JP7420671B2 - Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control - Google Patents

Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control Download PDF

Info

Publication number
JP7420671B2
JP7420671B2 JP2020117364A JP2020117364A JP7420671B2 JP 7420671 B2 JP7420671 B2 JP 7420671B2 JP 2020117364 A JP2020117364 A JP 2020117364A JP 2020117364 A JP2020117364 A JP 2020117364A JP 7420671 B2 JP7420671 B2 JP 7420671B2
Authority
JP
Japan
Prior art keywords
power
circuit
capacitor
power receiving
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020117364A
Other languages
Japanese (ja)
Other versions
JP2022014808A (en
Inventor
弘 櫻庭
哲也 間形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Original Assignee
Toyota Motor East Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor East Japan Inc filed Critical Toyota Motor East Japan Inc
Priority to JP2020117364A priority Critical patent/JP7420671B2/en
Publication of JP2022014808A publication Critical patent/JP2022014808A/en
Application granted granted Critical
Publication of JP7420671B2 publication Critical patent/JP7420671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、無接触電力伝送システム(ワイヤレス電力伝送システム)に関し、特に伝送距離が大きな場合でも、効率良く無接触電力送電が可能な同期共振型伝送システム、同期共振型伝送制御方法及び同期共振型伝送制御用プログラムに関する。 The present invention relates to a contactless power transmission system (wireless power transmission system), and in particular to a synchronous resonant transmission system, a synchronous resonant transmission control method, and a synchronous resonant transmission system that can efficiently transmit contactless power even over long transmission distances. Concerning programs for transmission control.

2005年にマサチューセッツ工科大学(MIT)が提案して以来、正弦波の電磁波によるワイヤレス電力伝送の研究が盛んになってきた(特許文献1及び2参照)。例えば、特許文献2に記載のように、従来のワイヤレス電力伝送方式では、給電側共振回路(LC回路)の共振周波数2π√LCと受電側共振回路(LC回路)の共振周波数2π√LCを一致させる交流理論が基礎になっている。従来のワイヤレス電力伝送方式では、給電側共振回路と受電側共振回路が相互に作用して生じる新たな共振に関しては、給電側共振回路と受電側共振回路の共振(重共振)はしない方がよいという技術的常識があった。 Since the Massachusetts Institute of Technology (MIT) proposed it in 2005, research on wireless power transmission using sinusoidal electromagnetic waves has been active (see Patent Documents 1 and 2). For example, as described in Patent Document 2, in the conventional wireless power transmission system, the resonant frequency 2π√LC of the power feeding side resonant circuit (LC circuit) and the resonant frequency 2π√LC of the power receiving side resonant circuit (LC circuit) are made to match. It is based on the theory of exchange. In conventional wireless power transmission systems, it is better not to cause resonance (multiple resonance) between the power supply side resonant circuit and the power reception side resonant circuit, as new resonance occurs when the power supply side resonant circuit and power reception side resonant circuit interact with each other. There was technical common sense.

又、特許文献1及び2に記載された10kHz~50GHzの周波数帯の電源回路(0次回路)は、商用電源をスイッチング電源で直流にした後、PWM等の多数の電力用半導体素子でスイッチングして等価的に交流にする無駄な構成がされていた。無駄な構成により、電力用半導体素子に生じる抵抗損失や、周波数の増加によって急激に増えるスイッチング損失等の電力損失が発生する。また、コイルに生じる誘導逆起電力によるスイッチング素子の破壊や、共振による過度な電圧上昇によるスイッチング素子の破壊が生じやすく、周波数が高いほど、電力が大きいほど回路設計に困難を極める。 In addition, the power supply circuits (0-order circuits) in the frequency band of 10 kHz to 50 GHz described in Patent Documents 1 and 2 convert the commercial power supply into DC using a switching power supply, and then perform switching using a large number of power semiconductor elements such as PWM. This was a wasteful configuration that equivalently converted to alternating current. This wasteful configuration causes power losses such as resistance losses in power semiconductor elements and switching losses that rapidly increase as the frequency increases. Furthermore, the switching element is likely to be destroyed by the induced back electromotive force generated in the coil, or by excessive voltage rise due to resonance, and the higher the frequency and the greater the power, the more difficult it becomes to design the circuit.

特許文献1及び2に記載されたような従来技術の問題点を鑑み、本発明者らは、重共振を考慮し、過渡応答に着目した非交流理論による無接触伝送装置を提案した(特許文献3参照)。しかしながら、特許文献3に記載された発明では送電側コイルと受電側コイルとの間隔(伝送距離)が40mm以上離れると伝送効率が極度に低下する問題があった。特に実用上は、伝送距離が300mm以上離れた無接触電力伝送が待望されている。しかしながら、伝送距離が300mm以上離れると、送電側コイルと受電側コイルとの間の等価結合係数k<0.08となる疎結合状態となる。発明者らの予備的な検討実験によれば、k<0.08となる疎結合状態では、共振開始から最大伝送タイミングまでの時間が長くなり、回路の寄生抵抗により共振電圧が減衰するため、最大伝送タイミングで共振を一時的に切る時点において伝送電圧が減少してしまい、一度の相互誘導による伝送で十分な電力を伝送できないという問題が発見された。 In view of the problems of the prior art described in Patent Documents 1 and 2, the present inventors proposed a contactless transmission device based on non-AC theory that takes heavy resonance into consideration and focuses on transient response (Patent Document 1) (See 3). However, the invention described in Patent Document 3 has a problem in that the transmission efficiency is extremely reduced when the interval (transmission distance) between the power transmitting side coil and the power receiving side coil is 40 mm or more. Particularly in practical use, contactless power transmission with a transmission distance of 300 mm or more is long-awaited. However, when the transmission distance is 300 mm or more, a loose coupling state occurs where the equivalent coupling coefficient k<0.08 between the power transmitting side coil and the power receiving side coil. According to the inventors' preliminary study experiments, in a loosely coupled state where k<0.08, the time from the start of resonance to the maximum transmission timing becomes longer, and the resonant voltage is attenuated by the parasitic resistance of the circuit. A problem has been discovered in which the transmission voltage decreases when the resonance is temporarily cut off at the maximum transmission timing, and sufficient power cannot be transmitted in a single mutual induction transmission.

米国特許出願公開第2008/0278264号明細書US Patent Application Publication No. 2008/0278264 特許第5549745号公報Patent No. 5549745 世界知的所有権機関国際事務局国際公開2020/039594号パンフレットWorld Intellectual Property Organization International Bureau International Publication No. 2020/039594 Pamphlet

上記問題点を鑑み本発明は、伝送距離が40mm以上、更には300mm以上の場合であっても有効に無接触給電が可能な同期共振型伝送システム、この同期共振型伝送システムを動作させる同期共振型伝送制御方法及びこの同期共振型伝送制御方法をコンピュータシステムに実行させる同期共振型伝送制御用プログラムを提供することを目的とする。 In view of the above-mentioned problems, the present invention provides a synchronous resonant transmission system that can effectively provide contactless power supply even when the transmission distance is 40 mm or more, or even 300 mm or more, and a synchronous resonant transmission system that operates this synchronous resonant transmission system. An object of the present invention is to provide a synchronous resonance transmission control method and a synchronous resonance transmission control program that causes a computer system to execute the synchronous resonance transmission control method.

本発明の第1の態様は、(a)送電側コンデンサ、送電側コンデンサに並列接続された送電側コイル、及び送電側コイルに流れる電流の変化を検知する送電側検知器を有する1次側LC回路と、(b)直流電源、直流電源から供給される直流電圧を、送電側コンデンサの一方の端子と他方の端子の間にステップ入力する入力素子を有する励起回路と、(c)送電側コイルに対向した受電側コイル、受電側コイルに並列接続された受電側コンデンサ、及び受電側コンデンサの端子間電圧の変化を検知する受電側検知器を有する2次側LC回路と、(d)受電側コンデンサの端子間を接続し、受電側コンデンサから受電側コンデンサに蓄積された静電エネルギを受け取る負荷を有する負荷回路と、(e)入力素子の制御端子にスイッチング用の制御信号を送る1次側スイッチング素子駆動回路と、(f)受電側コンデンサの端子間電圧が所定値を上回ったことを受電側検知器が検知した後、送電側コイルに流れる電流がピークとなるタイミングを送電側検知器が検知したときに、直流電源から直流電圧を供給するように、1次側スイッチング素子駆動回路を制御する算術論理回路を備える同期共振型伝送システムであることを要旨とする。 A first aspect of the present invention provides a primary side LC having (a) a power transmission side capacitor, a power transmission side coil connected in parallel to the power transmission side capacitor, and a power transmission side detector that detects a change in the current flowing through the power transmission side coil. (b) a DC power supply; an excitation circuit having an input element that inputs a DC voltage supplied from the DC power supply stepwise between one terminal and the other terminal of a power transmission capacitor; and (c) a power transmission coil. (d) a secondary side LC circuit having a power receiving side coil facing the power receiving side coil, a power receiving side capacitor connected in parallel to the power receiving side coil, and a power receiving side detector that detects a change in the voltage between the terminals of the power receiving side capacitor; (e) A load circuit that connects the terminals of the capacitor and has a load that receives electrostatic energy accumulated in the power receiving capacitor from the power receiving capacitor, and (e) a primary side that sends a control signal for switching to the control terminal of the input element. After the power receiving side detector detects that the voltage between the terminals of the switching element drive circuit and (f) the power receiving side capacitor exceeds a predetermined value, the power transmitting side detector detects the timing when the current flowing to the power transmitting side coil reaches its peak. The gist of the present invention is that it is a synchronous resonant transmission system including an arithmetic logic circuit that controls a primary side switching element drive circuit so as to supply a DC voltage from a DC power supply when detected.

本発明の第2の態様は、本発明の第1の態様で述べた同期共振型伝送システムの動作を制御する同期共振型伝送制御方法に関する。即ち、本発明の第2の態様に係る同期共振型伝送制御方法は、受電側コンデンサの端子間電圧が所定値を上回ったことを受電側検知器が検知するステップと、送電側コイルに流れる電流がピークとなるタイミングを送電側検知器が検知したときに、直流電源から直流電圧を供給するステップとを含むことを特徴とする。 A second aspect of the present invention relates to a synchronous resonant transmission control method for controlling the operation of the synchronous resonant transmission system described in the first aspect of the present invention. That is, the synchronous resonance type transmission control method according to the second aspect of the present invention includes the steps of the power receiving side detector detecting that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value, and the step of detecting that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value; The present invention is characterized in that it includes a step of supplying DC voltage from a DC power source when a power transmission side detector detects a timing at which the voltage reaches a peak.

本発明の第2の態様で述べた同期共振型伝送制御方法を実現するための同期共振型伝送制御用プログラムは、コンピュータ読取り可能な記録媒体に保存し、この記録媒体をコンピュータシステムによって読み込ませ、本発明の同期共振型伝送制御方法をコンピュータシステムによって実行させることができる。すなわち、本発明の第3の態様に係る同期共振型伝送制御用プログラムは、受電側コンデンサの端子間電圧が所定値を上回ったことを受電側検知器に検知させる命令と、送電側コイルに流れる電流がピークとなるタイミングを送電側検知器が検知したときに、直流電源から直流電圧を供給させる命令とを含む一連の命令をコンピュータシステムに実行させることを特徴とする。 A synchronous resonance transmission control program for realizing the synchronous resonance transmission control method described in the second aspect of the present invention is stored in a computer-readable recording medium, the recording medium is read by a computer system, The synchronous resonance type transmission control method of the present invention can be executed by a computer system. That is, the synchronous resonance type transmission control program according to the third aspect of the present invention includes a command that causes the power receiving side detector to detect that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value, and a command that causes the power receiving side detector to detect that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value. The present invention is characterized by causing the computer system to execute a series of instructions including an instruction to supply DC voltage from the DC power source when the power transmission side detector detects the timing at which the current peaks.

本発明によれば、伝送距離が40mm以上、更には300mm以上の場合であっても有効に無接触給電が可能な同期共振型伝送システム、この同期共振型伝送システムを動作させる同期共振型伝送制御方法及びこの同期共振型伝送制御方法をコンピュータシステムに実行させる同期共振型伝送制御用プログラムを提供することができる。 According to the present invention, a synchronous resonant transmission system is capable of effectively contactless power feeding even when the transmission distance is 40 mm or more, or even 300 mm or more, and a synchronous resonant transmission control that operates this synchronous resonant transmission system. It is possible to provide a method and a synchronous resonant transmission control program that causes a computer system to execute the synchronous resonant transmission control method.

本発明の代表的な一実施形態に係る同期共振型伝送システムの概略構造を示す模式図である。1 is a schematic diagram showing a schematic structure of a synchronous resonant transmission system according to a typical embodiment of the present invention. 図1に示した駆動制御回路を中心に説明するブロック図である。FIG. 2 is a block diagram mainly illustrating the drive control circuit shown in FIG. 1. FIG. 一実施形態に係る同期共振型伝送システムの一例を構成する駆動制御回路と受電回路の概略を示す回路図である。FIG. 1 is a circuit diagram schematically showing a drive control circuit and a power receiving circuit that constitute an example of a synchronous resonance type transmission system according to an embodiment. 一実施形態に係る同期共振型伝送システムの動作フローの概略を示すフローチャートである。1 is a flowchart showing an outline of an operation flow of a synchronous resonant transmission system according to an embodiment. 受電側電圧振幅が最大になるまで、電源からの電力供給動作を定期的に繰り返す動作を示す波形図である。FIG. 7 is a waveform diagram showing an operation of periodically repeating an operation of supplying power from a power source until the voltage amplitude on the power receiving side reaches a maximum. 比較例として、共振開始から最大伝送タイミングまでに給電を行わない場合に、回路の寄生抵抗により共振電圧が減衰する様子を示す波形図である。As a comparative example, it is a waveform diagram showing how the resonant voltage is attenuated due to the parasitic resistance of the circuit when power is not supplied from the start of resonance to the maximum transmission timing. 経過時間に対して伝送電力量がどのように変化するかを、本発明と参考技術について比較して示す図である。FIG. 3 is a diagram illustrating how the amount of transmitted power changes over elapsed time, comparing the present invention and the reference technology. 電気自動車(EV)の電池の充電に一実施形態に係る同期共振型伝送システム適用した場合において、コイル間の面間隔(伝送間隔)を調整する間隔制御機構の例を模式的に説明する鳥瞰図である。1 is a bird's-eye view schematically illustrating an example of an interval control mechanism that adjusts the interplane interval (transmission interval) between coils when the synchronous resonance transmission system according to an embodiment is applied to charging the battery of an electric vehicle (EV). be.

次に、図面を参照して、本発明の代表的な実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Next, typical embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar symbols. However, it should be noted that the drawings are schematic, and the relationship between the thickness and planar dimensions, the ratio of the thickness of each member, etc. are different from the actual one. Therefore, the specific thickness and dimensions should be determined with reference to the following explanation. Furthermore, it goes without saying that the drawings include portions with different dimensional relationships and ratios.

又、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示する代表的な実施形態であって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。更に、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。図8に示したような、渦巻きの螺旋の向きも同様に説明の便宜上における単なる選択に過ぎず、実際の設計事情に応じて右巻きを左巻きに、左巻きを右巻きに選択することも可能である。 Further, the embodiments shown below are representative embodiments illustrating devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material and shape of the component parts. , structure, arrangement, etc. are not specified below. The technical idea of the present invention can be modified in various ways within the technical scope defined by the claims. Furthermore, the directions "left and right" and "up and down" in the following explanation are simply defined for convenience of explanation, and do not limit the technical idea of the present invention. Therefore, for example, if you rotate the page 90 degrees, "left and right" and "up and down" will be read interchangeably, and if you rotate the page 180 degrees, "left" will become "right" and "right" will become "left." Of course it will. Similarly, the direction of the spiral spiral as shown in FIG. 8 is merely a selection for the convenience of explanation, and depending on the actual design circumstances, it is also possible to select right-handed winding as left-handed winding, and left-handed winding as right-handed winding. be.

本発明の一実施形態に係る同期共振型伝送システムは、図1に示すように、受電回路27bを有する車輌31cに無接触でウェイブレット状の電磁エネルギを、同期共振を利用して給電回路29bから効率良く給電する伝送システムである。「ウェイブレット状」とは、時間的に局在した減衰振動を意味する。受電回路27bは、負荷(蓄電池)6を含む。一実施形態に係る同期共振型伝送システムは、受電回路27bにウェイブレット状の電磁エネルギを無接触で給電する給電回路29bと、給電回路29bに接続され、給電回路29bに命令を送る1次側操作部33と、給電回路29bに対抗し、車輌31c内に搭載される受電盤12、受電回路27b、2次側通信部22、及び2次側操作部23とから主に構成されている。 As shown in FIG. 1, a synchronous resonance type transmission system according to an embodiment of the present invention transmits wavelet-shaped electromagnetic energy without contact to a vehicle 31c having a power receiving circuit 27b, by using synchronous resonance to transmit wavelet-shaped electromagnetic energy to a power feeding circuit 29b. This is a transmission system that efficiently supplies power from "Wavelet-like" means temporally localized damped oscillations. The power receiving circuit 27b includes a load (storage battery) 6. The synchronous resonance type transmission system according to one embodiment includes a power feeding circuit 29b that non-contactly feeds wavelet-like electromagnetic energy to a power receiving circuit 27b, and a primary side that is connected to the power feeding circuit 29b and sends commands to the power feeding circuit 29b. It mainly includes an operating section 33, a power receiving board 12, a power receiving circuit 27b, a secondary side communication section 22, and a secondary side operating section 23, which are mounted in the vehicle 31c in opposition to the power feeding circuit 29b.

1次側操作部33には種々の構造や機構が採用可能で、例えば1次側操作部33が撮像装置を備えるようにしてもよい。撮像装置を備える態様においては、撮像装置が撮像した車輌31cの画像から、人工頭脳(AI)機能により車輌31cの車高が自動的に紐付けられるような機構を設けることができる。図1では、給電回路29b側の送電側コイルLと車輌31c側の受電側コイルLとが対向し、送電側コイルLから受電側コイルLへ無接触でウェイブレット状の電磁エネルギが受電側コイルLに無接触で伝送されることを示す模式図を示しているが、単なる例示に過ぎない。後述の図8のような態様で車輌31cの後部において、送電側コイルLから受電側コイルLへ無接触給電する方式でも構わない。更に、種々の変形が可能であり、例えば車両の前面、側面或いは天井部で送電側コイルLから受電側コイルLへ無接触給電する方式でも構わない。 Various structures and mechanisms can be adopted for the primary operation section 33, and for example, the primary operation section 33 may include an imaging device. In an embodiment including an imaging device, a mechanism can be provided in which the vehicle height of the vehicle 31c is automatically linked using an artificial intelligence (AI) function from the image of the vehicle 31c taken by the imaging device. In FIG. 1, the power transmitting coil L1 on the power feeding circuit 29b side and the power receiving coil L2 on the vehicle 31c side face each other, and wavelet-shaped electromagnetic energy is transferred from the power transmitting coil L1 to the power receiving coil L2 without contact. Although a schematic diagram showing that the power is transmitted to the power receiving coil L2 without contact is shown, this is merely an example. It is also possible to conduct contactless power feeding from the power transmitting coil L 1 to the power receiving coil L 2 at the rear of the vehicle 31c as shown in FIG. 8, which will be described later. Furthermore, various modifications are possible; for example, a method may be adopted in which power is supplied from the power transmitting side coil L1 to the power receiving side coil L2 in a non-contact manner at the front, side, or ceiling of the vehicle.

給電回路29bは、図1に示すように送電側コイルLを円盤状の誘電体に収納した給電盤11と、送電側コイルLに流れる給電電流を制御する駆動制御回路34aと、2次側通信部22から受電側コンデンサCの端子間電圧等の受電回路27b側の情報を受信し、駆動制御回路34aに伝達する1次側通信部21を備えている。1次側通信部21は、2次側通信部22との間で無接触給電に必要な様々な情報をやりとりすることができる。給電回路29bと受電回路27bとは、送電側コイルLと受電側コイルLを介して、ウェイブレット状の電磁エネルギを、互いに送受し2つのLC共振回路共振振動位相を同期共振させる。「同期共振」とは、重共振の一つの態様であり、一実施形態に係る同期共振型伝送システム受電側共振回路の電圧の最大値と給電側共振回路の電流が最大になるタイミングを同期させた、2つのLC共振回路の間の振動位相の重共振(二重共振)である。 As shown in FIG. 1, the power supply circuit 29b includes a power supply board 11 that houses the power transmission coil L1 in a disc-shaped dielectric, a drive control circuit 34a that controls the power supply current flowing through the power transmission coil L1 , and a secondary power supply circuit 29b. The primary side communication unit 21 receives information on the power receiving circuit 27b side, such as the voltage between the terminals of the power receiving side capacitor C2 , from the side communication unit 22 and transmits it to the drive control circuit 34a. The primary communication unit 21 can exchange various information necessary for contactless power supply with the secondary communication unit 22. The power feeding circuit 29b and the power receiving circuit 27b transmit and receive wavelet-shaped electromagnetic energy to each other via the power transmitting coil L 1 and the power receiving coil L 2 to synchronize the resonance vibration phases of the two LC resonance circuits. "Synchronized resonance" is one aspect of heavy resonance, and is a synchronized resonance type transmission system according to an embodiment in which the maximum voltage of the power receiving side resonant circuit and the timing at which the current of the power feeding side resonant circuit reaches the maximum are synchronized. In addition, there is double resonance (double resonance) of the vibration phase between the two LC resonance circuits.

同期共振を実現する1次側LC回路2bと2次側LC回路3bの一例は図3に示されている。図3に示すように、給電側共振回路を構成する1次側LC回路2bは、静電エネルギを蓄積する送電側コンデンサC、送電側コンデンサCに並列接続され送電側コンデンサCから送られた静電エネルギを磁気エネルギとして蓄積する送電側コイルL1及び送電側コイルL1に流れる電流の変化を検知する検知器(送電側検知器)28を有するLC共振回路である。1次側LC回路2bには、更にスイッチング素子として送電制御素子Qが送電側コイルL1と直列に接続されるようにしてもよい。図3に例示した回路の送電制御素子Qは、送電側コンデンサCが効率良く静電エネルギを蓄積する回路動作の補助をする回路素子であるが、一実施形態に係る同期共振型伝送システムに必須な回路素子ではない。 An example of the primary side LC circuit 2b and the secondary side LC circuit 3b that realize synchronous resonance is shown in FIG. As shown in FIG. 3, the primary side LC circuit 2b constituting the power supply side resonant circuit is connected in parallel to the power transmission side capacitor C 1 that stores electrostatic energy, and the power transmission side capacitor C 1 , and the power transmission side capacitor C 1 is connected in parallel to the power transmission side capacitor C 1 . This is an LC resonant circuit that includes a power transmitting coil L 1 that stores electrostatic energy generated as magnetic energy, and a detector (power transmitting detector) 28 that detects changes in the current flowing through the power transmitting coil L 1 . The primary side LC circuit 2b may further include a power transmission control element Q2 as a switching element connected in series with the power transmission side coil L1 . The power transmission control element Q 2 in the circuit illustrated in FIG. 3 is a circuit element that assists the circuit operation of the power transmission side capacitor C 1 to efficiently store electrostatic energy. It is not an essential circuit element.

受電側共振回路を構成する2次側LC回路3bは、磁気エネルギを蓄積する受電側コイルL、受電側コイルLに並列接続され受電側コイルLから送られた磁気エネルギを静電エネルギとして蓄積する受電側コンデンサC及び受電側コンデンサCの端子間電圧の変化を検知する検知器(受電側検知器)29を有するLC共振回路である。2次側LC回路3bには、更にスイッチング素子として受電制御素子Qを、受電側コイルLと直列に接続する構成にしてもよい。2次側LC回路3bの受電側コイルL2は、送電側コイルL1に対向して離間し、送電側コイルL1から磁気エネルギを受け取る。2次側LC回路3bに設けられた受電制御素子Qは、1次側LC回路2bと2次側LC回路3bの間の振動位相の同期共振を効率良く制御するための回路素子であるが、一実施形態に係る同期共振型伝送システムに必須な回路素子ではない。1次側LC回路2bの送電側コイルL1は、送電側コンデンサCから送られた静電エネルギを磁気エネルギとして蓄積し、この磁気エネルギを送電側コンデンサCに還流すると同時に、2次側LC回路3bの受電側コイルL2 に磁気的に結合し、磁気エネルギを受電側コイルL2 との間で送受する。 The secondary LC circuit 3b constituting the power receiving side resonant circuit is connected in parallel to the power receiving side coil L2 that stores magnetic energy, and the power receiving side coil L2 , and converts the magnetic energy sent from the power receiving side coil L2 into electrostatic energy. This is an LC resonant circuit that has a power receiving side capacitor C 2 that accumulates power as a power receiving side capacitor C 2 and a detector (power receiving side detector) 29 that detects a change in the voltage between the terminals of the power receiving side capacitor C 2 . The secondary LC circuit 3b may further include a power receiving control element Q3 as a switching element connected in series with the power receiving coil L2 . The power receiving coil L 2 of the secondary LC circuit 3b is spaced apart from the power transmitting coil L 1 and receives magnetic energy from the power transmitting coil L 1 . The power receiving control element Q3 provided in the secondary LC circuit 3b is a circuit element for efficiently controlling the synchronized resonance of the vibration phase between the primary LC circuit 2b and the secondary LC circuit 3b. , is not an essential circuit element for the synchronous resonant transmission system according to one embodiment. The power transmitting coil L 1 of the primary LC circuit 2b stores the electrostatic energy sent from the power transmitting capacitor C 1 as magnetic energy, and at the same time circulates this magnetic energy to the power transmitting capacitor C 1 . It is magnetically coupled to the power receiving coil L 2 of the LC circuit 3b and transmits and receives magnetic energy to and from the power receiving coil L 2 .

1次側LC回路2bには、図3に示すように、1次側LC回路2bの中に減衰振動を励起する励起回路(5,Q)が接続されている。励起回路(5,Q)は、直流電源5と、直流電源5から供給される直流電圧の伝達を切り替えるスイッチングを行う入力素子Qを有している。励起回路(5,Q)は、送電側コンデンサCの両端に並列接続され、直流電源5は送電側コンデンサCに直流電圧をステップ入力して減衰振動を励起する。励起回路(5,Q)の入力素子Qの制御端子には、入力素子Qの制御端子にスイッチング用の制御信号を送る1次側スイッチング素子駆動回路340aが接続されている。2次側LC回路3bには、受電側コンデンサCの端子間を接続する回路において受電側コンデンサCから受電側コンデンサCに蓄積された静電エネルギを受け取る負荷6が接続されている。受電側コンデンサCの端子間を接続する負荷6を有する回路で負荷回路を構成している。更に、この負荷回路は、受電側コンデンサCと負荷6との間に、負荷転送制御素子Qをスイッチング素子として直列に接続する構成にしてもよい。負荷転送制御素子Qは、1次側LC回路2bと2次側LC回路3bの間の振動位相の同期共振を効率良く制御する際の補助となる回路素子であるが、一実施形態に係る同期共振型伝送システムに必須な回路素子ではない。 As shown in FIG. 3, an excitation circuit (5, Q 1 ) that excites damped vibration in the primary LC circuit 2b is connected to the primary LC circuit 2b. The excitation circuit (5, Q 1 ) includes a DC power supply 5 and an input element Q 1 that performs switching for switching transmission of the DC voltage supplied from the DC power supply 5. The excitation circuit (5, Q 1 ) is connected in parallel to both ends of the power transmission capacitor C 1 , and the DC power supply 5 inputs a DC voltage stepwise to the power transmission capacitor C 1 to excite damped vibration. A primary side switching element drive circuit 340a that sends a switching control signal to the control terminal of the input element Q 1 is connected to the control terminal of the input element Q 1 of the excitation circuit (5, Q 1 ). A load 6 that receives electrostatic energy accumulated in the power receiving capacitor C 2 from the power receiving capacitor C 2 in a circuit that connects the terminals of the power receiving capacitor C 2 is connected to the secondary LC circuit 3 b. A load circuit is constituted by a circuit having a load 6 connected between the terminals of the power receiving side capacitor C2 . Furthermore, this load circuit may have a configuration in which a load transfer control element Q 4 is connected in series between the power receiving side capacitor C 2 and the load 6 as a switching element. The load transfer control element Q4 is a circuit element that assists in efficiently controlling the synchronous resonance of the vibration phase between the primary side LC circuit 2b and the secondary side LC circuit 3b, but according to one embodiment. It is not an essential circuit element for a synchronous resonant transmission system.

図1に示す態様では、送電側コイルLと受電側コイルLとの間隔は、例えば、油圧の上下機構、電磁石による上下機構、ボール螺旋をステップモータで回転させるような移動機構等、周知の種々の機構により調整することができる。図1は例示であり、送電側コイルLを収納する給電盤11を省略して、送電側コイルLを裸の状態で使用することも可能である。受電側コイルLは円盤状の誘電体からなる受電盤12に収納されている。但し、受電側コイルLを収納する受電盤12を省略して、受電側コイルLを裸の状態で使用することも可能である。送電側コイルLからのウェイブレット状の電磁エネルギが、給電側共振回路と受電側共振回路のそれぞれの振動位相が重共振(同期共振)するようにして受電側コイルLに電磁誘導で給電される。 In the embodiment shown in FIG. 1, the distance between the power transmitting coil L1 and the power receiving coil L2 is determined by, for example, a hydraulic vertical mechanism, an electromagnetic vertical mechanism, a moving mechanism such as a ball spiral rotated by a step motor, etc. can be adjusted by various mechanisms. FIG. 1 is an example, and it is also possible to omit the power feeding board 11 that houses the power transmitting coil L 1 and use the power transmitting coil L 1 in a bare state. The power receiving side coil L2 is housed in a power receiving board 12 made of a disc-shaped dielectric material. However, it is also possible to omit the power reception board 12 that houses the power reception side coil L2 and use the power reception side coil L2 in a bare state. Wavelet-shaped electromagnetic energy from the power transmitting coil L1 is supplied to the power receiving coil L2 by electromagnetic induction so that the vibration phases of the power feeding side resonant circuit and the power receiving side resonant circuit have multiple resonances (synchronous resonance). be done.

給電盤11の上面は受電盤12の下面に平行に配置されるように、給電盤11は地面上に設置もしくは埋設される。給電作業前の状態においては、給電盤11の上面が地上の平坦面30に平行に配置され、車輌31cが一様な平坦面上を走行して侵入可能に設定される。給電回路29bは、例えば駐車スペースに設けられ、車輌31cの駐車中に、受電盤12に対向することにより車輌31cに搭載された受電盤12に対してウェイブレット状の電磁エネルギを給電する。一実施形態に係る同期共振型伝送システムの伝送距離dのデータが取得されている場合において、特殊な事情により伝送可能な限界距離が存在するケースが発生する場合は、車輌31cの車高の関係で伝送距離dが限界距離内に入らない場合もある。このような場合は、給電盤11の上面を地面上から突出するように設置してもよく、給電盤11の上面が地面上から突出している場合は、給電場に侵入する車輌31cの両輪が、給電盤11の上面を跨ぐように車輌31cの侵入を誘導すればよい。 The power supply panel 11 is installed or buried on the ground so that the upper surface of the power supply panel 11 is arranged parallel to the lower surface of the power reception panel 12. In the state before power supply work, the upper surface of the power supply board 11 is arranged parallel to the flat surface 30 on the ground, and the vehicle 31c is set to be able to drive on a uniform flat surface and enter. The power supply circuit 29b is provided in a parking space, for example, and supplies wavelet-like electromagnetic energy to the power receiving board 12 mounted on the vehicle 31c by facing the power receiving board 12 while the vehicle 31c is parked. In the case where data on the transmission distance d of the synchronous resonance type transmission system according to one embodiment has been acquired, if a case occurs where there is a limit distance that can be transmitted due to special circumstances, the relationship between the vehicle height of the vehicle 31c In some cases, the transmission distance d does not fall within the limit distance. In such a case, the top surface of the power feed board 11 may be installed so as to protrude above the ground. If the top surface of the power feed board 11 protrudes above the ground, both wheels of the vehicle 31c entering the power feed field may be , the vehicle 31c may be guided to enter so as to straddle the upper surface of the power supply board 11.

負荷6は蓄電池であり、給電回路29bから受電盤12を介して供給されるウェイブレット状の電磁エネルギを蓄える。車輌31cは、例えば、ハイブリッド電気自動車(HEV)、プラグイン電気自動車(PEV)または電気自動車(EV)等であり、負荷6としての蓄電池に蓄えられた電磁エネルギで走行する。1次側操作部33は、例えば、図示を省略した操作盤に対して、外部からの人間(操作者)が操作することにより、給電の開始を示す給電開始信号または給電の停止を示す給電停止信号を給電回路29bに出力する。或いはセンサ等のIoTシステムからの信号を受信して、AI機能により自動的に1次側操作部33から給電開始信号や給電停止信号を給電回路29bに出力するようにしてもよい。1次側操作部33がAI機能により車輌31cの車高を決定した場合は、車輌31cの車高のデータも給電回路29bの駆動制御回路34aに送信する。 The load 6 is a storage battery, and stores wavelet-shaped electromagnetic energy supplied from the power supply circuit 29b via the power receiving board 12. The vehicle 31c is, for example, a hybrid electric vehicle (HEV), a plug-in electric vehicle (PEV), or an electric vehicle (EV), and runs on electromagnetic energy stored in a storage battery as the load 6. For example, the primary side operation unit 33 generates a power supply start signal indicating the start of power supply or a power supply stop signal indicating the stop of power supply by operating an operation panel (not shown) by an external person (operator). The signal is output to the power supply circuit 29b. Alternatively, a signal from an IoT system such as a sensor may be received, and a power supply start signal or a power supply stop signal may be automatically output from the primary operation unit 33 to the power supply circuit 29b using an AI function. When the primary operation unit 33 determines the vehicle height of the vehicle 31c using the AI function, data on the vehicle height of the vehicle 31c is also transmitted to the drive control circuit 34a of the power supply circuit 29b.

駆動制御回路34aは、図2に示すように、伝送データ記憶装置342aと、プログラム記憶装置342bと、出力装置343とにそれぞれ接続されており、給電盤11を制御して、給電側共振回路と受電側共振回路のそれぞれの振動位相を同期共振させる駆動制御を行う算術論理回路341を備えている。駆動制御回路34aの算術論理回路341は、受電側コンデンサCの端子間電圧が所定値を上回ったことを受電側検知器29が検知した後、送電側コイルLに流れる電流がピークとなるタイミングを送電側検知器28が検知して振動位相を同期共振に必要なタイミングを計算する。 The drive control circuit 34a is connected to a transmission data storage device 342a, a program storage device 342b, and an output device 343, respectively, as shown in FIG. It includes an arithmetic logic circuit 341 that performs drive control to synchronize and resonate the vibration phases of the power receiving side resonance circuits. The arithmetic logic circuit 341 of the drive control circuit 34a determines that after the power receiving side detector 29 detects that the voltage between the terminals of the power receiving side capacitor C2 exceeds a predetermined value, the current flowing through the power sending side coil L1 reaches a peak. The power transmission side detector 28 detects the timing and calculates the timing necessary for synchronized resonance of the vibration phase.

即ち、算術論理回路341は、同期共振が可能なタイミングで直流電源5から直流電圧を供給するように1次側スイッチング素子駆動回路340aを制御して、1次側LC回路2bと2次側LC回路3bの2つのLC共振回路の振動位相を同期共振させる。1次側操作部33から給電開始信号が入力されると、駆動制御回路34aの算術論理回路341は、設定された同期共振のタイミングでウェイブレット状の電磁エネルギを1次側LC回路2bから2次側LC回路3bへ無接触給電するように給電盤11の電流を制御する。算術論理回路341は、2次側LC回路3bから送信された受電側コンデンサCの端子間電圧が所定値を上回ったことを示す情報と、1次側LC回路2bから送信された1次側LC回路2bに流れる電流がピークとなるタイミングの情報を取得して、給電盤11と受電盤12との間の振動位相の同期共振による伝送効率が最大となる最適駆動タイミングを算出する処理を行う。 That is, the arithmetic logic circuit 341 controls the primary side switching element drive circuit 340a to supply DC voltage from the DC power supply 5 at a timing when synchronous resonance is possible, and controls the primary side LC circuit 2b and the secondary side LC circuit 340a. The vibration phases of the two LC resonance circuits of the circuit 3b are synchronized to resonate. When a power supply start signal is input from the primary side operation unit 33, the arithmetic logic circuit 341 of the drive control circuit 34a transmits wavelet-shaped electromagnetic energy from the primary side LC circuit 2b to 2 at the set synchronous resonance timing. The current of the power supply panel 11 is controlled so as to supply power to the next side LC circuit 3b without contact. The arithmetic logic circuit 341 receives information indicating that the voltage across the terminals of the power receiving capacitor C2 exceeds a predetermined value, which is transmitted from the secondary LC circuit 3b, and information transmitted from the primary LC circuit 2b. Information on the timing at which the current flowing through the LC circuit 2b reaches its peak is acquired, and processing is performed to calculate the optimal drive timing at which the transmission efficiency due to synchronous resonance of the vibration phase between the power supply board 11 and the power reception board 12 is maximized. .

駆動制御回路34aの算術論理回路341は、2次側通信部22を経由して1次側通信部21が受信した受電回路27bの電磁エネルギの振動特性の信号を入力し図3に示した入力素子Q及び送電制御素子Qの駆動タイミングを決定し、1次側スイッチング素子駆動回路340aを制御する。算術論理回路341は更に受電制御素子Q及び負荷転送制御素子Qの駆動タイミングを決定し、1次側通信部21から2次側通信部22に情報を送信し、2次側スイッチング素子駆動回路340bを制御する。1次側スイッチング素子駆動回路340aは、図3に示した入力素子Q及び送電制御素子Qのそれぞれの制御端子に制御信号を送ることで、それぞれ入力素子Q及び送電制御素子Qのオン/オフを制御すると同時に、送電側検知器28からの信号を受信し、算術論理回路341に送信する。2次側スイッチング素子駆動回路340bは、図3に示した受電制御素子Q及び負荷転送制御素子Qのそれぞれの制御端子に制御信号を送ることで、それぞれ受電制御素子Q及び負荷転送制御素子Qのオン/オフを制御すると同時に、受電側検知器29からの信号を受信して、2次側通信部22に伝達する。 The arithmetic logic circuit 341 of the drive control circuit 34a inputs the signal of the vibration characteristics of the electromagnetic energy of the power receiving circuit 27b received by the primary side communication unit 21 via the secondary side communication unit 22, and receives the input shown in FIG. The drive timing of the element Q 1 and the power transmission control element Q 2 is determined, and the primary side switching element drive circuit 340a is controlled. The arithmetic logic circuit 341 further determines the drive timing of the power reception control element Q3 and the load transfer control element Q4 , transmits information from the primary side communication section 21 to the secondary side communication section 22, and drives the secondary side switching element. Control circuit 340b. The primary side switching element drive circuit 340a controls the input element Q1 and the power transmission control element Q2 by sending control signals to the respective control terminals of the input element Q1 and the power transmission control element Q2 shown in FIG. At the same time as controlling on/off, it receives a signal from the power transmission side detector 28 and transmits it to the arithmetic logic circuit 341. The secondary side switching element drive circuit 340b sends control signals to the respective control terminals of the power reception control element Q3 and the load transfer control element Q4 shown in FIG. At the same time as controlling the on/off of the element Q 4 , it receives a signal from the power receiving side detector 29 and transmits it to the secondary side communication section 22 .

以上のように、算術論理回路341は、同期共振による伝送効率が最大となり、且つ図3に示した入力素子Q、送電制御素子Q、受電制御素子Q及び負荷転送制御素子Qが破損しないように、1次側スイッチング素子駆動回路340a及び2次側スイッチング素子駆動回路340bを制御する。入力素子Q、送電制御素子Q、受電制御素子Q及び負荷転送制御素子Qとしては、FET、静電誘導トランジスタ(SIT)、BJTの他、GTOサイリスタ、静電誘導(SI)サイリスタ等のサイリスタを含む電力用半導体素子を用いることが可能である。又、低い内部抵抗の要求を考慮すると、現状での市場での入手可能性により、MOSFETが入力素子Q、送電制御素子Q、受電制御素子Q及び負荷転送制御素子Qとして、それぞれ採用することが好ましい。 As described above, the arithmetic logic circuit 341 has the maximum transmission efficiency due to synchronous resonance, and the input element Q 1 , the power transmission control element Q 2 , the power reception control element Q 3 and the load transfer control element Q 4 shown in FIG. The primary side switching element drive circuit 340a and the secondary side switching element drive circuit 340b are controlled so as not to be damaged. Input element Q 1 , power transmission control element Q 2 , power reception control element Q 3 and load transfer control element Q 4 include FET, static induction transistor (SIT), BJT, GTO thyristor, static induction (SI) thyristor, etc. It is possible to use a power semiconductor device including a thyristor such as. In addition, considering the requirement for low internal resistance, MOSFETs can be used as the input element Q 1 , the power transmission control element Q 2 , the power reception control element Q 3 and the load transfer control element Q 4 due to their current availability on the market. It is preferable to adopt it.

一実施形態に係る同期共振型伝送システムでは、特定の駆動タイミングにおいて、駆動電圧が給電側共振回路にステップ入力されて、ウェイブレット状の減衰振動が励起される。ここで「駆動電圧」は、図3に示す直流電源5の端子間電圧である。そしてこのウェイブレット状の減衰振動は、駆動タイミングによって定まる駆動周期で周期的に励起され、振動位相の同期が実現する。即ち、算術論理回路341は、1次側LC回路2bと2次側LC回路3bとが、送電側コイルLと受電側コイルLを介してLC回路の振動の位相が同期共振をすることができるように、駆動制御回路34aを制御する。 In the synchronous resonant transmission system according to one embodiment, a drive voltage is step-input to the power supply side resonant circuit at a specific drive timing, and a wavelet-shaped damped vibration is excited. Here, the "driving voltage" is the voltage between the terminals of the DC power supply 5 shown in FIG. 3. This wavelet-shaped damped vibration is periodically excited at a drive period determined by the drive timing, and synchronization of the vibration phases is realized. That is, in the arithmetic logic circuit 341, the primary side LC circuit 2b and the secondary side LC circuit 3b perform synchronous resonance in the phase of vibration of the LC circuit via the power transmission side coil L1 and the power reception side coil L2 . The drive control circuit 34a is controlled so as to perform the following operations.

伝送データ記憶装置342aには入力素子Qの駆動タイミングや駆動周期のデータを車種、車両の製品番号等のデータと関連付けで格納し、学習機能を持たせることができる。特に、後述する図4のフローチャートに示す手順で得られた入力素子Qの駆動タイミングのデータを、駆動タイミングのデータが得られた温度等のデータと共に格納することにより、温度変化等の測定環境の変化に伴う、1次側LC回路2b及び2次側LC回路3b等に含まれる回路素子のインピーダンス変化にも迅速に対応する学習機能を持たせることができる。更に伝送データ記憶装置342aには、コイル間の距離(伝送距離)dと同期共振の駆動タイミングの関係を示すデータや、等価結合係数kと駆動タイミングの関係を示すデータが格納されている。伝送条件設定回路348は、伝送データ記憶装置342aから伝送距離dと駆動タイミングの関係を示すデータ及び等価結合係数kと駆動タイミングの関係を示すデータを読み出し、結合係数算出回路347が算出した等価結合係数kから最適な伝送距離dを決定する論理回路である。ここで「伝送距離d」は、図3に例示したような送電側コイルL1と受電側コイルL2の物理的な間隔を意味し、伝送距離dの具体例は図8に模式的に示されている。 The transmission data storage device 342a can store data on the drive timing and drive cycle of the input element Q1 in association with data such as the vehicle type and product number, and can have a learning function. In particular, by storing the drive timing data of the input element Q1 obtained by the procedure shown in the flowchart of FIG. It is possible to provide a learning function that quickly responds to changes in impedance of circuit elements included in the primary side LC circuit 2b, the secondary side LC circuit 3b, etc. due to changes in . Further, the transmission data storage device 342a stores data indicating the relationship between the distance d between the coils (transmission distance) and the drive timing of synchronous resonance, and data indicating the relationship between the equivalent coupling coefficient k and the drive timing. The transmission condition setting circuit 348 reads data indicating the relationship between the transmission distance d and drive timing and data indicating the relationship between the equivalent coupling coefficient k and drive timing from the transmission data storage device 342a, and calculates the equivalent coupling calculated by the coupling coefficient calculation circuit 347. This is a logic circuit that determines the optimal transmission distance d from the coefficient k. Here, the "transmission distance d" means the physical distance between the power transmitting coil L 1 and the power receiving coil L 2 as illustrated in FIG. 3, and a specific example of the transmission distance d is schematically illustrated in FIG. 8. has been done.

一般には、一実施形態に係る同期共振型伝送システムの伝送距離dは、当初未知である場合がありうる。同期共振型伝送システムの伝送距離dの限界のデータが取得されている場合は、伝送条件設定回路348は、給電目的となる車輌31cの車高を考慮して、伝送距離dが限界のデータ以内の範囲に入るように伝送間隔制御回路340cに命令を送信する。1次側操作部33がAI機能により車輌31cの車高を決定している場合は、車輌31cの車高のデータも考慮して、伝送距離dを制御する間隔制御機構に必要な移動距離を命令する。 Generally, the transmission distance d of the synchronous resonant transmission system according to one embodiment may be initially unknown. If data on the limit of the transmission distance d of the synchronous resonance transmission system has been acquired, the transmission condition setting circuit 348 determines whether the transmission distance d is within the limit data in consideration of the vehicle height of the vehicle 31c that is the purpose of power supply. A command is sent to the transmission interval control circuit 340c so as to fall within the range of . When the primary side operation unit 33 determines the vehicle height of the vehicle 31c using the AI function, it also takes into account the vehicle height data of the vehicle 31c and determines the travel distance required for the interval control mechanism that controls the transmission distance d. Command.

算術論理回路341は、図2に示すように、演算シークエンス制御回路344と、1次側電流測定制御回路345と、2次側電圧測定制御回路346と、結合係数算出回路347と、伝送条件設定回路348と、Aバス349aと、Bバス349bとから主に構成されている。演算シークエンス制御回路344は演算処理のシークエンスを制御する。Aバス349a及びBバス349bは、演算シークエンス制御回路344、1次側電流測定制御回路345、2次側電圧測定制御回路346、結合係数算出回路347、及び伝送条件設定回路348のそれぞれに情報及び命令を伝達するためのものである。 As shown in FIG. 2, the arithmetic logic circuit 341 includes an arithmetic sequence control circuit 344, a primary side current measurement control circuit 345, a secondary side voltage measurement control circuit 346, a coupling coefficient calculation circuit 347, and a transmission condition setting circuit. It mainly consists of a circuit 348, an A bus 349a, and a B bus 349b. The arithmetic sequence control circuit 344 controls the sequence of arithmetic processing. The A bus 349a and the B bus 349b supply information and information to each of the calculation sequence control circuit 344, the primary side current measurement control circuit 345, the secondary side voltage measurement control circuit 346, the coupling coefficient calculation circuit 347, and the transmission condition setting circuit 348. It is used to convey commands.

駆動制御回路34aは、1次側操作部33より給電停止信号が入力された場合、給電を開始させないか、又は給電を停止するように、1次側スイッチング素子駆動回路340aを制御する。駆動制御回路34aは、算術論理回路341が算出した同期共振の駆動タイミングで決まる駆動タイミングにおいて駆動電圧が給電側共振回路にステップ入力させるように、1次側スイッチング素子駆動回路340aを動作させる。1次側スイッチング素子駆動回路340aの駆動により、ウェイブレット状の電磁エネルギが給電回路29bから受電回路27bに給電される。1次側電流測定制御回路345は、送電側コイルLに流れる電流の変化を測定するように送電側検知器28を制御し、送電側検知器28からの情報を受信する。送電側コイルLに流れる電流がピークとなるタイミングは、図3に示すように、送電側検知器28により検知することが可能である。送電側検知器28は電流計に限定されない。電圧と電流は一定の位相差があるので、電圧を測定しても送電側コイルLに流れる電流がピークとなるタイミングを検知できる。 When the power supply stop signal is input from the primary side operation unit 33, the drive control circuit 34a controls the primary side switching element drive circuit 340a so as not to start the power supply or to stop the power supply. The drive control circuit 34a operates the primary side switching element drive circuit 340a so that the drive voltage is step-input to the power supply side resonant circuit at the drive timing determined by the synchronous resonance drive timing calculated by the arithmetic logic circuit 341. By driving the primary side switching element drive circuit 340a, wavelet-shaped electromagnetic energy is fed from the power feeding circuit 29b to the power receiving circuit 27b. The primary current measurement control circuit 345 controls the power transmission side detector 28 to measure changes in the current flowing through the power transmission side coil L1 , and receives information from the power transmission side detector 28. The timing at which the current flowing through the power transmission coil L1 reaches its peak can be detected by the power transmission side detector 28, as shown in FIG. The power transmission side detector 28 is not limited to an ammeter. Since there is a certain phase difference between voltage and current, even if the voltage is measured, the timing at which the current flowing through the power transmission coil L1 reaches its peak can be detected.

駆動制御回路34aは、受電側コンデンサCの端子間電圧の変化を、図3に示す受電側検知器29が検知するように、1次側通信部21、2次側通信部22、2次側スイッチング素子駆動回路340bを介して受電側検知器29の動作を制御する。更に、駆動制御回路34aは、受電側検知器29からの受電側コンデンサCの端子間電圧の変化の情報を、2次側スイッチング素子駆動回路340b、2次側通信部22,1次側通信部21を介して受信する。駆動制御回路34aは、更に受電側コンデンサCの端子間電圧に基づき、受電側コンデンサCの端子間電圧が所定値を上回ったことを2次側電圧測定制御回路346から1次側スイッチング素子駆動回路340aに伝達すると共に、2次側スイッチング素子駆動回路340bを制御する。 The drive control circuit 34a connects the primary side communication unit 21, the secondary side communication unit 22, and the secondary side so that the power reception side detector 29 shown in FIG. The operation of the power receiving side detector 29 is controlled via the side switching element drive circuit 340b. Furthermore, the drive control circuit 34a transmits information about the change in the voltage between the terminals of the power receiving capacitor C2 from the power receiving side detector 29 to the secondary switching element drive circuit 340b, the secondary communication unit 22, and the primary communication unit 22. The received information is received via the unit 21. The drive control circuit 34a further detects that the voltage between the terminals of the power receiving capacitor C2 exceeds a predetermined value based on the voltage across the terminals of the power receiving capacitor C2 . It is transmitted to the drive circuit 340a and also controls the secondary side switching element drive circuit 340b.

算術論理回路341には、マイクロチップとして実装されたマイクロプロセッサ(MPU)等を使用してコンピュータシステムを構成することが可能である。又、コンピュータシステムを構成する算術論理回路341として、算術演算機能を強化し信号処理に特化したデジタルシグナルプロセッサ(DSP)や、メモリや周辺回路を搭載し組込み機器制御を目的としたマイクロコントローラ(マイコン)等を用いてもよい。或いは、現在の汎用コンピュータのメインCPUを算術論理回路341に用いてもよい。更に、算術論理回路341の一部の構成又はすべての構成をフィールド・プログラマブル・ゲート・アレイ(FPGA)のようなプログラマブル・ロジック・デバイス(PLD)で構成してもよい。 For the arithmetic logic circuit 341, it is possible to configure a computer system using a microprocessor (MPU) or the like implemented as a microchip. In addition, as the arithmetic logic circuit 341 that makes up the computer system, there are digital signal processors (DSPs) that have enhanced arithmetic operation functions and specialize in signal processing, and microcontrollers that are equipped with memory and peripheral circuits and are designed to control embedded devices. microcomputer) etc. may also be used. Alternatively, the main CPU of a current general-purpose computer may be used for the arithmetic logic circuit 341. Furthermore, some or all of the arithmetic logic circuit 341 may be configured with a programmable logic device (PLD) such as a field programmable gate array (FPGA).

図2に示す算術論理回路341を含む駆動制御回路34aのコンピュータシステムにおいて、伝送データ記憶装置342aは、複数のレジスタ、複数のキャッシュメモリ、主記憶装置、補助記憶装置を含む一群の内から適宜選択された任意の組み合わせとすることも可能である。又、キャッシュメモリは1次キャッシュメモリと2次キャッシュメモリの組み合わせとしてもよく、更に3次キャッシュメモリを備えるヒエラルキーを有しても構わない。PLDによって、算術論理回路341の一部又はすべてを構成した場合は、伝送データ記憶装置342aは、PLDを構成する論理ブロックの一部に含まれるメモリブロック等のメモリ要素として構成することができる。更に、算術論理回路341は、CPUコア風のアレイとPLD風のプログラム可能なコアを同じチップに搭載した構造でもよい。このCPUコア風のアレイは、あらかじめPLD内部に搭載されたハードマクロCPUと、PLDの論理ブロックを用いて構成したソフトマクロCPUを含む。つまりPLDの内部においてソフトウェア処理とハードウェア処理を混在させた構成でもよい。 In the computer system of the drive control circuit 34a including the arithmetic logic circuit 341 shown in FIG. 2, the transmission data storage device 342a is appropriately selected from a group including a plurality of registers, a plurality of cache memories, a main storage device, and an auxiliary storage device. It is also possible to use any combination of Further, the cache memory may be a combination of a primary cache memory and a secondary cache memory, or may have a hierarchy including a tertiary cache memory. When part or all of the arithmetic logic circuit 341 is configured by a PLD, the transmission data storage device 342a can be configured as a memory element such as a memory block included in a part of the logic blocks that configure the PLD. Further, the arithmetic logic circuit 341 may have a structure in which a CPU core-like array and a PLD-like programmable core are mounted on the same chip. This CPU core-like array includes a hard macro CPU pre-installed inside the PLD and a soft macro CPU configured using the logic blocks of the PLD. In other words, a configuration in which software processing and hardware processing are mixed within the PLD may be used.

演算シークエンス制御回路344は、1次側電流測定制御回路345、2次側電圧測定制御回路346、結合係数算出回路347、及び伝送条件設定回路348のそれぞれの処理手順をコンピュータ・ソフトウェア・プログラムである同期共振型伝送制御用プログラムに従って、制御する。図2では、Aバス349aに、1次側スイッチング素子駆動回路340a、2次側スイッチング素子駆動回路340b、及び伝送間隔制御回路340cが接続されている構成が例示されている。一方、Bバス349bには、伝送データ記憶装置342a、プログラム記憶装置342b、及び出力装置343が接続されている構成が例示されているが、図2に示す構成に限定されるものではない。プログラム記憶装置342bには、図4に示した一連の同期共振型伝送制御方法の処理の流れに等価なアルゴリズムを実行する同期共振型伝送制御用プログラムが格納される。 The calculation sequence control circuit 344 is a computer software program that executes each processing procedure of the primary side current measurement control circuit 345, the secondary side voltage measurement control circuit 346, the coupling coefficient calculation circuit 347, and the transmission condition setting circuit 348. Control is performed according to the synchronous resonance type transmission control program. In FIG. 2, a configuration is illustrated in which a primary side switching element drive circuit 340a, a secondary side switching element drive circuit 340b, and a transmission interval control circuit 340c are connected to the A bus 349a. On the other hand, although a configuration is illustrated in which a transmission data storage device 342a, a program storage device 342b, and an output device 343 are connected to the B bus 349b, the configuration is not limited to the configuration shown in FIG. 2. The program storage device 342b stores a synchronous resonant transmission control program that executes an algorithm equivalent to the process flow of the synchronous resonant transmission control method shown in FIG.

図2に示す算術論理回路341を構成するハードウェア資源としての1次側電流測定制御回路345、2次側電圧測定制御回路346、結合係数算出回路347、及び伝送条件設定回路348は、論理的な機能に着目したハードウェア資源を形式的に表現しているのであって、必ずしも、半導体チップ上に物理的な領域としてそれぞれ独立して存在する機能ブロックを意味するものではないが、PLDの「論理ブロック」のような半導体チップ上に実装されたプログラム可能な論理コンポーネント等の現実に存在する構成を否定するものでもない。算術論理回路341の一部の構成又はすべての構成をFPGAのようなPLDで構成した場合は、図2に示した演算シークエンス制御回路344のプログラムカウンタやAバス349a及びBバス349b等のデータバスは省略可能である。 The primary side current measurement control circuit 345, the secondary side voltage measurement control circuit 346, the coupling coefficient calculation circuit 347, and the transmission condition setting circuit 348 as hardware resources constituting the arithmetic logic circuit 341 shown in FIG. It is a formal expression of hardware resources focusing on functions, and does not necessarily mean functional blocks that exist independently as physical areas on a semiconductor chip. This does not negate the actually existing configurations such as programmable logic components mounted on semiconductor chips such as "logic blocks". When part or all of the arithmetic logic circuit 341 is configured with a PLD such as an FPGA, the program counter of the arithmetic sequence control circuit 344 shown in FIG. 2 and data buses such as the A bus 349a and the B bus 349b can be omitted.

入力素子Qは、断続的な直流電圧を直流電源5からステップ入力して、1次側LC回路2bにウェイブレット状に減衰する電磁エネルギを発生させ、この電磁エネルギを2次側LC回路3bとの同期共振で無接触送電させる回路素子である。図3に例示したような送電制御素子Qが送電側コイルL1と直列に接続された構成において送電制御素子Qは、入力素子Qが1次側LC回路2bの自由減衰振動を制限して1次側LC回路2bにおけるウェイブレット状の減衰振動を実現させる際の補助をする。直流電源5は、擬似的な定電圧源でよく、単に整流したのみの簡単な構造の直流電源で大きなリップル成分を含む電源でもよいので制御回路や周辺回路が単純で壊れにくく回路設計が容易でしかも安価な直流電源5が採用できる。 The input element Q1 inputs an intermittent DC voltage from the DC power supply 5 in steps, generates electromagnetic energy that decays in a wavelet shape in the primary LC circuit 2b, and transfers this electromagnetic energy to the secondary LC circuit 3b. This is a circuit element that enables contactless power transmission through synchronous resonance with the In the configuration in which the power transmission control element Q2 is connected in series with the power transmission coil L1 as illustrated in FIG. This assists in realizing wavelet-like damped vibration in the primary side LC circuit 2b. The DC power supply 5 may be a pseudo constant voltage source, or may be a DC power supply with a simple structure that is simply rectified, and may include a large ripple component, so that the control circuit and peripheral circuits are simple, hard to break, and easy to design. Furthermore, an inexpensive DC power source 5 can be used.

互いに直列に接続された負荷側ダイオードDと負荷6とが受電側コンデンサCに並列接続されている。負荷6は、例えば車輌31cの車載用のリチウム(Li)イオン電池等の充電式電池が採用可能である。リチウムイオン電池には集電体や電界液の抵抗、電池内の界面にできる電気的2重層のコンデンサや抵抗が含まれる。図3に示すように、負荷側ダイオードDは、アノードが2次側LC回路3b側、カソードが負荷6側を向くように接続され、充電電流Iの流れる方向を一方向に限定している。図3では、負荷6のオン抵抗を含む浮遊抵抗をrで示している。 A load side diode D2 and a load 6, which are connected in series with each other, are connected in parallel to a power receiving side capacitor C2 . As the load 6, for example, a rechargeable battery such as a lithium (Li) ion battery mounted on the vehicle 31c can be adopted. Lithium-ion batteries include resistors in the current collector and electrolyte, and an electrical double layer capacitor and resistor that forms at the interface within the battery. As shown in FIG. 3, the load side diode D2 is connected so that its anode faces the secondary LC circuit 3b side and its cathode faces the load 6 side, and limits the direction in which the charging current IC flows to one direction. There is. In FIG. 3, the floating resistance including the on-resistance of the load 6 is indicated by r2 .

一実施形態に係る同期共振型伝送システムでは、入力素子Q、送電制御素子Q、受電制御素子Q及び負荷転送制御素子Qとして用いる電力用半導体素子は4個のみで良いので、ジュール熱の発生を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、入力素子Q及び送電制御素子Qをオン/オフ制御する単純な制御だけでよいので、駆動制御回路34aの電圧を高めてジュール熱の発生を押さえる設計も簡単にできる。 In the synchronous resonant transmission system according to one embodiment, only four power semiconductor elements are required as the input element Q 1 , the power transmission control element Q 2 , the power reception control element Q 3 , and the load transfer control element Q 4 . A cooling structure that prevents heat generation can be easily designed, and stray resistance, stray capacitance, and stray inductance can also be minimized. Moreover, since only simple control is required to turn on/off the input element Q 1 and the power transmission control element Q 2 , it is possible to easily design a design that increases the voltage of the drive control circuit 34 a and suppresses the generation of Joule heat.

更に、第1の還流ダイオードFWD1が入力素子QとしてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が送電制御素子QとしてのMOSFETのソース・ドレイン間に、第3の還流ダイオードFWD3が受電制御素子QとしてのMOSFETのソース・ドレイン間に、第4の還流ダイオードFWD4が負荷転送制御素子QとしてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。第3の還流ダイオードFWD3は、受電側コイルL2からの還流電流を流す方向に設けられるので、第2の還流ダイオードFWD2とは反対向きに設けられている。又、送電側コイルL1からの還流電流が直流電源5に還流するのを防ぐため、電源側ダイオードDが直流電源5と入力素子Qの間に直列接続されている。図1に示す実装回路でも、負荷6の等価インピーダンスXLeqを充電容量Csで近似して表現している。 Further, the first freewheeling diode FWD1 is connected between the source and drain of the MOSFET serving as the input element Q1 , the second freewheeling diode FWD2 is connected between the source and drain of the MOSFET serving as the power transmission control element Q2, and the third freewheeling diode FWD1 is connected between the source and drain of the MOSFET serving as the power transmission control element Q2 . The freewheeling diode FWD 3 is connected in parallel between the source and drain of the MOSFET as the power reception control element Q3 , and the fourth freewheeling diode FWD4 is connected in parallel between the source and drain of the MOSFET as the load transfer control element Q4 , respectively, as a protection element. has been done. The third freewheeling diode FWD 3 is provided in the direction in which the freewheeling current from the power receiving coil L 2 flows, and therefore is provided in the opposite direction to the second freewheeling diode FWD 2 . Further, in order to prevent the return current from the power transmission side coil L1 from flowing back to the DC power supply 5, a power supply side diode D1 is connected in series between the DC power supply 5 and the input element Q1 . In the mounted circuit shown in FIG. 1 as well, the equivalent impedance X Leq of the load 6 is approximated and expressed by the charging capacity C s .

一実施形態に係る同期共振型伝送システムの送電側コイルL1と受電側コイルL2は、例えば図8に模式的に示したような、渦巻き状平面コイルとすることができる。図8は、図3の送電側コイルL1と受電側コイルL2の物理的な構造がイメージしやすいように拡大して誇張した模式図であり、現実の寸法や比率とは異なるものである。一実施形態に係る同期共振型伝送システムでは、例えば、導体断面積16mm2の配線用ケーブルをそれぞれ9巻して直径約30cm程度の渦巻き状平面コイルとしている。この直径約30cm程度の2つの渦巻き状平面コイルを、間隔dのギャップを設けて、無接触で互いに平行に対抗させて配置する。1次側LC回路2bから2次側LC回路3bへの1次側LC回路2bと2次側LC回路3bの間の過渡応答相互誘導による伝送効率は、交流理論で定義される結合係数KACと同様な磁気的結合度の値に依存する。磁気的結合度は、2つの渦巻き状平面コイルの間隔dによって異なり、2つの渦巻き状平面コイの間隔dを制御する必要がある。 The power transmission side coil L 1 and the power reception side coil L 2 of the synchronous resonance type transmission system according to one embodiment can be spiral planar coils as schematically shown in FIG. 8, for example. FIG. 8 is a schematic diagram in which the physical structures of the power transmitting coil L 1 and power receiving coil L 2 in FIG. 3 are enlarged and exaggerated to make it easier to imagine, and the actual dimensions and ratios differ . In the synchronous resonance type transmission system according to one embodiment, for example, a wiring cable with a conductor cross-sectional area of 16 mm 2 is wound nine times each to form a spiral planar coil with a diameter of about 30 cm. These two spiral planar coils each having a diameter of about 30 cm are arranged parallel to each other without contact, with a gap of d between them. The transmission efficiency from the primary side LC circuit 2b to the secondary side LC circuit 3b due to transient response mutual induction between the primary side LC circuit 2b and the secondary side LC circuit 3b is determined by the coupling coefficient K AC defined in AC theory. depends on the value of the degree of magnetic coupling. The degree of magnetic coupling varies depending on the distance d between the two spiral plane coils, and it is necessary to control the distance d between the two spiral plane coils.

磁気的結合度は、2つの渦巻き状平面コイルの位置関係を機械的に調整する、2つの渦巻き状平面コイルの間に磁性体を挿入する、若しくは2つの渦巻き状平面コイルの周辺に磁性体を配置する、2つの渦巻き状平面コイルの間に働く吸引力若しくは反発力を利用してあらかじめ形作られたカップリングにアタッチする等によって調整することができる。 The degree of magnetic coupling can be determined by mechanically adjusting the positional relationship between the two spiral planar coils, inserting a magnetic material between the two spiral planar coils, or inserting a magnetic material around the two spiral planar coils. Adjustments can be made by, for example, attaching to a pre-shaped coupling using the attraction or repulsion force acting between two spiral planar coils.

(動作フロー)
一実施形態に係る同期共振型伝送システムの受電回路27bは、送電側コイルLと受電側コイルLとの間隔dが300mm以上離れた疎結合状態(等価結合係数k<0.08)においても、一度の同期共振で十分な電力を伝送可能とするために、図4に示すフローチャートの処理に従い、受電側電圧振幅が所定値を上回ってから、送電側コイルLに流れる電流がピークを示した一瞬のタイミングを選んで、直流電源5から電力を同期共振で供給する。この同期のタイミングを選択した電力供給動作を定期的に、即ち、受電側電圧振幅が最大になるまで繰り返す。ここで、「受電側電圧振幅」とは、受電側コンデンサCの端子間電圧の振幅を意味する。Lに流れる電流がピークを示した一瞬のタイミングを選んで、直流電源5から給電する動作を繰り返すことで、共振開始から最大伝送タイミングまでの時間が長くなっても、回路の寄生抵抗による共振電圧の減衰を回復することができるため、一度の同期共振で伝送できる電力を、同期共振がない場合に比べて大幅に向上させることができる。
(Operation flow)
The power receiving circuit 27b of the synchronous resonant transmission system according to one embodiment is in a loosely coupled state (equivalent coupling coefficient k<0.08) where the distance d between the power transmitting coil L1 and the power receiving coil L2 is 300 mm or more. In order to make it possible to transmit sufficient power with one synchronous resonance, the current flowing through the power transmitting coil L1 reaches its peak after the voltage amplitude on the power receiving side exceeds a predetermined value, according to the process shown in the flowchart shown in FIG. Selecting the momentary timing shown, power is supplied from the DC power supply 5 by synchronous resonance. The power supply operation with this synchronization timing selected is repeated periodically, that is, until the voltage amplitude on the receiving side reaches the maximum. Here, the "power receiving side voltage amplitude" means the amplitude of the voltage between the terminals of the power receiving side capacitor C2 . By selecting the instantaneous timing when the current flowing through L1 peaks and repeating the operation of supplying power from the DC power source 5, resonance due to parasitic resistance of the circuit can be avoided even if the time from the start of resonance to the maximum transmission timing becomes long. Since voltage attenuation can be recovered, the power that can be transmitted with one synchronous resonance can be significantly improved compared to the case without synchronous resonance.

一実施形態に係る同期共振型伝送システムでは、送電側に設けられた送電側検知器28からの信号は、2次側スイッチング素子駆動回路340bを介して2次側通信部22が1次側通信部21に送信する。1次側通信部21は受信した送電側検知器28からの信号を算術論理回路341に伝達する。送電側コイルLに流れる電流の変化は、1次側スイッチング素子駆動回路340aを介して算術論理回路341に入力される。算術論理回路341は、送電側コイルLに流れる電流がピークとなるタイミングを検知すると共に、受電側に設けられた受電側検知器29によって受電側コンデンサCの端子間電圧を検知する。そして、算術論理回路341は、受電側コンデンサCの端子間電圧が所定値を上回った後、最大となる前に、送電側コイルLに流れる電流がピークとなるタイミングにおいて直流電源5から直流電圧(駆動電圧)を定期的に繰り返し供給するように、入力素子Qの制御端子に制御信号を出力させる。以下、図4を参照しながら、一実施形態に係る同期共振型伝送システムの動作フローの例を説明する。 In the synchronous resonance type transmission system according to the embodiment, a signal from the power transmission side detector 28 provided on the power transmission side is transmitted to the secondary side communication unit 22 via the secondary side switching element drive circuit 340b to the primary side communication 21. The primary side communication unit 21 transmits the received signal from the power transmission side detector 28 to the arithmetic logic circuit 341. Changes in the current flowing through the power transmission coil L1 are input to the arithmetic logic circuit 341 via the primary switching element drive circuit 340a. The arithmetic logic circuit 341 detects the timing at which the current flowing through the power transmitting coil L1 reaches its peak, and also detects the voltage between the terminals of the power receiving capacitor C2 by the power receiving side detector 29 provided on the power receiving side. Then, after the voltage between the terminals of the power receiving capacitor C2 exceeds a predetermined value and before reaching the maximum, the arithmetic logic circuit 341 generates a direct current from the DC power source 5 at a timing when the current flowing through the power transmitting coil L1 reaches its peak. A control signal is output to the control terminal of the input element Q1 so that the voltage (driving voltage) is periodically and repeatedly supplied. Hereinafter, an example of the operation flow of the synchronous resonant transmission system according to one embodiment will be described with reference to FIG. 4.

まず、ステップS1において送電制御素子Q、受電制御素子Q、及び負荷転送制御素子Qをオフ状態にし、入力素子Qのみをオン状態にする。送電側コンデンサCの端子間電圧VC1は、リンギングをしながら一定電圧に充電される。受電側コンデンサC2の端子間電圧VC2は、負の値である。ここで、送電制御素子Qがオフ状態なので、送電側コイルL1側に電流が流れることがなく、より有効に送電側コンデンサCに電荷が蓄えられる。送電側コンデンサCに初期電圧を印加して電荷を蓄えた後、入力素子Qをオフ状態にする。 First, in step S1, the power transmission control element Q 2 , the power reception control element Q 3 , and the load transfer control element Q 4 are turned off, and only the input element Q 1 is turned on. The inter-terminal voltage V C1 of the power transmission side capacitor C 1 is charged to a constant voltage while ringing. The voltage V C2 between the terminals of the power receiving side capacitor C 2 is a negative value. Here, since the power transmission control element Q 2 is in the off state, no current flows to the power transmission side coil L 1 side, and electric charge is stored in the power transmission side capacitor C 1 more effectively. After applying an initial voltage to the power transmission side capacitor C 1 to store charge, the input element Q 1 is turned off.

次に、ステップS2において入力素子Qをオフ状態にした後、一定時間をおいて、送電制御素子Q及び受電制御素子Qを同時にオン状態にする。負荷転送制御素子Qはオフ状態である。送電制御素子Qがオン状態になると、送電側コンデンサCに蓄えられた電磁エネルギは送電側コイルL1に蓄積され、更に、1次側LC回路34bと2次側LC回路27bの間の過渡応答相互誘導が生じる。送電側コンデンサCに蓄えられた電磁エネルギが送電側コイルL1に移動すると、送電側コンデンサCの端子間電圧VC1は、負の極大値をとった後、0Vになる。1次側LC回路34bから2次側LC回路27bへの過渡応答相互誘導によって、受電側コイルL2に伝送された電磁エネルギは、受電制御素子Qがオン状態なので、受電側コンデンサCを充電する。この時、負荷転送制御素子Qがオフ状態なので、負荷6側に電流が流れることがなく、より有効に受電側コンデンサCに電荷が蓄えられる。 Next, in step S2, the input element Q 1 is turned off, and after a certain period of time, the power transmission control element Q 2 and the power reception control element Q 3 are simultaneously turned on. Load transfer control element Q4 is in an off state. When the power transmission control element Q2 is turned on, the electromagnetic energy stored in the power transmission side capacitor C1 is stored in the power transmission side coil L1 , and furthermore, the electromagnetic energy stored in the power transmission side capacitor C1 is stored in the power transmission side coil L1. Transient response mutual induction occurs. When the electromagnetic energy stored in the power transmission capacitor C 1 moves to the power transmission coil L 1 , the voltage V C1 between the terminals of the power transmission capacitor C 1 reaches a negative maximum value and then becomes 0V. Due to transient response mutual induction from the primary side LC circuit 34b to the secondary side LC circuit 27b, the electromagnetic energy transmitted to the power receiving side coil L 2 is transmitted to the power receiving side capacitor C 2 since the power receiving control element Q 3 is in the ON state. Charge. At this time, since the load transfer control element Q4 is in the off state, no current flows to the load 6 side, and charge is stored in the power receiving capacitor C2 more effectively.

そして、ステップS3において送電側に設けられた送電側検知器28からの信号が、2次側スイッチング素子駆動回路340b、2次側通信部22及び1次側通信部21を介して算術論理回路341に入力される。ステップS3において、算術論理回路341は受電側電圧振幅(=受電側コンデンサCの端子間電圧の振幅)が所定値を上回っているか判定する。ステップS3で算術論理回路341が、受電側電圧振幅が所定値を上回っていると判定したら、ステップS4に進む。ステップS4において、送電側コイルLに流れる電流の変化の情報が、送電側検知器28から1次側スイッチング素子駆動回路340aを介して算術論理回路341に入力される。ステップS4で算術論理回路341は、送電側電圧が零に減少したタイミング、即ち送電側コンデンサCの端子間電圧が0Vとなるゼロクロス時刻を、送電側コイルLに流れる電流がピークを示すタイミングとして判定する。ステップS4で、算術論理回路341が送電側コイルLに流れる電流がピークを示すタイミングを確認すると、その一瞬に、ステップS5に進む。ステップS5では、算術論理回路341は1次側スイッチング素子駆動回路340aに命令を送り、送電制御素子Q及び受電制御素子Qのオン状態を保ったままで、入力素子Qを瞬間的にオン状態にする。ステップS5で、1次側スイッチング素子駆動回路340aの制御によって直流電源5から送電側コンデンサCに直流電圧が供給されると、ステップS2に戻る。算術論理回路341はステップS2→S3→S4→S5→S2のループに沿った電圧供給動作を定期的に、即ち、受電側検知器29により検知される受電側電圧振幅(=受電側コンデンサCの端子間電圧の振幅)が最大になるまで繰り返すように制御する。 Then, in step S3, a signal from the power transmission side detector 28 provided on the power transmission side is transmitted to the arithmetic logic circuit 341 via the secondary side switching element drive circuit 340b, the secondary side communication section 22, and the primary side communication section 21. is input. In step S3, the arithmetic logic circuit 341 determines whether the power receiving side voltage amplitude (=amplitude of the voltage between the terminals of the power receiving side capacitor C2 ) exceeds a predetermined value. If the arithmetic logic circuit 341 determines in step S3 that the power receiving side voltage amplitude exceeds the predetermined value, the process proceeds to step S4. In step S4, information on changes in the current flowing through the power transmission coil L1 is input from the power transmission side detector 28 to the arithmetic logic circuit 341 via the primary switching element drive circuit 340a. In step S4, the arithmetic logic circuit 341 determines the timing when the power transmission side voltage decreases to zero, that is, the zero cross time when the voltage between the terminals of the power transmission side capacitor C1 becomes 0V, and the timing when the current flowing through the power transmission side coil L1 reaches its peak. Determine as. In step S4, when the arithmetic logic circuit 341 confirms the timing at which the current flowing through the power transmitting coil L1 reaches its peak, the process immediately proceeds to step S5. In step S5, the arithmetic logic circuit 341 sends a command to the primary side switching element drive circuit 340a , and momentarily turns on the input element Q1 while keeping the power transmission control element Q2 and the power reception control element Q3 in the on state. state. In step S5, when the DC voltage is supplied from the DC power supply 5 to the power transmission side capacitor C1 under the control of the primary side switching element drive circuit 340a, the process returns to step S2. The arithmetic logic circuit 341 periodically performs the voltage supply operation along the loop of steps S2 → S3 → S4 → S5 → S2, that is, the voltage amplitude on the power receiving side detected by the power receiving side detector 29 (=power receiving side capacitor C 2 control is repeated until the amplitude of the voltage between the terminals of

例えば、図5の実線で示したウェイブレット状の減衰波形に示すように、受電側電圧振幅が最大になる時点Pmaxまで、直流電源5から送電側コンデンサCへのウェイブレット状の給電が2回行われる。即ち、図5の破線で示した受電側電圧振幅が所定値を上回ってから、送電側電圧が零に減少して送電側検知器28の値がピークになるタイミングは、XP及びXPの2回であるから、このタイミングにおいて、直流電源5から送電側コンデンサCへの給電が行われる。この場合、破線で示した受電側電圧振幅が最大になるまでの時間(共振オフまでの1サイクルの時間)が長くなるが、1サイクルでの伝送電力量を大幅に向上することができるので、結果として、同期共振がない場合に比べて、所定時間での電力伝送量を増大し、かつ所定電力量を伝送するための時間を短くできる。 For example, as shown in the wavelet-like attenuation waveform shown by the solid line in FIG . It will be held twice. That is, after the power receiving side voltage amplitude shown by the broken line in FIG . Since it is performed twice, power is supplied from the DC power supply 5 to the power transmission side capacitor C1 at this timing. In this case, the time it takes for the voltage amplitude on the receiving side to reach its maximum (the time it takes for one cycle to turn off resonance), shown by the broken line, becomes longer, but the amount of power transmitted in one cycle can be significantly improved. As a result, compared to the case without synchronous resonance, the amount of power transmitted in a predetermined period of time can be increased and the time for transmitting the predetermined amount of power can be shortened.

図4の動作フローに戻ると、ステップS3において、受電側電圧振幅が最大になったタイミングPmaxを受電側検知器29により検知するとステップS6に進む。ステップS3において、受電側検知器29が検知した受電側電圧振幅が最大になったタイミングPmaxは、1次側スイッチング素子駆動回路340aを経由し、2次側通信部22から1次側通信部21へ送信される。1次側通信部21は受信した受電側電圧振幅が最大になったタイミングPmaxは、の情報を算術論理回路341に伝達する。ステップS6のタイミングで負荷転送制御素子Qをオン状態にすると、充電電流ICSが負荷6に流れ始める。ステップS6においては、負荷転送制御素子Qをオン状態にしたタイミングで、送電制御素子Q及び受電制御素子Qをオフ状態にする。送電制御素子Q及び受電制御素子Qのオフ状態は、1次側LC回路34bと2次側LC回路27bの間の過渡応答相互誘導によって、受電側コンデンサCの端子間電圧VC2が最大になり、送電側コンデンサCの端子間電圧VC1が0Vになる時点までである。この時、受電制御素子Qがオフ状態なので、より有効に充電電流ICSが負荷6に移動する。充電電流ICSは、送電制御素子Q及び受電制御素子Qがオフ状態になった後も増大し、ピーク値に到達した後、減少し、ゼロになる。 Returning to the operation flow in FIG. 4, in step S3, when the power receiving side detector 29 detects the timing P max at which the power receiving side voltage amplitude becomes maximum, the process proceeds to step S6. In step S3, the timing P max at which the power receiving side voltage amplitude detected by the power receiving side detector 29 becomes maximum is transmitted from the secondary side communication unit 22 to the primary side communication unit via the primary side switching element drive circuit 340a. 21. The primary side communication unit 21 transmits information to the arithmetic logic circuit 341 at the timing P max when the received power reception side voltage amplitude becomes maximum. When the load transfer control element Q4 is turned on at the timing of step S6, the charging current ICS starts flowing to the load 6. In step S6, the power transmission control element Q2 and the power reception control element Q3 are turned off at the timing when the load transfer control element Q4 is turned on. When the power transmission control element Q 2 and the power reception control element Q 3 are in the OFF state, the voltage V C2 between the terminals of the power reception side capacitor C 2 increases due to transient response mutual induction between the primary side LC circuit 34b and the secondary side LC circuit 27b. This is the time when the voltage V C1 between the terminals of the capacitor C 1 on the power transmission side reaches 0V. At this time, since the power receiving control element Q3 is in the off state, the charging current ICS is transferred to the load 6 more effectively. The charging current ICS increases even after the power transmission control element Q2 and the power reception control element Q3 are turned off, reaches a peak value, and then decreases to zero.

次に、充電電流Iが0Aとなった後に、負荷転送制御素子Qのオン状態を維持したまま、送電制御素子Q及び受電制御素子Qを同時に、再度、オン状態にすると、受電側コンデンサCの充電が開始される。1次側LC回路34bと2次側LC回路27bの電磁結合により送電側コンデンサCの端子間電圧VC1が0Vから負に減少し始める。更に、ステップS7において負荷転送制御素子Qをオフ状態とし、受電側コンデンサCの放電を開始すると、1次側LC回路34bと2次側LC回路27bの間の過渡応答相互誘導による還流が生じる。一実施形態に係る同期共振型伝送システムでは、負荷転送制御素子Qがオフ状態なので、負荷6側に電流が流れることがなく、より有効に受電側コイルL2に電流が流れる。受電側コイルL2と送電側コイルL1との相互誘導による送電側コイルL1を流れる還流電流により、送電側コンデンサCが充電され、端子間電圧VC1が、負の極大値をから正の値となり、増大し始める。又、端子間電圧VC2は、減少を開始し、負の極大値をとった後、0Vになる。 Next, after the charging current I C becomes 0A, the power transmission control element Q 2 and the power reception control element Q 3 are simultaneously turned on again while the load transfer control element Q 4 remains on. Charging of the side capacitor C2 is started. Due to the electromagnetic coupling between the primary side LC circuit 34b and the secondary side LC circuit 27b, the voltage V C1 between the terminals of the power transmission side capacitor C1 starts to decrease from 0V to a negative value. Furthermore, in step S7, when the load transfer control element Q4 is turned off and the power receiving capacitor C2 starts discharging, the reflux due to the transient response mutual induction between the primary side LC circuit 34b and the secondary side LC circuit 27b occurs. arise. In the synchronous resonance type transmission system according to one embodiment, since the load transfer control element Q4 is in the off state, no current flows to the load 6 side, and current flows more effectively to the power receiving side coil L2 . The return current flowing through the power transmitting coil L1 due to mutual induction between the power receiving coil L2 and the power transmitting coil L1 charges the power transmitting capacitor C1 , and the terminal voltage V C1 changes from a negative maximum value to a positive value. becomes the value of , and begins to increase. Further, the inter-terminal voltage V C2 starts to decrease, reaches a maximum negative value, and then becomes 0V.

そしてステップS8において、算術論理回路341は負荷6の受電量が所定値に到達したか否かを判定する。ステップS8において、算術論理回路341が負荷6の受電量が所定値に到達したと判定した場合には、図4に示すフローの処理を終了する。ステップS8において、負荷6の受電量が所定値に到達していないと判定された場合には、ステップS1に戻り、ステップS8の判定で所定値に到達するまで、ステップS8→S1→S2→……→S8のル-プの動作を繰り返す。 Then, in step S8, the arithmetic logic circuit 341 determines whether the amount of power received by the load 6 has reached a predetermined value. In step S8, when the arithmetic logic circuit 341 determines that the amount of power received by the load 6 has reached the predetermined value, the process of the flow shown in FIG. 4 is ended. If it is determined in step S8 that the amount of power received by the load 6 has not reached the predetermined value, the process returns to step S1 and continues until the amount of power received by the load 6 reaches the predetermined value as determined in step S8 → S1 → S2 →... ...→Repeat the loop operation of S8.

図4に示した一連の同期共振型伝送制御方法の処理の流れは、図4と等価なアルゴリズムの同期共振型伝送制御用プログラムにより、図2に示した駆動制御回路34aを制御して実行出来る。この同期共振型伝送制御用プログラムは、本発明の駆動制御回路34aを構成するコンピュータシステムのプログラム記憶装置342bに記憶させればよい。また、この同期共振型伝送制御用プログラムは、コンピュータ読取り可能な記録媒体に保存し、この記録媒体を駆動制御回路34aのプログラム記憶装置342bに読み込ませることにより、本発明の一連の劣化操作を実行することができる。ここで、「コンピュータ読取り可能な記録媒体」とは、例えばコンピュータの外部メモリ装置、半導体メモリ、磁気ディスク、光ディスク、光磁気ディスク、磁気テープなどのプログラムを記録することができるような媒体などを意味する。 The process flow of the series of synchronous resonant transmission control methods shown in FIG. 4 can be executed by controlling the drive control circuit 34a shown in FIG. 2 using a synchronous resonant transmission control program with an algorithm equivalent to that in FIG. . This synchronous resonance type transmission control program may be stored in the program storage device 342b of the computer system that constitutes the drive control circuit 34a of the present invention. Further, this synchronous resonance type transmission control program is stored in a computer-readable recording medium, and by reading this recording medium into the program storage device 342b of the drive control circuit 34a, a series of deterioration operations of the present invention are executed. can do. Here, the term "computer-readable recording medium" refers to a medium on which a program can be recorded, such as a computer's external memory device, semiconductor memory, magnetic disk, optical disk, magneto-optical disk, or magnetic tape. do.

具体的には、フレキシブルディスク、CD-ROM,MOディスク、HDDなどが「コンピュータ読取り可能な記録媒体」に含まれる。例えば、駆動制御回路34aの本体は、フレキシブルディスク装置(フレキシブルディスクドライブ)および光ディスク装置(光ディスクドライブ)を内蔵若しくは外部接続するように構成できる。フレキシブルディスクドライブに対してはフレキシブルディスクを、また光ディスクドライブに対してはCD-ROMをその挿入口から挿入し、所定の読み出し操作を行うことにより、これらの記録媒体に格納されたプログラムを、動制御回路34aを構成するプログラム記憶装置342bにインストールすることができる。更に、インターネット等の情報処理ネットワークを介して、このプログラムをプログラム記憶装置342bに格納することが可能である。 Specifically, "computer-readable recording media" include flexible disks, CD-ROMs, MO disks, HDDs, and the like. For example, the main body of the drive control circuit 34a can be configured to have a flexible disk device (flexible disk drive) and an optical disk device (optical disk drive) built-in or externally connected. By inserting a flexible disk into a flexible disk drive or a CD-ROM into an optical disk drive, and performing the specified reading operation, the programs stored on these recording media can be run. It can be installed in the program storage device 342b that constitutes the control circuit 34a. Further, this program can be stored in the program storage device 342b via an information processing network such as the Internet.

以上、説明したように、一実施形態に係る同期共振型伝送システム、同期共振型伝送制御方法及び同期共振型伝送制御用プログラムによれば、疎結合状態でも、一度の同期共振で十分な電力、即ち、回路の寄生抵抗が無いとしたときと同等の電力伝送を可能とし、より遠くへ無接触で、かつ短時間で給電することができる。例えば、所定の電力量を伝送するに当たり、同期を考慮しない参考技術では、32msecかかっていたところ、一実施形態に係る同期共振型伝送システム、同期共振型伝送制御方法及び同期共振型伝送制御用プログラムでは、約1/3の10.6msecで行うことが可能となる。 As described above, according to the synchronous resonant transmission system, the synchronous resonant transmission control method, and the synchronous resonant transmission control program according to the embodiment, even in a loosely coupled state, a single synchronous resonance can generate enough power. That is, it is possible to transmit power equivalent to that without the parasitic resistance of the circuit, and it is possible to supply power to a longer distance without contact and in a shorter time. For example, when transmitting a predetermined amount of electric power, it took 32 msec with the reference technology that does not take synchronization into consideration, but according to an embodiment of the present invention, it takes 32 msec to transmit a predetermined amount of power. In this case, it is possible to perform the process in 10.6 msec, which is about 1/3.

具体的には、本発明者らが当初検討した同期を考慮しない参考技術では、共振開始から最大伝送タイミングまでの時間が長くなると、回路の寄生抵抗により共振電圧が減衰するため、最大伝送タイミングで共振を一時的に切る時点において伝送電圧が減少してしまい、一度の無接触送電で十分な電力を伝送できず、所定の電力量を伝送するまでに長時間を要していた。即ち、図6に示すように、寄生抵抗を想定しなければ、ポイントPmaxにおいて、破線で示した受電側電圧振幅が最大電圧25Vとなるはずであるが、実際は寄生抵抗により共振をオフした時点(共振時間3msec)Xで、受電側コンデンサCに12.5Vの蓄電しかできない。これに対し、一実施形態に係る同期共振型伝送システムでは、図5に示すように、共振中に、所定のタイミングXP,XPのそれぞれで、実線で示したようなウェイブレット状の給電を行っているため、共振開始から最大伝送タイミングPmaxまでの時間が、同期非考慮の参考技術よりも長くなるものの、回路の寄生抵抗により減衰した共振電圧は給電により回復することができる。このため、一度の同期共振で伝送できる電力量を大幅に向上させることができる。即ち、5.6msecの共振時間で、受電側コンデンサCに25Vの蓄電が可能である。 Specifically, in the reference technology that the inventors originally considered that does not take synchronization into account, as the time from the start of resonance to the maximum transmission timing becomes longer, the resonant voltage is attenuated by the parasitic resistance of the circuit, The transmission voltage decreases when the resonance is temporarily cut off, making it impossible to transmit sufficient power in one contactless power transmission, and it takes a long time to transmit a predetermined amount of power. In other words, as shown in Fig. 6, if parasitic resistance is not assumed, the voltage amplitude on the power receiving side indicated by the broken line should reach a maximum voltage of 25V at point P max , but in reality, the voltage amplitude on the receiving side shown by the broken line should reach the maximum voltage of 25V, but in reality, the amplitude at the point when resonance is turned off due to parasitic resistance (Resonance time: 3 msec) At XR , only 12.5V can be stored in the power receiving capacitor C2 . On the other hand, in the synchronous resonant transmission system according to one embodiment , as shown in FIG. Because of this, although the time from the start of resonance to the maximum transmission timing P max is longer than in the reference technology that does not consider synchronization, the resonant voltage attenuated by the parasitic resistance of the circuit can be recovered by power supply. Therefore, the amount of power that can be transmitted in one synchronous resonance can be significantly increased. That is, with a resonance time of 5.6 msec, 25V can be stored in the power receiving capacitor C2 .

以下に、1サイクルの時間と、1サイクルで伝送可能な電力量の例を示す。
[1サイクルの時間]
共振以外の時間を5msecとした場合、本発明者らが当初検討した同期非考慮システムの1サイクルは、3.0msec+5msec=8msecであるのに対し、一実施形態に係る同期共振型伝送システム、同期共振型伝送制御方法及び同期共振型伝送制御用プログラムでは、5.6msec+5msec=10.6msecとなる。即ち、本発明では、参考技術である同期非考慮システムに比べて、1サイクルの時間が約1.3倍となる。
[1サイクルの伝送電力量」
伝送電力量Wは、W=(1/2)CVで表されるため、同期非考慮システムの伝送電圧12.5Vに対して、本発明の伝送電圧がその2倍である25Vになったということは、本発明では、参考技術である同期非考慮システムに比べて、1サイクルの伝送電力量が約4倍となったことを意味する。
Examples of the time of one cycle and the amount of power that can be transmitted in one cycle are shown below.
[1 cycle time]
When the time other than resonance is set to 5 msec, one cycle of the synchronous non-consideration system that the inventors originally considered is 3.0 msec + 5 msec = 8 msec, whereas the synchronous resonant transmission system according to one embodiment, the synchronous In the resonance type transmission control method and the synchronous resonance type transmission control program, 5.6 msec+5 msec=10.6 msec. That is, in the present invention, the time for one cycle is approximately 1.3 times that of the reference technology, which is a system that does not consider synchronization.
[Transmission power amount for one cycle]
Since the transmission power amount W is expressed as W = (1/2) CV 2 , the transmission voltage of the system without consideration of synchronization is 12.5V, whereas the transmission voltage of the present invention is 25V, which is twice that. This means that in the present invention, the amount of transmitted power per cycle is approximately four times as much as that of the reference technology, which is a system that does not take synchronization into consideration.

以上より、本発明者らが当初検討した参考技術ない係る同期非考慮システムに比べて、本発明では約1.3倍の時間をかけて、約4倍の電力量を伝送可能であることが分かる。即ち、本発明によれば、送電側コイルと受電側コイルとの間隔が300mm以上離れた疎結合状態(等価結合係数k<0.08)であっても、一度の同期共振で十分な電力を伝送できるため、より遠くへ無接触で、かつ短時間に給電することが可能となる。 From the above, the present invention can transmit about 4 times the amount of power in about 1.3 times the time compared to the reference technology and non-synchronization system originally considered by the inventors. I understand. That is, according to the present invention, even in a loosely coupled state (equivalent coupling coefficient k<0.08) where the power transmitting side coil and the power receiving side coil are separated by 300 mm or more, sufficient power can be generated with one synchronous resonance. Since it can be transmitted, it becomes possible to supply power to a longer distance without contact and in a shorter time.

(その他の実施形態)
上記のように、本発明は上記の代表的な一実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。例えば、上記の一実施形態に係る同期共振型伝送システムの説明では便宜上、入力素子Q、送電制御素子Q、受電制御素子Q及び負荷転送制御素子Qと4つのスイッチング素子を有する回路構成で説明したが、負荷転送制御素子Qを省略した3つのスイッチング素子を有する回路構成でもよい。要は、2次側LC回路3bの側の共振振幅電圧が所定値を上回ったことを受電側検知器29が検知した後、1次側LC回路2bに流れる電流がピークとなるタイミングを送電側検知器28が検知したときに、直流電源5から直流電圧を供給するように、算術論理回路341が1次側スイッチング素子駆動回路340aを制御する構成であればよい。
(Other embodiments)
As mentioned above, although the present invention has been described with reference to the above-described exemplary embodiment, the discussion and drawings forming a part of this disclosure should not be understood as limiting the present invention. Various alternative embodiments, implementations, and operational techniques will be apparent to those skilled in the art from this disclosure. For example, in the description of the synchronous resonant transmission system according to the above embodiment, for convenience, a circuit including an input element Q 1 , a power transmission control element Q 2 , a power reception control element Q 3 , and a load transfer control element Q 4 and four switching elements is used. Although the configuration has been described, a circuit configuration having three switching elements without the load transfer control element Q4 may be used. In short, after the power receiving side detector 29 detects that the resonance amplitude voltage on the side of the secondary side LC circuit 3b exceeds a predetermined value, the power transmitting side determines the timing at which the current flowing through the primary side LC circuit 2b reaches its peak. Any configuration is sufficient as long as the arithmetic logic circuit 341 controls the primary side switching element drive circuit 340a so that the DC voltage is supplied from the DC power supply 5 when the detector 28 detects the detection.

同様な趣旨から、図3に例示した回路構成から受電制御素子Qと負荷転送制御素子Qとを省略した2つのスイッチング素子を有する回路構成でもよい。更には、図3に例示した回路構成から送電制御素子Q、受電制御素子Q及び負荷転送制御素子Qを省略し、入力素子Qのみを有する回路構成でもよいことは、上記の説明の趣旨から理解できるであろう。 From the same point of view, a circuit configuration having two switching elements may be used in which the power reception control element Q 3 and the load transfer control element Q 4 are omitted from the circuit configuration illustrated in FIG. 3 . Further, as explained above, the power transmission control element Q 2 , the power reception control element Q 3 and the load transfer control element Q 4 may be omitted from the circuit configuration illustrated in FIG. 3, and the circuit configuration may include only the input element Q 1 . It can be understood from the purpose of

更に、例えば、送電側コイルLと受電側コイルLとの間隔が300mm以上離れた状態でも、十分な電力を伝送できるため、倉庫内で移動する車両用の給電であれば、倉庫内の移動経路に沿って、複数の送電コイルを連続的に埋め込んでおけば、車両が移動状態であっても車両に無接触で給電することができる。勿論、更にインフラを整備すれば、公道での車両に無接触で給電が可能になる。以上のとおり本発明は、本明細書及び図面に記載していない様々な実施形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 Furthermore, for example, even when the distance between the power transmitting coil L1 and the power receiving coil L2 is 300 mm or more, sufficient power can be transmitted. By embedding a plurality of power transmission coils continuously along the travel route, power can be supplied to the vehicle without contact even when the vehicle is in motion. Of course, if further infrastructure is developed, it will be possible to supply electricity to vehicles on public roads without contact. As described above, the present invention includes various embodiments not described in the specification and drawings, and the technical scope of the present invention is determined by the matters specifying the invention in the claims that are reasonable from the above description. only.

2b…1次側LC回路、3b…2次側LC回路、5…直流電源、6…負荷、21…1次側通信部、22…2次側通信部、23…2次側操作部、27b…受電回路、28…検知器(送電側検知器)、29…検知器(受電側検知器)、29b…給電回路、30…平坦面、31c…車輌、33…1次側操作部、34a…駆動制御回路、340a…1次側スイッチング素子駆動回路、340b…2次側スイッチング素子駆動回路、340c…伝送間隔制御回路、341…算術論理回路、342a…伝送データ記憶装置、342b…プログラム記憶装置、343…出力装置、344…演算シークエンス制御回路、345…1次側電流測定制御回路、346…2次側電圧測定制御回路、347…結合係数算出回路、348…伝送条件設定回路、349a…Aバス、349b…Bバス 2b...Primary side LC circuit, 3b...Secondary side LC circuit, 5...DC power supply, 6...Load, 21...Primary side communication section, 22...Secondary side communication section, 23...Secondary side operation section, 27b ...Power receiving circuit, 28...Detector (power transmitting side detector), 29...Detector (power receiving side detector), 29b...Power feeding circuit, 30...Flat surface, 31c...Vehicle, 33...Primary side operation section, 34a... Drive control circuit, 340a...Primary side switching element drive circuit, 340b...Secondary side switching element drive circuit, 340c...Transmission interval control circuit, 341...Arithmetic logic circuit, 342a...Transmission data storage device, 342b...Program storage device, 343... Output device, 344... Arithmetic sequence control circuit, 345... Primary side current measurement control circuit, 346... Secondary side voltage measurement control circuit, 347... Coupling coefficient calculation circuit, 348... Transmission condition setting circuit, 349a... A bus , 349b...B bus

Claims (3)

送電側コンデンサ、前記送電側コンデンサに並列接続された送電側コイル、及び前記送電側コイルに流れる電流の変化を検知する送電側検知器を有する1次側LC回路と、
直流電源、前記直流電源から供給される直流電圧を前記送電側コンデンサの一方の端子と他方の端子の間にステップ入力する入力素子を有する励起回路と、
前記送電側コイルに対向した受電側コイル、前記受電側コイルに並列接続された受電側コンデンサ、及び前記受電側コンデンサの端子間電圧の変化を検知する受電側検知器を有する2次側LC回路と、
前記受電側コンデンサの端子間を接続し、前記受電側コンデンサから前記受電側コンデンサに蓄積された静電エネルギを受け取る負荷を有する負荷回路と、
前記入力素子の制御端子に前記ステップ入力用の制御信号を送る1次側スイッチング素子駆動回路と、
前記受電側コンデンサの端子間電圧が所定値を上回ったことを前記受電側検知器が検知した後、前記送電側コイルに流れる電流がピークとなるタイミングを前記送電側検知器が検知したときに、前記直流電源から前記直流電圧を供給するように、前記1次側スイッチング素子駆動回路を制御する算術論理回路と、
を備えることを特徴とする同期共振型伝送システム。
a primary side LC circuit having a power transmission side capacitor, a power transmission side coil connected in parallel to the power transmission side capacitor, and a power transmission side detector that detects a change in the current flowing through the power transmission side coil;
an excitation circuit having a DC power source and an input element for stepwise inputting a DC voltage supplied from the DC power source between one terminal and the other terminal of the power transmission side capacitor;
a secondary side LC circuit including a power receiving side coil facing the power transmitting side coil, a power receiving side capacitor connected in parallel to the power receiving side coil, and a power receiving side detector that detects a change in voltage between terminals of the power receiving side capacitor; ,
a load circuit having a load connected between terminals of the power receiving capacitor and receiving electrostatic energy accumulated in the power receiving capacitor from the power receiving capacitor;
a primary side switching element drive circuit that sends a control signal for the step input to a control terminal of the input element;
After the power receiving side detector detects that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value, when the power transmitting side detector detects a timing at which the current flowing through the power transmitting side coil reaches a peak, an arithmetic logic circuit that controls the primary side switching element drive circuit so as to supply the DC voltage from the DC power supply;
A synchronous resonant transmission system characterized by comprising:
送電側コンデンサ、前記送電側コンデンサに並列接続された送電側コイル及び前記送電側コイルに流れる電流の変化を検知する送電側検知器を有する1次側LC回路と、直流電源、前記直流電源から供給される直流電圧を前記送電側コンデンサの一方の端子と他方の端子の間にステップ入力する入力素子を有する励起回路と、前記送電側コイルに対向した受電側コイル、前記受電側コイルに並列接続された受電側コンデンサ及び前記受電側コンデンサの端子間電圧の変化を検知する受電側検知器を有する2次側LC回路と、前記受電側コンデンサの端子間を接続する回路において前記受電側コンデンサから前記受電側コンデンサに蓄積された静電エネルギを受け取る負荷を備える同期共振型伝送システムの動作を制御する同期共振型伝送制御方法であって、
前記受電側コンデンサの端子間電圧が所定値を上回ったことを前記受電側検知器が検知するステップと、
前記送電側コイルに流れる電流がピークとなるタイミングを前記送電側検知器が検知したときに、前記直流電源から前記直流電圧を供給するステップと
を含むことを特徴とする同期共振型伝送制御方法。
A primary LC circuit including a power transmission side capacitor, a power transmission side coil connected in parallel to the power transmission side capacitor, and a power transmission side detector that detects a change in the current flowing through the power transmission side coil, a DC power supply, and a DC power supply supplied from the DC power supply. an excitation circuit having an input element that inputs a DC voltage between one terminal and the other terminal of the power transmission side capacitor in a stepwise manner; a power reception side coil facing the power transmission side coil; and a power reception side coil connected in parallel to the power reception side coil. a secondary side LC circuit having a power receiving side capacitor and a power receiving side detector that detects a change in the voltage between the terminals of the power receiving side capacitor; and a circuit connecting between the terminals of the power receiving side capacitor; A synchronous resonant transmission control method for controlling the operation of a synchronous resonant transmission system comprising a load that receives electrostatic energy stored in a side capacitor, the method comprising:
a step in which the power receiving side detector detects that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value;
A synchronous resonance type transmission control method comprising: supplying the DC voltage from the DC power supply when the power transmission side detector detects a timing at which the current flowing through the power transmission side coil reaches a peak.
送電側コンデンサ、前記送電側コンデンサに並列接続された送電側コイル及び前記送電側コイルに流れる電流の変化を検知する送電側検知器を有する1次側LC回路と、直流電源、前記直流電源から供給される直流電圧を前記送電側コンデンサの一方の端子と他方の端子の間にステップ入力する入力素子を有する励起回路と、前記送電側コイルに対向した受電側コイル、前記受電側コイルに並列接続された受電側コンデンサ及び前記受電側コンデンサの端子間電圧の変化を検知する受電側検知器を有する2次側LC回路と、前記受電側コンデンサの端子間を接続する回路において前記受電側コンデンサから前記受電側コンデンサに蓄積された静電エネルギを受け取る負荷を備える同期共振型伝送システムの動作を制御する同期共振型伝送制御用プログラムであって、
前記受電側コンデンサの端子間電圧が所定値を上回ったことを前記受電側検知器に検知させる命令と、
前記送電側コイルに流れる電流がピークとなるタイミングを前記送電側検知器が検知したときに、前記直流電源から前記直流電圧を供給させる命令と
を含む一連の命令をコンピュータシステムに実行させることを特徴とする同期共振型伝送制御用プログラム。
A primary LC circuit including a power transmission side capacitor, a power transmission side coil connected in parallel to the power transmission side capacitor, and a power transmission side detector that detects a change in the current flowing through the power transmission side coil, a DC power supply, and a DC power supply supplied from the DC power supply. an excitation circuit having an input element that inputs a DC voltage between one terminal and the other terminal of the power transmission side capacitor in a stepwise manner; a power reception side coil facing the power transmission side coil; and a power reception side coil connected in parallel to the power reception side coil. a secondary side LC circuit having a power receiving side capacitor and a power receiving side detector that detects a change in the voltage between the terminals of the power receiving side capacitor; and a circuit connecting between the terminals of the power receiving side capacitor; A synchronous resonant transmission control program that controls the operation of a synchronous resonant transmission system including a load that receives electrostatic energy accumulated in a side capacitor,
a command to cause the power receiving side detector to detect that the voltage between the terminals of the power receiving side capacitor exceeds a predetermined value;
When the power transmission side detector detects a timing at which the current flowing through the power transmission side coil reaches a peak, the computer system is caused to execute a series of instructions including an instruction to cause the DC power source to supply the DC voltage. A program for controlling synchronous resonant transmission.
JP2020117364A 2020-07-07 2020-07-07 Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control Active JP7420671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117364A JP7420671B2 (en) 2020-07-07 2020-07-07 Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117364A JP7420671B2 (en) 2020-07-07 2020-07-07 Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control

Publications (2)

Publication Number Publication Date
JP2022014808A JP2022014808A (en) 2022-01-20
JP7420671B2 true JP7420671B2 (en) 2024-01-23

Family

ID=80120419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117364A Active JP7420671B2 (en) 2020-07-07 2020-07-07 Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control

Country Status (1)

Country Link
JP (1) JP7420671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023166193A (en) * 2022-05-09 2023-11-21 Thk株式会社 Vehicle height adjustment method and vehicle height adjustment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369401A (en) 2001-06-01 2002-12-20 Origin Electric Co Ltd Capacitor-charging method and charger thereof
JP2017175718A (en) 2016-03-22 2017-09-28 Tdk株式会社 Wireless power transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369401A (en) 2001-06-01 2002-12-20 Origin Electric Co Ltd Capacitor-charging method and charger thereof
JP2017175718A (en) 2016-03-22 2017-09-28 Tdk株式会社 Wireless power transmission system

Also Published As

Publication number Publication date
JP2022014808A (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US8519666B2 (en) Charging system including a device housing a battery and charging pad
US9379572B2 (en) Contactless power transmitting device, contactless power receiving device, and contactless power transfer system
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP5915857B2 (en) antenna
JP6464520B2 (en) Non-contact power transmission device, non-contact power reception device, and non-contact power transmission system
JP2013017254A (en) Power transmission system
US9774218B2 (en) Non-contact power feeding apparatus
Diekhans et al. A systematic comparison of hard-and soft-switching topologies for inductive power transfer systems
JP6176547B2 (en) Non-contact power feeding device and starting method of non-contact power feeding device
JP7420671B2 (en) Synchronous resonance transmission system, synchronous resonance transmission control method, and program for synchronous resonance transmission control
JP2013038893A (en) Power transmission system
JP2016182002A (en) Non-contact power feeding apparatus and non-contact power feeding system using the same
JP5605301B2 (en) Contactless power supply system
JP5761508B2 (en) Power transmission system
JP5510670B2 (en) Power transmission system
JP5888504B2 (en) antenna
JP5761507B2 (en) Power transmission system
JP2015100246A (en) Non-contact power transmission system, charging station and vehicle
JP7116288B2 (en) power transmission equipment
JP6685015B2 (en) NON-CONTACT POWER FEEDER, NON-CONTACT POWER TRANSMISSION SYSTEM, PROGRAM, AND METHOD FOR CONTROLLING NON-CONTACT POWER FEED DEVICE
JP6183671B2 (en) Non-contact power feeding device control method and non-contact power feeding device
JP5812264B2 (en) Power transmission system
JP7041644B2 (en) Power transmission device
JP2018166394A (en) Inductive power supply device
WO2024100983A1 (en) Power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150