、濃縮器20に送られる濾過液の生成量が少なくなるように濾過液供給チューブ送液部3pの作動が制御される。
<Step 3>
Eventually, when the concentrator transmembrane pressure becomes larger than the set differential pressure of the concentrator 20 due to clogging of the concentrator 20, etc., the filtrate supply tube is routed so that the amount of filtrate sent to the concentrator 20 is reduced. The operation of the liquid part 3p is controlled. That is, the operation of the filtrate supply tube liquid sending section 3p is controlled so that the amount of filtrate produced to be sent to the concentrator 20 is reduced.

濃縮器20への濾過液の送液量が減少すると濃縮器膜間差圧は小さくなるので、濃縮器膜間差圧が濃縮器20の設定差圧よりも低くなると、再び濾過液供給チューブ送液部3pは、給液チューブ2内の原液の流量が増加するように作動される。 As the amount of filtrate sent to the concentrator 20 decreases, the concentrator transmembrane differential pressure becomes smaller, so when the concentrator transmembrane differential pressure becomes lower than the set differential pressure of the concentrator 20, the filtrate supply tube is again fed. The liquid part 3p is operated so that the flow rate of the stock solution in the liquid supply tube 2 increases.

つまり、濾過器膜間差圧が濾過器10の許容差圧となっている間は、上記ステップ1~3が繰り返される。この方法を採用すれば、濾過器膜間差圧や濃縮器膜間差圧に関係なく濾過器10や濃縮液バッグCBへの送液量が一定の場合では不可能な、濾過器10や濃縮器20の濾過膜の膜面積や詰りの状態に応じた、また、原液の状態(濾過器や濃縮器の詰りの原因物資の濃度、回収する有用物質の濃度、液体の粘度など)に応じた、最大の濾過流量および最大の濃縮倍率を確保することが可能となる。つまり、濾過効率と濃縮効率を向上させることによって、原液から濃縮液を生成する時間を短くでき、再濃縮作業を防ぐことや再濃縮作業にかかる時間を短縮することができる。
しかも、上記のように作動すれば、濾過濃縮開始時に濾過器10、濃縮器20および回路内に充填された洗浄液や濾過器10を洗浄した直後の濾過器10および回路内の洗浄液を、濃縮器20の廃液として短時間に除去することが可能となる。つまり、上述したような、開始時および濾過器洗浄直後の洗浄液による濃縮液の希釈を効率的に防ぐことができる。
That is, as long as the filter transmembrane pressure difference is within the allowable pressure difference of the filter 10, steps 1 to 3 are repeated. If this method is adopted, the filter 10 and concentration Depending on the membrane area of the filtration membrane of the container 20 and the state of clogging, and the state of the stock solution (concentration of substances that cause clogging of the filter or concentrator, concentration of useful substances to be recovered, viscosity of the liquid, etc.) , it becomes possible to ensure the maximum filtration flow rate and the maximum concentration ratio. In other words, by improving the filtration efficiency and concentration efficiency, it is possible to shorten the time it takes to generate a concentrated liquid from the stock solution, thereby making it possible to prevent reconcentration work and shorten the time required for reconcentration work.
Moreover, if the operation is performed as described above, the cleaning liquid filled in the filter 10, concentrator 20, and the circuit at the start of filtration and concentration, and the cleaning liquid in the filter 10 and the circuit immediately after cleaning the filter 10, can be transferred to the concentrator. It becomes possible to remove the liquid as waste liquid in a short time. In other words, it is possible to efficiently prevent dilution of the concentrated liquid by the cleaning liquid at the start and immediately after cleaning the filter as described above.

なお、上記方法(第二方法)は、濾過器膜間差圧よりも濃縮器膜間差圧が大きい場合に採用することが望ましいが、この条件に限定されない。濾過器膜間差圧よりも濃縮器膜間差圧が小さい場合にも採用することができる。
また、濾過器膜間差圧が許容差圧よりも大きい場合や、濾過器膜間差圧が許容差圧よりも小さい場合、さらに、濾過器10への原液の送液量が濾過器膜間差圧に関係なく一定の場合にも、上記ステップ1~3を繰り返して、濃縮器20への濃縮液の送液量を調整してもよい。
Note that the above method (second method) is preferably employed when the concentrator transmembrane pressure difference is larger than the filter transmembrane pressure difference, but the method is not limited to this condition. It can also be adopted when the concentrator transmembrane pressure difference is smaller than the filter transmembrane pressure difference.
In addition, if the differential pressure between the filter membranes is larger than the allowable differential pressure, or if the differential pressure between the filter membranes is smaller than the allowable differential pressure, the amount of raw solution sent to the filter 10 may be lower than the allowable differential pressure. Even when the differential pressure is constant regardless of the differential pressure, the amount of concentrated liquid sent to the concentrator 20 may be adjusted by repeating steps 1 to 3 above.

<濾過器洗浄について>
本実施形態の原液処理装置1Bでも、上述したような濾過濃縮作業を実施していると、濾過器10の詰り等によって、濾過器膜間差圧が濾過器10の許容差圧よりも大きくなる。この場合、給液チューブ2内の原液の流量を減少させれば、濾過器膜間差圧を濾過器10の許容差圧よりも小さくできる。しかし、濾過器10の詰り等がひどくなると、濾過器膜間差圧を濾過器10の許容差圧に維持するために給液チューブ2内の原液の流量が減少し、給液チューブ2内の原液の流量が許容流量よりも小さくなる。かかる状態になると、本実施形態の原液処理装置1の濾過濃縮作業の途中に、濾過器10の洗浄作業が実施される。
<About filter cleaning>
Also in the stock solution processing apparatus 1B of this embodiment, when the above-described filtration and concentration work is performed, the filter transmembrane pressure difference becomes larger than the allowable pressure difference of the filter 10 due to clogging of the filter 10, etc. . In this case, by reducing the flow rate of the stock solution in the liquid supply tube 2, the filter transmembrane pressure difference can be made smaller than the allowable pressure difference of the filter 10. However, when the filter 10 becomes severely clogged, the flow rate of the stock solution in the liquid supply tube 2 decreases in order to maintain the filter transmembrane pressure differential to the allowable differential pressure of the filter 10. The flow rate of the stock solution becomes smaller than the allowable flow rate. In such a state, the cleaning work of the filter 10 is performed during the filtration and concentration work of the stock solution processing apparatus 1 of this embodiment.

具体的には、図7において、流量調整手段2cによって給液チューブ2内を液体が流れないように閉塞する。加えて濾過液供給チューブ送液部3pおよび濃縮液チューブ送液部4pの作動を停止し、クランプとして機能させる。また、濾過濃縮作業の途中に濾過器洗浄を実施する場合には、準備洗浄作業の終了後、洗浄液供給チューブ6の他端には洗浄液回収バッグFBに代えて洗浄液バッグSBを接続しておき、洗浄液回収チューブ7の他端には洗浄液バッグSBに代えて洗浄液回収バッグFBを接続しておく。 Specifically, in FIG. 7, the liquid supply tube 2 is closed by the flow rate adjusting means 2c so that the liquid does not flow. In addition, the operation of the filtrate supply tube liquid feeding section 3p and the concentrated liquid tube liquid feeding section 4p is stopped to function as a clamp. In addition, when cleaning the filter during the filtration and concentration work, after the preparatory cleaning work is completed, a cleaning liquid bag SB is connected to the other end of the cleaning liquid supply tube 6 instead of the cleaning liquid collection bag FB. A cleaning liquid recovery bag FB is connected to the other end of the cleaning liquid recovery tube 7 instead of the cleaning liquid bag SB.

上記状態で、洗浄液供給チューブ6に接続された洗浄液バッグSBから濾過器10に洗浄液を流すように洗浄液供給チューブ送液部6pを作動させ、濾過器10から洗浄液回収チューブ7に接続された洗浄液回収バッグFBに洗浄液を流すように洗浄液回収チューブ送液部7pを作動させる。すると、中空糸膜16の内部を、濾過濃縮の際に原液が流れる方向と逆方向に洗浄液を流すことができるので、中空糸膜16内部を洗浄液によって洗浄することができる。 In the above state, the cleaning liquid supply tube liquid feeding section 6p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 to the filter 10, and the cleaning liquid recovery tube connected to the cleaning liquid recovery tube 7 from the filter 10 is operated. The cleaning liquid recovery tube liquid feeding section 7p is operated to flow the cleaning liquid into the bag FB. Then, since the cleaning liquid can flow inside the hollow fiber membrane 16 in the opposite direction to the direction in which the stock solution flows during filtration and concentration, the inside of the hollow fiber membrane 16 can be cleaned with the cleaning liquid.

また、準備洗浄作業の終了後、連結チューブ9の他端には洗浄液回収バッグFBに代えて洗浄液バッグSBを接続しておく。すると、流量調整手段9cによって連結チューブ9内を液体が流れるようにすれば、上記状態に加えて、連結チューブ9に接続された洗浄液バッグSBからも濾過器10に洗浄液を供給することができる。すると、連結チューブ9を通して供給される洗浄液は、中空糸膜16を濾過液が透過する方向と逆方向に中空糸膜16を透過するので、中空糸膜16の詰りを解消できる。この場合、洗浄液供給チューブ6に接続された洗浄液バッグSBと連結チューブ9に接続された洗浄液バッグSBの両方から濾過器10に洗浄液が供給されるので、洗浄液回収チューブ送液部7pによって洗浄液回収チューブ7を流れる洗浄液の流量が、洗浄液供給チューブ送液部6pによって洗浄液供給チューブ6を流れる洗浄液の流量より大きくなるように調整される。 Further, after the preparatory cleaning work is completed, a cleaning liquid bag SB is connected to the other end of the connecting tube 9 instead of the cleaning liquid collection bag FB. Then, if the liquid is made to flow in the connecting tube 9 by the flow rate adjusting means 9c, in addition to the above-mentioned state, the cleaning liquid can also be supplied to the filter 10 from the cleaning liquid bag SB connected to the connecting tube 9. Then, the cleaning liquid supplied through the connecting tube 9 passes through the hollow fiber membrane 16 in the opposite direction to the direction in which the filtrate passes through the hollow fiber membrane 16, so that clogging of the hollow fiber membrane 16 can be eliminated. In this case, since the cleaning liquid is supplied to the filter 10 from both the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 and the cleaning liquid bag SB connected to the connecting tube 9, the cleaning liquid collection tube The flow rate of the cleaning liquid flowing through the cleaning liquid supply tube 7 is adjusted to be larger than the flow rate of the cleaning liquid flowing through the cleaning liquid supply tube 6 by the cleaning liquid supply tube liquid feeding section 6p.

なお、流量調整手段9cによって連結チューブ9内を液体が流れるようにした場合には、洗浄液供給チューブ送液部6pの作動を停止した状態で洗浄液回収チューブ送液部7pを作動させてもよい。この場合には、連結チューブ9に接続された洗浄液バッグSBからのみ濾過液10に洗浄液が供給される。この場合も、中空糸膜16を濾過液が透過する方向と逆方向に、洗浄液が中空糸膜16を透過するので、中空糸膜16の詰りを解消できる。 In addition, when the liquid is made to flow in the connection tube 9 by the flow rate adjustment means 9c, the cleaning liquid recovery tube liquid feeding part 7p may be operated while the operation of the cleaning liquid supply tube liquid feeding part 6p is stopped. In this case, the cleaning liquid is supplied to the filtrate 10 only from the cleaning liquid bag SB connected to the connecting tube 9. Also in this case, the cleaning liquid passes through the hollow fiber membranes 16 in the opposite direction to the direction in which the filtrate passes through the hollow fiber membranes 16, so that clogging of the hollow fiber membranes 16 can be eliminated.

<濾過液回収>
一方、上記方法で濾過器洗浄を実施した場合、濾過器10の本体部11の内部空間12h内に残留していた濾過液は洗浄液と混合して排出されてしまう。すると、濾過濃縮によって回収される有効成分の量が減少することになる。
<Filtrate recovery>
On the other hand, when the filter is cleaned by the above method, the filtrate remaining in the internal space 12h of the main body 11 of the filter 10 is mixed with the cleaning liquid and discharged. This will reduce the amount of active ingredient recovered by filtration and concentration.

そこで、濾過器洗浄を行う際には、予め濾過器10の本体部11の内部空間12h内に存在する濾過液を濃縮器20に送液して、その後、濾過器洗浄を行う方が望ましい。 Therefore, when cleaning the filter, it is preferable to send the filtrate existing in the internal space 12h of the main body 11 of the filter 10 to the concentrator 20 in advance, and then wash the filter.

図7に示すように、濾過器10の本体部11のポート11cにチューブを介して洗浄液バッグSBを接続する。そして、濾過液供給チューブ送液部3pによって濾過器10から濃縮器20に液体が流れる状態を維持し、かつ、濃縮液チューブ送液部4pの作動を継続したまま、流量調整手段2cによって給液チューブ2を閉塞する。その状態で、チューブに設けられているポンプによって洗浄液バッグSBから濾過器10に洗浄液を供給すれば、濾過器10の本体部11の内部空間12h内の濾過液が濃縮器20に供給され、代わりに洗浄液バッグSBから洗浄液が内部空間12hに供給される。やがて、内部空間12h内の濾過液が全て洗浄液に置換されると、濾過液供給チューブ送液部3pの作動を停止して濾過液供給チューブ3を閉塞し、濃縮液チューブ送液部4pの作動を停止する。その状態となったのち、上述したような方法で濾過器10を洗浄すれば、洗浄液とともに排出される濾過液の再濃縮を抑制することができる。 As shown in FIG. 7, the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 via a tube. Then, while maintaining the state in which the liquid flows from the filter 10 to the concentrator 20 by the filtrate supply tube liquid feeding section 3p and continuing the operation of the concentrated liquid tube liquid feeding section 4p, the liquid is supplied by the flow rate adjustment means 2c. Close tube 2. In this state, if the cleaning liquid is supplied from the cleaning liquid bag SB to the filter 10 using the pump provided in the tube, the filtrate in the internal space 12h of the main body 11 of the filter 10 will be supplied to the concentrator 20, and the filtrate will be replaced. The cleaning liquid is supplied from the cleaning liquid bag SB to the internal space 12h. Eventually, when all the filtrate in the internal space 12h is replaced with the cleaning liquid, the operation of the filtrate supply tube liquid feeding section 3p is stopped to close the filtrate supply tube 3, and the operation of the concentrated liquid tube liquid feeding section 4p is stopped. stop. After this state is reached, if the filter 10 is washed in the manner described above, re-concentration of the filtrate discharged together with the washing liquid can be suppressed.

なお、濾過器10の本体部11のポート11cに接続されるチューブには必ずしもポンプを設けなくてもよい。この場合でも、濾過液供給チューブ送液部3pを作動させれば、濾過器10の本体部11の内部空間12h内の濾過液を洗浄液と置換することができる。 Note that the tube connected to the port 11c of the main body 11 of the filter 10 does not necessarily need to be provided with a pump. Even in this case, by operating the filtrate supply tube liquid sending section 3p, the filtrate in the internal space 12h of the main body 11 of the filter 10 can be replaced with the cleaning liquid.

また、上記説明では、濾過器10の本体部11のポート11cにチューブを介して洗浄液バッグSBを接続した場合を説明したが、濾過器10の本体部11のポート11cにチューブを介して空気を供給してもよい。この場合でも、空気圧によって濾過器10の本体部11の内部空間12h内の濾過液を濃縮器20に供給することができる。この場合、濾過器10の本体部11の内部空間12h内は空気によって満たされるので、洗浄を実施する前には、内部空間12h内を洗浄液で満たす。例えば、濾過器10の本体部11のポート11cに洗浄液バッグSBを接続して洗浄液を供給すれば、内部空間12h内を洗浄液で満たすことができる。 In addition, in the above description, the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 via the tube, but air is connected to the port 11c of the main body 11 of the filter 10 via the tube. May be supplied. Even in this case, the filtrate in the internal space 12h of the main body 11 of the filter 10 can be supplied to the concentrator 20 by air pressure. In this case, the interior space 12h of the main body 11 of the filter 10 is filled with air, so before cleaning, the interior space 12h is filled with a cleaning liquid. For example, if the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 and the cleaning liquid is supplied, the interior space 12h can be filled with the cleaning liquid.

さらに、上記説明では、原液が濾過器10の中空糸膜束15の複数本の中空糸膜16の貫通流路16h内に供給され、濾過液が濾過器10の本体部11の胴部12の内部空間12h内に排出される場合を説明している。しかし、原液が濾過液排出ポート11cから本体部11の胴部12の内部空間12h内に供給され、濾過された濾過液が中空糸膜束15の複数本の中空糸膜16の貫通流路16h内に排出され、原液供給ポート11aから外部に排出されるようになっていてもよい。この場合には、濾過液供給チューブ3は原液供給ポート11aに接続され、給液チューブ2が濾過液排出ポート11cに接続される。かかる構成において濾過器洗浄を行う際にも、上記と同様の方法で、濾過器10の本体部11の胴部12の内部空間12h内に存在する濾過液を予め濃縮器20に送液しておき、その後、濾過器洗浄を行う方が望ましい。 Furthermore, in the above description, the stock solution is supplied into the through passage 16h of the plurality of hollow fiber membranes 16 of the hollow fiber membrane bundle 15 of the filter 10, and the filtrate is supplied to the body 12 of the main body 11 of the filter 10. The case where the liquid is discharged into the internal space 12h is explained. However, the stock solution is supplied from the filtrate discharge port 11c into the internal space 12h of the body 12 of the main body 11, and the filtered filtrate is passed through the flow path 16h of the plurality of hollow fiber membranes 16 of the hollow fiber membrane bundle 15. The liquid may be discharged into the interior and discharged to the outside from the stock solution supply port 11a. In this case, the filtrate supply tube 3 is connected to the stock solution supply port 11a, and the liquid supply tube 2 is connected to the filtrate discharge port 11c. When cleaning the filter in such a configuration, the filtrate present in the internal space 12h of the body 12 of the main body 11 of the filter 10 is sent to the concentrator 20 in advance in the same manner as described above. It is preferable to wash the filter and then wash the filter.

<再濃縮作業>
濾過濃縮作業によって得られた濃縮液をさらに濃縮する場合には、再濃縮作業が実施される。
<Reconcentration work>
When further concentrating the concentrated liquid obtained by the filtration and concentration operation, a reconcentration operation is performed.

図8に示すように、本実施形態の原液処理装置1Bの再濃縮作業では、洗浄液バッグSBから連結チューブ9の他端が外されて、連結チューブ9の他端に濃縮液バッグCBが接続される。
また、流量調整手段9cによって連結チューブ9内を液体が流れることができる状態を維持する一方、洗浄液供給チューブ送液部6pおよび洗浄液回収チューブ送液部7pを作動させず、クランプとして機能させる。加えて、流量調整手段2cによって給液チューブ2内は液体が流れないように閉塞する。すると、濾過器10には液体が流れないような状態となる。
As shown in FIG. 8, in the reconcentration work of the stock solution processing apparatus 1B of this embodiment, the other end of the connecting tube 9 is removed from the cleaning liquid bag SB, and the concentrated liquid bag CB is connected to the other end of the connecting tube 9. Ru.
Further, while maintaining a state in which the liquid can flow in the connection tube 9 by the flow rate adjustment means 9c, the cleaning liquid supply tube liquid feeding section 6p and the cleaning liquid recovery tube liquid feeding section 7p are not operated and function as a clamp. In addition, the inside of the liquid supply tube 2 is closed by the flow rate adjusting means 2c so that liquid does not flow therein. Then, the state is such that no liquid flows into the filter 10.

上記状態で、濃縮液バッグCBから連結チューブ9を通って濃縮器20に濃縮液を流すように濾過液供給チューブ送液部3pを作動させ、かつ、濃縮器20から濃縮液チューブ4を通って濃縮液バッグCBに濃縮液が流れるように濃縮液チューブ送液部4pを作動させる。 In the above state, the filtrate supply tube liquid sending part 3p is operated to flow the concentrate from the concentrate bag CB through the connecting tube 9 to the concentrator 20, and the filtrate supply tube liquid sending part 3p is operated to flow the concentrate from the concentrator 20 through the concentrate tube 4. The concentrate tube liquid feeding section 4p is operated so that the concentrate flows into the concentrate bag CB.

すると、連結チューブ9に接続された濃縮液バッグCBから連結チューブ9を通して濃縮器20に濃縮液が供給されるので、濃縮器20によってさらに濃縮された再濃縮液が濃縮液チューブ4を通して濃縮液バッグCBに回収される。一方、濃縮液から分離された水分は、廃液チューブ5を通して廃液バッグDBに回収される。つまり、濃縮割合を高めた濃縮液(再濃縮液)を得ることができる。 Then, the concentrate is supplied from the concentrate bag CB connected to the connecting tube 9 to the concentrator 20 through the connecting tube 9, so that the reconcentrate further concentrated by the concentrator 20 passes through the concentrate tube 4 to the concentrate bag. Collected by CB. On the other hand, the water separated from the concentrated liquid is collected through the waste liquid tube 5 into the waste liquid bag DB. In other words, a concentrated liquid (re-concentrated liquid) with an increased concentration ratio can be obtained.

<第3実施形態の原液処理装置1C>
上述した本実施形態の原液処理装置1Bでは、濾過液供給チューブ3に濾過液供給チューブ送液部3pを設けて、濾過濃縮の際に、濾過器10から原液を吸い出すようにしている。かかる構成とする場合、濾過液供給チューブ3に濾過液供給チューブ送液部3pを設ける代わりに、廃液チューブ5に廃液チューブ送液部5pを設けることもできる(図10~12参照)。
<Stock solution processing device 1C of third embodiment>
In the stock solution processing apparatus 1B of the present embodiment described above, the filtrate supply tube 3 is provided with a filtrate supply tube liquid feeding section 3p, so that the stock solution is sucked out from the filter 10 during filtration and concentration. In such a configuration, instead of providing the filtrate supply tube 3p with the filtrate supply tube 3p, the waste tube 5 can be provided with a wastewater tube 5p (see FIGS. 10 to 12).

この原液処理装置1Cでは、濾過濃縮時に、濾過器10から濃縮器20に液体(濾過液)が流れるように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pを作動させる。濃縮液チューブ送液部4pおよび廃液チューブ送液部5pが作動すれば、濾過液供給チューブ3が負圧になり、濾過器10内(例えば本体部11の胴部12の内部空間12h)も負圧になる。すると、流量調整手段2cによって給液チューブ2が送液できる状態としておけば、給液チューブ2を通して原液バッグUB内の原液を濾過器10内に吸引し、かつ、吸引した原液を濾過液供給チューブ3に吸引できる。 In this stock solution processing apparatus 1C, during filtration and concentration, the concentrate tube liquid feeding section 4p and the waste liquid tube feeding section 5p are operated so that the liquid (filtrate) flows from the filter 10 to the concentrator 20. When the concentrate tube feeding section 4p and the waste liquid tube feeding section 5p operate, the filtrate supply tube 3 becomes a negative pressure, and the inside of the filter 10 (for example, the internal space 12h of the body 12 of the main body 11) also becomes negative. It becomes pressure. Then, if the liquid supply tube 2 is set in a state where the liquid can be fed by the flow rate adjustment means 2c, the liquid in the liquid bag UB is sucked into the filter 10 through the liquid feed tube 2, and the sucked liquid is transferred to the filtrate supply tube. Can be absorbed into 3.

この原液処理装置1Cでも、各チューブに接続するバッグを適切に変更し、各チューブに設けられた流量調整手段および送液部の作動を調整すれば、準備洗浄作業、濾過濃縮作業および再濃縮作業を行うことができる。 Even with this stock solution processing apparatus 1C, if the bags connected to each tube are appropriately changed and the operation of the flow rate adjustment means and liquid feeding section provided in each tube is adjusted, preparatory cleaning work, filtration concentration work, and reconcentration work can be performed. It can be performed.

<準備洗浄作業>
図10に示すように、濃縮液チューブ4の他端に濃縮液バッグCBに代えて洗浄液バッグSBを接続して、廃液チューブ5の他端には廃液バッグDBに代えて洗浄液回収バッグFBを接続する。なお、廃液チューブ5の他端は、廃液バッグDBを接続したままでもよいし、単なるバケツなどに配置してもよい。
また、給液チューブ2の他端にも原液バッグUBに代えて洗浄液回収バッグFBを接続する。なお、給液チューブ2の他端には廃液バッグDBを接続してもよいし、給液チューブ2の他端を単なるバケツなどに配置してもよい。
そして、連結チューブ9の他端にも洗浄液回収バッグFBを接続する。なお、連結チューブ9の他端には廃液バッグDBを接続してもよいし、連結チューブ9の他端を単なるバケツなどに配置してもよい。
さらに、洗浄液供給チューブ6の他端には洗浄液バッグSBに代えて洗浄液回収バッグFBを接続し、洗浄液回収チューブ7の他端には洗浄液回収バッグFBに代えて洗浄液バッグSBを接続する。なお、洗浄液供給チューブ6の他端に廃液バッグDBを接続してもよいし、洗浄液供給チューブ6の他端を単なるバケツなどに配置してもよい。
<Preparation cleaning work>
As shown in FIG. 10, a washing liquid bag SB is connected to the other end of the concentrate tube 4 instead of the concentrate bag CB, and a washing liquid collection bag FB is connected to the other end of the waste liquid tube 5 instead of the waste liquid bag DB. do. Note that the other end of the waste liquid tube 5 may be connected to the waste liquid bag DB, or may be placed in a simple bucket or the like.
Furthermore, a cleaning liquid collection bag FB is connected to the other end of the liquid supply tube 2 instead of the stock solution bag UB. Note that a waste liquid bag DB may be connected to the other end of the liquid supply tube 2, or the other end of the liquid supply tube 2 may be placed in a simple bucket or the like.
Then, the cleaning liquid collection bag FB is also connected to the other end of the connecting tube 9. Note that a waste liquid bag DB may be connected to the other end of the connecting tube 9, or the other end of the connecting tube 9 may be placed in a simple bucket or the like.
Furthermore, a cleaning liquid collection bag FB is connected to the other end of the cleaning liquid supply tube 6 instead of the cleaning liquid bag SB, and a cleaning liquid bag SB is connected to the other end of the cleaning liquid collection tube 7 instead of the cleaning liquid collection bag FB. Note that a waste liquid bag DB may be connected to the other end of the cleaning liquid supply tube 6, or the other end of the cleaning liquid supply tube 6 may be arranged in a simple bucket or the like.

ついで、流量調整手段2cおよび流量調整手段9cによって、給液チューブ2および連結チューブ9内を洗浄液が流れるようにする。 Next, the cleaning liquid is made to flow through the liquid supply tube 2 and the connection tube 9 by the flow rate adjustment means 2c and the flow rate adjustment means 9c.

上記状態で、濃縮液チューブ4に接続された洗浄液バッグSBから濃縮液20に洗浄液を流すように濃縮液チューブ送液部4pを作動させる。すると、濃縮液チューブ4に接続された洗浄液バッグSBから濃縮液チューブ4を通して濃縮器20に洗浄液が供給される。供給された洗浄液は、濃縮器20を通過した後、濾過液供給チューブ3、連結チューブ9を通過して連結チューブ9に接続された洗浄液回収バッグFBに回収される。なお、濃縮器20から洗浄液回収バッグFBに液体が流れるように廃液チューブ送液部5pを作動させておけば、一部の洗浄液を廃液チューブ5を通って、廃液チューブ5の他端に接続された洗浄液回収バッグFBに回収させることができる。 In the above state, the concentrated liquid tube liquid feeding section 4p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the concentrated liquid tube 4 to the concentrated liquid 20. Then, the cleaning liquid is supplied from the cleaning liquid bag SB connected to the concentrated liquid tube 4 to the concentrator 20 through the concentrated liquid tube 4. The supplied cleaning liquid passes through the concentrator 20 , passes through the filtrate supply tube 3 and the connecting tube 9 , and is collected into the cleaning liquid recovery bag FB connected to the connecting tube 9 . Note that if the waste liquid tube feeding section 5p is operated so that the liquid flows from the concentrator 20 to the cleaning liquid collection bag FB, a part of the cleaning liquid will pass through the waste liquid tube 5 and be connected to the other end of the waste liquid tube 5. The cleaning liquid can be collected in the cleaning liquid collection bag FB.

また、洗浄液回収チューブ7に接続された洗浄液バッグSBから濾過器10に洗浄液を流すように洗浄液回収チューブ送液部7pを作動させる。すると、洗浄液回収チューブ7に接続された洗浄液バッグSBから洗浄液回収チューブ7を通して濾過器10に一部の洗浄液が供給される。濾過器10に供給された洗浄液は、濾過器10を通過した後、濾過液供給チューブ3、連結チューブ9を通過して連結チューブ9に接続された洗浄液回収バッグFBに回収される。また、洗浄液供給チューブ送液部6pも作動させることによって、洗浄液供給チューブ6にも濾過器10に供給された洗浄液の一部を流すことができる。さらに、一部の洗浄液は、洗浄液回収チューブ7から給液チューブ2を通過して給液チューブ2に接続された洗浄液回収バッグFBに回収される。 Further, the cleaning liquid recovery tube liquid feeding section 7p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the cleaning liquid recovery tube 7 to the filter 10. Then, a part of the cleaning liquid is supplied from the cleaning liquid bag SB connected to the cleaning liquid recovery tube 7 to the filter 10 through the cleaning liquid recovery tube 7. After passing through the filter 10, the cleaning liquid supplied to the filter 10 passes through the filtrate supply tube 3 and the connecting tube 9, and is collected in the cleaning liquid recovery bag FB connected to the connecting tube 9. Further, by also operating the cleaning liquid supply tube liquid sending section 6p, a part of the cleaning liquid supplied to the filter 10 can also flow into the cleaning liquid supply tube 6. Further, a part of the cleaning liquid passes through the liquid supply tube 2 from the cleaning liquid recovery tube 7 and is collected into the cleaning liquid recovery bag FB connected to the liquid supply tube 2.

すると、濾過器10と濃縮器20および全てのチューブに洗浄液を流すことができるので、本実施形態の原液処理装置1C全体を洗浄することができる。 Then, the cleaning liquid can be flowed through the filter 10, the concentrator 20, and all the tubes, so the entire stock solution processing apparatus 1C of this embodiment can be cleaned.

<濾過濃縮作業>
準備洗浄作業が終了すると、濾過濃縮作業が実施される。
<Filtration and concentration work>
After the preparatory cleaning work is completed, filtration and concentration work is carried out.

図11に示すように、本実施形態の原液処理装置1Cの濾過濃縮作業では、準備洗浄作業の状態から、洗浄液バッグSBに代えて濃縮液バッグCBが濃縮液チューブ4の他端に接続され、洗浄液回収バッグFBに代えて廃液バッグDBが廃液チューブ5の他端に接続される。
一方、給液チューブ2の他端には、洗浄液回収バッグFBに代えて原液バッグUBが接続される。
また、流量調整手段2cを開放して給液チューブ2内を液体が流れることができる状態を維持する一方、流量調整手段9cによって連結チューブ9内は液体が流れないように閉塞する。加えて、洗浄液回収チューブ送液部7pおよび洗浄液供給チューブ送液部6pを作動させず、クランプとして機能させる。
As shown in FIG. 11, in the filtration and concentration work of the stock solution processing apparatus 1C of this embodiment, from the preparatory cleaning work state, a concentrate bag CB is connected to the other end of the concentrate tube 4 instead of the washing liquid bag SB, A waste liquid bag DB is connected to the other end of the waste liquid tube 5 instead of the cleaning liquid collection bag FB.
On the other hand, an undiluted solution bag UB is connected to the other end of the liquid supply tube 2 instead of the cleaning liquid collection bag FB.
Further, while the flow rate adjustment means 2c is opened to maintain a state in which the liquid can flow in the liquid supply tube 2, the flow rate adjustment means 9c closes the inside of the connecting tube 9 so that the liquid does not flow. In addition, the cleaning liquid recovery tube feeding section 7p and the cleaning liquid supply tube feeding section 6p are not operated and are made to function as a clamp.

上記状態で、濃縮器20から濃縮液バッグCBに濃縮液を流すように濃縮液チューブ送液部4pを作動させ、かつ、濃縮器20から廃液バッグDBに廃液を流すように廃液チューブ送液部5pを作動させる。 In the above state, the concentrate tube liquid sending part 4p is operated to flow the concentrate from the concentrator 20 to the concentrate bag CB, and the waste liquid tube liquid sending part is operated to flow the waste liquid from the concentrator 20 to the waste liquid bag DB. Activate 5p.

すると、原液バッグUBから給液チューブ2を通して濾過器10に原液が供給される。供給された原液は、濾過器10によって濾過され、生成された濾過液が濾過液供給チューブ3を通して濃縮器20に供給される。そして、濃縮器20に供給された濾過液は、濃縮器20によって濃縮されて、生成された濃縮液が濃縮液チューブ4を通して濃縮液バッグCBに回収される。一方、濃縮液から分離された水分は、廃液チューブ5を通して廃液バッグDBに回収される。 Then, the stock solution is supplied from the stock solution bag UB to the filter 10 through the liquid supply tube 2. The supplied stock solution is filtered by the filter 10, and the generated filtrate is supplied to the concentrator 20 through the filtrate supply tube 3. The filtrate supplied to the concentrator 20 is concentrated by the concentrator 20, and the generated concentrate is collected into the concentrate bag CB through the concentrate tube 4. On the other hand, the water separated from the concentrated liquid is collected through the waste liquid tube 5 into the waste liquid bag DB.

<濾過濃縮操作について>
ここで、濾過濃縮作業では、濃縮割合が所定の範囲になるように、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pの作動が制御されている。しかし、以下のように、濾過器膜間差圧や濃縮器膜間差圧を利用して、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pの作動、つまり、濃縮液チューブ4および廃液チューブ5内の液体の流量を制御してもよい。すると、濾過器10や濃縮器20の能力を有効に活用して、濾過濃縮を行うことができるので、濃縮液を生成するまでの時間を短縮でき、濃縮作業の効率を高くできる。
以下では、濾過器膜間差圧や濃縮器膜間差圧を利用して、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pの作動を制御して濾過濃縮する作業を説明する。
<About filtration and concentration operations>
In the filtration and concentration work, the operations of the concentrated liquid tube feeding section 4p and the waste liquid tube feeding section 5p are controlled so that the concentration ratio falls within a predetermined range. However, as described below, by using the filter transmembrane pressure differential and the concentrator transmembrane differential pressure, the concentrate tube liquid feeding section 4p and the waste liquid tube feeding section 5p are activated, that is, the concentrated liquid tube 4 and the waste liquid The flow rate of the liquid within the tube 5 may be controlled. Then, since the capacity of the filter 10 and the concentrator 20 can be effectively utilized to perform filtration and concentration, the time required to generate a concentrated liquid can be shortened and the efficiency of the concentration work can be increased.
In the following, a process of filtering and concentrating by controlling the operations of the concentrate tube liquid sending section 4p and the waste liquid tube feeding section 5p using the filter transmembrane pressure differential and the concentrator transmembrane pressure differential will be described.

なお、濾過器膜間差圧や濃縮器膜間差圧は、濾過器10や濃縮器20に接続されているチューブ内圧を測定することによって算出することができる。例えば、給液チューブ2と濾過液供給チューブ3に圧力計を設けておき、その信号が制御部106に供給されるようになっていれば、制御部106が濾過器膜間差圧を算出できる。また、濾過液供給チューブ3と廃液チューブ5に圧力計を設けておき、その信号が制御部106に供給されるようになっていれば、制御部106が濃縮器膜間差圧を算出できる。 Note that the filter transmembrane pressure difference and the concentrator transmembrane pressure difference can be calculated by measuring the internal pressure of tubes connected to the filter 10 and the concentrator 20. For example, if pressure gauges are provided in the liquid supply tube 2 and the filtrate supply tube 3 and their signals are supplied to the control unit 106, the control unit 106 can calculate the filter transmembrane pressure. . Further, if pressure gauges are provided in the filtrate supply tube 3 and waste liquid tube 5 and their signals are supplied to the control unit 106, the control unit 106 can calculate the concentrator transmembrane pressure.

なお、濾過器10や濃縮器20において、給液側と排液側のいずれか一方が大気開放に近い状態であれば、給液側と排液側のうち大気開放となっていない側と連通されたチューブ内圧を測定するだけでも、制御部106が濾過器膜間差圧や濃縮器膜間差圧を算出できる。言い換えれば、濾過器膜間差圧や濃縮器膜間差圧に代えて、制御部106は、大気開放となっていないチューブ内圧だけを利用して、送液部の作動を制御することもできる。例えば、濾過器10や濃縮器20に接続されているチューブが、バッグにつながっておりかつ送液部や流量調整手段によって閉塞されていない状態であれば、そのチューブは大気開放に近い状態と考えることができる。図12の状態であれば、濾過器10に接続されているチューブ2,3のうち原液バッグUBに接続されている給液チューブ2は大気開放と見做すこともできる。また、濃縮器20に接続されているチューブ3,5のうち、廃液バッグDBに接続されている排液チューブ5は大気開放と見做すこともできる。すると、図12の状態であれば、濾過器供給チューブ3のチューブ内圧だけを利用して、制御部106は送液部の作動を制御することもできる。 In addition, in the filter 10 or the concentrator 20, if either the liquid supply side or the drain side is in a state close to being open to the atmosphere, the liquid supply side or the drain side is in communication with the side that is not open to the atmosphere. The control unit 106 can calculate the filter transmembrane differential pressure and the concentrator transmembrane differential pressure by simply measuring the tube internal pressure. In other words, instead of using the filter transmembrane pressure differential or the concentrator transmembrane differential pressure, the control unit 106 can also control the operation of the liquid feeding unit using only the tube internal pressure that is not released to the atmosphere. . For example, if the tube connected to the filter 10 or concentrator 20 is connected to the bag and is not blocked by the liquid feeding section or flow rate adjustment means, the tube is considered to be in a state close to being open to the atmosphere. be able to. In the state shown in FIG. 12, of the tubes 2 and 3 connected to the filter 10, the liquid supply tube 2 connected to the stock solution bag UB can be considered to be open to the atmosphere. Further, among the tubes 3 and 5 connected to the concentrator 20, the drain tube 5 connected to the waste liquid bag DB can also be considered to be open to the atmosphere. Then, in the state shown in FIG. 12, the control section 106 can also control the operation of the liquid feeding section using only the tube internal pressure of the filter supply tube 3.

また、濃縮液チューブ4および廃液チューブ5内を流れる液体の流量は、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pの作動から推定してもよいし、濃縮液チューブ4や濃縮液チューブ送液部4p、廃液チューブ5や廃液チューブ送液部5pに流量計を設けて直接流量を測定してもよい。 Further, the flow rate of the liquid flowing in the concentrate tube 4 and the waste liquid tube 5 may be estimated from the operation of the concentrate tube liquid feeding section 4p and the waste liquid tube feeding section 5p, or A flow meter may be provided in the liquid feeding section 4p, the waste liquid tube 5, or the waste liquid tube liquid feeding section 5p to directly measure the flow rate.

<濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業の説明>
濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容差圧を設定する。つまり、濾過器10や濃縮器20に応じて、濾過器10や濃縮器20が許容できる差圧(許容差圧)をそれぞれ設定する。この許容差圧は、所定の幅を有していてもよいし、特定の値に設定してもよい。
<Explanation of filtration and concentration work using filter transmembrane pressure differential and concentrator transmembrane pressure differential pressure>
When performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane differential pressure, an allowable differential pressure is set in advance. That is, depending on the filter 10 and the concentrator 20, the differential pressure (allowable differential pressure) that the filter 10 and the concentrator 20 can tolerate is set respectively. This allowable differential pressure may have a predetermined width or may be set to a specific value.

なお、濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容流量を設定することが望ましい。つまり、給液チューブ2内の原液の許容できる流量(許容流量)を設定することが望ましい。この許容流量は、所定の幅を有していてもよいし、特定の値に設定してもよい。かかる許容流量は必ずしも設定しなくてもよい。しかし、給液チューブ2内の原液の流量が少なくなりすぎると、濾過濃縮にかかる時間が長くなりすぎる。したがって、原液の処理時間が長くなることを防止する上では、許容流量を設定しておくことが望ましい。
さらに、濾過器膜間差圧や濃縮器膜間差圧を利用した濾過濃縮作業を行う場合、予め許容濃縮倍率を設定することが望ましい。つまり、給液チューブ2内の原液の流量に対する濃縮液チューブ4を流れる濃縮液の流量の比率(許容濃縮倍率)を設定することが望ましい。この許容濃縮倍率は、所定の幅を有していてもよいし、特定の値に設定してもよい。かかる許容濃縮倍率は必ずしも設定しなくてもよい。しかし、給液チューブ2内の原液の流量に対する濃縮液チューブ4を流れる濃縮液の流量の比率である濃縮倍率が低下しすぎると(つまり濃縮液の流量が大きくなりすぎると)、再濃縮処理に時間を要する。したがって、濃縮倍率が低下しすぎることを防止する上では、許容濃縮倍率を設定しておくことが望ましい。
Note that when performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane pressure differential, it is desirable to set an allowable flow rate in advance. In other words, it is desirable to set an allowable flow rate (allowable flow rate) of the stock solution in the liquid supply tube 2. This allowable flow rate may have a predetermined width or may be set to a specific value. Such an allowable flow rate does not necessarily have to be set. However, if the flow rate of the stock solution in the liquid supply tube 2 becomes too low, the time required for filtration and concentration becomes too long. Therefore, in order to prevent the processing time of the stock solution from increasing, it is desirable to set an allowable flow rate.
Further, when performing filtration and concentration using the filter transmembrane pressure differential or the concentrator transmembrane pressure differential, it is desirable to set an allowable concentration magnification in advance. That is, it is desirable to set the ratio of the flow rate of the concentrate flowing through the concentrate tube 4 to the flow rate of the stock solution in the liquid supply tube 2 (allowable concentration magnification). This allowable concentration factor may have a predetermined range or may be set to a specific value. Such an allowable concentration factor does not necessarily need to be set. However, if the concentration ratio, which is the ratio of the flow rate of the concentrate flowing through the concentrate tube 4 to the flow rate of the stock solution in the liquid supply tube 2, decreases too much (in other words, if the flow rate of the concentrate becomes too large), the reconcentration process will fail. It takes time. Therefore, in order to prevent the concentration ratio from decreasing too much, it is desirable to set an allowable concentration ratio.

濾過濃縮の開始時は、濾過器10への原液の送液量を増加させるように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pが作動される。このとき、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pは、濃縮液が所定の濃縮倍率となるように作動される。例えば、濃縮倍率が10倍の濃縮液を生成する場合には、濃縮液チューブ4を流れる濃縮液の流量と廃液チューブ5を流れる廃液の流量が、1:10となるように調整される。また、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pは、濾過器膜間差圧や濃縮器膜間差圧が設定値となるようにその作動が調整される場合もある。なお、濾過器10への原液の送液量を増加している間は、上記いずれかの状態となるように、濃縮液チューブ送液部4pおよび廃液チューブ送液部5pはその作動が制御される。 At the start of filtration and concentration, the concentrated liquid tube feeding section 4p and the waste liquid tube feeding section 5p are operated so as to increase the amount of raw solution fed to the filter 10. At this time, the concentrated liquid tube feeding section 4p and the waste liquid tube feeding section 5p are operated so that the concentrated liquid reaches a predetermined concentration ratio. For example, when producing a concentrate with a concentration ratio of 10 times, the flow rate of the concentrate flowing through the concentrate tube 4 and the flow rate of the waste liquid flowing through the waste liquid tube 5 are adjusted to be 1:10. Further, the operations of the concentrated liquid tube feeding section 4p and the waste liquid tube feeding section 5p may be adjusted so that the filter transmembrane pressure differential and the concentrator transmembrane differential pressure become set values. Note that while the amount of raw solution being sent to the filter 10 is being increased, the operations of the concentrate tube feeding section 4p and the waste liquid tube feeding section 5p are controlled so as to be in any of the above states. Ru.

濾過濃縮が進行すると、徐々に濾過器10や濃縮器20の詰りが発生してくる。すると、濾過器膜間差圧や濃縮器膜間差圧が上昇する。しかし、濾過器膜間差圧や濃縮器膜間差圧が許容差圧になるまでは、濾過器10への原液の送液量を増加させるように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pは作動する。 As filtration and concentration proceed, the filter 10 and concentrator 20 gradually become clogged. Then, the filter transmembrane pressure difference and the concentrator transmembrane pressure difference increase. However, until the filter transmembrane differential pressure and the concentrator transmembrane differential pressure reach the allowable differential pressure, the concentrated liquid tube liquid feeding section 4p and the waste liquid tube feeding part 4p are operated to increase the amount of the raw solution fed to the filter 10. The liquid part 5p operates.

なお、後述するように、濾過器膜間差圧が濾過器10の設定差圧の範囲内にある場合には、濃縮器20への濾過液の送液量、言い換えれば、濾過器10への原液の送液量が維持されるように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pが作動される。一方、濾過器膜間差圧が濾過器10の設定差圧よりも大きくなると、濾過器10への原液の送液量が減少するように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pが作動される。また、濾過器膜間差圧が濾過器10の設定差圧より小さくなると、濾過器10への原液の送液量が増加するように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pが作動される。 As will be described later, when the filter transmembrane pressure difference is within the range of the set pressure difference of the filter 10, the amount of filtrate sent to the concentrator 20, in other words, the amount of filtrate sent to the filter 10. The concentrated liquid tube liquid feeding section 4p and the waste liquid tube liquid feeding section 5p are operated so that the amount of the stock solution to be fed is maintained. On the other hand, when the pressure difference between the membranes of the filter becomes larger than the set pressure difference of the filter 10, the concentrated liquid tube liquid feeding section 4p and the waste liquid tube liquid feeding section 5p are arranged such that the amount of the raw solution sent to the filter 10 is reduced. is activated. Further, when the pressure difference between the membranes of the filter becomes smaller than the set pressure difference of the filter 10, the concentrated liquid tube liquid sending part 4p and the waste liquid tube liquid sending part 5p are operated so that the amount of the raw solution sent to the filter 10 increases. activated.

<第一方法>
ここで、濾過器10への原液の送液量の増加は、濾過器膜間差圧が濾過器10の許容差圧になるまで継続される。そして、濾過器膜間差圧が濾過器10の許容差圧になると、給液チューブ2内の原液の流量が濾過器膜間差圧が濾過器10の許容差圧となった状態の流量に維持するように濃縮液チューブ送液部4pおよび廃液チューブ送液部5pの作動が制御される。
<First method>
Here, the increase in the amount of the raw solution sent to the filter 10 is continued until the filter transmembrane pressure difference reaches the allowable pressure difference of the filter 10. When the pressure difference between the membranes of the filter reaches the allowable pressure difference of the filter 10, the flow rate of the stock solution in the liquid supply tube 2 becomes the flow rate when the pressure difference between the filter membranes reaches the allowable pressure difference of the filter 10. The operations of the concentrated liquid tube feeding section 4p and the waste liquid tube feeding section 5p are controlled so as to maintain the concentration.

<ステップ1>
まず、濃縮器膜間差圧が濃縮器20の設定差圧よりも小さい場合には、濃縮液チューブ送液部4pは、濃縮液バッグCBへの濃縮液の送液量が減少するように作動される。つまり、濃縮液の濃度を高くするように濃縮液チューブ送液部4pの作動が制御される。このとき、廃液チューブ送液部5pは廃液チューブ5内を流れる廃液の送液量が維持されるように作動状態を維持してもよい。
逆に、濃縮器膜間差圧が濃縮器20の設定差圧よりも小さい場合には、廃液チューブ5内を流れる廃液の送液量が増加するように廃液チューブ送液部5pの作動を制御して、濃縮器20への濃縮液の送液量を維持してもよい。
<Step 1>
First, when the concentrator transmembrane pressure difference is smaller than the set differential pressure of the concentrator 20, the concentrate tube liquid feeding section 4p operates to reduce the amount of concentrated liquid sent to the concentrate bag CB. be done. In other words, the operation of the concentrate tube liquid feeding section 4p is controlled so as to increase the concentration of the concentrate. At this time, the waste liquid tube liquid sending section 5p may maintain an operating state so that the amount of waste liquid flowing through the waste liquid tube 5 is maintained.
Conversely, when the concentrator transmembrane pressure difference is smaller than the set differential pressure of the concentrator 20, the operation of the waste liquid tube liquid sending section 5p is controlled so that the amount of waste liquid flowing through the waste liquid tube 5 is increased. The amount of concentrated liquid sent to the concentrator 20 may be maintained by doing so.

<ステップ2>
そして、濃縮器膜間差圧が濃縮器20の設定差圧になるまで濃縮液バッグCBへの濃縮液の送液量が減少される。そして、濃縮器膜間差圧が濃縮器20の設定差圧になると、濃縮液チューブ4内の濃縮液の流量を濃縮器膜間差圧が濃縮器20の設定差圧となった状態の流量に維持するように濃縮液チューブ送液部4pが制御される。このとき、廃液チューブ送液部5pも、廃液チューブ5内を流れる廃液の送液量を維持するように作動を制御してもよい。
<Step 2>
Then, the amount of concentrated liquid sent to the concentrated liquid bag CB is reduced until the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20. When the concentrator transmembrane pressure difference reaches the set differential pressure of the concentrator 20, the flow rate of the concentrate in the concentrate tube 4 is changed to the flow rate when the concentrator transmembrane pressure becomes the set differential pressure of the concentrator 20. The concentrate tube liquid feeding section 4p is controlled so as to maintain the concentration. At this time, the operation of the waste liquid tube liquid sending section 5p may also be controlled so as to maintain the amount of waste liquid flowing through the waste liquid tube 5.

<ステップ3>
やがて、濃縮器20の詰り等によって、濃縮器膜間差圧が濃縮器20の設定差圧よりも大きくなると、濃縮液バッグCBへの濃縮液の送液量が増加するように濃縮液チューブ送液部4pが制御される。なお、濃縮液の送液量が増加すると濃縮倍率が低下するが、許容濃縮倍率を満たしつつ濃縮倍率が低下するように(濃縮液の濃度が低くなるように)濃縮液チューブ送液部4pの作動が制御される。このとき、廃液チューブ送液部5pは廃液チューブ5内を流れる廃液の送液量が維持されるように作動状態を維持してもよい。
逆に、濃縮器膜間差圧が濃縮器20の設定差圧よりも大きい場合には、廃液チューブ5内を流れる廃液の送液量が減少するように廃液チューブ送液部5pの作動が制御される。なお、廃液の送液量が減少すると濃縮倍率が低下するが、許容濃縮倍率を満たしつつ濃縮倍率が低下するように(濃縮液の濃度が低くなるように)廃液チューブ送液部5pの作動が制御される。
<Step 3>
Eventually, when the concentrator transmembrane pressure becomes larger than the set differential pressure of the concentrator 20 due to clogging of the concentrator 20, etc., the concentrate tube is transferred so that the amount of concentrate sent to the concentrate bag CB increases. The liquid part 4p is controlled. In addition, as the amount of concentrated liquid sent increases, the concentration ratio decreases, but the concentration ratio of the concentrated liquid tube feeding part 4p is adjusted so that the concentration ratio decreases while satisfying the allowable concentration ratio (so that the concentration of the concentrated liquid becomes low). Actuation is controlled. At this time, the waste liquid tube liquid sending section 5p may maintain an operating state so that the amount of waste liquid flowing through the waste liquid tube 5 is maintained.
Conversely, when the concentrator transmembrane pressure difference is larger than the set differential pressure of the concentrator 20, the operation of the waste liquid tube liquid sending section 5p is controlled so that the amount of waste liquid flowing in the waste liquid tube 5 is reduced. be done. Note that when the amount of waste liquid sent decreases, the concentration ratio decreases, but the operation of the waste liquid tube liquid sending part 5p is performed so that the concentration ratio decreases while satisfying the allowable concentration ratio (so that the concentration of the concentrated liquid becomes low). controlled.

濃縮液バッグCBへの濃縮液の送液量が増加すると(または廃液チューブ5内を流れる廃液の送液量が減少すると)濃縮器膜間差圧は小さくなるので、濃縮器膜間差圧が濃縮器20の設定差圧よりも低くなると、再び濃縮液チューブ送液部4pは、濃縮液バッグCBへの濃縮液の送液量が減少するように作動される(または廃液チューブ5内を流れる廃液の送液量が増加するように廃液チューブ送液部5pの作動が制御される)。 When the amount of concentrated liquid sent to the concentrate bag CB increases (or when the amount of waste liquid sent through the waste liquid tube 5 decreases), the concentrator transmembrane pressure difference decreases, so the concentrator transmembrane pressure difference decreases. When the pressure difference becomes lower than the set differential pressure of the concentrator 20, the concentrate tube liquid sending part 4p is operated again so that the amount of concentrated liquid sent to the concentrate bag CB is reduced (or the amount of concentrated liquid flowing in the waste liquid tube 5 is reduced). (The operation of the waste liquid tube liquid sending section 5p is controlled so that the amount of waste liquid sent is increased.)

つまり、濾過器膜間差圧が濾過器10の許容差圧となっている間は、上記ステップ1~3が繰り返される。この方法を採用すれば、濾過器膜間差圧や濃縮器膜間差圧に関係なく濾過器10や濃縮液バッグCBへの送液量が一定の場合では不可能な、濾過器10や濃縮器20の濾過膜の膜面積や詰りの状態に応じた、また、原液の状態(濾過器や濃縮器の詰りの原因物資の濃度、回収する有用物質の濃度、液体の粘度など)に応じた、最大の濾過流量および最大の濃縮倍率を確保することが可能となる。つまり、濾過効率と濃縮効率を向上させることによって、原液から濃縮液を生成する時間を短くでき、再濃縮作業を防ぐことや再濃縮作業にかかる時間を短縮することができる。
しかも、上記のように作動すれば、濾過濃縮開始時に濾過器10、濃縮器20および回路内に充填された洗浄液や濾過器10を洗浄した直後の濾過器10および回路内の洗浄液を、濃縮器20の廃液として短時間に除去することが可能となる。つまり、上述したような、開始時および濾過器洗浄直後の洗浄液による濃縮液の希釈を効率的に防ぐことができる。
That is, as long as the filter transmembrane pressure difference is within the allowable pressure difference of the filter 10, steps 1 to 3 are repeated. If this method is adopted, the filter 10 and concentration Depending on the membrane area of the filtration membrane of the container 20 and the state of clogging, and the state of the stock solution (concentration of substances that cause clogging of the filter or concentrator, concentration of useful substances to be recovered, viscosity of the liquid, etc.) , it becomes possible to ensure the maximum filtration flow rate and the maximum concentration ratio. In other words, by improving the filtration efficiency and concentration efficiency, it is possible to shorten the time it takes to generate a concentrated liquid from the stock solution, thereby making it possible to prevent reconcentration work and shorten the time required for reconcentration work.
Moreover, if the operation is performed as described above, the cleaning liquid filled in the filter 10, concentrator 20, and the circuit at the start of filtration and concentration, and the cleaning liquid in the filter 10 and the circuit immediately after cleaning the filter 10, can be transferred to the concentrator. It becomes possible to remove the liquid as waste liquid in a short time. In other words, it is possible to efficiently prevent dilution of the concentrated liquid by the cleaning liquid at the start and immediately after cleaning the filter as described above.

なお、上記方法(第一方法)では濾過器膜間差圧が許容差圧よりも大きい場合や、濾過器膜間差圧が許容差圧よりも小さい場合、さらに、濾過器10への原液の送液量が濾過器膜間差圧に関係なく一定の場合にも、上記ステップ1~3を繰り返して、濃縮器20への濃縮液の送液量を調整してもよい。
さらに、上記方法(第一方法)は、濾過濃縮の全期間を通じて採用されてもよいが、濾過濃縮開始時や濾過器洗浄直後などの一定期間にのみ採用され、他の期間は設定された濃縮倍率で濃縮されてもよい。
In addition, in the above method (first method), when the filter transmembrane pressure difference is larger than the permissible pressure difference, or when the filter transmembrane pressure difference is smaller than the permissible pressure difference, the undiluted solution is not supplied to the filter 10. Even when the amount of liquid sent is constant regardless of the pressure difference between the membranes of the filter, the amount of concentrated liquid sent to the concentrator 20 may be adjusted by repeating steps 1 to 3 above.
Furthermore, the above method (first method) may be employed throughout the entire period of filtration and concentration, but it is employed only during a certain period, such as at the start of filtration and concentration or immediately after cleaning the filter, and during other periods when the concentration is set. It may be concentrated by a factor of two.

<濾過器洗浄について>
本実施形態の原液処理装置1Cでも、上述したような濾過濃縮作業を実施していると、濾過器10の詰り等によって、濾過器膜間差圧が濾過器10の許容差圧よりも大きくなる。この場合、給液チューブ2内の原液の流量を減少させれば、濾過器膜間差圧を濾過器10の許容差圧よりも小さくできる。しかし、濾過器10の詰り等がひどくなると、濾過器膜間差圧を濾過器10の許容差圧に維持するために給液チューブ2内の原液の流量が減少し、給液チューブ2内の原液の流量が許容流量よりも小さくなる。かかる状態になると、本実施形態の原液処理装置1の濾過濃縮作業の途中に、濾過器10の洗浄作業が実施される。
<About filter cleaning>
Also in the stock solution processing apparatus 1C of this embodiment, when the above-described filtration and concentration work is performed, the filter transmembrane pressure difference becomes larger than the allowable pressure difference of the filter 10 due to clogging of the filter 10, etc. . In this case, by reducing the flow rate of the stock solution in the liquid supply tube 2, the filter transmembrane pressure difference can be made smaller than the allowable pressure difference of the filter 10. However, if the filter 10 becomes severely clogged, the flow rate of the stock solution in the liquid supply tube 2 decreases in order to maintain the filter transmembrane pressure at the allowable differential pressure of the filter 10, and the flow rate of the stock solution in the liquid supply tube 2 decreases. The flow rate of the stock solution becomes smaller than the allowable flow rate. In such a state, the cleaning work of the filter 10 is performed during the filtration and concentration work of the stock solution processing apparatus 1 of this embodiment.

具体的には、図11において、流量調整手段2cによって給液チューブ2内を液体が流れないように閉塞する。加えて濃縮液チューブ送液部4pおよび廃液チューブ送液部5pの作動を停止し、クランプとして機能させる。また、濾過濃縮作業の途中に濾過器洗浄を実施する場合には、準備洗浄作業の終了後、洗浄液供給チューブ6の他端には洗浄液回収バッグFBに代えて洗浄液バッグSBを接続しておき、洗浄液回収チューブ7の他端には洗浄液バッグSBに代えて洗浄液回収バッグFBを接続しておく。 Specifically, in FIG. 11, the liquid supply tube 2 is closed by the flow rate adjusting means 2c so that the liquid does not flow. In addition, the operations of the concentrated liquid tube feeding section 4p and the waste liquid tube feeding section 5p are stopped to function as a clamp. In addition, when cleaning the filter during the filtration and concentration work, after the preparatory cleaning work is completed, a cleaning liquid bag SB is connected to the other end of the cleaning liquid supply tube 6 instead of the cleaning liquid collection bag FB. A cleaning liquid recovery bag FB is connected to the other end of the cleaning liquid recovery tube 7 instead of the cleaning liquid bag SB.

上記状態で、洗浄液供給チューブ6に接続された洗浄液バッグSBから濾過器10に洗浄液を流すように洗浄液供給チューブ送液部6pを作動させ、濾過器10から洗浄液回収チューブ7に接続された洗浄液回収バッグFBに洗浄液を流すように洗浄液回収チューブ送液部7pを作動させる。すると、中空糸膜16の内部を、濾過濃縮の際に原液が流れる方向と逆方向に洗浄液を流すことができるので、中空糸膜16内部を洗浄液によって洗浄することができる。 In the above state, the cleaning liquid supply tube liquid feeding section 6p is operated to flow the cleaning liquid from the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 to the filter 10, and the cleaning liquid recovery tube connected to the cleaning liquid recovery tube 7 from the filter 10 is operated. The cleaning liquid recovery tube liquid feeding section 7p is operated to flow the cleaning liquid into the bag FB. Then, since the cleaning liquid can flow inside the hollow fiber membrane 16 in the opposite direction to the direction in which the stock solution flows during filtration and concentration, the inside of the hollow fiber membrane 16 can be cleaned with the cleaning liquid.

また、準備洗浄作業の終了後、連結チューブ9の他端には洗浄液回収バッグFBに代えて洗浄液バッグSBを接続しておく。すると、流量調整手段9cを開放して連結チューブ9内を液体が流れるようにすれば、上記状態に加えて、連結チューブ9に接続された洗浄液バッグSBからも濾過器10に洗浄液を供給することができる。すると、連結チューブ9を通して供給される洗浄液は、中空糸膜16を濾過液が透過する方向と逆方向に中空糸膜16を透過するので、中空糸膜16の詰りを解消できる。この場合、洗浄液供給チューブ6に接続された洗浄液バッグSBと連結チューブ9に接続された洗浄液バッグSBの両方から濾過器10に洗浄液が供給されるので、洗浄液回収チューブ送液部7pによって洗浄液回収チューブ7を流れる洗浄液の流量が、洗浄液供給チューブ送液部6pによって洗浄液供給チューブ6を流れる洗浄液の流量より大きくなるように調整される。 Further, after the preparatory cleaning work is completed, a cleaning liquid bag SB is connected to the other end of the connecting tube 9 instead of the cleaning liquid collection bag FB. Then, by opening the flow rate adjustment means 9c and allowing the liquid to flow through the connecting tube 9, in addition to the above state, the cleaning liquid can also be supplied to the filter 10 from the cleaning liquid bag SB connected to the connecting tube 9. Can be done. Then, the cleaning liquid supplied through the connecting tube 9 passes through the hollow fiber membrane 16 in the opposite direction to the direction in which the filtrate passes through the hollow fiber membrane 16, so that clogging of the hollow fiber membrane 16 can be eliminated. In this case, since the cleaning liquid is supplied to the filter 10 from both the cleaning liquid bag SB connected to the cleaning liquid supply tube 6 and the cleaning liquid bag SB connected to the connecting tube 9, the cleaning liquid collection tube The flow rate of the cleaning liquid flowing through the cleaning liquid supply tube 7 is adjusted to be larger than the flow rate of the cleaning liquid flowing through the cleaning liquid supply tube 6 by the cleaning liquid supply tube liquid feeding section 6p.

なお、流量調整手段9cによって連結チューブ9内を液体が流れるようにした場合には、洗浄液供給チューブ送液部6pの作動を停止した状態で洗浄液回収チューブ送液部7pを作動させてもよい。この場合には、連結チューブ9に接続された洗浄液バッグSBからのみ濾過液10に洗浄液が供給される。この場合も、中空糸膜16を濾過液が透過する方向と逆方向に、洗浄液が中空糸膜16を透過するので、中空糸膜16の詰りを解消できる。 In addition, when the liquid is made to flow in the connection tube 9 by the flow rate adjustment means 9c, the cleaning liquid recovery tube liquid feeding part 7p may be operated while the operation of the cleaning liquid supply tube liquid feeding part 6p is stopped. In this case, the cleaning liquid is supplied to the filtrate 10 only from the cleaning liquid bag SB connected to the connecting tube 9. Also in this case, the cleaning liquid passes through the hollow fiber membranes 16 in the opposite direction to the direction in which the filtrate passes through the hollow fiber membranes 16, so that clogging of the hollow fiber membranes 16 can be eliminated.

<濾過液回収>
一方、上記方法で濾過器洗浄を実施した場合、濾過器10の本体部11の内部空間12h内に残留していた濾過液は洗浄液と混合して排出されてしまう。すると、洗浄液と混合して排出された濾過液に含まれる成分を回収するには、再濃縮を行わなければならないので、濃縮液の生成に時間を要することになる。
<Filtrate recovery>
On the other hand, when the filter is cleaned by the above method, the filtrate remaining in the internal space 12h of the main body 11 of the filter 10 is mixed with the cleaning liquid and discharged. Then, in order to recover the components contained in the filtrate mixed with the cleaning liquid and discharged, re-concentration must be performed, so it takes time to generate the concentrated liquid.

そこで、濾過器洗浄を行う際には、予め濾過器10の本体部11の内部空間12h内に存在する濾過液を濃縮器20に送液して、その後、濾過器洗浄を行う方が望ましい。 Therefore, when cleaning the filter, it is preferable to send the filtrate existing in the internal space 12h of the main body 11 of the filter 10 to the concentrator 20 in advance, and then wash the filter.

図10に示すように、濾過器10の本体部11のポート11cにチューブを介して洗浄液バッグSBを接続する。そして、流量調整手段3cによって濾過液供給チューブ3内は液体が流れる状態を維持し、かつ、濃縮液チューブ送液部4pまたは廃液チューブ送液部5の作動を継続したまま、流量調整手段2cによって給液チューブ2を閉塞する。その状態で、チューブに設けられているポンプによって洗浄液バッグSBから濾過器10に洗浄液を供給すれば、濾過器10の本体部11の内部空間12h内の濾過液は濃縮器20に供給され、代わりに洗浄液バッグSBから洗浄液が内部空間12hに供給される。やがて、内部空間12h内の濾過液が全て洗浄液に置換されると、流量調整手段3cによって濾過液供給チューブ3を閉塞し、濃縮液チューブ送液部4pまたは廃液チューブ送液部5の作動を停止する。その状態となったのち、上述したような方法で濾過器10を洗浄すれば、洗浄液とともに排出される濾過液の再濃縮を抑制することができる。 As shown in FIG. 10, the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 via a tube. Then, while maintaining the state in which the liquid flows in the filtrate supply tube 3 by the flow rate adjustment means 3c, and while continuing the operation of the concentrate tube liquid supply section 4p or the waste liquid tube liquid supply section 5, the flow rate adjustment means 2c Close the liquid supply tube 2. In this state, if the cleaning liquid is supplied from the cleaning liquid bag SB to the filter 10 using the pump provided in the tube, the filtrate in the internal space 12h of the main body 11 of the filter 10 will be supplied to the concentrator 20 and replaced. The cleaning liquid is supplied from the cleaning liquid bag SB to the internal space 12h. Eventually, when all the filtrate in the internal space 12h is replaced with the cleaning liquid, the flow rate adjustment means 3c closes the filtrate supply tube 3 and stops the operation of the concentrate tube liquid feeding section 4p or the waste liquid tube feeding section 5. do. After this state is reached, if the filter 10 is washed in the manner described above, re-concentration of the filtrate discharged together with the washing liquid can be suppressed.

なお、濾過器10の本体部11のポート11cに接続されるチューブには必ずしもポンプを設けなくてもよい。この場合でも、濃縮液チューブ送液部4pまたは廃液チューブ送液部5pを作動させれば、濾過器10の本体部11の内部空間12h内の濾過液を洗浄液と置換することができる。 Note that the tube connected to the port 11c of the main body 11 of the filter 10 does not necessarily need to be provided with a pump. Even in this case, the filtrate in the internal space 12h of the main body 11 of the filter 10 can be replaced with the cleaning liquid by operating the concentrated liquid tube feeding section 4p or the waste liquid tube feeding section 5p.

また、上記説明では、濾過器10の本体部11のポート11cにチューブを介して洗浄液バッグSBを接続した場合を説明したが、濾過器10の本体部11のポート11cにチューブを介して空気を供給してもよい。この場合でも、空気圧によって濾過器10の本体部11の内部空間12h内の濾過液を濃縮器20に供給することができる。この場合、濾過器10の本体部11の内部空間12h内は空気によって満たされるので、洗浄を実施する前には、内部空間12h内を洗浄液で満たす。例えば、濾過器10の本体部11のポート11cに洗浄液バッグSBを接続して洗浄液を供給すれば、内部空間12h内を洗浄液で満たすことができる。 In addition, in the above description, the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 via the tube, but air is connected to the port 11c of the main body 11 of the filter 10 via the tube. May be supplied. Even in this case, the filtrate in the internal space 12h of the main body 11 of the filter 10 can be supplied to the concentrator 20 by air pressure. In this case, the interior space 12h of the main body 11 of the filter 10 is filled with air, so before cleaning, the interior space 12h is filled with a cleaning liquid. For example, if the cleaning liquid bag SB is connected to the port 11c of the main body 11 of the filter 10 and the cleaning liquid is supplied, the interior space 12h can be filled with the cleaning liquid.

さらに、上記説明では、原液が濾過器10の中空糸膜束15の複数本の中空糸膜16の貫通流路16h内に供給され、濾過液が濾過器10の本体部11の胴部12の内部空間12h内に排出される場合を説明している。しかし、原液が濾過液排出ポート11cから本体部11の胴部12の内部空間12h内に供給され、濾過された濾過液が中空糸膜束15の複数本の中空糸膜16の貫通流路16h内に排出され、原液供給ポート11aから外部に排出されるようになっていてもよい。この場合には、濾過液供給チューブ3は原液供給ポート11aに接続され、給液チューブ2が濾過液排出ポート11cに接続される。かかる構成において濾過器洗浄を行う際にも、上記と同様の方法で、濾過器10の本体部11の胴部12の内部空間12h内に存在する濾過液を予め濃縮器20に送液しておき、その後、濾過器洗浄を行う方が望ましい。 Furthermore, in the above description, the stock solution is supplied into the through passage 16h of the plurality of hollow fiber membranes 16 of the hollow fiber membrane bundle 15 of the filter 10, and the filtrate is supplied to the body 12 of the main body 11 of the filter 10. The case where the liquid is discharged into the internal space 12h is explained. However, the stock solution is supplied from the filtrate discharge port 11c into the internal space 12h of the body 12 of the main body 11, and the filtered filtrate is passed through the flow path 16h of the plurality of hollow fiber membranes 16 of the hollow fiber membrane bundle 15. The liquid may be discharged into the interior and discharged to the outside from the stock solution supply port 11a. In this case, the filtrate supply tube 3 is connected to the stock solution supply port 11a, and the liquid supply tube 2 is connected to the filtrate discharge port 11c. When cleaning the filter in such a configuration, the filtrate present in the internal space 12h of the body 12 of the main body 11 of the filter 10 is sent to the concentrator 20 in advance in the same manner as described above. It is preferable to wash the filter and then wash the filter.

(再濃縮作業)
濾過濃縮作業によって得られた濃縮液をさらに濃縮する場合には、再濃縮作業が実施される。
(Reconcentration work)
When further concentrating the concentrate obtained by the filtration and concentration operation, a reconcentration operation is performed.

図12に示すように、本実施形態の原液処理装置1Cの再濃縮作業では、洗浄液バッグSBから連結チューブ9の他端が外されて、連結チューブ9の他端に濃縮液バッグCBが接続される。
また、流量調整手段9cによって連結チューブ9内を液体が流れることができる状態を維持する一方、洗浄液供給チューブ送液部6pおよび洗浄液回収チューブ送液部7pを作動させず、クランプとして機能させる。加えて、流量調整手段2cによって給液チューブ2内は液体が流れないように閉塞する。すると、濾過器10には液体が流れないような状態となる。
As shown in FIG. 12, in the reconcentration work of the stock solution processing apparatus 1C of this embodiment, the other end of the connecting tube 9 is removed from the cleaning liquid bag SB, and the concentrated liquid bag CB is connected to the other end of the connecting tube 9. Ru.
Further, while maintaining a state in which the liquid can flow in the connection tube 9 by the flow rate adjustment means 9c, the cleaning liquid supply tube liquid feeding section 6p and the cleaning liquid recovery tube liquid feeding section 7p are not operated and function as a clamp. In addition, the inside of the liquid supply tube 2 is closed by the flow rate adjusting means 2c so that liquid does not flow therein. Then, the state is such that no liquid flows into the filter 10.

上記状態で、濃縮液バッグCBから連結チューブ9を通って濃縮器20に濃縮液を流すように濾過液供給チューブ送液部3pを作動させ、かつ、濃縮器20から濃縮液チューブ4を通って濃縮液バッグCBに濃縮液が流れるように濃縮液チューブ送液部4pを作動させる。 In the above state, the filtrate supply tube liquid sending part 3p is operated to flow the concentrate from the concentrate bag CB through the connecting tube 9 to the concentrator 20, and the filtrate supply tube liquid sending part 3p is operated to flow the concentrate from the concentrator 20 through the concentrate tube 4. The concentrate tube liquid feeding section 4p is operated so that the concentrate flows into the concentrate bag CB.

すると、連結チューブ9に接続された濃縮液バッグCBから連結チューブ9を通して濃縮器20に濃縮液が供給されるので、濃縮器20によってさらに濃縮された再濃縮液が濃縮液チューブ4を通して濃縮液バッグCBに回収される。一方、濃縮液から分離された水分は、廃液チューブ5を通して廃液バッグDBに回収される。つまり、濃縮割合を高めた濃縮液(再濃縮液)を得ることができる。 Then, the concentrate is supplied from the concentrate bag CB connected to the connecting tube 9 to the concentrator 20 through the connecting tube 9, so that the reconcentrate further concentrated by the concentrator 20 passes through the concentrate tube 4 to the concentrate bag. Collected by CB. On the other hand, the water separated from the concentrated liquid is collected through the waste liquid tube 5 into the waste liquid bag DB. In other words, a concentrated liquid (reconcentrated liquid) with an increased concentration ratio can be obtained.

本発明の原液処理装置は、細胞などを含有する胸腹水や手術時や瀉血時の血液等を濾過濃縮して濃縮液を得る装置や、血漿交換の廃液血漿などの血漿を浄化して再利用する装置として適している。 The stock solution processing device of the present invention is a device for obtaining a concentrated solution by filtering and concentrating pleural and ascitic fluid containing cells, blood during surgery or bloodletting, and for purifying and reusing plasma such as waste plasma from plasma exchange. It is suitable as a device for

1 原液処理装置
2 給液チューブ
2c 流量調整手段
2p 給液チューブ送液部
3 濾過液供給チューブ
3c 流量調整手段
3p 濾過液供給チューブ送液部
4 濃縮液チューブ
4p 濃縮液チューブ送液部
5 廃液チューブ
5c 流量調整手段
6 洗浄液供給チューブ
6c 流量調整手段
6p 洗浄液供給チューブ送液部
7 洗浄液回収チューブ
7c 流量調整手段
7p 洗浄液回収チューブ送液部
9 連結チューブ
9c 流量調整手段
9f 流量調整手段
9p 連結チューブ送液部
10 濾過器
10B 濾過器
11 本体部
11a 原液供給ポート
11b 洗浄液供給ポート
11c 濾過液排出ポート
12 胴部
12h 内部空間
15 中空糸膜束
16 中空糸膜
16h 貫通流路
16w 壁
17a 保持部材
17b 濾過膜
17h 空間
17f 空間
20 濃縮器
20a 濾過液供給口
20b 濃縮液排出口
20c 廃液排出口
100 本体部
103 吊り下げ部
106 制御部
110 ローラーポンプ
120 ローラーポンプ
150 チューブホルダー
155 保持部
152 連結部
153 係合部材
160 チューブ位置決め部材
161 保持部材
165 連結部材
UB 原液バッグ
CB 濃縮液バッグ
DB 廃液バッグ
SB 洗浄液バッグ
FB 洗浄液回収バッグ
GB 濃縮器洗浄液回収バッグ
P1 圧力計
P2 圧力計

1 Stock solution processing device 2 Liquid supply tube 2c Flow rate adjusting means 2p Liquid supply tube feeding section 3 Filtrate supply tube 3c Flow rate adjusting means 3p Filtrate supply tube feeding section 4 Concentrate tube 4p Concentrate tube feeding section 5 Waste liquid tube 5c Flow rate adjustment means 6 Cleaning liquid supply tube 6c Flow rate adjustment means 6p Cleaning liquid supply tube feeding part 7 Cleaning liquid recovery tube 7c Flow rate adjustment means 7p Cleaning liquid recovery tube feeding part 9 Connection tube 9c Flow rate adjustment means 9f Flow rate adjustment means 9p Connection tube liquid feeding Part 10 Filter 10B Filter 11 Main body 11a Stock solution supply port 11b Washing solution supply port 11c Filtrate discharge port 12 Body 12h Internal space 15 Hollow fiber membrane bundle 16 Hollow fiber membrane 16h Through channel 16w Wall 17a Holding member 17b Filtration membrane 17h Space 17f Space 20 Concentrator 20a Filtrate supply port 20b Concentrated liquid discharge port 20c Waste liquid discharge port 100 Main body portion 103 Hanging portion 106 Control portion 110 Roller pump 120 Roller pump 150 Tube holder 155 Holding portion 152 Connection portion 153 Engagement member 160 Tube positioning member 161 Holding member 165 Connection member UB Stock solution bag CB Concentrate solution bag DB Waste solution bag SB Washing solution bag FB Washing solution collection bag GB Concentrator washing solution collection bag P1 Pressure gauge P2 Pressure gauge

Claims (10)

原液を濃縮して濃縮液を形成する装置の使用方法であって、
装置が、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
前記給液流路に設けられた給液流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており
記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量を増加させ、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濾過器への原液の送液量を維持し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量を減少させる
ことを特徴とする原液処理装置の操作方法。
A method of using an apparatus for concentrating a stock solution to form a concentrated solution, the method comprising:
The device is
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
a liquid supply channel liquid sending section provided in the liquid supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path ,
Adjusting the amount of liquid flowing through each channel based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, increasing the amount of the raw solution sent to the filter until the concentrator transmembrane differential pressure reaches the set differential pressure,
When the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, maintaining the amount of the raw solution sent to the filter,
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, reduce the amount of raw solution sent to the filter until the concentrator transmembrane differential pressure reaches the set differential pressure. Features: How to operate the undiluted solution processing equipment.
原液を濃縮して濃縮液を形成する装置の使用方法であって、
装置が、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
前記濾過液供給流路に設けられた濾過液供給流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており
記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量を増加させ、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮器への濾過液の送液量を維持し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量を減少させる
ことを特徴とする原液処理装置の操作方法。
A method of using an apparatus for concentrating a stock solution to form a concentrated solution, the method comprising:
The device is
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
a filtrate supply channel liquid sending section provided in the filtrate supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path ,
Adjusting the amount of liquid flowing through each channel based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the amount of filtrate sent to the concentrator is increased until the concentrator transmembrane differential pressure reaches the set differential pressure. ,
When the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, maintaining the amount of filtrate sent to the concentrator,
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, reducing the amount of filtrate sent to the concentrator until the concentrator transmembrane differential pressure reaches the set differential pressure. A method of operating a stock solution processing device characterized by:
原液を濃縮して濃縮液を形成する装置の使用方法であって、
装置が、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
前記給液流路に設けられた給液流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており
記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を減少または前記廃液流路の廃液の送液量を増加させ、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液または前記廃液流路の送液量を維持し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を増加または前記廃液流路の廃液の送液量を減少させる
ことを特徴とする原液処理装置の操作方法。
A method of using an apparatus for concentrating a stock solution to form a concentrated solution, the method comprising:
The device is
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
a liquid supply channel liquid sending section provided in the liquid supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path ,
Adjusting the amount of liquid flowing through each channel based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, reduce the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure. or increasing the amount of waste liquid sent through the waste liquid flow path;
When the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, maintaining the amount of concentrated liquid in the concentrated liquid flow path or the amount of liquid sent in the waste liquid flow path,
If the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, increase the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure, or A method for operating a stock solution processing device, comprising reducing the amount of waste solution sent through the waste solution channel.
原液を濃縮して濃縮液を形成する装置の使用方法であって、
装置が、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
前記濾過液供給流路に設けられた濾過液供給流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を備えており
記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を減少または前記廃液流路の廃液の送液量を増加させ、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液または前記廃液流路の送液量を維持し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を増加または前記廃液流路の廃液の送液量を減少させる
ことを特徴とする原液処理装置の操作方法。
A method of using an apparatus for concentrating a stock solution to form a concentrated solution, the method comprising:
The device is
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
a filtrate supply channel liquid sending section provided in the filtrate supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path ,
Adjusting the amount of liquid flowing through each channel based on the concentrator membrane differential pressure of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, reduce the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure. or increasing the amount of waste liquid sent through the waste liquid flow path;
When the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, maintaining the amount of concentrated liquid in the concentrated liquid flow path or the amount of liquid sent in the waste liquid flow path,
If the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, increase the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure, or A method for operating a stock solution processing apparatus, characterized in that the amount of waste solution sent through the waste solution channel is reduced.
原液を濃縮して濃縮液を形成する装置の使用方法であって、
装置が、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
前記濃縮液流路に設けられた濃縮液流路送液部と、
前記廃液流路に設けられた廃液流路送液部と、を備えており
記濃縮器の濃縮器膜間差圧に基づいて各流路を流れる液体の送液量を調整し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を減少および/または前記廃液流路の廃液の送液量を増加させ、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量および/または前記廃液流路の廃液の送液量を維持し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量を増加および/または前記廃液流路の廃液の送液量を減少させる
ことを特徴とする原液処理装置の操作方法。
A method of using an apparatus for concentrating a stock solution to form a concentrated solution, the method comprising:
The device is
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
a concentrate flow path liquid feeding section provided in the concentrate flow path;
A waste liquid flow path liquid sending section provided in the waste liquid flow path ,
Adjusting the amount of liquid flowing through each channel based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, reduce the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure. and/or increasing the amount of waste liquid sent through the waste liquid flow path;
When the concentrator transmembrane pressure difference is within the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrated liquid flow path and/or the amount of waste liquid sent through the waste liquid flow path is adjusted. maintain,
If the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, increase the amount of concentrated liquid sent through the concentrate flow path until the concentrator transmembrane differential pressure reaches the set differential pressure, and A method for operating a stock solution processing apparatus, characterized in that:/or the amount of waste solution sent through the waste solution channel is reduced.
原液を濃縮して濃縮液を形成する装置であって、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
各流路の送液を行う送液部と、
該送液部を制御する制御部と、を備えており、
前記送液部が、
前記給液流路に設けられた給液流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、
前記制御部は
記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量が増加するように前記給液流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濾過器への原液の送液量を維持するように前記給液流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濾過器への原液の送液量が減少するように前記給液流路送液部を制御する
ことを特徴とする原液処理装置。
An apparatus for concentrating a stock solution to form a concentrated solution, the device comprising:
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
A liquid sending unit that sends liquid to each flow path;
A control unit that controls the liquid feeding unit,
The liquid sending part is
a liquid supply channel liquid sending section provided in the liquid supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path,
The control unit includes :
Each liquid feeding section is controlled based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the amount of raw solution sent to the filter is increased until the concentrator transmembrane differential pressure reaches the set differential pressure. controlling the liquid supply flow path liquid sending section,
When the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, the liquid supply flow path liquid sending section is controlled to maintain the amount of the raw solution sent to the filter. ,
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, the amount of the raw solution sent to the filter is reduced until the concentrator transmembrane differential pressure reaches the set differential pressure. A stock solution processing device, characterized in that the liquid supply flow path liquid sending section is controlled.
原液を濃縮して濃縮液を形成する装置であって、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
各流路の送液を行う送液部と、
該送液部を制御する制御部と、を備えており、
前記送液部が、
前記濾過液供給流路に設けられた濾過液供給流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、
前記制御部は
記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量が増加するように前記濾過液供給流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮器への濾過液の送液量を維持するように前記濾過液供給流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮器への濾過液の送液量が減少するように前記濾過液供給流路送液部を制御する
ことを特徴とする原液処理装置。
An apparatus for concentrating a stock solution to form a concentrated solution, the device comprising:
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
A liquid sending unit that sends liquid to each flow path;
A control unit that controls the liquid feeding unit,
The liquid sending part is
a filtrate supply channel liquid sending section provided in the filtrate supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path,
The control unit includes :
Each liquid feeding section is controlled based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the amount of filtrate sent to the concentrator is increased until the concentrator transmembrane differential pressure reaches the set differential pressure. Controlling the filtrate supply flow path liquid sending section as follows,
When the concentrator transmembrane pressure difference is within the range of the set differential pressure of the concentrator, the filtrate supply channel liquid sending section is configured to maintain the amount of filtrate sent to the concentrator. control,
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, the amount of filtrate sent to the concentrator is reduced until the concentrator transmembrane differential pressure reaches the set differential pressure. A stock solution processing device, characterized in that the filtrate supply channel liquid sending section is controlled to:
原液を濃縮して濃縮液を形成する装置であって、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
各流路の送液を行う送液部と、
該送液部を制御する制御部と、を備えており、
前記送液部が、
前記給液流路に設けられた給液流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、
前記制御部は
記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が減少または前記廃液流路の廃液の送液量が増加するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量または前記廃液流路の廃液の送液量を維持するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が増加または前記廃液流路の廃液の送液量が減少するように前記濃縮液流路送液部または前記廃液流路送液部を制御する
ことを特徴とする原液処理装置。
An apparatus for concentrating a stock solution to form a concentrated solution, the device comprising:
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
A liquid sending unit that sends liquid to each flow path;
A control unit that controls the liquid feeding unit,
The liquid sending part is
a liquid supply channel liquid sending section provided in the liquid supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path,
The control unit includes :
Each liquid feeding section is controlled based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrate flow path is reduced until the concentrator transmembrane differential pressure reaches the set differential pressure. or controlling the concentrate flow path liquid sending section or the waste liquid flow path liquid sending section so that the amount of waste liquid sent through the waste liquid flow path is increased;
When the concentrator transmembrane pressure difference is within the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrated liquid flow path or the amount of waste liquid sent through the waste liquid flow path is maintained. controlling the concentrate flow path liquid sending section or the waste liquid flow path liquid sending section,
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrate flow path is increased until the concentrator transmembrane differential pressure reaches the set differential pressure, or An undiluted solution processing device, characterized in that the concentrated solution channel liquid feeding section or the waste liquid channel liquid feeding section is controlled so that the amount of waste liquid fed through the waste liquid channel is reduced.
原液を濃縮して濃縮液を形成する装置であって、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
各流路の送液を行う送液部と、
該送液部を制御する制御部と、を備えており、
前記送液部が、
前記濾過液供給流路に設けられた濾過液供給流路送液部と、
前記濃縮液流路に設けられた濃縮液流路送液部または前記廃液流路に設けられた廃液流路送液部と、を有しており、
前記制御部は
記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が減少または前記廃液流路の廃液の送液量が増加するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量または前記廃液流路の廃液の送液量を維持するように前記濃縮液流路送液部または前記廃液流路送液部を制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が増加または前記廃液流路の廃液の送液量が減少するように前記濃縮液流路送液部または前記廃液流路送液部を制御する
ことを特徴とする原液処理装置。
An apparatus for concentrating a stock solution to form a concentrated solution, the device comprising:
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
A liquid sending unit that sends liquid to each flow path;
A control unit that controls the liquid feeding unit,
The liquid sending part is
a filtrate supply channel liquid sending section provided in the filtrate supply channel;
A concentrate flow path liquid sending section provided in the concentrate flow path or a waste liquid flow path liquid sending section provided in the waste liquid flow path,
The control unit includes :
Each liquid feeding section is controlled based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrate flow path is reduced until the concentrator transmembrane differential pressure reaches the set differential pressure. or controlling the concentrate flow path liquid sending section or the waste liquid flow path liquid sending section so that the amount of waste liquid sent through the waste liquid flow path is increased;
When the concentrator transmembrane pressure difference is within the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrated liquid flow path or the amount of waste liquid sent through the waste liquid flow path is maintained. controlling the concentrate flow path liquid sending section or the waste liquid flow path liquid sending section,
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrate flow path is increased until the concentrator transmembrane differential pressure reaches the set differential pressure, or A stock solution processing device characterized in that the concentrated solution channel liquid feeding section or the waste liquid channel liquid feeding section is controlled so that the amount of waste liquid fed through the waste liquid channel is reduced.
原液を濃縮して濃縮液を形成する装置であって、
前記原液を濾過する濾過部材を有する濾過器と、
該濾過器によって濾過された濾過液が供給され、該濾過液を濃縮して前記濃縮液を形成する濃縮器と、
前記濾過器に前記原液を供給する原液供給部と、
該原液供給部と前記濾過器の原液が供給される流路の一端に連通された原液供給口とを連通する給液流路と、
前記濾過器の濾過液排出口と前記濃縮器の濾過液供給口とを連通する濾過液供給流路と、
前記濃縮器の濃縮液排出口に接続された濃縮液流路と、
前記濃縮器において前記濃縮液と分離された廃液を排出する廃液排出口に接続された廃液流路と、
各流路の送液を行う送液部と、
該送液部を制御する制御部と、を備えており、
前記送液部が、
前記濃縮液流路に設けられた濃縮液流路送液部と、
前記廃液流路に設けられた廃液流路送液部と、を有しており、
前記制御部は
記濃縮器の濃縮器膜間差圧に基づいて各送液部を制御するものであり、
前記濃縮器膜間差圧が前記濃縮器の設定差圧よりも小さい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が減少および/または前記廃液流路の廃液の送液量が増加するように前記濃縮液流路送液部および/または前記廃液流路送液部制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧の範囲内にある場合には、前記濃縮液流路の濃縮液の送液量および/または前記廃液流路の廃液の送液量を維持するように前記濃縮液流路送液部および/または前記廃液流路送液部制御し、
前記濃縮器膜間差圧が前記濃縮器の設定差圧より大きい場合には、前記濃縮器膜間差圧が設定差圧となるまで前記濃縮液流路の濃縮液の送液量が増加および/または前記廃液流路の廃液の送液量が減少するように前記濃縮液流路送液部および/または前記廃液流路送液部制御する
ことを特徴とする原液処理装置。
An apparatus for concentrating a stock solution to form a concentrated solution, the device comprising:
a filter having a filter member that filters the stock solution;
a concentrator supplied with the filtrate filtered by the filter, and concentrating the filtrate to form the concentrate;
a stock solution supply unit that supplies the stock solution to the filter;
a liquid supply channel that communicates between the stock solution supply section and a stock solution supply port that communicates with one end of the channel through which the stock solution of the filter is supplied;
a filtrate supply channel that communicates a filtrate outlet of the filter with a filtrate supply port of the concentrator;
a concentrate flow path connected to a concentrate outlet of the concentrator;
a waste liquid flow path connected to a waste liquid outlet for discharging the waste liquid separated from the concentrated liquid in the concentrator;
A liquid sending unit that sends liquid to each flow path;
A control unit that controls the liquid feeding unit,
The liquid sending part is
a concentrate flow path liquid feeding section provided in the concentrate flow path;
and a waste liquid flow path liquid sending section provided in the waste liquid flow path,
The control unit includes :
Each liquid feeding section is controlled based on the concentrator transmembrane pressure difference of the concentrator,
When the concentrator transmembrane differential pressure is smaller than the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrate flow path is reduced until the concentrator transmembrane differential pressure reaches the set differential pressure. and/or controlling the concentrate flow path liquid sending section and/or the waste liquid flow path liquid sending section so that the amount of waste liquid sent through the waste liquid flow path is increased;
When the concentrator transmembrane pressure difference is within the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrated liquid flow path and/or the amount of waste liquid sent through the waste liquid flow path is adjusted. controlling the concentrate flow path liquid sending section and/or the waste liquid flow path liquid sending section so as to maintain the
When the concentrator transmembrane differential pressure is larger than the set differential pressure of the concentrator, the amount of concentrated liquid sent through the concentrate flow path is increased until the concentrator transmembrane differential pressure reaches the set differential pressure. A stock solution processing device characterized in that the concentrated liquid flow path liquid sending section and/or the waste liquid flow path liquid sending section are controlled so that the amount of waste liquid sent through the waste liquid flow path is decreased.
JP2022029652A 2019-08-02 2022-02-28 Undiluted solution processing equipment and how to operate the undiluted solution processing equipment Active JP7422986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022029652A JP7422986B2 (en) 2019-08-02 2022-02-28 Undiluted solution processing equipment and how to operate the undiluted solution processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019143239A JP7057977B2 (en) 2019-08-02 2019-08-02 Undiluted solution processing equipment
JP2022029652A JP7422986B2 (en) 2019-08-02 2022-02-28 Undiluted solution processing equipment and how to operate the undiluted solution processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019143239A Division JP7057977B2 (en) 2019-08-02 2019-08-02 Undiluted solution processing equipment

Publications (3)

Publication Number Publication Date
JP2022060589A JP2022060589A (en) 2022-04-14
JP2022060589A5 JP2022060589A5 (en) 2022-04-27
JP7422986B2 true JP7422986B2 (en) 2024-01-29

Family

ID=69620762

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019143239A Active JP7057977B2 (en) 2019-08-02 2019-08-02 Undiluted solution processing equipment
JP2022029652A Active JP7422986B2 (en) 2019-08-02 2022-02-28 Undiluted solution processing equipment and how to operate the undiluted solution processing equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019143239A Active JP7057977B2 (en) 2019-08-02 2019-08-02 Undiluted solution processing equipment

Country Status (1)

Country Link
JP (2) JP7057977B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112863A (en) 1999-10-15 2001-04-24 Kita Kyushu Biophysics Kenkyusho:Kk On-line blood-dialyzing-filtering device, and blood- dialyzing-filtering process using the device
US20140339161A1 (en) 2011-10-07 2014-11-20 The Trustees Of Columbia University In The City Of New York Fluid component separation devices, methods, and systems
JP2015126763A (en) 2013-12-27 2015-07-09 旭化成メディカル株式会社 Ascites filtration concentration system, method for cleaning filter and concentrator in ascites filtration concentration system, and method for recovering filtrate and concentrated liquid in cleaning filter and concentrator
WO2016060209A1 (en) 2014-10-16 2016-04-21 旭化成メディカル株式会社 Body fluid filtration device of hollow fiber membrane type, and method for filtrating protein solution
JP2017042225A (en) 2015-08-24 2017-03-02 旭化成メディカル株式会社 Medical member
JP6268660B1 (en) 2017-05-18 2018-01-31 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176481A (en) * 1983-03-24 1984-10-05 Shin Meiwa Ind Co Ltd Elastic-tube pump
JP2543466Y2 (en) * 1991-03-29 1997-08-06 株式会社クラレ Body fluid filtration and concentration device
US5427509A (en) * 1993-12-22 1995-06-27 Baxter International Inc. Peristaltic pump tube cassette with angle pump tube connectors
JPH0960593A (en) * 1995-08-25 1997-03-04 Mazda Motor Corp Tube pressing-type pump
US7144231B2 (en) * 2003-07-23 2006-12-05 Hewlett-Packard Development Company, L.P. Peristaltic pump with ganged tubes
US7140850B2 (en) * 2003-07-25 2006-11-28 Hewlett-Packard Development Company, L.P. Peristaltic pump with roller pinch valve control
JP6960906B2 (en) * 2016-03-29 2021-11-10 稔也 岡久 How to arrange undiluted solution treatment equipment, roller pump equipment and bags

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001112863A (en) 1999-10-15 2001-04-24 Kita Kyushu Biophysics Kenkyusho:Kk On-line blood-dialyzing-filtering device, and blood- dialyzing-filtering process using the device
US20140339161A1 (en) 2011-10-07 2014-11-20 The Trustees Of Columbia University In The City Of New York Fluid component separation devices, methods, and systems
JP2015126763A (en) 2013-12-27 2015-07-09 旭化成メディカル株式会社 Ascites filtration concentration system, method for cleaning filter and concentrator in ascites filtration concentration system, and method for recovering filtrate and concentrated liquid in cleaning filter and concentrator
WO2016060209A1 (en) 2014-10-16 2016-04-21 旭化成メディカル株式会社 Body fluid filtration device of hollow fiber membrane type, and method for filtrating protein solution
JP2017042225A (en) 2015-08-24 2017-03-02 旭化成メディカル株式会社 Medical member
JP6268660B1 (en) 2017-05-18 2018-01-31 三菱重工環境・化学エンジニアリング株式会社 Biological treatment apparatus, biological treatment method, and program

Also Published As

Publication number Publication date
JP7057977B2 (en) 2022-04-21
JP2022060589A (en) 2022-04-14
JP2020025864A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP4091873B2 (en) Dialysis machine
JP5519427B2 (en) Hemodialysis machine
US11969534B2 (en) Blood treatment device priming devices, methods, and systems
EP2708249B1 (en) Dialysis device
JP6960906B2 (en) How to arrange undiluted solution treatment equipment, roller pump equipment and bags
JP6667852B2 (en) Stock solution processing device and method of operating stock solution processing device
JP2023105264A (en) Liquid concentrate processor, and operation method of liquid concentrate processor
JP7422986B2 (en) Undiluted solution processing equipment and how to operate the undiluted solution processing equipment
WO2023021967A1 (en) Stock solution treatment apparatus, stock solution treatment apparatus operating method, and adjuster
CN112703022A (en) Raw liquid processing apparatus, method for operating raw liquid processing apparatus, and method for cleaning instrument
JP7411924B2 (en) How to clean instruments, how to operate the stock solution processing equipment and the stock solution processing equipment
JP2009165500A (en) Blood purifying device and priming method thereof
JP6646733B2 (en) Blood purification system and priming method thereof
JP7132093B2 (en) blood purifier
JP6011701B2 (en) Dialysis machine
JP5822152B2 (en) Hemodialysis machine
JP2022107559A (en) Thoracicoabdominal fluid processing system and cleaning method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240105

R150 Certificate of patent or registration of utility model

Ref document number: 7422986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150