WO2018181261A1 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
WO2018181261A1
WO2018181261A1 PCT/JP2018/012323 JP2018012323W WO2018181261A1 WO 2018181261 A1 WO2018181261 A1 WO 2018181261A1 JP 2018012323 W JP2018012323 W JP 2018012323W WO 2018181261 A1 WO2018181261 A1 WO 2018181261A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
core
piezoelectric
winding
wire
Prior art date
Application number
PCT/JP2018/012323
Other languages
French (fr)
Japanese (ja)
Inventor
小笠原 健
川戸 進
Original Assignee
東邦化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦化成株式会社 filed Critical 東邦化成株式会社
Priority to JP2019509857A priority Critical patent/JPWO2018181261A1/en
Publication of WO2018181261A1 publication Critical patent/WO2018181261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/60Piezoelectric or electrostrictive devices having a coaxial cable structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones

Definitions

  • the present invention relates to a piezoelectric element, and more particularly to a piezoelectric element having a generally elongated linear shape that can be referred to as a cable shape or a wire shape.
  • the piezoelectric element is an element using a piezoelectric body.
  • the piezoelectric element is used as a sensor by utilizing the positive piezoelectric effect of the piezoelectric body (converting an external force applied to the piezoelectric body into a voltage), and the reverse piezoelectric of the piezoelectric body. It is used in various applications as an actuator by utilizing an effect (converting a voltage applied to a piezoelectric body into a force).
  • a coaxial cable-shaped piezoelectric element is conventionally known as a piezoelectric element having an elongated linear shape as a whole.
  • a PVDF piezo film tape piezoelectric body
  • a core wire inner conductor
  • a copper braided wire outer conductor
  • a polyethylene jacket A piezo cable having the above configuration is disclosed.
  • Patent Document 1 discloses a spirally wound metal inner conductor (the space inside the spiral is filled with a non-hollow material), a continuous piezoelectric polymer layer surrounding the periphery, A piezoelectric coaxial cable is disclosed that is in contact with a molecular layer but consists of an outer conductor separated from an inner conductor.
  • Patent Document 2 discloses a piezoelectric sensor having a coaxial cable shape, which includes an inner conductor, a flexible insulator, an outer conductor including a piezoelectric layer and a metal layer, and a flexible sheath. It is disclosed.
  • an inner conductor 61 and an outer conductor 65 that function as two electrodes sandwiching the piezoelectric layer 63 are arranged coaxially. Therefore, in order to take out these electrodes, the outer conductor 65 is exposed by cutting and peeling the first predetermined distance from the surface of the outer cover 67 of the piezoelectric element 70 to reach the outer conductor 65, and the outer cover 67 of the piezoelectric element 70 is removed.
  • the inner conductor 61 needs to be exposed by cutting and peeling a second predetermined distance from the surface to the inner conductor 61.
  • the piezoelectric element is disposed on the same axis. It becomes difficult to expose the outer conductor and the inner conductor as desired.
  • an outer conductor is disposed so as to cover the piezoelectric layer, and the outer conductor is covered with a copper braided wire (Non-patent Document 1), a conductive polymer.
  • Non-patent Document 1 a copper braided wire
  • Patent Document 1 Extrusion or coextrusion molding, application of metal-containing paint (spraying, brushing, dipping, coating, etc.) or vacuum deposition of metal (Patent Document 1), winding of an outer conductor with a piezoelectric layer formed on one side of the metal layer (patent It is formed by the literature 2).
  • Patent Document 1 Extrusion or coextrusion molding, application of metal-containing paint (spraying, brushing, dipping, coating, etc.) or vacuum deposition of metal (Patent Document 1), winding of an outer conductor with a piezoelectric layer formed on one side of the metal layer (patent It is formed by the literature 2).
  • the formation of such an outer conductor requires man-hours and is relatively time consuming.
  • the present invention has been made in view of the above problems, and is a piezoelectric element having a slender linear shape as a whole, and a novel electrode that can be easily taken out and can be more easily manufactured.
  • An object is to provide a piezoelectric element.
  • At least a core wire having a conductive surface At least one winding wound around the core wire, the core portion including at least a core portion having a conductive surface and an organic piezoelectric layer covering the core portion, the core wire and the winding
  • a piezoelectric element in which the core of the wire functions as an electrode having the organic piezoelectric layer interposed between them.
  • a winding having at least a core portion having a conductive surface and an organic piezoelectric layer covering the core portion is used, and this winding (may be one or more). Is wound around a core wire having a conductive surface at least on its surface, thereby forming a piezoelectric element.
  • a piezoelectric element of the present invention can be a piezoelectric element having an elongated linear shape as a whole. Further, in the piezoelectric element of the present invention, the core wire and the core portion of the winding are not arranged coaxially, and therefore can be exposed separately, and thus the electrode can be easily taken out.
  • the piezoelectric element according to the present invention can be configured by preparing the core wire and the winding and winding the winding around the core wire, and there is no need to form an outer conductor covering the piezoelectric layer. Therefore, it can be manufactured more easily than a conventional piezoelectric element having such an external conductor.
  • the piezoelectric element may include two or more windings.
  • the piezoelectric element may further include a sheath that accommodates the core wire and the at least one winding wound around the core wire.
  • the organic piezoelectric layer includes polyvinylidene fluoride, a copolymer of vinylidene fluoride and trifluoroethylene, a copolymer of vinylidene fluoride and tetrafluoroethylene, polylactic acid, porous polypropylene, and porous At least one selected from the group consisting of functional polytetrafluoroethylene, and in particular, from a copolymer of vinylidene fluoride and trifluoroethylene and a copolymer of vinylidene fluoride and tetrafluoroethylene. It may contain at least one selected from the group consisting of:
  • the piezoelectric element of the present invention can be used as either or both of a sensor and an actuator, for example.
  • a novel piezoelectric element that is a piezoelectric element having an elongated linear shape as a whole, in which an electrode can be easily taken out and can be manufactured more easily.
  • FIG. 6 shows a schematic side view of a partially cut away piezoelectric element according to another embodiment of the present invention.
  • FIG. 6 shows a schematic side view of a partially cut away piezoelectric element according to another embodiment of the present invention.
  • 1A and 1B are schematic views illustrating a conventional example coaxial cable-shaped piezoelectric element, in which FIG. 1A is a partially cutaway side view of the piezoelectric element, and FIG.
  • FIG. 2B is a cross-sectional view taken along line BB in FIG. Indicates.
  • vertically with respect to the wire direction the strand wire used as a core wire in the Example of this invention is shown. It is a figure explaining the evaluation method of the piezoelectric element produced in the Example of this invention, Comprising: (a) is a schematic perspective view of the state which is not applying external force, (b) is a schematic cross section of the state which is not applying external force
  • FIG. 4C is a schematic sectional view showing a state where an external force is applied.
  • electrode terminals are schematically indicated by black circles.
  • the present embodiment relates to a piezoelectric element having a configuration in which one winding is wound around a core wire.
  • a piezoelectric element 10 of this embodiment includes a core wire 1 and a single winding 7 wound around the core wire 1, and the winding 7 includes a core portion 3 and the core portion 3.
  • the organic piezoelectric layer 5 is coated.
  • the core wire 1 and the core portion 3 of the winding 7 each function as an electrode having the organic piezoelectric layer 5 interposed therebetween (see FIG. 1B).
  • the piezoelectric element 10 has an elongated linear shape as a whole, which may be referred to as a cable shape or a wire shape, and may be configured to be flexible (bendable) as a whole.
  • the core wire 1 only needs to have a conductive surface at least so that it can function as an electrode.
  • the core wire 1 is formed by, for example, covering the surface of a wire made of a conductive material such as a metal wire or an arbitrary linear base material (resin wire, etc.) with a conductive material layer (metal, conductive resin, conductive rubber, etc.). It may be a wire made of Further, the core wire 1 can have an arbitrary cross-sectional shape such as a circle, an ellipse, a rectangle, and a polygon, and may be hollow or solid, such as a single wire, a stranded wire, and a knitted wire. May be.
  • the wire diameter of the core wire 1 (the maximum dimension of the cross section when it has a non-circular cross section, the same applies hereinafter) is not particularly limited, and may vary depending on the material and configuration thereof, but should be selected to be flexible. Is preferred.
  • the core portion 3 of the winding 7 may be at least a surface conductive so that it can function as an electrode.
  • the material and the configuration of the core part 3 can be applied to the description described above for the core wire 1, but preferably has a smaller wire diameter than the core wire 1.
  • the organic piezoelectric layer 5 of the winding 7 can be made of any material known as an organic piezoelectric body.
  • the organic piezoelectric body has higher impact resistance and bending resistance than inorganic piezoelectric bodies represented by piezoelectric ceramics such as lead zirconate titanate (PZT), and is suitable for winding around the core wire 1.
  • PZT lead zirconate titanate
  • Examples of the material constituting the organic piezoelectric layer 5 include polyvinylidene fluoride (PVDF), a vinylidene fluoride copolymer (a copolymer of vinylidene fluoride and trifluoroethylene (P (VDF / TrFE)), fluoride, and the like.
  • Permanent dipole type piezoelectric materials such as copolymers of vinylidene and tetrafluoroethylene (including P (VDF / TeFE)), polylactic acid: porous polypropylene (PP), porous polytetrafluoroethylene (PTFE)
  • An electret type piezoelectric material such as: a piezoelectric ceramic particle composite type piezoelectric material in which piezoelectric ceramic particles are dispersed in an organic material such as rubber may be used.
  • the organic piezoelectric layer 5 includes at least one selected from the group consisting of PVDF, P (VDF / TrFE), P (VDF / TeFE), polylactic acid, porous PP, and porous PTFE. Can be a thing.
  • the organic piezoelectric layer 5 preferably contains at least one selected from the group consisting of P (VDF / TrFE) and P (VDF / TeFE).
  • the thickness of the organic piezoelectric layer 5 is not particularly limited, and may vary depending on the material and configuration thereof, but is selected so as to obtain desired piezoelectric characteristics (positive piezoelectric effect and / or reverse piezoelectric effect). Is preferred.
  • the material forming the organic piezoelectric layer 5 is subjected to a coating process before the core portion 3 is subjected to a treatment necessary for expressing the piezoelectricity, for example, stretching and / or polarization treatment, depending on the material actually used. It can be applied at any suitable time during and after.
  • the winding 7 can be manufactured as follows.
  • PVDF can take three types of crystal structures, ⁇ , ⁇ , and ⁇ . Usually, it can be the most stable ⁇ type in terms of energy, but PVDF containing many ⁇ type crystal structures is uniaxially stretched, for example. Thus, it can be converted into PVDF containing a lot of ⁇ -type crystal structure. PVDF containing a lot of ⁇ -type crystal structure exhibits ferroelectricity, and when subjected to polarization treatment, the dipoles are aligned and exhibit piezoelectricity.
  • PVDF is extrusion-coated around the core 3, the PVDF layer covering the core 3 and the periphery thereof is stretched together, and then subjected to a polarization treatment such as corona discharge, thereby exhibiting piezoelectricity.
  • a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a PVDF layer) 5 can be obtained.
  • the material and / or structure of the core portion 3 can be appropriately selected so as to sufficiently withstand the stretching.
  • a PVDF layer exhibiting piezoelectricity can be obtained by wrapping a stretched PVDF film formed by uniaxially stretching a PVDF film around the core 3 and then subjecting it to a polarization treatment such as corona discharge.
  • a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a PVDF layer) 5 can be obtained.
  • the winding 7 can be manufactured as follows.
  • Vinylidene fluoride-based copolymers, particularly P (VDF / TrFE) and P (VDF / TeFE) may contain more ⁇ -type crystal structure than PVDF. Therefore, the vinylidene fluoride copolymer can easily produce the winding 7 in which the core 3 is covered with the organic piezoelectric layer 5 only by performing a polarization treatment without stretching.
  • the winding 7 can be produced by the following solvent coating method or melt extrusion method.
  • a resin liquid in which a vinylidene fluoride copolymer is dissolved or dispersed in a solvent is prepared, this resin liquid is applied (for example, applied) to the surface of the core portion 3, and this is heated.
  • a vinylidene fluoride copolymer layer By substantially removing the solvent to obtain a vinylidene fluoride copolymer layer, and then subjecting to a polarization treatment such as corona discharge, a vinylidene fluoride copolymer layer exhibiting piezoelectricity can be obtained.
  • a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a vinylidene fluoride copolymer layer) 5 can be obtained.
  • the solvent examples include ketone solvents (eg, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetone, diethyl ketone, dipropyl ketone), ester solvents (eg, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate). ), Ether solvents (eg tetrahydrofuran, methyltetrahydrofuran, dioxane), amide solvents (eg dimethylformamide (DMF), dimethylacetamide), pyrrolidone solvents (eg N-methylpyrrolidone) and the like.
  • the heating temperature may vary depending on the solvent used, but may be, for example, 80 to 180 ° C.
  • a pellet-like vinylidene fluoride copolymer is heated and melted to obtain a molten resin.
  • the heating temperature may be not less than the melting point of the vinylidene fluoride copolymer to be used, and may be 120 to 250 ° C., for example.
  • This molten resin is applied to the surface of the core portion 3 (for example, extrusion coated around it) to obtain a vinylidene fluoride copolymer layer, and then subjected to a polarization treatment such as corona discharge, thereby exhibiting piezoelectricity.
  • a vinylidene fluoride copolymer layer can be obtained, and as a result, a winding 7 in which the core 3 is coated with an organic piezoelectric layer (more specifically, a vinylidene fluoride copolymer layer) 5 can be obtained. it can.
  • the method for forming the organic piezoelectric layer 5 using these vinylidene fluoride copolymers can be preferably carried out particularly when the core 3 has a small wire diameter.
  • the core 3 has a wire diameter of 1 mm or less, typically 0.5 mm or less, and may be approximately 0.008 mm or more.
  • the thickness of the organic piezoelectric layer (more specifically, the vinylidene fluoride copolymer layer) 5 can be 2 ⁇ m or more and 200 ⁇ m or less, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the organic piezoelectric layer 5 using PVDF and / or vinylidene fluoride copolymer is preferable because it exhibits high heat resistance of, for example, 85 ° C. or higher.
  • the molecular weight of PVDF and vinylidene fluoride copolymer is not particularly limited, and may be, for example, 10,000 to 1,000,000 in terms of number average molecular weight.
  • the vinylidene fluoride copolymer is a copolymer of vinylidene fluoride and one or more fluorine-based monomers copolymerizable with vinylidene fluoride (hereinafter also simply referred to as other fluorine-based monomers). .
  • the other fluorine-based monomer can be one or both of trifluoroethylene and tetrafluoroethylene.
  • the unit derived from vinylidene fluoride can be 50 mol% or more, preferably 60 mol% or more, derived from other fluorine-based monomers and vinylidene fluoride.
  • the molar ratio with the unit to be can be within the range of 5:95 to 36:64, preferably within the range of 15:85 to 25:75, more preferably within the range of 18:82 to 22:78. .
  • the winding 7 can be manufactured as follows. There are L-form and D-form in polylactic acid, and L-type polylactic acid (PLLA) is generally available as polylactic acid. It is known that PLLA exhibits piezoelectricity by uniaxially stretching. In this case, no polarization treatment is necessary. Therefore, a PLLA layer exhibiting piezoelectricity can be obtained by extrusion-coating PLLA around the core 3 and stretching the PLLA layer covering the core 3 and its periphery together. As a result, the core 3 Can be obtained by covering the substrate with an organic piezoelectric layer (more specifically, PLLA layer) 5.
  • PLLA L-type polylactic acid
  • the material and / or structure of the core portion 3 can be appropriately selected so as to sufficiently withstand the stretching.
  • a PVDF layer exhibiting piezoelectricity can be obtained by wrapping a stretched PLLA film formed by uniaxially stretching a PLLA film around the core portion 3, and as a result, the core portion 3 is made of an organic piezoelectric layer (more Specifically, the winding 7 coated with the PLLA layer 5 can be obtained.
  • the winding 7 can be manufactured as follows. It is known that porous PP and porous PTFE can be obtained by stretching PP and PTFE, respectively, and exhibit piezoelectricity by applying a polarization treatment thereto. Therefore, a porous PP film or a porous PTFE film formed by stretching a PP film or a PTFE film is wrapped around the core 3 and then subjected to a polarization treatment such as corona discharge, for example, to exhibit a piezoelectric property. As a result, a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a porous PP layer or a porous PTFE layer) 5 can be obtained. Can do.
  • the winding 7 is not limited to the above example, and can be manufactured by any appropriate method as long as the core 3 can be covered with the organic piezoelectric layer 5.
  • the material forming the organic piezoelectric layer 5 is not limited to the materials described in detail above, and may include any appropriate other component (for example, an additive such as piezoelectric ceramics) in a relatively small amount. Alternatively, other known organic materials exhibiting piezoelectricity may be used.
  • the piezoelectric element 10 of the present embodiment is configured by winding the single winding 7 as described above around the core wire 1 as described above.
  • the winding method is not particularly limited as long as the organic piezoelectric layer 5 is disposed between the core wire 1 and the core portion 3 (preferably in close contact with the core wire and the organic piezoelectric layer).
  • the winding 7 can be wound around the core wire 1 in a spiral shape, preferably without a gap between adjacent windings 7.
  • the piezoelectric element 10 of the present embodiment can be obtained.
  • the piezoelectric element 10 of the present embodiment can expose the core wire 1 (more specifically, the conductive portion) by removing (for example, unwinding) the winding 7, and only the winding 7 (for example, unwinding).
  • the core portion 3 (more specifically, the conductive portion) can be exposed by cutting and peeling the portion) by a distance reaching the core portion 3 from the surface of the organic piezoelectric layer 5. For this reason, regardless of the wire diameter of the piezoelectric element 10, the core wire 1 and the core portion 3 can be separately exposed as desired, so that the electrodes can be easily taken out (in the figure, the electrode terminals are indicated by black circles). Shown schematically).
  • the piezoelectric element 10 according to the present embodiment does not need to form an outer conductor that covers the organic piezoelectric layer 5 and can be manufactured more easily than a conventional piezoelectric element having such an outer conductor.
  • the piezoelectric element 10 of this embodiment can be used as various sensors and / or actuators.
  • the piezoelectric element 10 of this embodiment has high impact resistance and bending resistance, is flexible, and can be arranged along an arbitrary shape.
  • the piezoelectric element 10 of the present embodiment can be used as a sensor using the positive piezoelectric effect of a piezoelectric body.
  • the piezoelectric element 10 is attached to and / or embedded in a detection target object, for example, as a pressure-sensitive sensor capable of detecting an external force applied to the piezoelectric element 10 or a detection target. It can be used as a sensor for detecting internal fatigue of an object.
  • a knitted fabric or a woven fabric can be formed using a plurality of piezoelectric elements 10 and used as a fibrous piezoelectric sensor or a vibration power generation element.
  • a security sensor for example, a security sensor, a care / monitoring sensor, an impact sensor, a wearable sensor, a biological signal sensor (respiration / pulse), a vehicle pinching prevention sensor, a vehicle bumper collision sensor, a vehicle air flow sensor, a weather detection sensor ( Rain / snow), underwater acoustic sensor, robot tactile sensor, medical device tactile sensor, fiber sheet pressure distribution sensor, environmental vibration power generation wire, and the like.
  • the piezoelectric element 10 of the present embodiment can be used as an actuator using the inverse piezoelectric effect of the piezoelectric body instead of / in addition to the above.
  • the piezoelectric element 10 can be used, for example, as an actuator that excites vibration when a driving voltage is applied to the piezoelectric element 10, and can also be used as an actuator drive sensor that uses the vibration as a sensor. In addition, it can be used for various applications such as a robot joint drive actuator, an artificial muscle actuator, a medical device operation wire drive actuator, a fiberscope drive actuator, an ultrasonic motor, and a piezoelectric motor.
  • the present embodiment relates to a piezoelectric element having a configuration in which two or more windings are wound around a core wire.
  • the description described in the first embodiment can be similarly applied to the present embodiment.
  • the piezoelectric element 13 of the present embodiment includes a core wire 1 and two or more windings wound around the core wire 1, and each winding covers a core portion and the core portion. It has an organic piezoelectric layer.
  • FIG. 2 exemplarily shows three windings 7a, 7b, and 7c (typically, the winding 7a has a core portion 3a and an organic piezoelectric layer 5a that covers the core portion 3a.
  • the present invention is not limited to this, and can be suitably used within the range of 2 to 100, particularly 2 to 20, for example.
  • the core wire and the core portion of each winding function as an electrode with an organic piezoelectric layer interposed therebetween, and the core portion of these windings with respect to the core wire electrode, It can function as a different counter electrode for each winding.
  • a piezoelectric element 13 may be referred to as a cable shape, a wire shape, or the like, and has an elongated linear shape as a whole, and may be configured to be flexible (bendable) as a whole.
  • the piezoelectric element 13 of the present embodiment is configured by winding the above-described two or more windings 7a, 7b and the like around the core wire 1.
  • the winding method is not particularly limited as long as the organic piezoelectric layer is disposed between the core wire and the core portion of each winding (preferably the core wire and the organic piezoelectric layer are in close contact).
  • two or more windings can be spirally wound around the core wire 1 in parallel with each other, preferably without a gap between adjacent windings.
  • the piezoelectric element 13 of the present embodiment can be obtained.
  • the piezoelectric element 13 of the present embodiment can achieve the same effects as the piezoelectric element described in the first embodiment.
  • the core part of two or more windings can function as a different counter electrode for each winding with respect to the core wire electrode.
  • the core wire electrode For example, as shown in FIG.
  • the electrode terminal is schematically indicated by a black circle
  • the winding can still perform the same function, it is possible to prevent the entire piezoelectric element 13 from failing.
  • the present embodiment relates to a piezoelectric element having a configuration in which one or two or more windings are wound around a core wire and further housed in a sheath.
  • the description described in the first and second embodiments can be similarly applied to the present embodiment.
  • the piezoelectric element 15 of the present embodiment further includes a sheath 9 that houses the core wire 1 and at least one winding 7 wound around the core wire 1.
  • a sheath 9 that houses the core wire 1 and at least one winding 7 wound around the core wire 1.
  • one winding 7 is exemplarily shown, but the present invention is not limited to this, and may include two or more windings as described in detail in the second embodiment.
  • the cross-sectional shape of the sheath 9 is not particularly limited, but may be appropriately selected according to the shapes of the core wire 1 and the winding 7 to be accommodated.
  • the sheath 9 is preferably flexible.
  • the material, thickness, and the like of the sheath 9 can be appropriately selected according to the use desired for the piezoelectric element 15.
  • a material exhibiting characteristics such as electrical insulation, waterproofness, and weather resistance can be used.
  • the internal space of the sheath 9 (the space between the inner wall surface of the sheath 9 and the core wire 1 and the winding 7 wound around the core 9) may be a cavity, but may be filled with any appropriate material. .
  • Example 1 A piezoelectric element having the configuration detailed in Embodiment 1 with reference to FIG. 1 was produced as follows.
  • the core wire a single wire having a diameter of 0.5 mm made of SUS304 (JIS G 4309) was used.
  • the core 3 of the winding 7 As the core 3 of the winding 7, a single wire (manufactured by Nippon Steel & Sumikin SG Wire Co., Ltd.) having a diameter of 0.07 mm made of a high-strength piano wire with a brass plating on its surface was used.
  • the core 3 was covered with a copolymer of vinylidene fluoride and tetrafluoroethylene and subjected to polarization treatment to form an organic piezoelectric layer 5, thereby preparing a winding 7.
  • the thickness of the organic piezoelectric layer 5 was about 30 to 35 ⁇ m, and the diameter of the winding 7 was about 0.13 to 0.14 mm.
  • the winding 7 prepared above was spirally wound around the core wire 1 as shown in FIG. 1 without any gap between the adjacent windings 7, thereby producing the piezoelectric element 10.
  • Example 2 As core wire 1, the same procedure as in Example 1 was used except that a twisted wire having a diameter of 0.4 mm formed by twisting 19 strands having a diameter of 0.08 mm made of SUS304 (JIS G 4309) was used. A piezoelectric element was produced.
  • FIG. 5 shows a schematic cross-sectional view of a stranded wire used as a core wire cut perpendicularly to the line direction. The twisted wires are arranged so that six strands E are arranged uniformly around the central strand E while rotating concentrically along the linear direction, and 12 strands around the strands. E is arranged so as to rotate evenly and concentrically along the linear direction, and the diameter of the stranded wire corresponds to the diameter of the virtual circular cross-sectional area shown in FIG.
  • Example 3 Except that the core wire 1 is made of conductive fibers (diameter, 70d / 34f, where d is denier and f is the number of filaments) made of nylon thread with silver plating on the surface. In the same manner as in Example 1, a piezoelectric element was produced.
  • the piezoelectric element 10 was disposed so as to extend. Electrodes were taken out from the core wire 1 of the piezoelectric element 10 and the core portion 3 of the winding 7 (both not shown in FIG. 6) and connected to a charge amplifier (not shown).
  • the charge amplifier is not particularly limited as long as it can convert the electric charge from the piezoelectric element 10 into a voltage.
  • a charge amplifier MODEL-4001B-50 manufactured by Showa Keiki Co., Ltd.
  • the evaluation system was configured so that the voltage generated by the charge amplifier could be measured over time with an oscilloscope (not shown) connected to the charge amplifier.
  • the ceramic plates 21 and 23 and the piezoelectric element 10 arranged as described above were set in a precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-500X, load cell 50N). While setting the capacitance of the charge amplifier as shown in Table 1 and measuring the voltage with an oscilloscope, using a precision universal testing machine, the piezoelectric element 10 disposed on the ceramic plate 21 was placed on a portion over a length of 5 cm. On the other hand (see FIGS. 6A and 6B), the ceramic plate 23 is lowered and deformed by applying a pressing force (compression load) of 5 N (see FIG. 6C, the load is schematically shown by an arrow).
  • the compression load 5N is constant and maintained for a while, and then the ceramic plate 23 is lifted and released (see FIGS. 6A and 6B).
  • a pressure of 5N is applied to the piezoelectric element 10 and when it becomes stable, it shows an almost constant voltage value. After that, when it is released, a voltage is generated and the voltage value increases rapidly. After that, the increased voltage value was maintained and shown substantially.
  • a charge is generated in the piezoelectric element 10
  • the charge is input to the charge amplifier, and a voltage is output from the charge amplifier.
  • the voltage value in the stable state was set to 0 V, and the increased voltage value observed when released and thereafter was measured as “generated voltage”. The results are also shown in Table 1.
  • a voltage can be generated when released after applying a pressing force as an external force, and thus can actually function as a piezoelectric element. It was confirmed.
  • the piezoelectric element of the present invention can be used as various sensors and / or actuators. Although not limiting the present invention, the piezoelectric element of the present invention is flexible and can be arranged along an arbitrary shape. For example, it can detect when an external force is applied to the piezoelectric element. It can be used as a possible pressure-sensitive sensor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a novel piezoelectric element that has a thin and long linear form as a whole, that enables an electrode to be easily taken out, and that can be easily manufactured. The piezoelectric element includes: a core wire which is conductive at least on the surface thereof; and one or more winding wires that are wound on the core wire and that each include a core part which is conductive at least on the surface thereof, and include an organic piezoelectric layer covering the core part, wherein the core wire and each of the core parts of the winding wires function as electrodes with the organic piezoelectric layer interpolated therebetween.

Description

圧電素子Piezoelectric element
 本発明は、圧電素子に関し、より詳細には、ケーブル状またはワイヤー状などと称され得る、全体として細長い線状の形態を有する圧電素子に関する。 The present invention relates to a piezoelectric element, and more particularly to a piezoelectric element having a generally elongated linear shape that can be referred to as a cable shape or a wire shape.
 圧電素子は、圧電体を使用した素子であり、例えば、圧電体の正圧電効果を利用する(圧電体に加えられた外力を電圧に変換する)ことによってセンサとして、また、圧電体の逆圧電効果を利用する(圧電体に印加された電圧を力に変換する)ことによってアクチュエータとして、さまざまな用途において使用されている。 The piezoelectric element is an element using a piezoelectric body. For example, the piezoelectric element is used as a sensor by utilizing the positive piezoelectric effect of the piezoelectric body (converting an external force applied to the piezoelectric body into a voltage), and the reverse piezoelectric of the piezoelectric body. It is used in various applications as an actuator by utilizing an effect (converting a voltage applied to a piezoelectric body into a force).
 かかる圧電素子のうち、全体として細長い線状の形態を有する圧電素子として、従来、同軸ケーブル状の圧電素子が知られている。例えば、非特許文献1には、芯線(内部導体)にPVDFピエゾフィルムテープ(圧電体)を螺旋状に巻き付け、これを銅の編み線(外部導体)で覆い、更に、ポリエチレンの外被で被覆した構成を有するピエゾケーブルが開示されている。また、特許文献1には、螺旋状に巻いた金属製内部導体(螺旋内部の空間が非中空材料で満たされている)と、その周囲を囲む連続的圧電性高分子層と、圧電性高分子層には接触するが、内部導体とは分離した外部導体とから成る圧電性同軸ケーブルが開示されている。更に、特許文献2には、同軸ケーブル状の圧電センサであって、内部導体、可撓性絶縁体、圧電体層と金属層とを含む外部導体、および可撓性のシースからなる圧電センサが開示されている。 Among such piezoelectric elements, a coaxial cable-shaped piezoelectric element is conventionally known as a piezoelectric element having an elongated linear shape as a whole. For example, in Non-Patent Document 1, a PVDF piezo film tape (piezoelectric body) is spirally wound around a core wire (inner conductor), covered with a copper braided wire (outer conductor), and further covered with a polyethylene jacket A piezo cable having the above configuration is disclosed. Patent Document 1 discloses a spirally wound metal inner conductor (the space inside the spiral is filled with a non-hollow material), a continuous piezoelectric polymer layer surrounding the periphery, A piezoelectric coaxial cable is disclosed that is in contact with a molecular layer but consists of an outer conductor separated from an inner conductor. Furthermore, Patent Document 2 discloses a piezoelectric sensor having a coaxial cable shape, which includes an inner conductor, a flexible insulator, an outer conductor including a piezoelectric layer and a metal layer, and a flexible sheath. It is disclosed.
特開昭61-71506号公報JP 61-71506 A 特開2005-351664号公報JP 2005-351664 A
 しかしながら、従来の同軸ケーブル状の圧電素子では、例えば図4に示すように、圧電体層63を間に挟む2つの電極として機能する内部導体61と外部導体65とが同軸上に配置されているため、これら電極を取り出すには、圧電素子70の外被67の表面から外部導体65に達する第1所定距離だけ切削および剥離して外部導体65を露出させ、かつ、圧電素子70の外被67の表面から内部導体61に達する第2所定距離だけ切削および剥離して内部導体61を露出させる必要がある。このため、圧電素子の線径が細くなると、第1所定距離と第2所定距離との差が小さくなるため、軸垂直な断面における切削量をきわめて厳密に制御できないと、同軸上に配置された外部導体および内部導体を所望通り露出させることが困難になる。 However, in the conventional coaxial cable-shaped piezoelectric element, for example, as shown in FIG. 4, an inner conductor 61 and an outer conductor 65 that function as two electrodes sandwiching the piezoelectric layer 63 are arranged coaxially. Therefore, in order to take out these electrodes, the outer conductor 65 is exposed by cutting and peeling the first predetermined distance from the surface of the outer cover 67 of the piezoelectric element 70 to reach the outer conductor 65, and the outer cover 67 of the piezoelectric element 70 is removed. The inner conductor 61 needs to be exposed by cutting and peeling a second predetermined distance from the surface to the inner conductor 61. For this reason, when the wire diameter of the piezoelectric element is reduced, the difference between the first predetermined distance and the second predetermined distance is reduced. Therefore, if the cutting amount in the cross section perpendicular to the axis cannot be controlled very strictly, the piezoelectric element is disposed on the same axis. It becomes difficult to expose the outer conductor and the inner conductor as desired.
 また、従来の同軸ケーブル状の圧電素子では、圧電体層を被覆するように外部導体が配置されており、かかる外部導体は、銅の編み線による被覆(非特許文献1)、導電性高分子の押出もしくは同時押出成形、金属含有塗料の適用(噴霧、ブラッシング、浸漬、塗布など)または金属の真空蒸着(特許文献1)、金属層の片面に圧電体層を形成した外部導体の巻き付け(特許文献2)などによって形成されている。かかる外部導体の形成は、工数を必要とし、比較的手間のかかるものであった。 Further, in the conventional coaxial cable-shaped piezoelectric element, an outer conductor is disposed so as to cover the piezoelectric layer, and the outer conductor is covered with a copper braided wire (Non-patent Document 1), a conductive polymer. Extrusion or coextrusion molding, application of metal-containing paint (spraying, brushing, dipping, coating, etc.) or vacuum deposition of metal (Patent Document 1), winding of an outer conductor with a piezoelectric layer formed on one side of the metal layer (patent It is formed by the literature 2). The formation of such an outer conductor requires man-hours and is relatively time consuming.
 本発明は、上記課題に鑑みてなされたものであり、全体として細長い線状の形態を有する圧電素子であって、電極を容易に取り出すことができ、より簡便に製造することが可能な新規な圧電素子を提供することを目的とする。 The present invention has been made in view of the above problems, and is a piezoelectric element having a slender linear shape as a whole, and a novel electrode that can be easily taken out and can be more easily manufactured. An object is to provide a piezoelectric element.
 本発明によれば、少なくとも表面が導電性である芯線と、
 該芯線に巻き付けられた少なくとも1本の巻線であって、少なくとも表面が導電性である芯部および該芯部を被覆する有機圧電体層を各々有する巻線と
を含み、上記芯線および上記巻線の上記芯部が、それらの間に上記有機圧電体層が介挿された電極としてそれぞれ機能する、圧電素子が提供される。
According to the present invention, at least a core wire having a conductive surface,
At least one winding wound around the core wire, the core portion including at least a core portion having a conductive surface and an organic piezoelectric layer covering the core portion, the core wire and the winding There is provided a piezoelectric element in which the core of the wire functions as an electrode having the organic piezoelectric layer interposed between them.
 すなわち、本発明によれば、少なくとも表面が導電性である芯部および該芯部を被覆する有機圧電体層を有する巻線を用い、この巻線(1本または2本以上であってよい)を、少なくとも表面が導電性である芯線に巻き付けることによって、圧電素子が構成される。かかる本発明の圧電素子は、全体として細長い線状の形態を有する圧電素子とすることができる。また、かかる本発明の圧電素子は、芯線と巻線の芯部とが同軸上に配置されていないので、それぞれ別個に露出させることができ、よって、電極を容易に取り出すことができる。更に、かかる本発明の圧電素子は、上記芯線と上記巻線とを準備して該芯線に該巻線を巻き付けることによって構成可能であり、圧電体層を被覆する外部導体を形成する必要がなく、よって、かかる外部導体を備える従来の圧電素子よりも簡便に製造することができる。 That is, according to the present invention, a winding having at least a core portion having a conductive surface and an organic piezoelectric layer covering the core portion is used, and this winding (may be one or more). Is wound around a core wire having a conductive surface at least on its surface, thereby forming a piezoelectric element. Such a piezoelectric element of the present invention can be a piezoelectric element having an elongated linear shape as a whole. Further, in the piezoelectric element of the present invention, the core wire and the core portion of the winding are not arranged coaxially, and therefore can be exposed separately, and thus the electrode can be easily taken out. Furthermore, the piezoelectric element according to the present invention can be configured by preparing the core wire and the winding and winding the winding around the core wire, and there is no need to form an outer conductor covering the piezoelectric layer. Therefore, it can be manufactured more easily than a conventional piezoelectric element having such an external conductor.
 本発明の1つの態様において、圧電素子は、上記巻線を2本以上含むものであってよい。 In one aspect of the present invention, the piezoelectric element may include two or more windings.
 本発明の1つの態様において、圧電素子は、上記芯線および該芯線に巻き付けられた上記少なくとも1本の巻線を収容するシースを更に含むものであってよい。 In one aspect of the present invention, the piezoelectric element may further include a sheath that accommodates the core wire and the at least one winding wound around the core wire.
 本発明において、上記有機圧電体層は、ポリフッ化ビニリデン、フッ化ビニリデンとトリフルオロエチレンとの共重合体、フッ化ビニリデンとテトラフルオロエチレンとの共重合体、ポリ乳酸、多孔性ポリプロピレン、および多孔性ポリテトラフルオロエチレンから成る群より選択される少なくとも1種を含むものであり得、特に、フッ化ビニリデンとトリフルオロエチレンとの共重合体およびフッ化ビニリデンとテトラフルオロエチレンとの共重合体から成る群より選択される少なくとも1種を含むものであり得る。 In the present invention, the organic piezoelectric layer includes polyvinylidene fluoride, a copolymer of vinylidene fluoride and trifluoroethylene, a copolymer of vinylidene fluoride and tetrafluoroethylene, polylactic acid, porous polypropylene, and porous At least one selected from the group consisting of functional polytetrafluoroethylene, and in particular, from a copolymer of vinylidene fluoride and trifluoroethylene and a copolymer of vinylidene fluoride and tetrafluoroethylene. It may contain at least one selected from the group consisting of:
 本発明の圧電素子は、例えばセンサおよびアクチュエータのいずれかまたは双方として使用され得る。 The piezoelectric element of the present invention can be used as either or both of a sensor and an actuator, for example.
 本発明によれば、全体として細長い線状の形態を有する圧電素子であって、電極を容易に取り出すことができ、より簡便に製造することが可能な新規な圧電素子が提供される。 According to the present invention, there is provided a novel piezoelectric element that is a piezoelectric element having an elongated linear shape as a whole, in which an electrode can be easily taken out and can be manufactured more easily.
本発明の1つの実施形態における圧電素子を示す概略図であって、(a)は圧電素子の部分切除側面図を示し、(b)は(a)のA-A線に沿った断面図を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the piezoelectric element in one embodiment of this invention, Comprising: (a) shows the partial cutaway side view of a piezoelectric element, (b) is sectional drawing along the AA of (a). Show. 本発明のもう1つの実施形態における圧電素子の部分切除概略側面図を示す。FIG. 6 shows a schematic side view of a partially cut away piezoelectric element according to another embodiment of the present invention. 本発明のもう1つの実施形態における圧電素子の部分切除概略側面図を示す。FIG. 6 shows a schematic side view of a partially cut away piezoelectric element according to another embodiment of the present invention. 従来の例示的な同軸ケーブル状の圧電素子を示す概略図であって、(a)は圧電素子の部分切除側面図を示し、(b)は(a)のB-B線に沿った断面図を示す。1A and 1B are schematic views illustrating a conventional example coaxial cable-shaped piezoelectric element, in which FIG. 1A is a partially cutaway side view of the piezoelectric element, and FIG. 2B is a cross-sectional view taken along line BB in FIG. Indicates. 本発明の実施例にて芯線として使用した撚線を線方向に対して垂直に切断した概略断面図を示す。The schematic sectional drawing which cut | disconnected perpendicularly | vertically with respect to the wire direction the strand wire used as a core wire in the Example of this invention is shown. 本発明の実施例にて作製した圧電素子の評価方法を説明する図であって、(a)は外力を加えていない状態の概略斜視図、(b)は外力を加えていない状態の概略断面図、(c)は外力を加えている状態の概略断面図を示す。It is a figure explaining the evaluation method of the piezoelectric element produced in the Example of this invention, Comprising: (a) is a schematic perspective view of the state which is not applying external force, (b) is a schematic cross section of the state which is not applying external force FIG. 4C is a schematic sectional view showing a state where an external force is applied.
 以下、本発明の実施形態について図面を参照しながら詳述する。なお、添付の図面中、電極端子を黒丸にて模式的に示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the attached drawings, electrode terminals are schematically indicated by black circles.
(実施形態1)
 本実施形態は、1本の巻線を芯線に巻き付けた構成を有する圧電素子に関する。
(Embodiment 1)
The present embodiment relates to a piezoelectric element having a configuration in which one winding is wound around a core wire.
 図1を参照して、本実施形態の圧電素子10は、芯線1と、この芯線1に巻き付けられた1本の巻線7とを含み、巻線7は、芯部3およびこの芯部3を被覆する有機圧電体層5を有する。圧電素子10において、芯線1と、巻線7の芯部3とが、それらの間に有機圧電体層5が介挿された電極としてそれぞれ機能する(図1(b)参照)。かかる圧電素子10は、ケーブル状またはワイヤー状などと称され得る、全体として細長い線状の形態を有し、圧電素子全体としてフレキシブル(湾曲可能)なように構成され得る。 Referring to FIG. 1, a piezoelectric element 10 of this embodiment includes a core wire 1 and a single winding 7 wound around the core wire 1, and the winding 7 includes a core portion 3 and the core portion 3. The organic piezoelectric layer 5 is coated. In the piezoelectric element 10, the core wire 1 and the core portion 3 of the winding 7 each function as an electrode having the organic piezoelectric layer 5 interposed therebetween (see FIG. 1B). The piezoelectric element 10 has an elongated linear shape as a whole, which may be referred to as a cable shape or a wire shape, and may be configured to be flexible (bendable) as a whole.
 芯線1は、電極として機能し得るように、少なくとも表面が導電性であればよい。芯線1は、例えば金属ワイヤーなどの導電性材料から成る線材や、任意の線状母材(樹脂線等)の表面を導電性材料層(金属、導電性樹脂、導電性ゴム等)で被覆してなる線材などであってよい。また、芯線1は、実質的に円形、楕円、矩形、多角形などの任意の断面形状を有し得、中空および中実のいずれであってもよく、単線、撚り線および編み線などであってもよい。芯線1の線径(非円形断面を有する場合は断面の最大寸法、以下同様)は、特に限定されず、その材料および構成により様々であり得るが、可撓性であるように選択されることが好ましい。 The core wire 1 only needs to have a conductive surface at least so that it can function as an electrode. The core wire 1 is formed by, for example, covering the surface of a wire made of a conductive material such as a metal wire or an arbitrary linear base material (resin wire, etc.) with a conductive material layer (metal, conductive resin, conductive rubber, etc.). It may be a wire made of Further, the core wire 1 can have an arbitrary cross-sectional shape such as a circle, an ellipse, a rectangle, and a polygon, and may be hollow or solid, such as a single wire, a stranded wire, and a knitted wire. May be. The wire diameter of the core wire 1 (the maximum dimension of the cross section when it has a non-circular cross section, the same applies hereinafter) is not particularly limited, and may vary depending on the material and configuration thereof, but should be selected to be flexible. Is preferred.
 巻線7の芯部3は、電極として機能し得るように、少なくとも表面が導電性であればよい。芯部3の材料および構成は、芯線1について上述した説明が当て嵌まり得るが、芯線1よりも小さい線径を有することが好ましい。 The core portion 3 of the winding 7 may be at least a surface conductive so that it can function as an electrode. The material and the configuration of the core part 3 can be applied to the description described above for the core wire 1, but preferably has a smaller wire diameter than the core wire 1.
 巻線7の有機圧電体層5は、有機圧電体として既知の任意の材料から構成され得る。有機圧電体は、チタン酸ジルコン酸鉛(PZT)などの圧電セラミックスで代表される無機圧電体に比べて高い耐衝撃性および耐屈曲性を有し、芯線1への巻き付けに適する。有機圧電体層5を成す材料は、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン系共重合体(フッ化ビニリデンとトリフルオロエチレンとの共重合体(P(VDF/TrFE))、フッ化ビニリデンとテトラフルオロエチレンとの共重合体(P(VDF/TeFE))を包含する)、ポリ乳酸などの永久双極子型圧電材料:多孔性ポリプロピレン(PP)、多孔性ポリテトラフルオロエチレン(PTFE)などのエレクトレット型圧電材料:圧電セラミックス粒子をゴムなどの有機材料に分散させた圧電セラミックス粒子複合型圧電材料などを使用してよい。具体的には、有機圧電体層5は、PVDF、P(VDF/TrFE)、P(VDF/TeFE)、ポリ乳酸、多孔性PPおよび多孔性PTFEから成る群より選択される少なくとも1種を含むものであり得る。このうち、有機圧電体層5は、P(VDF/TrFE)およびP(VDF/TeFE)から成る群より選択される少なくとも1種を含むことが好ましい。有機圧電体層5の厚さは、特に限定されず、その材料および構成により様々であり得るが、所望の圧電特性(正圧電効果および/または逆圧電効果)が得られるように選択されることが好ましい。 The organic piezoelectric layer 5 of the winding 7 can be made of any material known as an organic piezoelectric body. The organic piezoelectric body has higher impact resistance and bending resistance than inorganic piezoelectric bodies represented by piezoelectric ceramics such as lead zirconate titanate (PZT), and is suitable for winding around the core wire 1. Examples of the material constituting the organic piezoelectric layer 5 include polyvinylidene fluoride (PVDF), a vinylidene fluoride copolymer (a copolymer of vinylidene fluoride and trifluoroethylene (P (VDF / TrFE)), fluoride, and the like. Permanent dipole type piezoelectric materials such as copolymers of vinylidene and tetrafluoroethylene (including P (VDF / TeFE)), polylactic acid: porous polypropylene (PP), porous polytetrafluoroethylene (PTFE) An electret type piezoelectric material such as: a piezoelectric ceramic particle composite type piezoelectric material in which piezoelectric ceramic particles are dispersed in an organic material such as rubber may be used. Specifically, the organic piezoelectric layer 5 includes at least one selected from the group consisting of PVDF, P (VDF / TrFE), P (VDF / TeFE), polylactic acid, porous PP, and porous PTFE. Can be a thing. Among these, the organic piezoelectric layer 5 preferably contains at least one selected from the group consisting of P (VDF / TrFE) and P (VDF / TeFE). The thickness of the organic piezoelectric layer 5 is not particularly limited, and may vary depending on the material and configuration thereof, but is selected so as to obtain desired piezoelectric characteristics (positive piezoelectric effect and / or reverse piezoelectric effect). Is preferred.
 有機圧電体層5を成す材料は、実際に使用する材料に応じて、圧電性を発現するために必要な処理、例えば延伸および/または分極処理などが、芯部3を被覆する前、被覆形成している間およびその後の任意の適切なタイミングで施され得る。 The material forming the organic piezoelectric layer 5 is subjected to a coating process before the core portion 3 is subjected to a treatment necessary for expressing the piezoelectricity, for example, stretching and / or polarization treatment, depending on the material actually used. It can be applied at any suitable time during and after.
 例えば、有機圧電体層5を成す材料としてPVDFを用いる場合、巻線7は次のようにして作製され得る。PVDFは、α、β、γの3種の結晶構造をとり得、通常は、エネルギー的に最も安定なα型であり得るが、α型の結晶構造を多く含むPVDFを、例えば一軸延伸することにより、β型の結晶構造を多く含むPVDFに変換することができる。β型の結晶構造を多く含むPVDFは、強誘電性を示し、これを分極処理に付すことによって、双極子が整列し、圧電性を示すものとなる。よって、芯部3の周囲にPVDFを押出被覆し、芯部3とその周囲を覆うPVDF層を一緒に延伸し、その後、例えばコロナ放電などの分極処理に付すことによって、圧電性を示すPVDF層を得ることができ、この結果、芯部3を有機圧電体層(より詳細にはPVDF層)5で被覆した巻線7を得ることができる。なお、この場合、芯部3は、延伸に十分耐え得るように、その材料および/または構造が適宜選択され得る。あるいは、PVDFフィルムを一軸延伸して成る延伸PVDFフィルムを芯部3の周囲にラッピングし、その後、例えばコロナ放電などの分極処理に付すことによって、圧電性を示すPVDF層を得ることができ、この結果、芯部3を有機圧電体層(より詳細にはPVDF層)5で被覆した巻線7を得ることができる。 For example, when PVDF is used as the material forming the organic piezoelectric layer 5, the winding 7 can be manufactured as follows. PVDF can take three types of crystal structures, α, β, and γ. Usually, it can be the most stable α type in terms of energy, but PVDF containing many α type crystal structures is uniaxially stretched, for example. Thus, it can be converted into PVDF containing a lot of β-type crystal structure. PVDF containing a lot of β-type crystal structure exhibits ferroelectricity, and when subjected to polarization treatment, the dipoles are aligned and exhibit piezoelectricity. Therefore, PVDF is extrusion-coated around the core 3, the PVDF layer covering the core 3 and the periphery thereof is stretched together, and then subjected to a polarization treatment such as corona discharge, thereby exhibiting piezoelectricity. As a result, a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a PVDF layer) 5 can be obtained. In this case, the material and / or structure of the core portion 3 can be appropriately selected so as to sufficiently withstand the stretching. Alternatively, a PVDF layer exhibiting piezoelectricity can be obtained by wrapping a stretched PVDF film formed by uniaxially stretching a PVDF film around the core 3 and then subjecting it to a polarization treatment such as corona discharge. As a result, a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a PVDF layer) 5 can be obtained.
 また例えば、有機圧電体層5を成す材料としてフッ化ビニリデン系共重合体を用いる場合、巻線7は次のようにして作製され得る。フッ化ビニリデン系共重合体、特にP(VDF/TrFE)およびP(VDF/TeFE)は、PVDFよりもβ型結晶構造を多く含み得る。よって、かかるフッ化ビニリデン系共重合体は、延伸なしに、分極処理を施すだけで、芯部3を有機圧電体層5で被覆した巻線7を容易に作製することができる。具体的には、下記の溶媒コーティング法または溶融押出法により巻線7を作製することができる。 Also, for example, when a vinylidene fluoride copolymer is used as a material for the organic piezoelectric layer 5, the winding 7 can be manufactured as follows. Vinylidene fluoride-based copolymers, particularly P (VDF / TrFE) and P (VDF / TeFE) may contain more β-type crystal structure than PVDF. Therefore, the vinylidene fluoride copolymer can easily produce the winding 7 in which the core 3 is covered with the organic piezoelectric layer 5 only by performing a polarization treatment without stretching. Specifically, the winding 7 can be produced by the following solvent coating method or melt extrusion method.
 溶媒コーティング法では、まず、フッ化ビニリデン系共重合体を溶媒に溶解または分散させた樹脂液を調製し、この樹脂液を芯部3の表面に適用(例えば塗布)し、これを加熱して溶媒を実質的に除去してフッ化ビニリデン系共重合体層を得、その後、例えばコロナ放電などの分極処理に付すことによって、圧電性を示すフッ化ビニリデン系共重合体層を得ることができ、この結果、芯部3を有機圧電体層(より詳細にはフッ化ビニリデン系共重合体層)5で被覆した巻線7を得ることができる。溶媒には、ケトン系溶媒(例えばメチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセトン、ジエチルケトン、ジプロピルケトン)、エステル系溶媒(例えば酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル)、エーテル系溶媒(例えばテトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン)、アミド系溶媒(例えばジメチルホルムアミド(DMF)、ジメチルアセトアミド)、ピロリドン系溶媒(例えばN-メチルピロリドン)などを使用できる。加熱温度は、使用する溶媒に応じて様々であり得るが、例えば80~180℃であり得る。 In the solvent coating method, first, a resin liquid in which a vinylidene fluoride copolymer is dissolved or dispersed in a solvent is prepared, this resin liquid is applied (for example, applied) to the surface of the core portion 3, and this is heated. By substantially removing the solvent to obtain a vinylidene fluoride copolymer layer, and then subjecting to a polarization treatment such as corona discharge, a vinylidene fluoride copolymer layer exhibiting piezoelectricity can be obtained. As a result, a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a vinylidene fluoride copolymer layer) 5 can be obtained. Examples of the solvent include ketone solvents (eg, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetone, diethyl ketone, dipropyl ketone), ester solvents (eg, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate). ), Ether solvents (eg tetrahydrofuran, methyltetrahydrofuran, dioxane), amide solvents (eg dimethylformamide (DMF), dimethylacetamide), pyrrolidone solvents (eg N-methylpyrrolidone) and the like. The heating temperature may vary depending on the solvent used, but may be, for example, 80 to 180 ° C.
 溶融押出法では、まず、例えばペレット状のフッ化ビニリデン共重合体を加熱溶融して溶融樹脂を得る。加熱温度は、使用するフッ化ビニリデン共重合体の融点以上であればよいが、例えば120~250℃であり得る。この溶融樹脂を芯部3の表面に適用(例えばその周囲に押出被覆)してフッ化ビニリデン系共重合体層を得、その後、例えばコロナ放電などの分極処理に付すことによって、圧電性を示すフッ化ビニリデン系共重合体層を得ることができ、この結果、芯部3を有機圧電体層(より詳細にはフッ化ビニリデン系共重合体層)5で被覆した巻線7を得ることができる。 In the melt extrusion method, first, for example, a pellet-like vinylidene fluoride copolymer is heated and melted to obtain a molten resin. The heating temperature may be not less than the melting point of the vinylidene fluoride copolymer to be used, and may be 120 to 250 ° C., for example. This molten resin is applied to the surface of the core portion 3 (for example, extrusion coated around it) to obtain a vinylidene fluoride copolymer layer, and then subjected to a polarization treatment such as corona discharge, thereby exhibiting piezoelectricity. A vinylidene fluoride copolymer layer can be obtained, and as a result, a winding 7 in which the core 3 is coated with an organic piezoelectric layer (more specifically, a vinylidene fluoride copolymer layer) 5 can be obtained. it can.
 これらフッ化ビニリデン系共重合体を用いた有機圧電体層5の形成方法は、特に芯部3の線径が細い場合にも好適に実施できる。例えば、芯部3の線径は1mm以下、代表的には0.5mm以下で、概ね0.008mm以上であってよい。これら方法において、有機圧電体層(より詳細にはフッ化ビニリデン系共重合体層)5の厚さは、2μm以上200μm以下、例えば10μm以上50μm以下とすることが可能である。 The method for forming the organic piezoelectric layer 5 using these vinylidene fluoride copolymers can be preferably carried out particularly when the core 3 has a small wire diameter. For example, the core 3 has a wire diameter of 1 mm or less, typically 0.5 mm or less, and may be approximately 0.008 mm or more. In these methods, the thickness of the organic piezoelectric layer (more specifically, the vinylidene fluoride copolymer layer) 5 can be 2 μm or more and 200 μm or less, for example, 10 μm or more and 50 μm or less.
 PVDFおよび/またはフッ化ビニリデン系共重合体を用いた有機圧電体層5は、例えば85℃以上の高い耐熱性を示すので好ましい。PVDFおよびフッ化ビニリデン系共重合体の分子量は特に限定されないが、例えば、数平均分子量で1万~100万であり得る。フッ化ビニリデン系共重合体は、フッ化ビニリデンと、フッ化ビニリデンと共重合可能な1種またはそれ以上のフッ素系モノマー(以下、単に他のフッ素系モノマーとも言う)との共重合体である。他のフッ素系モノマーは、トリフルオロエチレンおよびテトラフルオロエチレンの一方または双方であり得る。フッ化ビニリデン系共重合体において、フッ化ビニリデンに由来するユニットは、50モル%以上であり得、好ましくは60モル%以上であり、他のフッ素系モノマーに由来するユニットとフッ化ビニリデンに由来するユニットとのモル比は、5:95~36:64の範囲以内であり得、好ましくは15:85~25:75の範囲以内、より好ましくは18:82~22:78の範囲以内である。 The organic piezoelectric layer 5 using PVDF and / or vinylidene fluoride copolymer is preferable because it exhibits high heat resistance of, for example, 85 ° C. or higher. The molecular weight of PVDF and vinylidene fluoride copolymer is not particularly limited, and may be, for example, 10,000 to 1,000,000 in terms of number average molecular weight. The vinylidene fluoride copolymer is a copolymer of vinylidene fluoride and one or more fluorine-based monomers copolymerizable with vinylidene fluoride (hereinafter also simply referred to as other fluorine-based monomers). . The other fluorine-based monomer can be one or both of trifluoroethylene and tetrafluoroethylene. In the vinylidene fluoride copolymer, the unit derived from vinylidene fluoride can be 50 mol% or more, preferably 60 mol% or more, derived from other fluorine-based monomers and vinylidene fluoride. The molar ratio with the unit to be can be within the range of 5:95 to 36:64, preferably within the range of 15:85 to 25:75, more preferably within the range of 18:82 to 22:78. .
 また例えば、有機圧電体層5を成す材料としてポリ乳酸を用いる場合、巻線7は次のようにして作製され得る。ポリ乳酸には、L体とD体とが存在するが、ポリ乳酸として現在一般的に利用可能であるのはL型ポリ乳酸(PLLA)である。PLLAを、一軸延伸することにより、圧電性を示すことが知られている。この場合、分極処理は必要でない。よって、芯部3の周囲にPLLAを押出被覆し、芯部3とその周囲を覆うPLLA層を一緒に延伸することによって、圧電性を示すPLLA層を得ることができ、この結果、芯部3を有機圧電体層(より詳細にはPLLA層)5で被覆した巻線7を得ることができる。なお、この場合、芯部3は、延伸に十分耐え得るように、その材料および/または構造が適宜選択され得る。あるいは、PLLAフィルムを一軸延伸して成る延伸PLLAフィルムを芯部3の周囲にラッピングすることによって、圧電性を示すPVDF層を得ることができ、この結果、芯部3を有機圧電体層(より詳細にはPLLA層)5で被覆した巻線7を得ることができる。 For example, when polylactic acid is used as a material for the organic piezoelectric layer 5, the winding 7 can be manufactured as follows. There are L-form and D-form in polylactic acid, and L-type polylactic acid (PLLA) is generally available as polylactic acid. It is known that PLLA exhibits piezoelectricity by uniaxially stretching. In this case, no polarization treatment is necessary. Therefore, a PLLA layer exhibiting piezoelectricity can be obtained by extrusion-coating PLLA around the core 3 and stretching the PLLA layer covering the core 3 and its periphery together. As a result, the core 3 Can be obtained by covering the substrate with an organic piezoelectric layer (more specifically, PLLA layer) 5. In this case, the material and / or structure of the core portion 3 can be appropriately selected so as to sufficiently withstand the stretching. Alternatively, a PVDF layer exhibiting piezoelectricity can be obtained by wrapping a stretched PLLA film formed by uniaxially stretching a PLLA film around the core portion 3, and as a result, the core portion 3 is made of an organic piezoelectric layer (more Specifically, the winding 7 coated with the PLLA layer 5 can be obtained.
 また例えば、有機圧電体層5を成す材料として多孔性PPまたは多孔性PTFEを用いる場合、巻線7は次のようにして作製され得る。多孔性PPおよび多孔性PTFEは、それぞれPPおよびPTFEを延伸することにより得ることができ、これに分極処理を施すことによって、圧電性を示すことが知られている。よって、PPフィルムまたはPTFEフィルムを延伸して成る多孔性PPフィルムまたは多孔性PTFEフィルムを芯部3の周囲にラッピングし、その後、例えばコロナ放電などの分極処理に付すことによって、圧電性を示す多孔性PP層または多孔性PTFE層を得ることができ、この結果、芯部3を有機圧電体層(より詳細には多孔性PP層または多孔性PTFE層)5で被覆した巻線7を得ることができる。 For example, when porous PP or porous PTFE is used as a material for the organic piezoelectric layer 5, the winding 7 can be manufactured as follows. It is known that porous PP and porous PTFE can be obtained by stretching PP and PTFE, respectively, and exhibit piezoelectricity by applying a polarization treatment thereto. Therefore, a porous PP film or a porous PTFE film formed by stretching a PP film or a PTFE film is wrapped around the core 3 and then subjected to a polarization treatment such as corona discharge, for example, to exhibit a piezoelectric property. As a result, a winding 7 in which the core 3 is covered with an organic piezoelectric layer (more specifically, a porous PP layer or a porous PTFE layer) 5 can be obtained. Can do.
 しかしながら、巻線7は、上記の例に限定されず、芯部3を有機圧電性層5で被覆し得る限り、任意の適切な方法で作製され得ることに留意されたい。また、有機圧電体層5を成す材料は、上記で詳述した材料に限定されず、任意の適切な他の成分(例えば圧電セラミックス等の添加剤)を例えば比較的少量で更に含んでいてもよく、あるいは、他の既知の圧電性を示す有機材料を用いてもよい。 However, it should be noted that the winding 7 is not limited to the above example, and can be manufactured by any appropriate method as long as the core 3 can be covered with the organic piezoelectric layer 5. In addition, the material forming the organic piezoelectric layer 5 is not limited to the materials described in detail above, and may include any appropriate other component (for example, an additive such as piezoelectric ceramics) in a relatively small amount. Alternatively, other known organic materials exhibiting piezoelectricity may be used.
 本実施形態の圧電素子10は、上記のような芯線1に、上記のような1本の巻線7を巻き付けることにより構成される。巻き付け方法は、芯線1と芯部3との間に有機圧電体層5が(好ましくは芯線と有機圧電層が密接に接触して)配置される限り、特に限定されない。例えば、図1に示すように、芯線1に巻線7を螺旋状に、好ましくは隣接する巻線7間に隙間なく、巻き付けることができる。 The piezoelectric element 10 of the present embodiment is configured by winding the single winding 7 as described above around the core wire 1 as described above. The winding method is not particularly limited as long as the organic piezoelectric layer 5 is disposed between the core wire 1 and the core portion 3 (preferably in close contact with the core wire and the organic piezoelectric layer). For example, as shown in FIG. 1, the winding 7 can be wound around the core wire 1 in a spiral shape, preferably without a gap between adjacent windings 7.
 以上のようにして本実施形態の圧電素子10を得ることができる。本実施形態の圧電素子10は、巻線7を取り除く(例えば巻ほどく)ことによって芯線1(より詳細には導電性部分)を露出させることができ、また、巻線7のみ(例えば巻ほどかれた部分)を有機圧電体層5の表面から芯部3に達する距離だけ切削および剥離することによって芯部3(より詳細には導電性部分)を露出させることができる。このため、圧電素子10の線径にかかわらず、芯線1および芯部3を別個に所望通り露出させることができ、よって、電極を容易に取り出すことができる(図中、電極端子を黒丸にて模式的に示す)。 As described above, the piezoelectric element 10 of the present embodiment can be obtained. The piezoelectric element 10 of the present embodiment can expose the core wire 1 (more specifically, the conductive portion) by removing (for example, unwinding) the winding 7, and only the winding 7 (for example, unwinding). The core portion 3 (more specifically, the conductive portion) can be exposed by cutting and peeling the portion) by a distance reaching the core portion 3 from the surface of the organic piezoelectric layer 5. For this reason, regardless of the wire diameter of the piezoelectric element 10, the core wire 1 and the core portion 3 can be separately exposed as desired, so that the electrodes can be easily taken out (in the figure, the electrode terminals are indicated by black circles). Shown schematically).
 かかる本実施形態の圧電素子10は、有機圧電体層5を被覆する外部導体を形成する必要がなく、よって、かかる外部導体を備える従来の圧電素子よりも簡便に製造することができる。 The piezoelectric element 10 according to the present embodiment does not need to form an outer conductor that covers the organic piezoelectric layer 5 and can be manufactured more easily than a conventional piezoelectric element having such an outer conductor.
 本実施形態の圧電素子10は、各種のセンサおよび/またはアクチュエータとして利用可能である。本実施形態の圧電素子10は、高い耐衝撃性および耐屈曲性を有し、フレキシブルで、任意の形状に沿って配置することができる。 The piezoelectric element 10 of this embodiment can be used as various sensors and / or actuators. The piezoelectric element 10 of this embodiment has high impact resistance and bending resistance, is flexible, and can be arranged along an arbitrary shape.
 本実施形態の圧電素子10は、圧電体の正圧電効果を利用してセンサとして利用可能である。圧電素子10は、例えば、被検知対象物に取付および/または埋込等して、圧電素子10に外力が加えられたときにこれを検知することが可能な感圧センサとして、あるいは、被検知対象物の内部疲労を検知するセンサとして利用され得る。また、複数の圧電素子10を用いて編物または織物を構成して、繊維状圧電センサや振動型発電素子として利用することもできる。その他にも、例えば防犯センサ、介護/見守りセンサ、衝撃センサ、ウェアラブルセンサ、生体信号センサ(呼吸/脈拍)、車両用挟み込み防止センサ、車両用バンパー衝突センサ、車両用エア流量センサ、気象検知センサ(雨/雪)、水中音響センサ、ロボット用触覚センサ、医療機器用触覚センサ、繊維シート状圧力分布センサ、環境振動用発電ワイヤーなどの種々の用途に利用することができる。 The piezoelectric element 10 of the present embodiment can be used as a sensor using the positive piezoelectric effect of a piezoelectric body. The piezoelectric element 10 is attached to and / or embedded in a detection target object, for example, as a pressure-sensitive sensor capable of detecting an external force applied to the piezoelectric element 10 or a detection target. It can be used as a sensor for detecting internal fatigue of an object. Further, a knitted fabric or a woven fabric can be formed using a plurality of piezoelectric elements 10 and used as a fibrous piezoelectric sensor or a vibration power generation element. In addition, for example, a security sensor, a care / monitoring sensor, an impact sensor, a wearable sensor, a biological signal sensor (respiration / pulse), a vehicle pinching prevention sensor, a vehicle bumper collision sensor, a vehicle air flow sensor, a weather detection sensor ( Rain / snow), underwater acoustic sensor, robot tactile sensor, medical device tactile sensor, fiber sheet pressure distribution sensor, environmental vibration power generation wire, and the like.
 本実施形態の圧電素子10は、上記に代えて/加えて、圧電体の逆圧電効果を利用してアクチュエータとして利用可能である。圧電素子10は、例えば、圧電素子10に対して駆動電圧を加えた際に、振動を励振するアクチュエータとして利用され得、また更に、その振動をセンサとして利用したアクチュエータ駆動センサとしても利用され得る。その他にも、例えばロボット関節駆動アクチュエータ、人工筋肉アクチュエータ、医療機器操作ワイヤー用駆動アクチュエータ、ファイバースコープ用駆動アクチュエータ、超音波モーター、圧電モーターなどの種々の用途に利用することができる。 The piezoelectric element 10 of the present embodiment can be used as an actuator using the inverse piezoelectric effect of the piezoelectric body instead of / in addition to the above. The piezoelectric element 10 can be used, for example, as an actuator that excites vibration when a driving voltage is applied to the piezoelectric element 10, and can also be used as an actuator drive sensor that uses the vibration as a sensor. In addition, it can be used for various applications such as a robot joint drive actuator, an artificial muscle actuator, a medical device operation wire drive actuator, a fiberscope drive actuator, an ultrasonic motor, and a piezoelectric motor.
(実施形態2)
 本実施形態は、2本以上の巻線を芯線に巻き付けた構成を有する圧電素子に関する。以下、特に説明のない限り、実施形態1にて述べた説明が本実施形態にも同様に当て嵌まり得る。
(Embodiment 2)
The present embodiment relates to a piezoelectric element having a configuration in which two or more windings are wound around a core wire. Hereinafter, unless otherwise specified, the description described in the first embodiment can be similarly applied to the present embodiment.
 図2を参照して、本実施形態の圧電素子13は、芯線1と、この芯線1に巻き付けられた2本以上の巻線とを含み、各巻線は、芯部およびこの芯部を被覆する有機圧電体層を有する。図2では、例示的に3本の巻線7a、7b、7cを示している(代表的に、巻線7aが、芯部3aおよびこの芯部3aを被覆する有機圧電体層5aを有することを示している)が、これに限定されず、例えば2~100本、特に2~20本の範囲で適宜使用され得る。圧電素子13において、芯線と、各巻線の芯部とが、それらの間に有機圧電体層が介挿された電極としてそれぞれ機能し、芯線の電極に対して、これら巻線の芯部は、巻線毎に異なる対向電極として機能し得る。かかる圧電素子13は、ケーブル状またはワイヤー状などと称され得る、全体として細長い線状の形態を有し、圧電素子全体としてフレキシブル(湾曲可能)なように構成され得る。 Referring to FIG. 2, the piezoelectric element 13 of the present embodiment includes a core wire 1 and two or more windings wound around the core wire 1, and each winding covers a core portion and the core portion. It has an organic piezoelectric layer. FIG. 2 exemplarily shows three windings 7a, 7b, and 7c (typically, the winding 7a has a core portion 3a and an organic piezoelectric layer 5a that covers the core portion 3a. However, the present invention is not limited to this, and can be suitably used within the range of 2 to 100, particularly 2 to 20, for example. In the piezoelectric element 13, the core wire and the core portion of each winding function as an electrode with an organic piezoelectric layer interposed therebetween, and the core portion of these windings with respect to the core wire electrode, It can function as a different counter electrode for each winding. Such a piezoelectric element 13 may be referred to as a cable shape, a wire shape, or the like, and has an elongated linear shape as a whole, and may be configured to be flexible (bendable) as a whole.
 本実施形態の圧電素子13は、芯線1に、上記のような2本以上の巻線7a、7b等を巻き付けることにより構成される。巻き付け方法は、芯線と各巻線の芯部との間に有機圧電体層が配置される(好ましくは芯線と有機圧電層が密接に接触して)限り、特に限定されない。例えば、図2に示すように、芯線1に2本以上の巻線を螺旋状かつ互いに並行に、好ましくは隣接する巻線間に隙間なく、巻き付けることができる。 The piezoelectric element 13 of the present embodiment is configured by winding the above-described two or more windings 7a, 7b and the like around the core wire 1. The winding method is not particularly limited as long as the organic piezoelectric layer is disposed between the core wire and the core portion of each winding (preferably the core wire and the organic piezoelectric layer are in close contact). For example, as shown in FIG. 2, two or more windings can be spirally wound around the core wire 1 in parallel with each other, preferably without a gap between adjacent windings.
 以上のようにして本実施形態の圧電素子13を得ることができる。本実施形態の圧電素子13は、実施形態1にて上述した圧電素子と同様の効果を奏し得る。 As described above, the piezoelectric element 13 of the present embodiment can be obtained. The piezoelectric element 13 of the present embodiment can achieve the same effects as the piezoelectric element described in the first embodiment.
 更に加えて、本実施形態の圧電素子13は、芯線の電極に対して、2本以上の巻線の芯部は、巻線毎に異なる対向電極として機能し得、例えば図2に示すように、これら芯部の電極を同一端子にて取り出した場合(図中、電極端子を黒丸にて模式的に示す)、2本以上の巻線のうちいずれかが断線しても、断線していない巻線により依然として同様の機能を果たすことができるので、圧電素子13全体が故障することを防止できる。 In addition, in the piezoelectric element 13 of the present embodiment, the core part of two or more windings can function as a different counter electrode for each winding with respect to the core wire electrode. For example, as shown in FIG. When these core electrodes are taken out at the same terminal (in the figure, the electrode terminal is schematically indicated by a black circle), even if one of the two or more windings is disconnected, it is not disconnected. Since the winding can still perform the same function, it is possible to prevent the entire piezoelectric element 13 from failing.
(実施形態3)
 本実施形態は、1本または2本以上の巻線を芯線に巻き付け、更にこれをシースで収容した構成を有する圧電素子に関する。以下、特に説明のない限り、実施形態1および2にて述べた説明が本実施形態にも同様に当て嵌まり得る。
(Embodiment 3)
The present embodiment relates to a piezoelectric element having a configuration in which one or two or more windings are wound around a core wire and further housed in a sheath. Hereinafter, unless otherwise specified, the description described in the first and second embodiments can be similarly applied to the present embodiment.
 図3を参照して、本実施形態の圧電素子15は、芯線1および芯線1に巻き付けられた少なくとも1本の巻線7を収容するシース9を更に含む。図3では、例示的に1本の巻線7を示しているが、これに限定されず、実施形態2にて詳述したように2本以上の巻線を含むものであってもよい。シース9の断面形状は特に限定されないが、収容すべき芯線1および巻線7の形状に従って適宜選択され得る。 Referring to FIG. 3, the piezoelectric element 15 of the present embodiment further includes a sheath 9 that houses the core wire 1 and at least one winding 7 wound around the core wire 1. In FIG. 3, one winding 7 is exemplarily shown, but the present invention is not limited to this, and may include two or more windings as described in detail in the second embodiment. The cross-sectional shape of the sheath 9 is not particularly limited, but may be appropriately selected according to the shapes of the core wire 1 and the winding 7 to be accommodated.
 シース9は、可撓性であることが好ましい。シース9の材料および厚さ等は、圧電素子15に所望される用途等に応じて適宜選択され得る。例えば、電気絶縁性、防水性、耐候性等の特性を示す材料が使用され得る。シース9の内部空間(シース9の内壁面と、芯線1およびこれに巻き付けられた巻線7との間の空間)は、空洞であり得るが、任意の適切な材料で充填されていてもよい。 The sheath 9 is preferably flexible. The material, thickness, and the like of the sheath 9 can be appropriately selected according to the use desired for the piezoelectric element 15. For example, a material exhibiting characteristics such as electrical insulation, waterproofness, and weather resistance can be used. The internal space of the sheath 9 (the space between the inner wall surface of the sheath 9 and the core wire 1 and the winding 7 wound around the core 9) may be a cavity, but may be filled with any appropriate material. .
 以上、本発明の3つの実施形態について詳述したが、これら実施形態は種々の改変が可能である。 Although the three embodiments of the present invention have been described in detail above, various modifications can be made to these embodiments.
(実施例1)
 実施形態1にて図1を参照して詳述した構成を有する圧電素子を下記の通り作製した。
Example 1
A piezoelectric element having the configuration detailed in Embodiment 1 with reference to FIG. 1 was produced as follows.
 芯線1として、SUS304(JIS G 4309)からなる直径0.5mmの単線を使用した。 As the core wire 1, a single wire having a diameter of 0.5 mm made of SUS304 (JIS G 4309) was used.
 巻線7の芯部3として、表面に黄銅メッキを施した高張力ピアノ線からなる直径0.07mmの単線(日鉄住金SGワイヤ株式会社製)を使用した。この芯部3の周囲をフッ化ビニリデンとテトラフルオロエチレンとの共重合体により被覆し、分極処理を施して有機圧電体層5を形成し、これにより巻線7を準備した。この巻線7において、有機圧電体層5の厚さは約30~35μmであり、巻線7の直径は約0.13~0.14mmであった。 As the core 3 of the winding 7, a single wire (manufactured by Nippon Steel & Sumikin SG Wire Co., Ltd.) having a diameter of 0.07 mm made of a high-strength piano wire with a brass plating on its surface was used. The core 3 was covered with a copolymer of vinylidene fluoride and tetrafluoroethylene and subjected to polarization treatment to form an organic piezoelectric layer 5, thereby preparing a winding 7. In this winding 7, the thickness of the organic piezoelectric layer 5 was about 30 to 35 μm, and the diameter of the winding 7 was about 0.13 to 0.14 mm.
 上述の芯線1に、上記で作製した巻線7を図1に示すように螺旋状に、隣接する巻線7間に隙間なく巻き付け、これにより圧電素子10を作製した。 The winding 7 prepared above was spirally wound around the core wire 1 as shown in FIG. 1 without any gap between the adjacent windings 7, thereby producing the piezoelectric element 10.
(実施例2)
 芯線1として、SUS304(JIS G 4309)からなる直径0.08mmの素線19本を撚って構成されている直径0.4mmの撚線を使用したこと以外は、実施例1と同様にして、圧電素子を作製した。芯線として使用した撚線を線方向に対して垂直に切断した概略断面図を図5に示す。この撚線は、中央の1本の素線Eの周りに6本の素線Eが均等に、かつ線方向に沿って同心状に回転しながら配置され、更にその周りに12本の素線Eが均等に、かつ線方向に沿って同心状に回転しながら配置されて構成されており、撚線の直径は、図5に示す仮想的な円形断面領域の直径に相当する。
(Example 2)
As core wire 1, the same procedure as in Example 1 was used except that a twisted wire having a diameter of 0.4 mm formed by twisting 19 strands having a diameter of 0.08 mm made of SUS304 (JIS G 4309) was used. A piezoelectric element was produced. FIG. 5 shows a schematic cross-sectional view of a stranded wire used as a core wire cut perpendicularly to the line direction. The twisted wires are arranged so that six strands E are arranged uniformly around the central strand E while rotating concentrically along the linear direction, and 12 strands around the strands. E is arranged so as to rotate evenly and concentrically along the linear direction, and the diameter of the stranded wire corresponds to the diameter of the virtual circular cross-sectional area shown in FIG.
(実施例3)
 芯線1として、表面に銀メッキを施したナイロン糸からなる直径0.2mmの導電性繊維(フィラメント、70d/34f、但し、dはデニール、fはフィラメント本数を意味する)を使用したこと以外は、実施例1と同様にして、圧電素子を作製した。
(Example 3)
Except that the core wire 1 is made of conductive fibers (diameter, 70d / 34f, where d is denier and f is the number of filaments) made of nylon thread with silver plating on the surface. In the same manner as in Example 1, a piezoelectric element was produced.
(評価)
 実施例1~3で作製した各圧電素子について、圧電素子として実際に機能し得るかどうか、より詳細には、外力として押圧力を加えた後に解放しときに電圧を発生し得るかどうかを下記に従って評価した。
(Evaluation)
For each piezoelectric element produced in Examples 1 to 3, whether or not it can actually function as a piezoelectric element, more specifically, whether or not a voltage can be generated when released after applying a pressing force as an external force is described below. Evaluated according to.
 図6(a)および(b)に示すように、2枚のセラミック板21、23(いずれも長さ5cm、幅5cmおよび厚さ1cm)の間に、セラミック板21の上面中央線に沿って延在するように圧電素子10を配置した。圧電素子10のうち芯線1と巻線7の芯部3(いずれも図6中にて図示せず)とからそれぞれ電極を取り出してチャージアンプ(図示せず)に接続した。チャージアンプは、圧電素子10からの電荷を電圧に変換することができるものであればよく、例えばチャージアンプ MODEL-4001B-50(昭和測器株式会社製)を使用できる。チャージアンプにより発生した電圧を、チャージアンプに接続されたオシロスコープ(図示せず)によって経時的に計測することができるように、評価システムを構成した。 As shown in FIGS. 6 (a) and 6 (b), along the upper surface center line of the ceramic plate 21 between the two ceramic plates 21, 23 (all 5 cm long, 5 cm wide and 1 cm thick). The piezoelectric element 10 was disposed so as to extend. Electrodes were taken out from the core wire 1 of the piezoelectric element 10 and the core portion 3 of the winding 7 (both not shown in FIG. 6) and connected to a charge amplifier (not shown). The charge amplifier is not particularly limited as long as it can convert the electric charge from the piezoelectric element 10 into a voltage. For example, a charge amplifier MODEL-4001B-50 (manufactured by Showa Keiki Co., Ltd.) can be used. The evaluation system was configured so that the voltage generated by the charge amplifier could be measured over time with an oscilloscope (not shown) connected to the charge amplifier.
 上記のように配置したセラミック板21、23および圧電素子10を、精密万能試験機(株式会社島津製作所製、オートグラフ AGS-500X、ロードセル 50N)にセットした。チャージアンプのキャパシタンスを表1に示すように設定し、オシロスコープで電圧を計測しながら、精密万能試験機を用いて、セラミック板21の上に配置された圧電素子10の長さ5cmに亘る部分に対して(図6(a)および(b)参照)、セラミック板23を降下させて5Nの押圧力(圧縮加重)を加えて変形させ(図6(c)参照、荷重を矢印にて模式的に示す)、圧縮荷重5N一定でそのまましばらく維持し、その後、セラミック板23を上昇させて解放した(図6(a)および(b)参照)。オシロスコープでの電圧の経時的計測において、圧電素子10に5Nの押圧力を加えて安定状態になるとほぼ一定の電圧値を示し、その後、解放したときに電圧が発生して電圧値が急激に上昇し、その後、この上昇した電圧値を実質的に維持して示し続けた。これは、押圧力から解放されると、圧電素子10にて電荷が発生し、当該電荷がチャージアンプに入力され、チャージアンプから電圧が出力されたものである。上記安定状態での電圧値を0Vとして、解放したときおよびその後に観測される上記上昇した電圧値を「発生電圧」として測定した。結果を表1に併せて示す。 The ceramic plates 21 and 23 and the piezoelectric element 10 arranged as described above were set in a precision universal testing machine (manufactured by Shimadzu Corporation, Autograph AGS-500X, load cell 50N). While setting the capacitance of the charge amplifier as shown in Table 1 and measuring the voltage with an oscilloscope, using a precision universal testing machine, the piezoelectric element 10 disposed on the ceramic plate 21 was placed on a portion over a length of 5 cm. On the other hand (see FIGS. 6A and 6B), the ceramic plate 23 is lowered and deformed by applying a pressing force (compression load) of 5 N (see FIG. 6C, the load is schematically shown by an arrow). The compression load 5N is constant and maintained for a while, and then the ceramic plate 23 is lifted and released (see FIGS. 6A and 6B). When measuring the voltage over time with an oscilloscope, a pressure of 5N is applied to the piezoelectric element 10 and when it becomes stable, it shows an almost constant voltage value. After that, when it is released, a voltage is generated and the voltage value increases rapidly. After that, the increased voltage value was maintained and shown substantially. In this case, when released from the pressing force, a charge is generated in the piezoelectric element 10, the charge is input to the charge amplifier, and a voltage is output from the charge amplifier. The voltage value in the stable state was set to 0 V, and the increased voltage value observed when released and thereafter was measured as “generated voltage”. The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から理解されるように、実施例1~3のいずれの圧電素子においても、外力として押圧力を加えた後に解放しときに電圧を発生し得、よって、圧電素子として実際に機能し得ることが確認された。 As understood from Table 1, in any of the piezoelectric elements of Examples 1 to 3, a voltage can be generated when released after applying a pressing force as an external force, and thus can actually function as a piezoelectric element. It was confirmed.
 本発明の圧電素子は、各種のセンサおよび/またはアクチュエータとして利用可能である。本発明を限定するものではないが、本発明の圧電素子は、フレキシブルで、任意の形状に沿って配置することができ、例えば、圧電素子に外力が加えられたときにこれを検知することが可能な感圧センサ等として利用され得る。 The piezoelectric element of the present invention can be used as various sensors and / or actuators. Although not limiting the present invention, the piezoelectric element of the present invention is flexible and can be arranged along an arbitrary shape. For example, it can detect when an external force is applied to the piezoelectric element. It can be used as a possible pressure-sensitive sensor or the like.
 本願は、2017年3月27日付けで出願された特願2017-061702に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2017-061702 filed on Mar. 27, 2017, the entire contents of which are incorporated herein by reference.
  1 芯線
  3、3a 芯部
  5、5a 有機圧電体層
  7、7a、7b、7c 巻線
  9 シース
  10、13、15 圧電素子
  E 素線
  21、23 セラミック板
  61 内部導体
  63 圧電体層
  65 外部導体
  67 外被
  70 圧電素子
1 Core wire 3, 3a Core portion 5, 5a Organic piezoelectric layer 7, 7a, 7b, 7c Winding 9 Sheath 10, 13, 15 Piezoelectric element E Elementary wire 21, 23 Ceramic plate 61 Internal conductor 63 Piezoelectric layer 65 External conductor 67 Jacket 70 Piezoelectric element

Claims (6)

  1.  少なくとも表面が導電性である芯線と、
     該芯線に巻き付けられた少なくとも1本の巻線であって、少なくとも表面が導電性である芯部および該芯部を被覆する有機圧電体層を各々有する巻線と
    を含み、前記芯線および前記巻線の前記芯部が、それらの間に前記有機圧電体層が介挿された電極としてそれぞれ機能する、圧電素子。
    A core wire having at least a conductive surface;
    At least one winding wound around the core wire, the core portion including at least a conductive core portion and an organic piezoelectric layer covering the core portion, the core wire and the winding The piezoelectric element in which the core portion of the wire functions as an electrode having the organic piezoelectric layer interposed between them.
  2.  前記巻線を2本以上含む、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, comprising two or more windings.
  3.  前記芯線および該芯線に巻き付けられた前記少なくとも1本の巻線を収容するシースを更に含む、請求項1または2に記載の圧電素子。 3. The piezoelectric element according to claim 1 or 2, further comprising a sheath that accommodates the core wire and the at least one winding wound around the core wire.
  4.  前記有機圧電体層が、ポリフッ化ビニリデン、フッ化ビニリデンとトリフルオロエチレンとの共重合体、フッ化ビニリデンとテトラフルオロエチレンとの共重合体、ポリ乳酸、多孔性ポリプロピレンおよび多孔性ポリテトラフルオロエチレンから成る群より選択される少なくとも1種を含む、請求項1~3のいずれかに記載の圧電素子。 The organic piezoelectric layer is composed of polyvinylidene fluoride, a copolymer of vinylidene fluoride and trifluoroethylene, a copolymer of vinylidene fluoride and tetrafluoroethylene, polylactic acid, porous polypropylene, and porous polytetrafluoroethylene. The piezoelectric element according to any one of claims 1 to 3, comprising at least one selected from the group consisting of:
  5.  前記有機圧電体層が、フッ化ビニリデンとトリフルオロエチレンとの共重合体およびフッ化ビニリデンとテトラフルオロエチレンとの共重合体から成る群より選択される少なくとも1種を含む、請求項4に記載の圧電素子。 The organic piezoelectric layer includes at least one selected from the group consisting of a copolymer of vinylidene fluoride and trifluoroethylene and a copolymer of vinylidene fluoride and tetrafluoroethylene. Piezoelectric element.
  6.  センサおよびアクチュエータのいずれかまたは双方として使用される、請求項1~5のいずれかに記載の圧電素子。 The piezoelectric element according to any one of claims 1 to 5, which is used as one or both of a sensor and an actuator.
PCT/JP2018/012323 2017-03-27 2018-03-27 Piezoelectric element WO2018181261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509857A JPWO2018181261A1 (en) 2017-03-27 2018-03-27 Piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061702 2017-03-27
JP2017-061702 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018181261A1 true WO2018181261A1 (en) 2018-10-04

Family

ID=63675910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012323 WO2018181261A1 (en) 2017-03-27 2018-03-27 Piezoelectric element

Country Status (2)

Country Link
JP (1) JPWO2018181261A1 (en)
WO (1) WO2018181261A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230707A1 (en) * 2021-04-28 2022-11-03 三井化学株式会社 Polymer piezoelectric film element, power storage device using same, and load detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171506A (en) * 1984-09-11 1986-04-12 フォーカス・リミテッド Piezoelectric coaxial cable
JP2000111422A (en) * 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd Cable-shaped pressure sensor
JP2005069808A (en) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd Cable-like pressure sensor
JP2006098062A (en) * 2004-09-28 2006-04-13 Oki Electric Cable Co Ltd Highly sensitive/highly bendable sensor cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3291317B1 (en) * 2015-04-30 2019-04-10 Teijin Limited Piezoelectric element and device using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171506A (en) * 1984-09-11 1986-04-12 フォーカス・リミテッド Piezoelectric coaxial cable
JP2000111422A (en) * 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd Cable-shaped pressure sensor
JP2005069808A (en) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd Cable-like pressure sensor
JP2006098062A (en) * 2004-09-28 2006-04-13 Oki Electric Cable Co Ltd Highly sensitive/highly bendable sensor cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230707A1 (en) * 2021-04-28 2022-11-03 三井化学株式会社 Polymer piezoelectric film element, power storage device using same, and load detection device

Also Published As

Publication number Publication date
JPWO2018181261A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US6271621B1 (en) Piezoelectric pressure sensor
JP6501958B1 (en) Piezoelectric element
US4568851A (en) Piezoelectric coaxial cable having a helical inner conductor
JP6725290B2 (en) Piezoelectric wire, method of manufacturing the same, and piezoelectric device including the piezoelectric wire
US4609845A (en) Stretched piezoelectric polymer coaxial cable
JP2020513864A5 (en)
WO2018181261A1 (en) Piezoelectric element
JP2019062124A (en) Thermally resistive piezoelectric wire, and piezoelectric device with thermally resistive piezoelectric wire
JP7352549B2 (en) Device and method for sensing underwater sound pressure
KR101612381B1 (en) Method for manufacturing micro piezoelectric composite wire, piezoelectric energy harvester using the micro piezoelectric composite wire, and method for manufacturing thereof
JPH0471350B2 (en)
KR102386331B1 (en) Piezoelectric braided knitted fabric and method for manufacturing the same
EP0187829B1 (en) Piezoelectric coaxial cable
JP7416376B2 (en) Piezoelectric elements and piezoelectric devices
JP3562404B2 (en) Cable-shaped pressure sensor and method of manufacturing the same
WO2009132653A1 (en) A transducer comprising a composite material with fiber arranged in a pattern to provide anisotropic compliance
JP2006098062A (en) Highly sensitive/highly bendable sensor cable
WO2020204069A1 (en) Power generation element and method for manufacturing power generation element
MULLAVEETTIL et al. Development of Electroactive PVDF Films by using 3D Printing and Contact Poling
TW202249314A (en) Piezoelectric substrate, sensor, actuator, and biological information acquisition device
WO2018092708A1 (en) Piezoelectric element sheet and method for manufacturing same
JP2005241536A (en) Cable-like pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775858

Country of ref document: EP

Kind code of ref document: A1