JP7416376B2 - Piezoelectric elements and piezoelectric devices - Google Patents

Piezoelectric elements and piezoelectric devices Download PDF

Info

Publication number
JP7416376B2
JP7416376B2 JP2019214368A JP2019214368A JP7416376B2 JP 7416376 B2 JP7416376 B2 JP 7416376B2 JP 2019214368 A JP2019214368 A JP 2019214368A JP 2019214368 A JP2019214368 A JP 2019214368A JP 7416376 B2 JP7416376 B2 JP 7416376B2
Authority
JP
Japan
Prior art keywords
piezoelectric
layer
piezoelectric element
organic protective
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019214368A
Other languages
Japanese (ja)
Other versions
JP2021086904A (en
Inventor
勝哉 今西
聡 清水
健 小笠原
智美 長瀬
寧 佐藤
一洋 野中
竜夫 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIKIN FINETECH, LTD.
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DAIKIN FINETECH, LTD.
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIKIN FINETECH, LTD., National Institute of Advanced Industrial Science and Technology AIST filed Critical DAIKIN FINETECH, LTD.
Priority to JP2019214368A priority Critical patent/JP7416376B2/en
Priority to PCT/JP2020/043815 priority patent/WO2021106930A1/en
Publication of JP2021086904A publication Critical patent/JP2021086904A/en
Application granted granted Critical
Publication of JP7416376B2 publication Critical patent/JP7416376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/60Piezoelectric or electrostrictive devices having a coaxial cable structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電素子に関し、より詳細には、ケーブル状またはワイヤー状などと称され得る、全体として細長い線状の形態を有する圧電素子に関する。また、本発明はかかる圧電素子を含む圧電装置に関する。 The present invention relates to a piezoelectric element, and more particularly, to a piezoelectric element having a generally elongated linear shape, which may be referred to as a cable shape, a wire shape, or the like. The present invention also relates to a piezoelectric device including such a piezoelectric element.

圧電素子は、圧電体を使用した素子であり、例えば、圧電体の正圧電効果を利用する(圧電体に加えられた外力を電圧に変換する)ことによってセンサとして、また、圧電体の逆圧電効果を利用する(圧電体に印加された電圧を力に変換する)ことによってアクチュエータとして、さまざまな用途の圧電装置において使用されている。 A piezoelectric element is an element that uses a piezoelectric material. For example, it can be used as a sensor by utilizing the positive piezoelectric effect of the piezoelectric material (converting external force applied to the piezoelectric material into voltage), or as a sensor that uses the piezoelectric material's inverse piezoelectric effect. By utilizing the effect (converting the voltage applied to the piezoelectric body into force), it is used as an actuator in piezoelectric devices for various purposes.

圧電体は、圧電セラミックスに代表される無機圧電体と、圧電ポリマーに代表される有機圧電体とに大別され得る。一般的に、無機圧電体は有機圧電体に比べて硬く、有機圧電体は可撓性であり得る。圧電セラミックスから成る無機圧電体を使用した圧電素子は、通常、面状の形態で(例えば面状センサとして)構成される(特許文献1参照)。他方、ケーブル状またはワイヤー状などと称され得る、全体として細長い線状の形態を有する圧電素子では、柔軟性を有する(曲げ可能である)ように、可撓性の有機圧電体が使用され得る(特許文献2参照)。 Piezoelectric materials can be broadly classified into inorganic piezoelectric materials represented by piezoelectric ceramics and organic piezoelectric materials represented by piezoelectric polymers. In general, inorganic piezoelectric materials are harder than organic piezoelectric materials, and organic piezoelectric materials can be flexible. A piezoelectric element using an inorganic piezoelectric body made of piezoelectric ceramics is usually configured in a planar form (for example, as a planar sensor) (see Patent Document 1). On the other hand, in piezoelectric elements having a generally elongated linear form, which may be referred to as cable-like or wire-like, flexible organic piezoelectric materials may be used so that they are flexible (bendable). (See Patent Document 2).

特開2004-265899号公報Japanese Patent Application Publication No. 2004-265899 特開2017-183570号公報Japanese Patent Application Publication No. 2017-183570

一般的に、無機圧電体は、高温に曝されても安定であり得、有機圧電体に比べて高い耐熱温度を有する。本発明者らは、全体として細長い線状の形態を有し、柔軟性を有し、かつ、高い耐熱性を有する新規な圧電素子を実現すべく、圧電素子に無機圧電体を適用することについて検討した。しかしながら、柔軟性を有する圧電素子を、導電性の表面を有する芯線(内側電極)と、芯線を被覆する無機圧電体層と、無機圧電体層を被覆する導電体層(外側電極)とから形成すると、圧電応答性を示さないことがあり、センサとしては外力の経時変化に応じた圧電出力を計測できず、アクチュエータとしては電圧の経時変化に応じた変形をもたらせないという問題があることが判明した。 In general, inorganic piezoelectric materials can be stable even when exposed to high temperatures, and have a higher heat resistance temperature than organic piezoelectric materials. The present inventors have focused on applying an inorganic piezoelectric material to a piezoelectric element in order to realize a novel piezoelectric element that has an elongated linear shape as a whole, has flexibility, and has high heat resistance. investigated. However, a flexible piezoelectric element is formed from a core wire (inner electrode) with a conductive surface, an inorganic piezoelectric layer covering the core wire, and a conductive layer (outer electrode) covering the inorganic piezoelectric layer. As a result, piezoelectric responsiveness may not be exhibited, and as a sensor, the piezoelectric output cannot be measured in response to changes in external force over time, and as an actuator, there is a problem in that it cannot produce deformation in response to changes in voltage over time. There was found.

本発明は、全体として細長い線状の形態を有し、柔軟性を有し、かつ、高い耐熱性を有する新規な圧電素子であって、圧電応答性を十分に示す圧電素子を提供することを目的とする。また、本発明は、かかる圧電素子を含む圧電装置を提供することを目的とする。 The present invention aims to provide a novel piezoelectric element which has an elongated linear shape as a whole, has flexibility, and has high heat resistance, and which exhibits sufficient piezoelectric responsiveness. purpose. Another object of the present invention is to provide a piezoelectric device including such a piezoelectric element.

本発明の1つの要旨によれば、導電性の表面を有する芯線と、前記芯線を被覆する無機圧電体層と、前記無機圧電体層を被覆する有機保護層と、前記有機保護層を被覆する導電体層とを含み、前記有機保護層が、0.1~100μmの厚さを有し、前記芯線および前記導電体層が、それらの間に前記無機圧電体層および前記有機保護層が介挿された電極としてそれぞれ機能する、圧電素子が提供される。 According to one gist of the present invention, a core wire having a conductive surface, an inorganic piezoelectric layer covering the core wire, an organic protective layer covering the inorganic piezoelectric layer, and a covering the organic protective layer are provided. a conductor layer, the organic protective layer has a thickness of 0.1 to 100 μm, and the core wire and the conductor layer have the inorganic piezoelectric layer and the organic protective layer interposed therebetween. Piezoelectric elements are provided, each functioning as an interposed electrode.

本発明のもう1つの要旨によれば、上記本発明の圧電素子を含む圧電装置が提供される。 According to another aspect of the present invention, there is provided a piezoelectric device including the piezoelectric element of the present invention.

本発明の圧電素子は、導電性の表面を有する芯線(内側電極)と、芯線を被覆する無機圧電体層と、無機圧電体層を被覆する有機保護層と、有機保護層を被覆する導電体層(外側電極)とを含んで構成され、これにより、全体として細長い線状の形態を有し、柔軟性を有する新規な圧電素子が提供される。本発明の圧電素子によれば、無機圧電体層を0.1~100μmの厚さを有する有機保護層で被覆して保護しており、これにより、圧電応答性を十分に示すことができる。更に、本発明の圧電素子によれば、無機圧電体層を使用しており、有機保護層は、電気絶縁性を有する有機材料から自由に選択可能であるので、高い耐熱性を有する圧電素子を実現することができる。更に、本発明の圧電素子を含む圧電装置も提供される。 The piezoelectric element of the present invention includes a core wire (inner electrode) having a conductive surface, an inorganic piezoelectric layer covering the core wire, an organic protective layer covering the inorganic piezoelectric layer, and a conductor covering the organic protective layer. layer (outer electrode), thereby providing a novel piezoelectric element having an elongated linear shape as a whole and having flexibility. According to the piezoelectric element of the present invention, the inorganic piezoelectric layer is protected by being coated with an organic protective layer having a thickness of 0.1 to 100 μm, thereby making it possible to exhibit sufficient piezoelectric responsiveness. Furthermore, according to the piezoelectric element of the present invention, an inorganic piezoelectric layer is used, and the organic protective layer can be freely selected from organic materials having electrical insulation properties. It can be realized. Furthermore, a piezoelectric device including the piezoelectric element of the present invention is also provided.

本発明の1つの実施形態における圧電素子を示す概略図であって、(a)は圧電素子の部分切除側面図を示し、(b)は(a)のA-A線に沿った断面図を示す。1 is a schematic diagram showing a piezoelectric element in one embodiment of the present invention, in which (a) shows a partially cutaway side view of the piezoelectric element, and (b) shows a cross-sectional view taken along line AA in (a). show. 本発明の実施例1における圧電素子からの出力を示す、電圧信号の経時変化グラフである(縦軸の1目盛りは50mVに相当し、横軸の1目盛りは1秒に相当する)。1 is a graph of voltage signal changes over time showing the output from the piezoelectric element in Example 1 of the present invention (one scale on the vertical axis corresponds to 50 mV, and one scale on the horizontal axis corresponds to 1 second). 比較例1における圧電素子からの出力を示す、電圧信号の経時変化グラフである(縦軸の1目盛りは50mVに相当し、横軸の1目盛りは1秒に相当する)。2 is a graph of voltage signal changes over time showing the output from the piezoelectric element in Comparative Example 1 (one scale on the vertical axis corresponds to 50 mV, and one scale on the horizontal axis corresponds to 1 second).

以下、本発明の実施形態について図面を参照しながら詳述する。なお、添付の図面中、電極端子を黒丸にて模式的に示す。 Embodiments of the present invention will be described in detail below with reference to the drawings. In addition, in the attached drawings, electrode terminals are schematically indicated by black circles.

図1を参照して、本実施形態の圧電素子10は、導電性の表面を有する芯線1と、芯線1を被覆する無機圧電体層3と、無機圧電体層3を被覆する有機保護層5と、有機保護層5を被覆する導電体層7とを含む。有機保護層5は、0.1~100μmの厚さを有する。芯線1および導電体層7は、それらの間に無機圧電体層3および有機保護層5が介挿された電極(内側電極および外側電極)としてそれぞれ機能する(図1(b)参照)。本実施形態に必須ではないが、圧電素子10は、導電体層7を被覆する絶縁体層(シース)9を更に含んでいてよい。かかる圧電素子10は、ケーブル状またはワイヤー状などと称され得る、全体として細長い線状の形態を有し、圧電素子全体として柔軟性を有する(曲げ可能である)ように構成される。本明細書において、「柔軟性を有する」とは、別の表現では可撓性であることを意味する。 Referring to FIG. 1, a piezoelectric element 10 of the present embodiment includes a core wire 1 having a conductive surface, an inorganic piezoelectric layer 3 covering the core wire 1, and an organic protective layer 5 covering the inorganic piezoelectric layer 3. and a conductor layer 7 covering the organic protective layer 5. The organic protective layer 5 has a thickness of 0.1 to 100 μm. The core wire 1 and the conductor layer 7 function as electrodes (inner electrode and outer electrode) with the inorganic piezoelectric layer 3 and the organic protective layer 5 interposed therebetween (see FIG. 1(b)). Although not essential to this embodiment, the piezoelectric element 10 may further include an insulator layer (sheath) 9 covering the conductor layer 7. The piezoelectric element 10 has an elongated linear shape as a whole, which may be called a cable shape or a wire shape, and is configured to have flexibility (bendability) as a whole. As used herein, "flexible" means flexible in other words.

芯線1は、電極(内側電極)として機能し得るように、少なくとも表面が導電性であればよい。芯線1は、例えば金属ワイヤーや任意の導電性材料(金属、金属とセラミックスとの複合体等)から成る線材や、任意の線状母材(耐熱性樹脂線等)の表面を導電性材料層(金属、導電性耐熱樹脂、導電性耐熱ゴム等)で被覆してなる線材などであってよい。また、芯線1は、実質的に円形、楕円、矩形、多角形などの任意の断面形状を有し得、中空および中実のいずれであってもよく、単線、撚り線および編み線などであってもよい。また、これら線材が2種以上組み合わせて用いられてもよい。 The core wire 1 only needs to be conductive at least on its surface so that it can function as an electrode (inner electrode). The core wire 1 is, for example, a metal wire, a wire made of any conductive material (metal, a composite of metal and ceramics, etc.), or a wire made of any wire base material (heat-resistant resin wire, etc.) whose surface is coated with a conductive material layer. It may be a wire coated with (metal, conductive heat-resistant resin, conductive heat-resistant rubber, etc.). Further, the core wire 1 may have substantially any cross-sectional shape such as a circle, an ellipse, a rectangle, or a polygon, and may be hollow or solid, and may be a single wire, a stranded wire, a braided wire, or the like. You can. Moreover, two or more types of these wire rods may be used in combination.

芯線1の表面の全部が導電性であることが好ましいが、芯線1の表面の一部(全表面積の例えば20%以下、好ましくは10%以下、より好ましくは5%以下)は導電性でなくてもよい。例えば、芯線1が、非導電性の線状母材の表面に導電性材料から成るテープを巻き付けて構成される場合、巻き付けたテープの端縁間にギャップが存在し、該ギャップにおいて非導電性の線状母材が露出していてよい。 It is preferable that the entire surface of the core wire 1 is conductive, but a portion of the surface of the core wire 1 (for example, 20% or less of the total surface area, preferably 10% or less, more preferably 5% or less) is not conductive. You can. For example, when the core wire 1 is constructed by wrapping a tape made of a conductive material around the surface of a non-conductive linear base material, a gap exists between the edges of the wound tape, and a non-conductive material is formed in the gap. The linear base material may be exposed.

芯線1の外形断面寸法(線方向に対して垂直な断面の最大寸法、円形断面を有する場合は線径、以下同様)は、特に限定されないが、芯線1それ自体が可撓性であるように選択される。 The external cross-sectional dimensions of the core wire 1 (the maximum dimension of the cross section perpendicular to the wire direction, the wire diameter if it has a circular cross section, the same shall apply hereinafter) are not particularly limited, but the core wire 1 itself may be flexible. selected.

芯線1を被覆する無機圧電体層3は、圧電セラミックスから成り、樹脂を含まない。圧電セラミックスは、1種の圧電セラミックスであってもよいが、2種以上の圧電セラミックスの混合物であってもよい。本明細書において、「・・・(材料)から成る」とは、当該材料から実質的に成っていればよく、不可避的に混入および/または残留し得る物質が存在していてもよいことを意味する。例えば、無機圧電体層3に、無機圧電体層を形成するための原料(例えば後述する第1溶液)に使用した溶媒や安定剤等が残存していてもよい。圧電セラミックスは、無機材料故に高い耐熱性を有する。 The inorganic piezoelectric layer 3 covering the core wire 1 is made of piezoelectric ceramics and does not contain resin. The piezoelectric ceramic may be one type of piezoelectric ceramic, or may be a mixture of two or more types of piezoelectric ceramic. In this specification, "consisting of...(material)" means that it is substantially composed of the material, and that there may be substances that may unavoidably be mixed in and/or remain. means. For example, the solvent, stabilizer, etc. used in the raw material for forming the inorganic piezoelectric layer (for example, the first solution described later) may remain in the inorganic piezoelectric layer 3. Piezoelectric ceramics have high heat resistance because they are inorganic materials.

無機圧電体層3は、特に、ウルツ鉱型結晶構造を有する圧電セラミックスから成ることが好ましい。ウルツ鉱型結晶構造を有する物質(化合物)は、その結晶配向性をc軸方向に揃え、さらに双極子配向度を制御することにより圧電性を示すことが知られている(特許文献1参照)。そのため、圧電ポリマー(例えばポリフッ化ビニリデン)の製造では必要とされる分極処理工程を要することなく圧電素子10を製造することができる。 It is particularly preferable that the inorganic piezoelectric layer 3 is made of piezoelectric ceramic having a wurtzite crystal structure. It is known that a substance (compound) having a wurtzite crystal structure exhibits piezoelectricity by aligning its crystal orientation in the c-axis direction and further controlling the degree of dipole orientation (see Patent Document 1) . Therefore, the piezoelectric element 10 can be manufactured without requiring a polarization process that is required in the manufacture of piezoelectric polymers (eg, polyvinylidene fluoride).

ウルツ鉱型結晶構造を有する圧電セラミックスは、主成分として、ZnO、ZnS、ZnSe、ZnTe、MgO、CdO、CdS、CdSe、CdTe、AlN、GaN、InNおよびInPからなる群より選択される少なくとも1つを含み得、なかでも、酸化亜鉛(ZnO)および窒化アルミニウム(AlN)の少なくとも一方を含むことが好ましく、酸化亜鉛(ZnO)を含むことが更に好ましい。かかるウルツ鉱型結晶構造を有する圧電セラミックスは、比較的安価であり、鉛を含まない点で環境や人体に対して安全である。本明細書において、ある材料の「主成分」とは、その材料に占める当該成分の割合(上記に列記した化合物が2つ以上存在する場合にはそれらの合計の割合)が、50質量%超、例えば60質量%以上、好ましくは70質量%以上である成分を意味する。 The piezoelectric ceramic having a wurtzite crystal structure contains at least one selected from the group consisting of ZnO, ZnS, ZnSe, ZnTe, MgO, CdO, CdS, CdSe, CdTe, AlN, GaN, InN, and InP as a main component. Among them, it is preferable that at least one of zinc oxide (ZnO) and aluminum nitride (AlN) is included, and it is more preferable that zinc oxide (ZnO) is included. Piezoelectric ceramics having such a wurtzite crystal structure are relatively inexpensive and safe for the environment and the human body in that they do not contain lead. In this specification, the "main component" of a material means that the proportion of the component in the material (or the total proportion of the compounds listed above if two or more are present) exceeds 50% by mass. , for example, 60% by weight or more, preferably 70% by weight or more.

ウルツ鉱型結晶構造を有する圧電セラミックスは、ウルツ鉱型結晶構造を構成する元素以外の他種元素(ドーパント)を含んでいてもよい。これにより、無機圧電体層3における極性分布割合の制御特性が向上し、圧電応答性が高い圧電素子が実現される。他種元素は、特に限定されないが、アルカリ金属元素、アルカリ土類金属元素および第13族元素からなる群より選択される少なくとも1つであってよい。他種元素としてのアルカリ金属元素は、リチウム(Li)、ナトリウム(Na)およびカリウム(K)、が例示される。他種元素としてのアルカリ土類金属元素は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)が例示される。他種元素としての第13族元素は、アルミニウム(Al)、ガリウム(Ga)およびインジウム(In)が例示される。他種元素の濃度は、所望の電気特性に応じて適宜設定され得る。例えば、ウルツ鉱型結晶構造を有する物質(化合物)がZnOで、他種元素がLiの場合には、ZnとLiの原子濃度の和に対して、Liの原子濃度が2~7.5原子%の範囲内であることが好ましい。 A piezoelectric ceramic having a wurtzite crystal structure may contain other elements (dopants) other than the elements constituting the wurtzite crystal structure. This improves the control characteristics of the polarity distribution ratio in the inorganic piezoelectric layer 3, and realizes a piezoelectric element with high piezoelectric responsiveness. The other element is not particularly limited, but may be at least one selected from the group consisting of alkali metal elements, alkaline earth metal elements, and Group 13 elements. Examples of the alkali metal elements as other elements include lithium (Li), sodium (Na), and potassium (K). Examples of alkaline earth metal elements as other elements include magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Examples of Group 13 elements as other elements include aluminum (Al), gallium (Ga), and indium (In). The concentration of other elements can be appropriately set depending on desired electrical characteristics. For example, when the substance (compound) having a wurtzite crystal structure is ZnO and the other element is Li, the atomic concentration of Li is 2 to 7.5 atoms relative to the sum of the atomic concentrations of Zn and Li. It is preferably within the range of %.

しかしながら、無機圧電体層3は、ウルツ鉱型結晶構造を有する圧電セラミックスから成るものに限定されず、他の圧電セラミックスから成っていてもよい。例えば、他の圧電セラミックスは、チタン酸鉛、チタン酸ジルコン酸鉛、チタン酸ジルコン酸ランタン鉛、酸化チタンおよびチタン酸バリウムからなる群より選択される少なくとも1つを含み得、なかでも、チタン酸ジルコン酸鉛(PZT)を含むことが好ましい。 However, the inorganic piezoelectric layer 3 is not limited to being made of piezoelectric ceramics having a wurtzite crystal structure, but may be made of other piezoelectric ceramics. For example, other piezoelectric ceramics may include at least one selected from the group consisting of lead titanate, lead zirconate titanate, lanthanum lead zirconate titanate, titanium oxide, and barium titanate, among which titanate Preferably, it includes lead zirconate (PZT).

無機圧電体層3の厚さは、所望の柔軟性および電気特性に応じて適宜設定され得るが、例えば0.01μm以上、好ましくは0.05μm以上であり、例えば3.00μm以下、好ましくは1.00μm以下であり得る。 The thickness of the inorganic piezoelectric layer 3 can be appropriately set depending on the desired flexibility and electrical properties, but is, for example, 0.01 μm or more, preferably 0.05 μm or more, and, for example, 3.00 μm or less, preferably 1 It can be less than .00 μm.

無機圧電体層3を被覆する有機保護層5は、電気絶縁性を有する有機材料から成ることが好ましい。有機保護層5には、電気絶縁性を有する様々な有機材料から、高い耐熱温度を有する材料を選択することができる。有機保護層5は、例えば200℃以上の耐熱温度を有する材料から成り得る。本明細書において、「耐熱温度」は、その材料が当該温度に曝されても物理的性状が実質的に損なわれない温度を意味し、連続使用温度(長期耐熱温度)または短期耐熱温度であり得る。短期耐熱温度は、結晶性の有機材料である場合には融点であり得、非結晶性の有機材料である場合にはガラス転移温度であり得る。 The organic protective layer 5 covering the inorganic piezoelectric layer 3 is preferably made of an organic material having electrical insulation properties. For the organic protective layer 5, a material having a high heat resistance can be selected from various organic materials having electrical insulation properties. The organic protective layer 5 may be made of, for example, a material having a heat resistance temperature of 200° C. or higher. As used herein, "heat-resistant temperature" means a temperature at which the physical properties of the material are not substantially impaired even if the material is exposed to the temperature, and is a continuous use temperature (long-term heat-resistant temperature) or a short-term heat-resistant temperature. obtain. The short-term heat resistance temperature may be the melting point in the case of a crystalline organic material, and may be the glass transition temperature in the case of an amorphous organic material.

有機保護層5を構成する材料は、フッ素樹脂、イミド系樹脂、芳香族系ポリマー、液晶ポリマー(LCP)、ポリカーボネート(PC)、シリコーン樹脂およびエポキシ樹脂からなる群より選択される少なくとも1つを含み得る。これらは単独で使用されても、任意の2種以上の混合物として使用されてもよい。フッ素樹脂の例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン―ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン―パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン―テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)が挙げられる。イミド系樹脂の例としては、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)が挙げられる。芳香族系ポリマーの例としては、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン樹脂(PEEK)が挙げられる。 The material constituting the organic protective layer 5 includes at least one selected from the group consisting of fluororesin, imide resin, aromatic polymer, liquid crystal polymer (LCP), polycarbonate (PC), silicone resin, and epoxy resin. obtain. These may be used alone or as a mixture of two or more. Examples of fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene-tetrafluoroethylene copolymer. Examples include polymer (ETFE) and polychlorotrifluoroethylene (PCTFE). Examples of imide resins include polyimide (PI), polyamideimide (PAI), and polyetherimide (PEI). Examples of aromatic polymers include polyphenylene sulfide resin (PPS) and polyetheretherketone resin (PEEK).

有機保護層5は、無機圧電体層3を保護する(無機圧電体層3を導電体層7と直接接触させない)ように、無機圧電体層3の外側表面の全部を被覆することが好ましい。 The organic protective layer 5 preferably covers the entire outer surface of the inorganic piezoelectric layer 3 so as to protect the inorganic piezoelectric layer 3 (do not bring the inorganic piezoelectric layer 3 into direct contact with the conductive layer 7).

有機保護層5の厚さは、0.1~100μmの範囲以内で設定される。これにより、圧電応答性を十分に示すこと(センサとしては外力の経時変化に応じた圧電出力を計測でき、アクチュエータとしては電圧の経時変化に応じた変形をもたらすこと)ができる。特に、有機保護層5の厚さが0.1μm以上であることで、無機圧電体層3を後述する塗布法により形成する場合であっても、芯線(内側電極)1と導電体層(外側電極)7との間での短絡の発生を効果的に防止することができる。また、有機保護層5の厚さが100μm以下であることで、圧電素子としての機能を確保すること(より詳細には、センサとしては圧電出力を計測し、アクチュエータとしては所望の変形をもたらすこと)ができる。有機保護層5の厚さは、好ましくは1~30μmの範囲以内で設定される。 The thickness of the organic protective layer 5 is set within the range of 0.1 to 100 μm. Thereby, it is possible to sufficiently exhibit piezoelectric responsiveness (as a sensor, it is possible to measure piezoelectric output according to the change in external force over time, and as an actuator, it can bring about deformation according to the change in voltage over time). In particular, since the organic protective layer 5 has a thickness of 0.1 μm or more, even when the inorganic piezoelectric layer 3 is formed by the coating method described later, the core wire (inner electrode) 1 and the conductor layer (outer electrode) It is possible to effectively prevent the occurrence of a short circuit with the electrode) 7. In addition, the thickness of the organic protective layer 5 is 100 μm or less to ensure its function as a piezoelectric element (more specifically, it can be used as a sensor to measure piezoelectric output, and as an actuator to bring about desired deformation). ) can be done. The thickness of the organic protective layer 5 is preferably set within the range of 1 to 30 μm.

有機保護層5を被覆する導電体層7は、電極(外側電極)として機能し得るように、導電性材料から構成されていればよい。導電体層7は、例えば金属、金属とセラミックスとの複合体、導電性耐熱樹脂、導電性耐熱ゴム等からなり得る。 The conductive layer 7 covering the organic protective layer 5 may be made of a conductive material so as to function as an electrode (outer electrode). The conductor layer 7 may be made of, for example, metal, a composite of metal and ceramics, conductive heat-resistant resin, conductive heat-resistant rubber, or the like.

導電体層7は、有機保護層5の外側表面の全部を被覆することが好ましいが、有機保護層5の外側表面の一部(全表面積の例えば60%以下、好ましくは70%以下、より好ましくは90%以下)は導電体層7で被覆されていなくてもよい。 The conductor layer 7 preferably covers the entire outer surface of the organic protective layer 5, but covers a portion of the outer surface of the organic protective layer 5 (eg, 60% or less, preferably 70% or less, more preferably 70% or less of the total surface area). 90% or less) may not be covered with the conductor layer 7.

導電体層7の厚さは、所望の柔軟性および電気特性に応じて適宜設定され得るが、例えば0.01μm以上、好ましくは0.05μm以上であり、例えば3000μm以下、好ましくは1000μm以下であり得る。 The thickness of the conductor layer 7 can be appropriately set depending on the desired flexibility and electrical properties, and is, for example, 0.01 μm or more, preferably 0.05 μm or more, and, for example, 3000 μm or less, preferably 1000 μm or less. obtain.

導電体層7の外形断面寸法は、例えば10.0mm以下であり得、好ましくは0.1mm以上5.0mm以下であり得る。導電体層7が圧電素子10の最外層である場合、これにより、外形断面寸法(代表的には線径)が小さく、かつ柔軟性を有する、いわゆる「線状」の圧電素子10を提供することができる。かかる圧電素子10は、圧電装置への取り付けの自由度が高く、幅広い用途に利用され得る。 The external cross-sectional dimension of the conductor layer 7 may be, for example, 10.0 mm or less, and preferably 0.1 mm or more and 5.0 mm or less. When the conductor layer 7 is the outermost layer of the piezoelectric element 10, this provides a so-called "linear" piezoelectric element 10 having a small external cross-sectional dimension (typically wire diameter) and flexibility. be able to. Such a piezoelectric element 10 has a high degree of freedom in attachment to a piezoelectric device, and can be used for a wide range of applications.

存在する場合、絶縁体層(シース)9は、任意の適切な絶縁材料から成る。かかる絶縁体層9には、ワイヤーやケーブルのための可撓性シースとして既知のもの、例えば可撓性の耐熱樹脂、耐熱ゴム等を適用してよい。絶縁体層9の具体的な材料、形態および厚さ等は、圧電素子10の用途に応じて適宜選択され得る。 If present, the insulator layer (sheath) 9 consists of any suitable insulating material. The insulator layer 9 may be made of a material known as a flexible sheath for wires or cables, such as flexible heat-resistant resin or heat-resistant rubber. The specific material, form, thickness, etc. of the insulator layer 9 may be selected as appropriate depending on the use of the piezoelectric element 10.

かかる本実施形態の圧電素子10は、任意の適切な方法で製造可能である。以下に、本実施形態の圧電素子10の製造方法の一例を示すが、これに限定されない。 The piezoelectric element 10 of this embodiment can be manufactured by any suitable method. An example of a method for manufacturing the piezoelectric element 10 of this embodiment will be shown below, but the method is not limited thereto.

本実施形態の圧電素子10の製造方法は、
導電性の表面を有する芯線1を準備すること、
芯線1を被覆する無機圧電体層3を形成すること、
無機圧電体層3を被覆する有機保護層5を形成すること、
有機保護層5を導電体層7で被覆すること、および要すれば、
導電体層7を絶縁体層9で被覆すること
を含み得る。より詳細には以下の通りである。
The method for manufacturing the piezoelectric element 10 of this embodiment is as follows:
preparing a core wire 1 having a conductive surface;
forming an inorganic piezoelectric layer 3 covering the core wire 1;
forming an organic protective layer 5 covering the inorganic piezoelectric layer 3;
covering the organic protective layer 5 with a conductor layer 7 and, if necessary,
It may include covering the conductor layer 7 with an insulator layer 9 . More details are as follows.

まず、本実施形態において上述したような芯線1を準備する。かかる芯線1は、市販で入手可能であり、あるいは、容易に作製可能である。 First, the core wire 1 as described above in this embodiment is prepared. Such a core wire 1 is commercially available or can be easily produced.

次に、芯線1を被覆する無機圧電体層3を形成する。無機圧電体層3は、芯線1を被覆するように、塗布法(化学溶液堆積法またはゾルゲル法とも称され得る)、スパッタリング法、水熱法等の任意の適切な方法により形成可能であるが、好ましくは塗布法により形成され得る。無機圧電体層3を塗布法で形成すると、真空装置等を用いることなく、連続的に生産することが可能となり、より簡便かつ低コストで圧電素子10を製造することができる。 Next, an inorganic piezoelectric layer 3 covering the core wire 1 is formed. The inorganic piezoelectric layer 3 can be formed to cover the core wire 1 by any suitable method such as a coating method (also referred to as a chemical solution deposition method or a sol-gel method), a sputtering method, a hydrothermal method, etc. , preferably by a coating method. When the inorganic piezoelectric layer 3 is formed by a coating method, continuous production is possible without using a vacuum device or the like, and the piezoelectric element 10 can be manufactured more easily and at lower cost.

無機圧電体層3を塗布法で形成する場合、より詳細には、
圧電セラミックス(好ましくはウルツ鉱型結晶構造を有する圧電セラミックス)を構成する元素種を含有する第1溶液(原料)を、芯線1の表面に塗布して塗布膜を形成すること、
形成された塗布膜を乾燥させること、および
乾燥させた塗布膜を焼成すること
によって、無機圧電体層3が形成される。
When forming the inorganic piezoelectric layer 3 by a coating method, more specifically,
Applying a first solution (raw material) containing elemental species constituting piezoelectric ceramics (preferably piezoelectric ceramics having a wurtzite crystal structure) to the surface of the core wire 1 to form a coating film;
The inorganic piezoelectric layer 3 is formed by drying the formed coating film and firing the dried coating film.

第1溶液は、圧電セラミックス(好ましくはウルツ鉱型結晶構造を有する圧電セラミックス)を構成する元素種(存在する場合には、他種元素(ドーパント)を含む)に加えて、溶媒を含み、場合により安定剤等の任意の適切な添加剤を含み得る。溶媒の例としては、2-メトキシエタノール、2-プロパノール、エタノール、1-ブタノール、トリオクチルフォスフィン、水等が挙げられる。 The first solution contains a solvent in addition to the elemental species (including other elements (dopants) if present) constituting the piezoelectric ceramic (preferably a piezoelectric ceramic having a wurtzite crystal structure), and if It may contain any suitable additives such as stabilizers. Examples of solvents include 2-methoxyethanol, 2-propanol, ethanol, 1-butanol, trioctylphosphine, water, and the like.

第1溶液の塗布は、例えばディップコート法やスプレーコート法を用いて実施可能である。好ましくは、ディップコート法により、芯線1を第1溶液に浸漬して所定の速度で引き上げることにより芯線1の表面に第1溶液を概ね均一な厚さで塗布することができる。 The first solution can be applied using, for example, a dip coating method or a spray coating method. Preferably, by dip coating, the first solution can be applied to the surface of the core wire 1 to a substantially uniform thickness by dipping the core wire 1 in the first solution and pulling it up at a predetermined speed.

乾燥は、芯線1の耐熱温度以下で、塗布膜を乾燥させることにより実施される。乾燥温度は、例えば400℃未満、好ましくは300℃以下であり、乾燥時間は適宜設定される。乾燥雰囲気は特に限定されないが、例えば空気、不活性ガス雰囲気、酸素と不活性ガスとの混合雰囲気であってよい。乾燥により、溶媒および場合により存在し得る添加剤が除去され得ると共に、圧電セラミックスを構成する元素種が結晶として析出および凝集して、粒子になる。塗布膜は、かかる粒子(好ましくはウルツ鉱型結晶構造を有する物質(化合物)の粒子)が充填および堆積した集合体であり得る。 Drying is carried out by drying the coating film at a temperature below the heat resistant temperature of the core wire 1. The drying temperature is, for example, lower than 400°C, preferably 300°C or lower, and the drying time is set appropriately. The drying atmosphere is not particularly limited, and may be, for example, air, an inert gas atmosphere, or a mixed atmosphere of oxygen and inert gas. Drying allows the solvent and any additives that may be present to be removed, and the elemental species that make up the piezoelectric ceramic to precipitate and aggregate as crystals into particles. The coating film may be an aggregate in which such particles (preferably particles of a substance (compound) having a wurtzite crystal structure) are filled and deposited.

これにより、乾燥させた塗布膜が得られる。1回の塗布および1回の乾燥により、所望の塗布膜厚さが得られない場合には、塗布および乾燥を1セットとして、所望の塗布膜厚さが得られるまで、複数セット繰り返して実施してよい。 Thereby, a dried coating film is obtained. If the desired coating film thickness cannot be obtained by one coating and one drying, repeat multiple sets of coating and drying as one set until the desired coating film thickness is obtained. It's okay.

焼成は、芯線1の耐熱温度以下で、塗布膜を焼成することにより実施される。焼成温度は、例えば600℃未満、好ましくは450℃以下であり、焼成時間は適宜設定される。焼成雰囲気は特に限定されないが、例えば空気、不活性ガス雰囲気、酸素と不活性ガスとの混合雰囲気であってよい。焼成により、上記粒子が互いに結合してなる多孔体である結合層が形成され得る。この結合層は、圧電セラミックスを成す結晶の粒子が(無秩序に)充填および堆積した集合体であり得、粒子の形状を残した状態で焼結したものであり得る。 The firing is carried out by firing the coating film at a temperature lower than the allowable temperature limit of the core wire 1. The firing temperature is, for example, less than 600°C, preferably 450°C or less, and the firing time is appropriately set. The firing atmosphere is not particularly limited, and may be, for example, air, an inert gas atmosphere, or a mixed atmosphere of oxygen and inert gas. By firing, a bonding layer, which is a porous body formed by bonding the particles together, can be formed. This bonding layer may be an aggregate of (randomly) filled and deposited crystal particles forming the piezoelectric ceramic, and may be sintered with the shape of the particles remaining.

これにより、圧電セラミックス(好ましくはウルツ鉱型結晶構造を有する圧電セラミックス)から成る無機圧電体層3が形成される。1セットまたは複数セットの塗布および乾燥と1回の焼成とにより、所望の無機圧電体層厚さが得られない場合には、「1セットまたは複数セットの塗布および乾燥と1回の焼成と」を1セットとして、所望の無機圧電体層厚さが得られるまで、複数セット繰り返して実施してよい。 As a result, an inorganic piezoelectric layer 3 made of piezoelectric ceramic (preferably piezoelectric ceramic having a wurtzite crystal structure) is formed. If the desired inorganic piezoelectric layer thickness cannot be obtained by one or more sets of coating and drying and one firing, "one or more sets of coating and drying and one firing" may be repeated in multiple sets until the desired inorganic piezoelectric layer thickness is obtained.

次に、無機圧電体層3を被覆する有機保護層5を形成する。有機保護層5は、無機圧電体層3を被覆するように、使用する有機絶縁体の原料に応じて任意の適切な方法により形成可能であるが、好ましくは塗布法により形成され得る。 Next, an organic protective layer 5 covering the inorganic piezoelectric layer 3 is formed. The organic protective layer 5 can be formed to cover the inorganic piezoelectric layer 3 by any appropriate method depending on the raw material of the organic insulator used, but preferably by a coating method.

有機保護層5を塗布法で形成する場合、より詳細には、
有機保護層5を構成する第2溶液(原料)を、無機圧電体層3の表面に塗布して塗布膜を形成すること、
形成された塗布膜を乾燥させること、および場合により、
乾燥させた塗布膜を熱処理に付すこと
によって、有機保護層5が形成される。
When forming the organic protective layer 5 by a coating method, more specifically,
applying a second solution (raw material) constituting the organic protective layer 5 to the surface of the inorganic piezoelectric layer 3 to form a coating film;
Drying the formed coating film, and optionally,
The organic protective layer 5 is formed by subjecting the dried coating film to heat treatment.

第2溶液は、有機保護層を構成する材料(反応完了前の前駆体であってもよい)に加えて、溶媒を含み、場合により安定剤等の任意の適切な添加剤を含み得る。 In addition to the materials constituting the organic protective layer (which may be precursors before completion of the reaction), the second solution contains a solvent and may optionally contain any suitable additives such as stabilizers.

第2溶液の塗布は、例えばディップコート法やスプレーコート法を用いて実施可能であり、好ましくは、ディップコート法を用いる。無機圧電体層3で被覆された芯線1を第2溶液に浸漬して塗布するディップコート法によれば、無機圧電体層3の表面に第2溶液を概ね均一な厚さで塗布することができる。 The second solution can be applied using, for example, a dip coating method or a spray coating method, and preferably a dip coating method is used. According to the dip coating method in which the core wire 1 coated with the inorganic piezoelectric layer 3 is dipped in the second solution, the second solution can be applied to the surface of the inorganic piezoelectric layer 3 to a substantially uniform thickness. can.

乾燥条件は、有機保護層を構成する材料に応じて適宜選択され得る。 Drying conditions can be appropriately selected depending on the material constituting the organic protective layer.

これにより、乾燥させた塗布膜が得られる。1回の塗布および1回の乾燥により、所望の塗布膜厚さが得られない場合には、塗布および乾燥を1セットとして、所望の塗布膜厚さが得られるまで、複数セット繰り返して実施してよい。 Thereby, a dried coating film is obtained. If the desired coating film thickness cannot be obtained by one coating and one drying, repeat multiple sets of coating and drying as one set until the desired coating film thickness is obtained. It's okay.

場合により、乾燥させた塗布膜を熱処理に付してよい。かかる熱処理は、例えば、有機保護層を構成する材料中で反応を進行させるために実施され得る。熱処理条件は、有機保護層を構成する材料に応じて適宜選択され得る。 Optionally, the dried coating film may be subjected to heat treatment. Such a heat treatment may be performed, for example, to allow a reaction to proceed in the material constituting the organic protective layer. The heat treatment conditions can be appropriately selected depending on the material constituting the organic protective layer.

これにより、有機保護層5が形成される。1セットまたは複数セットの塗布および乾燥と1回の熱処理とにより、所望の有機保護層厚さが得られない場合には、「1セットまたは複数セットの塗布および乾燥と1回の熱処理と」を1セットとして、所望の有機保護層厚さが得られるまで、複数セット繰り返して実施してよい。 As a result, an organic protective layer 5 is formed. If the desired organic protective layer thickness cannot be obtained by one or more sets of coating and drying and one heat treatment, "one or more sets of coating and drying and one heat treatment" One set may be repeated in multiple sets until the desired organic protective layer thickness is obtained.

次に、有機保護層5を導電体層7で被覆する。導電体層7は、有機保護層5を被覆するように、任意の適切な方法により形成可能である。例えば、蒸着、巻き付けなどにより形成され得る。要すれば、導電体層7を絶縁体層(シース)9で被覆してよい。絶縁体層9は、導電体層7を被覆するように、任意の適切な方法により形成可能である。 Next, the organic protective layer 5 is covered with a conductor layer 7. The conductor layer 7 can be formed by any suitable method so as to cover the organic protective layer 5. For example, it can be formed by vapor deposition, winding, etc. If necessary, the conductor layer 7 may be covered with an insulator layer (sheath) 9. The insulator layer 9 can be formed by any suitable method so as to cover the conductor layer 7.

以上のようにして本実施形態の圧電素子10を得ることができる。無機圧電体層3および有機保護層5を順次形成すると、有機保護層5は、無機圧電体層3の形成に必要でかつ比較的高温である焼成温度に曝されないので、有機保護層5が熱により劣化および/または分解されることを回避できる。更に、無機圧電体層3および有機保護層5を塗布法により順次形成する場合、連続するプロセスで実施できるので、長尺の圧電素子10を効率的に製造することができる。 The piezoelectric element 10 of this embodiment can be obtained as described above. When the inorganic piezoelectric layer 3 and the organic protective layer 5 are sequentially formed, the organic protective layer 5 is not exposed to the relatively high firing temperature required for forming the inorganic piezoelectric layer 3, so the organic protective layer 5 is not exposed to heat. It is possible to avoid deterioration and/or decomposition due to Furthermore, when the inorganic piezoelectric layer 3 and the organic protective layer 5 are sequentially formed by a coating method, it can be performed in a continuous process, so that a long piezoelectric element 10 can be efficiently manufactured.

本実施形態の圧電素子10は、芯線1(より詳細には導電性部分)および導電体層7を適宜露出させて電極を引き出すことができる(図中、電極端子を黒丸にて模式的に示す)。導電体層9は、グランドであってよく、その場合、シールドとしても機能し得る。 In the piezoelectric element 10 of this embodiment, the electrodes can be drawn out by appropriately exposing the core wire 1 (more specifically, the conductive portion) and the conductor layer 7 (in the figure, the electrode terminals are schematically indicated by black circles). ). The conductor layer 9 may be a ground, in which case it may also function as a shield.

本実施形態の圧電素子10は、様々な用途の圧電装置において、各種のセンサおよび/またはアクチュエータとして利用可能である。 The piezoelectric element 10 of this embodiment can be used as various sensors and/or actuators in piezoelectric devices for various uses.

本実施形態の圧電素子10は、圧電体の正圧電効果を利用してセンサとして利用可能である。圧電素子10は、例えば、被検知対象物に取付および/または埋込等して、圧電素子10に外力が加えられたときにこれを検知することが可能な感圧センサとして、あるいは、被検知対象物の内部疲労を検知するセンサとして利用され得る。また、複数の圧電素子10を用いて編物または織物を構成して、繊維状圧電センサや振動型発電素子として利用することもできる。その他にも、例えば防犯センサ、介護/見守りセンサ、衝撃センサ、ウェアラブルセンサ、生体信号センサ(呼吸/脈拍)、車両用挟み込み防止センサ、車両用バンパー衝突センサ、車両用エア流量センサ、気象検知センサ(雨/雪)、火災検知センサ、水中音響センサ、ロボット用触覚センサ、医療機器用触覚センサ、繊維シート状圧力分布センサ、環境振動用発電ワイヤーなどの種々の用途の圧電装置に利用することができる。 The piezoelectric element 10 of this embodiment can be used as a sensor by utilizing the positive piezoelectric effect of the piezoelectric body. The piezoelectric element 10 can be used, for example, as a pressure-sensitive sensor that can be attached to and/or embedded in an object to be detected and detect when an external force is applied to the piezoelectric element 10, or as a sensor to be detected. It can be used as a sensor to detect internal fatigue of an object. Furthermore, a knitted fabric or a woven fabric can be constructed using a plurality of piezoelectric elements 10 and used as a fibrous piezoelectric sensor or a vibration-type power generation element. In addition, for example, crime prevention sensors, nursing care/monitoring sensors, shock sensors, wearable sensors, biosignal sensors (breathing/pulse), vehicle entrapment prevention sensors, vehicle bumper collision sensors, vehicle air flow sensors, weather detection sensors ( It can be used in piezoelectric devices for various applications such as rain/snow), fire detection sensors, underwater acoustic sensors, tactile sensors for robots, tactile sensors for medical equipment, fiber sheet pressure distribution sensors, and power generation wires for environmental vibrations. .

本実施形態の圧電素子10は、上記に代えて/加えて、圧電体の逆圧電効果を利用してアクチュエータとして利用可能である。圧電素子10は、例えば、圧電素子10に対して駆動電圧を加えた際に、振動を励振するアクチュエータとして利用され得、また更に、その振動をセンサとして利用したアクチュエータ駆動センサとしても利用され得る。その他にも、例えばロボット関節駆動アクチュエータ、人工筋肉アクチュエータ、医療機器操作ワイヤー用駆動アクチュエータ、ファイバースコープ用駆動アクチュエータ、超音波モーター、圧電モーターなどの種々の用途の圧電装置に利用することができる。 In place of/in addition to the above, the piezoelectric element 10 of this embodiment can be used as an actuator by utilizing the inverse piezoelectric effect of the piezoelectric body. The piezoelectric element 10 can be used, for example, as an actuator that excites vibrations when a driving voltage is applied to the piezoelectric element 10, and can also be used as an actuator drive sensor that uses the vibrations as a sensor. In addition, it can be used in piezoelectric devices for various uses, such as robot joint drive actuators, artificial muscle actuators, medical device operating wire drive actuators, fiberscope drive actuators, ultrasonic motors, piezoelectric motors, etc.

なかでも、本実施形態の圧電素子10は、高い応答特性が求められる用途に好ましく利用され得る。 Among these, the piezoelectric element 10 of this embodiment can be preferably used in applications requiring high response characteristics.

以上、本発明の1つの実施形態における圧電素子およびこれを含む圧電装置について詳述したが、本実施形態は種々の改変が可能である。 Although the piezoelectric element and the piezoelectric device including the piezoelectric element according to one embodiment of the present invention have been described in detail above, this embodiment can be modified in various ways.

(実施例1)
図1を参照して詳述した上記実施形態の圧電素子を下記の通り作製した。
(Example 1)
The piezoelectric element of the above embodiment described in detail with reference to FIG. 1 was manufactured as follows.

第1溶液の調製
ガラス製容器に、溶媒として2-メトキシエタノール(48.20g)および安定剤として2-アミノエタノール(1.83g)を入れ、大気雰囲気下、常温にて5分間撹拌した。次に、これにより得られた混合液に酢酸亜鉛二水和物(6.39g)を加えて、溶解するまで大気雰囲気下、常温にて撹拌した。次に、これにより得られた混合液に酢酸リチウム二水和物(0.095g)を加えて、大気雰囲気下、常温にて1時間撹拌した。これにより、第1溶液を調製した。
Preparation of First Solution 2-methoxyethanol (48.20 g) as a solvent and 2-aminoethanol (1.83 g) as a stabilizer were placed in a glass container and stirred for 5 minutes at room temperature under an atmospheric atmosphere. Next, zinc acetate dihydrate (6.39 g) was added to the resulting mixed solution, and the mixture was stirred at room temperature under an air atmosphere until dissolved. Next, lithium acetate dihydrate (0.095 g) was added to the resulting mixed solution, and the mixture was stirred for 1 hour at room temperature under an air atmosphere. In this way, a first solution was prepared.

第2溶液の調製
ポリアミドイミドワニス(日立化成株式会社製、HPC-1000)(22.5g)に純水(30g)を加えて、30分間撹拌して均一に混合した。これにより、第2溶液を調製した。
Preparation of second solution Pure water (30 g) was added to polyamide-imide varnish (manufactured by Hitachi Chemical Co., Ltd., HPC-1000) (22.5 g), and the mixture was stirred for 30 minutes to mix uniformly. In this way, a second solution was prepared.

芯線1の準備
芯線1としてSUS製ワイヤ(SUS304、直径0.28mm)を準備した。
Preparation of Core Wire 1 As the core wire 1, a SUS wire (SUS304, diameter 0.28 mm) was prepared.

無機圧電体層の形成
上記で準備した芯線1を、上記で調製した第1溶液に浸漬して塗布することにより、芯線1の表面に第1溶液の塗布膜を形成した。その後、250℃で1分間乾燥させ、このような1回の塗布および1回の乾燥を1セットとして、同条件で合計3セット繰り返した。次に、これにより得られた乾燥塗布膜を、400℃で1分間焼成した。このような「1回の塗布および1回の乾燥の3セットと1回の焼成と」を1セットとして、同条件で合計3セット繰り返した。これにより、芯線1を被覆する無機圧電体層3として、ウルツ鉱型結晶構造を有する酸化亜鉛(ZnO)からなる層を形成した。無機圧電体層3の厚さは、0.1μmであった。
Formation of Inorganic Piezoelectric Layer The core wire 1 prepared above was dipped in and coated with the first solution prepared above to form a coating film of the first solution on the surface of the core wire 1. Thereafter, it was dried at 250° C. for 1 minute, and one set of one application and one drying was repeated under the same conditions for a total of 3 sets. Next, the resulting dry coating film was baked at 400° C. for 1 minute. A total of 3 sets of ``3 sets of 1 application, 1 drying, and 1 firing'' were repeated under the same conditions. As a result, a layer made of zinc oxide (ZnO) having a wurtzite crystal structure was formed as the inorganic piezoelectric layer 3 covering the core wire 1. The thickness of the inorganic piezoelectric layer 3 was 0.1 μm.

有機保護層の形成
上記で無機圧電体層3を形成した芯線1を、上記で調製した第2溶液に浸漬して塗布することにより、無機圧電体層3の表面に第2溶液の塗布膜を形成した。その後、200℃で1分間乾燥させ、得られた乾燥塗布膜を、350℃で3分間の熱処理に付した。このような「1回の塗布、1回の乾燥および1回の焼成」を1セットとして、同条件で合計5セット繰り返した。これにより、無機圧電体層3を被覆する有機保護層5としてポリアミドイミドから成る層を形成した。有機保護層5の厚さは、5μmであった。
Formation of Organic Protective Layer The core wire 1 on which the inorganic piezoelectric layer 3 was formed is dipped in the second solution prepared above to form a coating film of the second solution on the surface of the inorganic piezoelectric layer 3. Formed. Thereafter, it was dried at 200°C for 1 minute, and the resulting dried coating film was subjected to heat treatment at 350°C for 3 minutes. A total of 5 sets of "coating once, drying once, and firing once" were repeated under the same conditions. As a result, a layer made of polyamideimide was formed as the organic protective layer 5 covering the inorganic piezoelectric layer 3. The thickness of the organic protective layer 5 was 5 μm.

導電体層の形成
上記で形成した有機保護層5の表面にアルミニウムを蒸着させて、導電体層7としてアルミニウムから成る層を形成した。導電体層7の厚さは、0.2μmであった。
Formation of Conductive Layer Aluminum was deposited on the surface of the organic protective layer 5 formed above to form a layer made of aluminum as the conductive layer 7. The thickness of the conductor layer 7 was 0.2 μm.

以上のようにして実施例1の圧電素子10を作製した。 The piezoelectric element 10 of Example 1 was produced as described above.

(実施例2)
有機保護層の形成において、「1回の塗布、1回の乾燥および1回の焼成」を1セットのみ実施した(繰り返さなかった)こと以外は、実施例1と同様にして、圧電素子を作製した。実施例2の圧電素子における有機保護層の厚さは、1μmであった。
(Example 2)
A piezoelectric element was produced in the same manner as in Example 1, except that only one set of "coating once, drying once, and firing once" was performed (not repeated) in forming the organic protective layer. did. The thickness of the organic protective layer in the piezoelectric element of Example 2 was 1 μm.

(実施例3)
有機保護層の形成において、「1回の塗布、1回の乾燥および1回の焼成」を1セットとして、同条件で合計30セット繰り返したこと以外は、実施例1と同様にして、圧電素子を作製した。実施例3の圧電素子における有機保護層の厚さは、30μmであった。
(Example 3)
A piezoelectric element was formed in the same manner as in Example 1, except that in forming the organic protective layer, one set consisted of "one coating, one drying, and one firing", and a total of 30 sets were repeated under the same conditions. was created. The thickness of the organic protective layer in the piezoelectric element of Example 3 was 30 μm.

(比較例1)
有機保護層の形成を実施せず、無機圧電体層の表面に導電体層を形成したこと以外は、実施例1と同様にして、圧電素子を作製した。
(Comparative example 1)
A piezoelectric element was produced in the same manner as in Example 1, except that an organic protective layer was not formed and a conductive layer was formed on the surface of the inorganic piezoelectric layer.

(評価)
実施例1~3および比較例1で作製した圧電素子を下記のようにして評価した。
(evaluation)
The piezoelectric elements produced in Examples 1 to 3 and Comparative Example 1 were evaluated as follows.

評価用の圧電素子(長さ:80mm)のうち、露出させた芯線1の上記一方の端部付近の領域と、導電体層7の他方の端部付近の領域とにそれぞれリード線を接続して、芯線1(内側電極)および導電体層7(外側電極)を引き出し、アナログ増幅回路(2000倍増幅)を介してオシロスコープ(ハギワラソリューションズ株式会社製、UDS-1G02S-10K)に接続して、これら電極間にて発生する電圧信号を経時的に出力可能なように構成した。 Of the piezoelectric element for evaluation (length: 80 mm), lead wires were connected to a region near one end of the exposed core wire 1 and a region near the other end of the conductor layer 7, respectively. Then, pull out the core wire 1 (inner electrode) and conductor layer 7 (outer electrode), connect it to an oscilloscope (manufactured by Hagiwara Solutions Co., Ltd., UDS-1G02S-10K) via an analog amplifier circuit (2000 times amplification), The structure was such that the voltage signal generated between these electrodes could be output over time.

上記のようにリード線を接続した状態の評価用の圧電素子を電磁力式微小試験機(株式会社島津製作所製、マイクロサーボMMT-101NV-10)にセットし、評価用の圧電素子の線方向に対して加振(周波数1Hz、応力1N~3N)して、応力を繰り返し負荷した。かかる試験を実施している間に、芯線1(内側電極)および導電体層7(外側電極)の間で発生する電圧信号を圧電出力として経時的に測定した。代表的に、実施例1および比較例1の圧電素子の測定結果をそれぞれ図2および図3に示す。 The piezoelectric element for evaluation with the lead wires connected as described above is set in an electromagnetic force micro-testing machine (Micro Servo MMT-101NV-10, manufactured by Shimadzu Corporation), and the line direction of the piezoelectric element for evaluation is Stress was repeatedly applied by applying vibration (frequency: 1 Hz, stress: 1 N to 3 N). While conducting such a test, a voltage signal generated between the core wire 1 (inner electrode) and the conductor layer 7 (outer electrode) was measured over time as a piezoelectric output. Representatively, the measurement results of the piezoelectric elements of Example 1 and Comparative Example 1 are shown in FIGS. 2 and 3, respectively.

実施例1の圧電素子では、図2に示すように、圧電出力のピークピーク値(最大値と最小値との差)は95.00mVp-pであった。更に、図2から理解されるように、圧電出力に周期的な波形が観測され、1周期が概ね1秒間、即ち、1Hzの周波数であった。この圧電出力の周波数は、加振の周波数に一致していたことから、周波数の追従が確認された。従って、実施例1の圧電素子は、優れた圧電応答を示した。 In the piezoelectric element of Example 1, as shown in FIG. 2, the peak-to-peak value (difference between the maximum value and the minimum value) of the piezoelectric output was 95.00 mVp-p. Further, as understood from FIG. 2, a periodic waveform was observed in the piezoelectric output, and one period was approximately 1 second, that is, the frequency was 1 Hz. Since the frequency of this piezoelectric output matched the frequency of excitation, frequency tracking was confirmed. Therefore, the piezoelectric element of Example 1 exhibited excellent piezoelectric response.

実施例2の圧電素子では、圧電出力のピークピーク値は65.80mVp-pであり、周波数の追従が確認された。実施例3の圧電素子では、圧電出力のピークピーク値は65.83mVp-pであり、周波数の追従が確認された。従って、実施例2および3の圧電素子は、優れた圧電応答を示した。 In the piezoelectric element of Example 2, the peak-to-peak value of the piezoelectric output was 65.80 mVpp, and frequency tracking was confirmed. In the piezoelectric element of Example 3, the peak-to-peak value of the piezoelectric output was 65.83 mVp-p, and frequency tracking was confirmed. Therefore, the piezoelectric elements of Examples 2 and 3 exhibited excellent piezoelectric response.

これに対して、比較例1の圧電素子では、図3に示すように、圧電出力のピークピーク値は44.15mVp-pであった。しかしながら、図3から理解されるように、圧電出力に周期的な波形は観測されず、周波数の追従がないことが確認された。従って、比較例1の圧電素子は、圧電応答を示さなかった。 On the other hand, in the piezoelectric element of Comparative Example 1, as shown in FIG. 3, the peak-to-peak value of the piezoelectric output was 44.15 mVpp. However, as understood from FIG. 3, no periodic waveform was observed in the piezoelectric output, confirming that there was no frequency tracking. Therefore, the piezoelectric element of Comparative Example 1 did not exhibit piezoelectric response.

本発明の圧電素子は、各種のセンサおよび/またはアクチュエータとして利用可能である。本発明を限定するものではないが、本発明の圧電素子は、柔軟性に優れ、小さい外形断面寸法(代表的には線径)で実現でき、例えば、圧電素子に外力が加えられたときにこれを検知することが可能な感圧センサ等として利用され得る。 The piezoelectric element of the present invention can be used as various sensors and/or actuators. Although not limiting the present invention, the piezoelectric element of the present invention has excellent flexibility and can be realized with a small external cross-sectional dimension (typically wire diameter), and for example, when an external force is applied to the piezoelectric element, It can be used as a pressure sensitive sensor etc. that can detect this.

1 芯線(内側電極)
3 無機圧電体層
5 有機保護層
7 導電体層(外側電極)
9 絶縁体層(シース)
10 圧電素子
1 Core wire (inner electrode)
3 Inorganic piezoelectric layer 5 Organic protective layer 7 Conductor layer (outer electrode)
9 Insulator layer (sheath)
10 Piezoelectric element

Claims (8)

導電性の表面を有する芯線と、
前記芯線を被覆する無機圧電体層と、
前記無機圧電体層を被覆する有機保護層と、
前記有機保護層を被覆する導電体層と
を含み、前記有機保護層が、0.1~100μmの厚さを有し、前記芯線および前記導電体層が、それらの間に前記無機圧電体層および前記有機保護層が介挿された電極としてそれぞれ機能する、圧電素子。
a core wire having a conductive surface;
an inorganic piezoelectric layer covering the core wire;
an organic protective layer covering the inorganic piezoelectric layer;
a conductive layer covering the organic protective layer, the organic protective layer having a thickness of 0.1 to 100 μm, and the core wire and the conductive layer having the inorganic piezoelectric layer therebetween. and a piezoelectric element each functioning as an electrode with the organic protective layer interposed therein.
前記有機保護層が、200℃以上の耐熱温度を有する材料から成る、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the organic protective layer is made of a material having a heat resistance temperature of 200°C or higher. 前記有機保護層が、フッ素樹脂、イミド系樹脂、芳香族系ポリマー、液晶ポリマー、ポリカーボネート、シリコーン樹脂およびエポキシ樹脂からなる群より選択される少なくとも1つを含む、請求項1または2に記載の圧電素子。 The piezoelectric material according to claim 1 or 2, wherein the organic protective layer contains at least one selected from the group consisting of a fluororesin, an imide resin, an aromatic polymer, a liquid crystal polymer, a polycarbonate, a silicone resin, and an epoxy resin. element. 前記無機圧電体層が、ウルツ鉱型結晶構造を有する圧電セラミックスから成る、請求項1~3のいずれか1項に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the inorganic piezoelectric layer is made of piezoelectric ceramic having a wurtzite crystal structure. 前記ウルツ鉱型結晶構造を有する圧電セラミックスが、酸化亜鉛および窒化アルミニウムの少なくとも一方を含む、請求項4に記載の圧電素子。 The piezoelectric element according to claim 4, wherein the piezoelectric ceramic having a wurtzite crystal structure contains at least one of zinc oxide and aluminum nitride. 前記無機圧電体層が、0.01~3.00μmの厚さを有する、請求項1~5のいずれか1項に記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 5, wherein the inorganic piezoelectric layer has a thickness of 0.01 to 3.00 μm. 前記導電体層を被覆する絶縁体層を更に含む、請求項1~6のいずれか1項に記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 6, further comprising an insulator layer covering the conductor layer. 請求項1~7のいずれか1項に記載の圧電素子を含む圧電装置。 A piezoelectric device comprising the piezoelectric element according to any one of claims 1 to 7.
JP2019214368A 2019-11-27 2019-11-27 Piezoelectric elements and piezoelectric devices Active JP7416376B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019214368A JP7416376B2 (en) 2019-11-27 2019-11-27 Piezoelectric elements and piezoelectric devices
PCT/JP2020/043815 WO2021106930A1 (en) 2019-11-27 2020-11-25 Piezoelectric element and piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019214368A JP7416376B2 (en) 2019-11-27 2019-11-27 Piezoelectric elements and piezoelectric devices

Publications (2)

Publication Number Publication Date
JP2021086904A JP2021086904A (en) 2021-06-03
JP7416376B2 true JP7416376B2 (en) 2024-01-17

Family

ID=76088142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019214368A Active JP7416376B2 (en) 2019-11-27 2019-11-27 Piezoelectric elements and piezoelectric devices

Country Status (2)

Country Link
JP (1) JP7416376B2 (en)
WO (1) WO2021106930A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111423A (en) 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd Cable-shaped pressure sensor and its manufacture and pressure-controlling apparatus
JP2000111422A (en) 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd Cable-shaped pressure sensor
JP2005351664A (en) 2004-06-08 2005-12-22 National Institute Of Advanced Industrial & Technology Cable-like piezoelectric sensor
JP2008209183A (en) 2007-02-26 2008-09-11 Matsushita Electric Ind Co Ltd Cable-like piezoelectric element
JP2017528909A (en) 2014-08-04 2017-09-28 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Protective electrode for piezoelectric ceramic sensor
JP2017183570A (en) 2016-03-31 2017-10-05 東邦化成株式会社 Piezoelectric wire, manufacturing method thereof, and piezoelectric device with the piezoelectric wire
JP2019062124A (en) 2017-09-27 2019-04-18 東邦化成株式会社 Thermally resistive piezoelectric wire, and piezoelectric device with thermally resistive piezoelectric wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209182A (en) * 2007-02-26 2008-09-11 Seiko Epson Corp Detection apparatus, sensor, and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111423A (en) 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd Cable-shaped pressure sensor and its manufacture and pressure-controlling apparatus
JP2000111422A (en) 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd Cable-shaped pressure sensor
JP2005351664A (en) 2004-06-08 2005-12-22 National Institute Of Advanced Industrial & Technology Cable-like piezoelectric sensor
JP2008209183A (en) 2007-02-26 2008-09-11 Matsushita Electric Ind Co Ltd Cable-like piezoelectric element
JP2017528909A (en) 2014-08-04 2017-09-28 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH Protective electrode for piezoelectric ceramic sensor
JP2017183570A (en) 2016-03-31 2017-10-05 東邦化成株式会社 Piezoelectric wire, manufacturing method thereof, and piezoelectric device with the piezoelectric wire
JP2019062124A (en) 2017-09-27 2019-04-18 東邦化成株式会社 Thermally resistive piezoelectric wire, and piezoelectric device with thermally resistive piezoelectric wire

Also Published As

Publication number Publication date
JP2021086904A (en) 2021-06-03
WO2021106930A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
KR100562598B1 (en) Piezoelectric pressure sensor
EP3848986B1 (en) Piezoelectric element
JP6725290B2 (en) Piezoelectric wire, method of manufacturing the same, and piezoelectric device including the piezoelectric wire
KR101920730B1 (en) ZnSnO3/ZnO nanowire having core-shell structure, method of forming ZnSnO3/ZnO nanowire and nano generator including ZnSnO3/ZnO nanowire, and method of forming ZnSnO3 nanowire and nano generator including ZnSnO3 nanowire
US8564178B2 (en) Micro electric generator, method of providing the same, and electric generating device
JP7416376B2 (en) Piezoelectric elements and piezoelectric devices
JP2019062124A (en) Thermally resistive piezoelectric wire, and piezoelectric device with thermally resistive piezoelectric wire
KR101435913B1 (en) layered structure of enery havester and the method for manufacturing thereof
Sun et al. High energy-storage all-inorganic Mn-doped Bi0. 5 Na0. 5TiO3-BiNi0. 5Zr0. 5O3 film capacitor with characteristics of flexibility and plasticity
Lin et al. Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites
Promsawat et al. CNTs-added PMNT/PDMS flexible piezoelectric nanocomposite for energy harvesting application
WO2018181261A1 (en) Piezoelectric element
JP2005347364A (en) Extendible and contractible piezoelectric element
KR20210021860A (en) Piezoelectric energy harvesting device and manufacturing method thereof
KR101890259B1 (en) Manufacturing method of nanofiber composite film and structural monitoring sensor having the nanofiber composite film
JPH03174783A (en) Laminated type piezoelectric element
JP4348480B2 (en) Cable-shaped piezoelectric sensor
KR20170129994A (en) Structural health monitoring sensor having flexible property
JP2006098062A (en) Highly sensitive/highly bendable sensor cable
KR101720166B1 (en) Device and fabrication method of piezoelectric nanogenerators
CN112185613A (en) Novel cable for rat repelling
KR101671673B1 (en) Method of Flexible Piezoelectric composite film with Vertically aligned BaTiO3 Nanoparticles using Electric filed
JP2018526823A (en) Moisture-resistant protective layer
CN112216786B (en) Flexible piezoelectric polymer micro-mechanical energy collector and preparation method thereof
JP7508056B1 (en) Valve Indicator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7416376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150