JP7414303B2 - Stir-fried homogeneous polysaccharide and its preparation method and application - Google Patents

Stir-fried homogeneous polysaccharide and its preparation method and application Download PDF

Info

Publication number
JP7414303B2
JP7414303B2 JP2021534247A JP2021534247A JP7414303B2 JP 7414303 B2 JP7414303 B2 JP 7414303B2 JP 2021534247 A JP2021534247 A JP 2021534247A JP 2021534247 A JP2021534247 A JP 2021534247A JP 7414303 B2 JP7414303 B2 JP 7414303B2
Authority
JP
Japan
Prior art keywords
polysaccharide
solution
mol
collected
sashigoka
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021534247A
Other languages
Japanese (ja)
Other versions
JP2022544723A (en
Inventor
恩瀚 王
漢坤 陳
木英 叶
虹佳 林
Original Assignee
広州青嵐生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 広州青嵐生物科技有限公司 filed Critical 広州青嵐生物科技有限公司
Publication of JP2022544723A publication Critical patent/JP2022544723A/en
Application granted granted Critical
Publication of JP7414303B2 publication Critical patent/JP7414303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Sustainable Development (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)

Description

本発明は、薬学の技術分野に関し、具体的には、刺五加均質多糖とその調製方法および応用に関する。 TECHNICAL FIELD The present invention relates to the technical field of pharmaceutical science, and specifically relates to a homogeneous polysaccharide and its preparation method and application.

刺五加は、五加科五加属植物の刺五加(Acanthopanax senticosus(Rupr. Et Maxim)Harms)由来の乾燥した根と根茎または茎であり、極東ロシアの針葉樹林帯、中国北東部、河北省、山西省、日本、北朝鮮の北部などに広く分布している。「五加参」、「刺拐棒」、「老虎鐐子」としても知られている。漢方医学では、刺五加を薬物として使用する歴史は長く、歴代の漢方作品にも記載されている。南朝時代の陶弘景は、『名医別録』という書物の中で、刺五加の「五葉が良く」、「中を調え、精を益し、筋骨を強め、意志を強くする」という効果があることを指摘している。明時代の李時珍は、刺五加が「神農本草経における上等品」であり、「中を調え、気を益し、筋骨を強め、意志を強くし、長く服用すると身軽で老いに抵抗する」という効果があることを『本草綱目』で示している。刺五加は、温の薬性を有し、味が辛で、少し苦く、脾・腎・心の経絡に作用し、気を増やして脾胃の機能を正常にし、腎臓の機能を高め、精神を安定させる効果があり、主に脾腎陽虚、身体虚弱、食欲不振、腰や膝の痛み、不眠症などに用いられる。(潘景芝、金莎、崔文玉ら、刺五加の化学成分と薬理活性に関する研究の進展[J].食品産業科学技術、2019、40(23):353-360)刺五加は、免疫機能調整、抗癌、肝臓保護、老化防止、抗酸化、抗炎症、血圧降下、抗ストレスなどの様々な薬理作用を持ち、その有効成分はシリンギン類、フラボノイド類、リグナン類、多糖類などである。しかし、これらは再現性が低く、標準品を作ることができない粗多糖の実験結果であり、産業化の価値は限られている。本発明は、これまでの研究に基づき、刺五加の粗多糖の分離精製、構造解析、生物活性評価を行い、良好な生物活性を有する刺五加均質多糖を得ることを目的とし、これは、非常に重大な科学的意義を有するだけでなく、刺五加均質多糖の産業化の基礎を築くこともできる。 Acanthopanax senticosus (Rupr. Et Maxim) Harms is a dried root and rhizome or stem derived from Acanthopanax senticosus (Rupr. Et Maxim) Harms, a plant in the genus Acanthopanax of the family Acanthopanax, which is grown in the coniferous forest zone of the Russian Far East, northeastern China, It is widely distributed in Hebei province, Shanxi province, Japan, and the northern part of North Korea. It is also known as the "Wu Jia Jian", the "Stab Stick", and the "Old Tiger Lie Zi". In Traditional Chinese Medicine, the use of Chigoka as a drug has a long history, and it has been described in successive Chinese herbal works. Sue Hongkei of the Southern Dynasty wrote in a book called ``Famous Doctor Bessroku'' that the ``five leaves'' of sashigoka have the effect of ``conditioning the inside, benefiting the spirit, strengthening the muscles, and strengthening the will.'' It points out that. Li Shizhen of the Ming dynasty said that zhujiujia is ``a superior product in the herbal medicine of Shennong,'' and that it ``conditions the inside, benefits the Qi, strengthens the muscles, strengthens the will, and when taken for a long time, it makes you feel light and resists aging.'' '' is shown in the ``Honso Tsuname''. Zing Wuji has medicinal properties of warmth, is spicy and slightly bitter, and acts on the spleen, kidney, and heart meridians, increasing Qi, normalizing the function of the spleen and stomach, improving the function of the kidney, and improving the mental health. It has a stabilizing effect, and is mainly used to treat spleen, kidney, yang deficiency, physical weakness, loss of appetite, pain in the lower back and knees, and insomnia. (Geong-ji Ban, Jin-ha, Wen-ok Choi et al., Advances in research on the chemical components and pharmacological activities of Chingoka [J]. Food Industry Science and Technology, 2019, 40(23): 353-360) Chingoka can regulate immune function. It has various pharmacological effects such as anti-cancer, liver protection, anti-aging, antioxidant, anti-inflammation, lowering blood pressure, and anti-stress, and its active ingredients include syringins, flavonoids, lignans, and polysaccharides. However, these are experimental results for crude polysaccharides that have low reproducibility and cannot be used as standard products, and their value for industrialization is limited. The purpose of the present invention is to isolate and purify the crude polysaccharide of Sashigoka, analyze its structure, and evaluate its biological activity based on previous research, and to obtain a homogeneous polysaccharide of Sashigoka with good biological activity. , not only has very important scientific significance, but also can lay the foundation for the industrialization of polysaccharides.

本発明が解決しようとする技術的課題は、刺五加多糖を分子量に応じてグレード分けした後、さらに分離精製して構造的特徴付けを行うことにより、単糖分子から縮合された薬効のある刺五加均質多糖を提供し、かつ得られた刺五加均質多糖に対して抗酸化活性および抗皮膚老化活性の初歩的な研究を行うことである。 The technical problem to be solved by the present invention is to grade polysaccharides according to their molecular weights, then further separate and purify them and structurally characterize them. The purpose of the present invention is to provide a homogeneous polysaccharide containing sterilized polysaccharides, and to perform preliminary research on the antioxidant activity and anti-skin aging activity of the homogeneous polysaccharide obtained.

本発明の目的は、分子量が6.83×10Daで、フコース、アラビノース、ガラクトース、グルコース、およびキシロースからなり、各単糖のモルパーセントがそれぞれ16.42%、32.27%、40.38%、7.21%および3.72%である刺五加均質多糖を提供することである。The object of the present invention has a molecular weight of 6.83×10 5 Da and is composed of fucose, arabinose, galactose, glucose , and xylose, and the mole percentage of each monosaccharide is 16.42%, 32.27%, and 40%, respectively. .38%, 7.21% and 3.72%.

本発明の別の目的は、当該刺五加均質多糖の調製方法を提供することであり、以下のステップ、すなわち、
1) 乾燥の刺五加飲片を粉砕し、篩にかけた後、薬粉末の5~8倍量の水を添加し、80~100℃の温度で、毎回2h、合計3回抽出し、抽出液を合わせ、遠心分離して上澄み液を収集し、かつ上澄み液を濃縮して濃縮液を得るステップと、
2) 濃縮液を冷却した後、α-アミラーゼを0.1~0.4%の重量になるように添加し、pH値を7.0に調整し、60℃の水浴中でヨウ素-ヨウ化カリウム試薬に晒して溶液が変色しなくなるまで酵素分解を行い、そして、100℃に急速に昇温して5min保持して酵素を失活させ、遠心分離して上澄み液を収集するステップと、
3) ステップ2)で収集した上澄み液とSevage試薬を1:1の体積比で混合し、30min激しく振とうした後、12h静置し、上層の多糖溶液を収集し、上層の多糖溶液とSevage試薬を1:1の体積比で混合し、UVスキャンでタンパク質の特徴的な吸収ピークがなくなるまで上記の操作を繰り返すステップと、
4) ステップ3)で最終的に収集した上層の多糖溶液を濃縮した後、4~6倍の体積量の無水エタノールを添加し、4℃で48h静置して沈殿させ、その後、遠心分離して沈殿物を収集し、沈殿物に無水エタノールを添加して上記の操作を3回繰り返した後、凍結乾燥し、刺五加の粗多糖粉末を得るステップと、
5) ステップ4)で得られた刺五加の粗多糖粉末を蒸留水で完全に溶解した後、DEAE Fast Flowイオンクロマトグラフィーカラムで分離し、溶出条件として、流速が2.5mL/minであり、純水、0.05mol/L、0.1mol/L、0.2mol/L、0.4mol/L、1mol/Lの塩化ナトリウム溶液で順次溶出させ、続いて硫酸-フェノール法による追従検出を行い、溶出液を収集するステップと、
6) ステップ5)で収集した溶出液を濃縮した後、Sephadex G-200デキストランゲルカラムで再分離し、蒸留水で0.5mL/minの流速で溶出し、フェノール-硫酸法で検出した後、溶出曲線のメインピーク部分を収集するステップと、
7) ステップ6)で収集した溶出曲線のメインピーク部分の溶液を濃縮した後、カットオフ分子量3500Daの透析バッグを用いて2d透析して脱塩し、最後に透析バッグ内の溶液を濃縮して凍結乾燥し、刺五加均質多糖粉末を得るステップと、を含む。
Another object of the present invention is to provide a method for preparing the homogeneous polysaccharide, which comprises the following steps:
1) After crushing the dried Sashigoka drink pieces and passing them through a sieve, add 5 to 8 times the amount of water to the medicinal powder, and extract at a temperature of 80 to 100°C for 2 hours each time, 3 times in total to prepare the extract. combining, centrifuging to collect the supernatant, and concentrating the supernatant to obtain a concentrate;
2) After cooling the concentrate, add α-amylase to a weight of 0.1 to 0.4%, adjust the pH value to 7.0, and add iodine-iodine in a water bath at 60°C. Exposing the solution to a potassium reagent to perform enzymatic decomposition until the solution no longer changes color, rapidly raising the temperature to 100°C and holding for 5 minutes to inactivate the enzyme, and collecting the supernatant by centrifugation;
3) Mix the supernatant liquid collected in step 2) and Sevage reagent at a volume ratio of 1:1, shake vigorously for 30 min, let stand for 12 h, collect the upper layer polysaccharide solution, and mix with the upper layer polysaccharide solution and Sevage reagent. mixing the reagents in a 1:1 volume ratio and repeating the above operation until the characteristic absorption peak of the protein disappears in the UV scan;
4) After concentrating the upper polysaccharide solution finally collected in step 3), add 4 to 6 times the volume of absolute ethanol, let it stand at 4°C for 48 hours to precipitate it, and then centrifuge it. collecting the precipitate, adding absolute ethanol to the precipitate, repeating the above operation three times, and then freeze-drying it to obtain a crude polysaccharide powder of Sashigoka;
5) After completely dissolving the crude polysaccharide powder of Sashigoka obtained in step 4) in distilled water, it was separated using a DEAE Fast Flow ion chromatography column, and the elution conditions were a flow rate of 2.5 mL/min. , pure water, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, 1 mol/L sodium chloride solution, followed by follow-up detection using the sulfuric acid-phenol method. performing and collecting the eluate;
6) After concentrating the eluate collected in step 5), it was reseparated using a Sephadex G-200 dextran gel column, eluted with distilled water at a flow rate of 0.5 mL/min, and detected using the phenol-sulfuric acid method. collecting a main peak portion of the elution curve;
7) After concentrating the solution in the main peak part of the elution curve collected in step 6), it is desalted by dialysis for 2 days using a dialysis bag with a cut-off molecular weight of 3500 Da, and finally the solution in the dialysis bag is concentrated. freeze-drying to obtain a homogeneous polysaccharide powder.

本発明は、刺五加均質多糖の調製方法を提供し、以下のステップ、すなわち、
1) 乾燥の刺五加飲片を粉砕し、100メッシュの篩にかけ、篩にかけた薬粉末をその重量の5~8倍量の水で、80~100℃の温度で、毎回2h、合計3回抽出し、抽出液を合わせて3000rpm/minで20min遠心分離して上澄み液を収集し、かつ回転蒸発により上澄み液を元の体積の5分の1に濃縮して濃縮液を得るステップと、
2) 濃縮液を冷却した後、α-アミラーゼを0.1~0.4%の重量になるように添加し、pH値を7.0に調整し、60℃の水浴で4h(ヨウ素-ヨウ化カリウム試薬に晒して溶液が変色しなくなるまで)酵素分解を行い、そして、100℃に急速に昇温して5min保持して酵素を失活させ、続いて3000rpm/minで10min遠心分離して上澄み液を収集するステップと、
3) ステップ2)で収集した上澄み液とSevage試薬(クロロホルム:n-ブタノールの体積比4:1で混合したもの)を1:1の体積比で混合し、30min激しく振とうした後、12h静置し、上層の多糖溶液を収集し、上層の多糖溶液とSevage試薬を1:1の体積比で混合し、UVスキャンでタンパク質の特徴的な吸収ピークがなくなるまで上記の操作を繰り返すステップと、
4) ステップ3)で最終的に収集した上層の多糖溶液を濃縮した後、4~6倍の体積量の無水エタノールを添加し、4℃で48h静置して沈殿させ、その後、3000rpm/minで10min遠心分離して沈殿物を収集し、沈殿物に無水エタノールを添加して上記の操作を3回繰り返した後、最終的に得られた沈殿物を凍結乾燥し、刺五加の粗多糖粉末を得るステップと、
5) ステップ4)で得られた刺五加の粗多糖粉末を蒸留水で完全に溶解した後、DEAE Fast Flowイオンクロマトグラフィーカラムで分離し、溶出条件として、流速が2.5mL/minであり、純水、0.05mol/L、0.1mol/L、0.2mol/L、0.4mol/L、1mol/Lの塩化ナトリウム溶液で順次溶出させ、続いて全自動コレクターを用いて溶出液を勾配で収集し、各勾配溶液を3倍のカラム体積で溶出し、一チューブあたりに5.0mLで、合計30本のチューブを収集し、かつ硫酸-フェノール法によるセプタムチューブ追従検出を行うステップと、
6) ステップ5)で収集した溶出液を濃縮した後、Sephadex G-200デキストランゲルカラムで再分離し、蒸留水で0.5mL/minの流速で溶出し、全自動コレクターを用いて一チューブあたりに5.0mLで収集し、フェノール-硫酸で検出した後、溶出曲線のメインピーク部分を収集するステップと、
7) ステップ6)で収集した溶出曲線のメインピーク部分の溶液を濃縮した後、カットオフ分子量3500Daの透析バッグを用いて2d透析して脱塩し、最後に透析バッグ内の溶液を濃縮して凍結乾燥し、刺五加均質多糖粉末を得るステップと、を含む。
The present invention provides a method for preparing sashigoka homogeneous polysaccharide, which includes the following steps:
1) Grind the dried sashigoka drink and pass it through a 100 mesh sieve.The sieved medicinal powder is mixed with 5 to 8 times its weight of water at a temperature of 80 to 100°C for 2 hours each time, 3 times in total. extracting, combining the extracts, centrifuging at 3000 rpm/min for 20 min to collect the supernatant, and concentrating the supernatant to one-fifth of the original volume by rotary evaporation to obtain a concentrate;
2) After cooling the concentrate, add α-amylase to a concentration of 0.1 to 0.4% by weight, adjust the pH value to 7.0, and add iodine to iodine in a water bath at 60°C for 4 h. Enzyme digestion was carried out (until the solution no longer changed color by exposure to a potassium chloride reagent), then the temperature was rapidly raised to 100°C and held for 5 minutes to inactivate the enzyme, followed by centrifugation at 3000 rpm/min for 10 minutes. collecting the supernatant;
3) The supernatant collected in step 2) and Sevage reagent (chloroform: n-butanol mixed at a volume ratio of 4:1) were mixed at a volume ratio of 1:1, shaken vigorously for 30 min, and then left to stand still for 12 h. collecting the upper layer polysaccharide solution, mixing the upper layer polysaccharide solution and Sevage reagent in a volume ratio of 1:1, and repeating the above operation until the characteristic absorption peak of the protein disappears in the UV scan;
4) After concentrating the upper layer polysaccharide solution finally collected in step 3), add 4 to 6 times the volume of absolute ethanol, let it stand at 4°C for 48 hours to precipitate it, and then turn the solution at 3000 rpm/min. Collect the precipitate by centrifugation for 10 min, add absolute ethanol to the precipitate, repeat the above operation three times, freeze-dry the final precipitate, and prepare the crude polysaccharide of sashigoka. obtaining a powder;
5) After completely dissolving the crude polysaccharide powder of Sashigoka obtained in step 4) in distilled water, it was separated using a DEAE Fast Flow ion chromatography column, and the elution conditions were a flow rate of 2.5 mL/min. , pure water, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, 1 mol/L sodium chloride solution, and then the eluate was collected using a fully automatic collector. Collect 30 tubes with a gradient, elute each gradient solution with 3 column volumes, 5.0 mL per tube, and perform septum tube follow-up detection using the sulfuric acid-phenol method. and,
6) After concentrating the eluate collected in step 5), it was reseparated using a Sephadex G-200 dextran gel column, eluted with distilled water at a flow rate of 0.5 mL/min, and collected per tube using a fully automatic collector. collecting the main peak portion of the elution curve after detecting with phenol-sulfuric acid;
7) After concentrating the solution in the main peak part of the elution curve collected in step 6), it is desalted by dialysis for 2 days using a dialysis bag with a cut-off molecular weight of 3500 Da, and finally the solution in the dialysis bag is concentrated. freeze-drying to obtain a homogeneous polysaccharide powder.

さらに、前記Sevage試薬では、クロロホルム:n-ブタノールの体積比が4:1である。 Further, in the Sevage reagent, the volume ratio of chloroform:n-butanol is 4:1.

本発明では、水抽出エタノール沈殿法により抽出し、かつ陰イオン交換DEAE Fast FloeクロマトグラフィーカラムとSuperdex-200ゲルクロマトグラフィーカラムを用いてさらに分離精製する場合、分子量が6.83×10Daで、フコ ース、アラビノース、ガラクトース、グルコース、およびキシロースからなる刺五加均質多糖を得ることを見出した。In the present invention, when extracted by a water extraction ethanol precipitation method and further separated and purified using an anion exchange DEAE Fast Floe chromatography column and a Superdex-200 gel chromatography column, the molecular weight is 6.83×10 5 Da. We found that a homogeneous polysaccharide consisting of fucose , arabinose, galactose, glucose , and xylose can be obtained.

試験の結果、本発明によって調製された刺五加均質多糖粉末は、抗酸化や抗皮膚老化などの様々な効果を有しており、アンチエイジング化粧品や皮膚用の治療薬の調製に使用できることが証明された。 The test results show that the homogeneous polysaccharide powder prepared according to the present invention has various effects such as antioxidant and anti-skin aging, and can be used in the preparation of anti-aging cosmetics and skin treatments. Proven.

本発明はさらに、上述した抗皮膚老化効果を有する刺五加均質多糖、および化粧品分野で使用される賦形剤を含むスキンケア化粧品に関する。 The present invention further relates to skin care cosmetics comprising the above-mentioned polysaccharides having anti-skin aging effects and excipients used in the cosmetic field.

本発明はさらに、上述した抗皮膚老化効果を有する刺五加均質多糖、および医学的に許容される担体を含む皮膚用の治療薬に関する。 The present invention further relates to a dermatological therapeutic agent comprising a pentagonal homogeneous polysaccharide having an anti-skin aging effect as described above, and a medically acceptable carrier.

本発明によって提供される刺五加均質多糖は、特に、クリーム、エマルジョン、ローション、ジェル、マスク、塗り剤や洗剤などのスキンケア化粧品の調製に使用することができるが、上記の剤形に限定されるものではなく、上記の刺五加均質多糖と化粧品分野で使用される賦形剤からなる組成物を、スキンケア業界で知られている方法に従って滅菌することにより、様々な異なる外用剤として製造することができる。 The stinging homogeneous polysaccharide provided by the present invention can be used in particular for the preparation of skin care cosmetics such as creams, emulsions, lotions, gels, masks, ointments and detergents, but is not limited to the above-mentioned dosage forms. Instead, various different external preparations are produced by sterilizing the above-mentioned homogeneous polysaccharide and excipients used in the cosmetic field according to methods known in the skin care industry. be able to.

スキンケア化粧品を調製する際、調製した刺五加均質多糖粉末を、従来の方法に従って、公知の化粧品および医薬品の基剤または賦形剤、担体、添加剤と混合して調製することができ、ここで、前記刺五加均質多糖粉末は、化粧品の総重量の3%~10%を占める。 When preparing skin care cosmetics, the prepared homogeneous polysaccharide powder can be mixed with known cosmetic and pharmaceutical bases or excipients, carriers, and additives according to conventional methods. The homogeneous polysaccharide powder accounts for 3% to 10% of the total weight of the cosmetic product.

刺五加粗多糖画分がDEAE Fast Flowイオンクロマトグラフィーカラムを通過した溶出曲線グラフである。FIG. 2 is an elution curve graph of a raw polysaccharide fraction passed through a DEAE Fast Flow ion chromatography column. 刺五加均質多糖のHPGPCゲルクロマトグラムである。This is an HPGPC gel chromatogram of a homogeneous polysaccharide. 6種類の標準単糖のGC-MSのトータルイオンフロークロマトグラムである。This is a GC-MS total ion flow chromatogram of six types of standard monosaccharides. 刺五加均質多糖のGC-MSのトータルイオンフロークロマトグラムである。This is a GC-MS total ion flow chromatogram of a homogeneous polysaccharide. 刺五加均質多糖の赤外スペクトルである。This is an infrared spectrum of a homogeneous polysaccharide. 刺五加均質多糖のHスペクトルであり、注:(左→右)。This is a 1 H spectrum of a homogeneous polysaccharide. Note: (Left → Right). 刺五加均質多糖の13Cスペクトルであり、注:(左→右)。This is the 13C spectrum of the homogeneous polysaccharide. Note: (Left → Right).

以下は具体的な実施形態に併せて、本発明をさらに詳しく説明する。 The present invention will be described in more detail below in conjunction with specific embodiments.

実施例1 刺五加均質多糖の調製と構造的特徴付け
1、刺五加粗多糖の抽出:
乾燥の刺五加飲片を粉砕し、100メッシュの篩にかけ、篩にかけた薬粉末をその重量の5倍量の水で、80℃の温度で、毎回2h、合計3回抽出し、抽出液を合わせて3000rpm/minで20min遠心分離して上澄み液を収集し、かつ回転蒸発により上澄み液を元の体積の5分の1に濃縮して濃縮液を得る。濃縮液を冷却した後、α-アミラーゼを0.1%の重量になるように添加し、pH値を7.0に調整し、60℃の水浴で4h(ヨウ素-ヨウ化カリウム試薬に晒して溶液が変色しなくなるまで)酵素分解を行い、そして、100℃に急速に昇温して5min保持して酵素を失活させ、続いて3000rpm/minで10min遠心分離して上澄み液を収集する。上澄み液とSevage試薬(クロロホルム:n-ブタノールの体積比4:1で混合したもの)を1:1の体積比で混合し、30min激しく振とうした後、12h静置し、上層の多糖溶液を収集し、上層の多糖溶液とSevage試薬を1:1の体積比で混合し、UVスキャンでタンパク質の特徴的な吸収ピークがなくなるまで上記の操作を繰り返す。最終的に収集した上層の多糖溶液を濃縮した後、4倍の体積量の無水エタノールを添加し、4℃で48h静置して沈殿させ、その後、3000rpm/minで10min遠心分離して沈殿物を収集する。沈殿物に無水エタノールを添加して上記の操作を3回繰り返した後、最終的に得られた沈殿物を凍結乾燥し、刺五加の粗多糖粉末を得る。
Example 1 Preparation and structural characterization of Sashigoka homogeneous polysaccharide 1. Extraction of Sashigoka crude polysaccharide:
Grind the dried Sashigoka drink powder , pass it through a 100 mesh sieve, extract the sieved medicinal powder with 5 times its weight of water at a temperature of 80℃ for 2 hours each time, 3 times in total, and extract the extract. The supernatant liquid is collected by centrifugation at 3000 rpm/min for 20 min, and the supernatant liquid is concentrated to one-fifth of the original volume by rotary evaporation to obtain a concentrated liquid. After cooling the concentrate, α-amylase was added to 0.1% by weight, the pH value was adjusted to 7.0, and the solution was exposed to iodine-potassium iodide reagent for 4 h in a 60°C water bath. Enzyme digestion is carried out (until the solution no longer changes color) and the temperature is rapidly raised to 100° C. and held for 5 min to inactivate the enzyme, followed by centrifugation at 3000 rpm/min for 10 min to collect the supernatant. The supernatant and Sevage reagent (chloroform:n-butanol mixed at a volume ratio of 4:1) were mixed at a volume ratio of 1:1, shaken vigorously for 30 minutes, and then left to stand for 12 hours to remove the polysaccharide solution in the upper layer. Collect, mix the upper polysaccharide solution and Sevage reagent in a 1:1 volume ratio, and repeat the above operation until the characteristic absorption peak of the protein disappears in the UV scan. After concentrating the finally collected upper layer polysaccharide solution, 4 times the volume of absolute ethanol was added, and the mixture was allowed to stand at 4°C for 48 hours to precipitate. Then, the precipitate was centrifuged at 3000 rpm/min for 10 min. Collect. After adding anhydrous ethanol to the precipitate and repeating the above operation three times, the finally obtained precipitate is freeze-dried to obtain a crude polysaccharide powder of Sashigoka.

2、刺五加均質多糖の精製
得られた刺五加の粗多糖粉末を蒸留水で完全に溶解した後、DEAE Fast Flowイオンクロマトグラフィーカラムで分離し、溶出条件として、流速が2.5mL/minであり、水、0.05mol/L、0.1mol/L、0.2mol/L、0.3mol/L、0.5mol/Lの塩化ナトリウム溶液で順次溶出させる。全自動コレクターを用いて勾配で収集し、各勾配溶液を3倍のカラム体積で溶出し、一チューブあたりに5.0mLで、合計30本を収集し、かつ硫酸-フェノール法によるセプタムチューブ追従検出を行う。ここで、刺五加粗多糖画分がDEAE Fast Flowイオンクロマトグラフィーカラムを通過した溶出曲線グラフを、図1に示す。
2. Purification of Homogeneous Polysaccharide of Sashigoka After completely dissolving the obtained crude polysaccharide powder of Sashigoka in distilled water, it was separated using a DEAE Fast Flow ion chromatography column, and the elution conditions were as follows: a flow rate of 2.5 mL/min. min, and the solution is sequentially eluted with water, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.3 mol/L, and 0.5 mol/L sodium chloride solutions. Collect gradients using a fully automatic collector, elute each gradient solution with 3 times the column volume, collect 30 tubes in total at 5.0 mL per tube, and perform septum tube follow-up detection using the sulfuric acid-phenol method. I do. FIG. 1 shows an elution curve graph of the Stimagoka crude polysaccharide fraction passed through a DEAE Fast Flow ion chromatography column.

一方では、異なる溶出液に対応する収集液を一定の体積まで濃縮した後、透析バッグ(カットオフ分子量が3500 Da)を用いて透析する。透析バッグを入れたビーカー内の水を1日5回交換し、7日間透析した後、透析バッグ内の多糖液を遠心分離し、かつ凍結乾燥し、初期精製された刺五加多糖を得る。 On the one hand, the collected liquids corresponding to the different eluates are concentrated to a certain volume and then dialyzed using a dialysis bag (cutoff molecular weight 3500 Da). The water in the beaker containing the dialysis bag is exchanged five times a day, and after dialysis for 7 days, the polysaccharide solution in the dialysis bag is centrifuged and freeze-dried to obtain initially purified polysaccharide.

他方では、収集した溶出液を濃縮した後、Sephadex G-200デキストランゲルカラムで再分離し、蒸留水で0.5mL/minの流速で溶出し、全自動コレクターを用いて一チューブあたりに5.0mLで収集し、フェノール-硫酸で検出した後、溶出曲線のメインピーク部分を収集する。続いて、収集した溶出曲線のメインピーク部分の溶液を濃縮した後、カットオフ分子量3500Daの透析バッグを用いて2d透析して脱塩し、最後に透析バッグ内の溶液を濃縮して凍結乾燥し、刺五加均質多糖粉末を得る。 On the other hand, after concentrating the collected eluate, it was reseparated on a Sephadex G-200 dextran gel column, eluted with distilled water at a flow rate of 0.5 mL/min, and 5.0 mL/tube was collected using a fully automatic collector. After collecting 0 mL and detecting with phenol-sulfuric acid, collect the main peak part of the elution curve. Subsequently, the solution in the main peak part of the collected elution curve was concentrated, and then dialyzed for 2 days to desalt using a dialysis bag with a cut-off molecular weight of 3500 Da.Finally, the solution in the dialysis bag was concentrated and freeze-dried. , obtain a homogeneous polysaccharide powder.

3、刺五加均質多糖の純度測定
HPLC条件:Agilent 1200高速液体クロマトグラフィーで、カラムのTSK GEL G3000PWXL(7.8×300mm、7μm)とTSK GEL G5000PWXL(7.8×300mm、10μm)を直列に接続し、移動相が0.02mol/L KHPO溶液であり、流速が0.5mL/minであり、カラム温度が35℃であり、検出器がWaters 2414示差屈折率検出器である。ステップ2で得られた刺五加均質多糖を適量の水で溶解し、注入試料を10μLとし、その結果を図2に示すように、クロマトグラムでは、刺五加均質多糖のクロマトグラフィーピークが単一の対称的なピークであることが見られ、本発明によって調製された刺五加均質多糖が確かに均質多糖であることが示された。
3. Purity measurement of homogeneous polysaccharide HPLC conditions: Agilent 1200 high performance liquid chromatography, columns TSK GEL G3000PW XL (7.8 x 300 mm, 7 μm) and TSK GEL G5000PW XL (7.8 x 300 mm, 10 μm) were connected in series, the mobile phase was 0.02 mol/L KH 2 PO 4 solution, the flow rate was 0.5 mL/min, the column temperature was 35 °C, and the detector was a Waters 2414 differential refractive index detector. It is. The homogeneous polysaccharide obtained in Step 2 was dissolved in an appropriate amount of water to make an injection sample of 10 μL. The chromatogram shows that the chromatographic peak of the homogeneous polysaccharide is a single one, as shown in Figure 2. One symmetrical peak was observed, indicating that the homogeneous polysaccharide prepared according to the present invention is indeed a homogeneous polysaccharide.

4、刺五加均質多糖の分子量の決定
分子量が50K、80K、150K、270K、410Kおよび670K Daであるプルラン多糖1mgをそれぞれ1mLの水に溶解し、上記のようなHPLC条件で、Agilent 1200高速液体クロマトグラフィーで分析し、保持時間を記録し、相対分子量の対数(logM)を縦座標とし、保持時間(t)を横座標とし、標準曲線y=14.62-0.980Xを得て、刺五加均質多糖のピーク出現時間を曲線式に代入すると、刺五加均質多糖の分子量を6.83×10Daとして求める。
4. Determination of the molecular weight of the homogeneous polysaccharide of staghorn polysaccharides 1 mg of pullulan polysaccharides with molecular weights of 50K, 80K, 150K, 270K, 410K and 670K Da were each dissolved in 1 mL of water and analyzed using an Agilent 1200 high-speed analyzer under the HPLC conditions described above. Analyzed by liquid chromatography, recording the retention time, with the logarithm of the relative molecular weight (logM) as the ordinate and the retention time (t) as the abscissa, yielding a standard curve y=14.62-0.980X, By substituting the peak appearance time of the homogeneous polysaccharide in the sting to the curve equation, the molecular weight of the homogeneous polysaccharide in the sting is determined as 6.83×10 5 Da.

5、刺五加均質多糖の構造的特徴付け
5.1 多糖画分の分析
まずは酸加水分解を行い、次にアセチル化して誘導体化し、さらに気相GC分析を行う。酸加水分解の方法として、刺五加均質多糖の試料を10mg秤量し、それぞれをアンプル瓶に入れ、濃度が2mol/Lのトリフルオロ酢酸を4mL添加し、窒素で瓶内の空気を吹き飛ばし、アルコールトーチでチューブを密閉する。110℃で6時間加水分解した後、試料を回転蒸発により乾燥させ、そして、2mLのメタノールを添加して溶解し、蒸発させ、3回繰り返して試料中のトリフルオロ酢酸を可能な限り除去すると、多糖加水分解物を得る。1mLのメタノールを添加して試料を血清バイアルに移し、窒素で送風乾燥した後、多糖加水分解物に1.0mLのピリジン、10mgの塩酸ヒドロキシルアミンおよび1.0mgの内部標準イノシトールを添加し、90℃の一定温度で0.5h振とう反応させ、冷却後、1mLの無水酢酸を添加し、90℃で0.5hアセチル化反応させる。冷却した後、水を添加して反応を終了させる。さらに2.0mLのクロロホルムを添加して3回抽出し、無水硫酸ナトリウムで余分な水分を除去した後、0.22μmの有機相ろ過膜でろ過する。各単糖の標準品も、上記のステップに従って誘導体化する。
5. Structural characterization of the homogeneous polysaccharide 5.1 Analysis of the polysaccharide fraction First, acid hydrolysis is performed, followed by acetylation and derivatization, followed by gas phase GC analysis. As a method for acid hydrolysis, we weighed 10 mg of a sample of the homogeneous polysaccharide, put each into an ampoule bottle, added 4 mL of trifluoroacetic acid with a concentration of 2 mol/L, blown out the air in the bottle with nitrogen, and added alcohol. Seal the tube with a torch. After hydrolysis at 110 °C for 6 hours, the sample was dried by rotary evaporation, and 2 mL of methanol was added to dissolve and evaporate, repeated three times to remove as much trifluoroacetic acid in the sample as possible. Obtain polysaccharide hydrolyzate. After adding 1 mL of methanol and transferring the sample to a serum vial and blow drying with nitrogen, 1.0 mL of pyridine, 10 mg of hydroxylamine hydrochloride, and 1.0 mg of internal standard inositol were added to the polysaccharide hydrolyzate, and 90 A shaking reaction is carried out for 0.5 h at a constant temperature of °C, and after cooling, 1 mL of acetic anhydride is added, and an acetylation reaction is carried out at 90 °C for 0.5 h. After cooling, water is added to terminate the reaction. Further, 2.0 mL of chloroform is added and extracted three times, excess water is removed with anhydrous sodium sulfate, and the mixture is filtered through a 0.22 μm organic phase filtration membrane. Standards of each monosaccharide are also derivatized according to the steps above.

上記方法に従って誘導体化した後、GC分析を行う。GC検出条件として、Aglient6890Nガスクロマトグラフィーシステムで、Agilent HP-5石英キャピラリーカラム(30m×0.32mm×0.25μm)を使用し、定圧モードは20 PSI、キャリアガスはN、試料注入量は1.0μL、流速は1.0mL/min、試料注入口の温度は250℃、FID検出器の温度設定は250℃、試料注入口は非分割モードを使用し、プログラム昇温を行い、即ち、100℃の初期温度を30s保持してから、3℃/minで160℃まで昇温させると、昇温速度を変更して昇温を継続する。10℃/minの速度で250℃まで昇温させ、かつ5min保持する。アラビノース(Arabinose)、ガラクトース(Galactose)、グルコース(Glucose)、マンノース(Mannose)、キシロース(Xylose)およびフコース(Fucose)の6種類の単糖標準品のGC-MSのトータルイオンフロークロマトグラムを図3に示し、刺五加均質多糖のGC-MSのトータルイオンフロークロマトグラムを図4に示す。 After derivatization according to the above method, GC analysis is performed. The GC detection conditions were an Agilent 6890N gas chromatography system using an Agilent HP-5 quartz capillary column (30 m x 0.32 mm x 0.25 μm), constant pressure mode at 20 PSI, carrier gas at N 2 , and sample injection volume at 1. .0 μL, the flow rate was 1.0 mL/min, the temperature of the sample inlet was 250 °C, the temperature setting of the FID detector was 250 °C, the sample inlet was in non-split mode, and the program temperature was increased, i.e. 100 °C. After holding the initial temperature of .degree. C. for 30 seconds and raising the temperature to 160.degree. C. at a rate of 3.degree. C./min, the temperature increase is continued by changing the temperature increase rate. The temperature is raised to 250°C at a rate of 10°C/min and held for 5 min. Figure 3 shows the GC-MS total ion flow chromatogram of six types of monosaccharide standards: arabinose, galactose, glucose, mannose, xylose, and fucose. The GC-MS total ion flow chromatogram of the homogeneous polysaccharide shown in Figure 4 is shown in Figure 4.

GC結果、アラビノース、ガラクトース、グルコース、マンノース、キシロースやフコースなどの6種類の単糖標準品の保持時間に応じて分析し、かつピーク出現の面積比から刺五加均質多糖の単糖モルパーセントを算出する。その結果、単糖標準品のGCスペクトルにおける保持時間と対照することにより、刺五加均質多糖がフコース、アラビノース、ガラクトース、グルコース、およびキシロースからなることが示され、内部標準法によって5種類の単糖のモルパーセントが16.42%、32.27%、40.38%、7.21%および3.72%として算出される。
The GC results were analyzed according to the retention time of six types of monosaccharide standards such as arabinose, galactose, glucose, mannose, xylose and fucose, and the monosaccharide mole percent of the homogeneous polysaccharide was calculated from the area ratio of peak appearance. calculate. As a result, by comparing the retention time in the GC spectrum of the monosaccharide standard, it was shown that the homogeneous polysaccharide is composed of fucose, arabinose, galactose, glucose , and xylose, and by the internal standard method, five types of The mole percentages of monosaccharides are calculated as 16.42%, 32.27%, 40.38%, 7.21% and 3.72%.

5.2 刺五加均質多糖の赤外スペクトルスキャン
刺五加均質多糖試料を2.0mg秤量し、臭化カリウム粉末と混合して均一に研磨した後、錠剤化処理を行う。その後、錠剤をフーリエ変換赤外分光計に置いて赤外線スキャンを行い(400~4000cm-1)、試料の赤外線吸収スペクトルを記録し、その結果を図5に示す。IR図からわかるように、刺五加均質多糖は、典型的な多糖吸収特徴を示しており、ここで、3456cm-1と2929cm-1はO-H結合の伸縮振動ピーク、1744cm-1はCHのC-Hの伸縮振動ピークであり、1635cm-1はCOまたは共生成した水による伸縮振動ピーク、1411cm-1はC-O結合の変角振動ピーク、1242cm-1は第一級アルコールβ-OHによる伸縮振動ピークであり、1021cm-1での吸収ピークは、刺五加均質多糖がピラン環を含むことを示し、893cm-1での吸収ピークは、刺五加均質多糖がβ-グリコシド結合を含むことを示し、835cm-1での吸収ピークは、刺五加均質多糖がα-グリコシド結合を含むことを示している。
5.2 Infrared spectral scan of Sashigoka homogeneous polysaccharide 2.0 mg of Sashigoka homogeneous polysaccharide sample is weighed, mixed with potassium bromide powder, polished uniformly, and then tableted. Thereafter, the tablet was placed in a Fourier transform infrared spectrometer to perform an infrared scan (400-4000 cm −1 ), and the infrared absorption spectrum of the sample was recorded, and the results are shown in FIG. As can be seen from the IR diagram, the polysaccharide homogeneous polysaccharide exhibits typical polysaccharide absorption characteristics, where 3456 cm -1 and 2929 cm -1 are the stretching vibration peaks of O-H bonds, and 1744 cm -1 is the CH 2 , 1635 cm -1 is the stretching vibration peak due to CO 2 or co-produced water, 1411 cm -1 is the bending vibration peak of C-O bond, and 1242 cm -1 is the peak of primary alcohol. This is a stretching vibration peak due to β-OH. The absorption peak at 1021 cm -1 indicates that the homogeneous polysaccharide contains a pyran ring, and the absorption peak at 893 cm -1 indicates that the homogeneous polysaccharide contains β- The absorption peak at 835 cm −1 indicates that the polysaccharide contains α-glycosidic bonds.

5.3 刺五加均質多糖のメチル化分析
刺五加均質多糖試料(十分に乾燥させておいた試料)を20mg秤量して栓付き試験管に入れ、6mLのジメチルスルホキシドDMSO試薬を使用し、かつ窒素で密封した後、加熱し、磁気撹拌しながら均一に混合し、水酸化ナトリウム(6mLのDMSOに240mgの水酸化ナトリウムが含まれる)を添加して水酸化ナトリウム懸濁液を形成し、一晩おく。翌日、試験管に3.6mLのヨードメタンを添加し、8min撹拌してから、ヨードメタンを窒素で吹き飛ばして再びメチル化し、このように3回繰り返した後、6mLの蒸留水を添加して反応を中止する。流れる水と脱イオン水のそれぞれで24h透析した後、クロロホルムで3回抽出し、無水亜硫酸ナトリウムで24h乾燥させ、次に窒素で送風乾燥させ、約1mLの溶液を残した。トリフルオロ酢酸で加水分解した後、70mgの水素化ホウ素ナトリウムNaBH4を添加して24h撹拌し、さらに強酸性陰陽イオン交換樹脂を添加して10min撹拌して均一に混合し、その後、吸引ろ過し、濾液を収集してメタノールを添加し、窒素で送風乾燥させた後、無水酢酸と無水ピリジンをそれぞれ0.5mL添加し、100℃で2hアセチル化する。反応終了後、無水エタノールを繰り返し添加して無水酢酸を除去し、さらにGC-MS分析を行う。
5.3 Methylation analysis of Sashigoka homogeneous polysaccharide Weigh 20 mg of Sashigoka homogeneous polysaccharide sample (sufficiently dried sample), put it into a test tube with a stopper, and use 6 mL of dimethyl sulfoxide DMSO reagent. and after sealing with nitrogen, heating and mixing homogeneously with magnetic stirring, adding sodium hydroxide (240 mg of sodium hydroxide in 6 mL of DMSO) to form a sodium hydroxide suspension; Leave overnight. The next day, add 3.6 mL of iodomethane to the test tube, stir for 8 min, then blow out the iodomethane with nitrogen to methylate it again, repeat this 3 times, and then stop the reaction by adding 6 mL of distilled water. do. After dialysis against running water and deionized water for 24 h, it was extracted three times with chloroform, dried over anhydrous sodium sulfite for 24 h, and then blown dry with nitrogen, leaving about 1 mL of solution. After hydrolyzing with trifluoroacetic acid, 70 mg of sodium borohydride NaBH4 was added and stirred for 24 hours, and a strongly acidic anion and cation exchange resin was further added and stirred for 10 minutes to mix uniformly, followed by suction filtration. The filtrate is collected, methanol is added thereto, and the mixture is dried by blowing with nitrogen, followed by adding 0.5 mL each of acetic anhydride and anhydrous pyridine, and acetylating at 100° C. for 2 hours. After the reaction is completed, acetic anhydride is removed by repeatedly adding absolute ethanol, and further GC-MS analysis is performed.

GC-MSクロマトグラフィー条件として、Agilent6890-5973N型のガスクロマトグラフィー質量分析計で、カラムはHP-5 MSキャピラリーカラム(30m×250pm×0.25umD)であり、キャリアガスはヘリウムHeであり、ヒーターの温度は250℃であり、プログラム昇温を行い、即ち、初期温度から140℃/minで200℃まで昇温させ、5min保持し、さらに8℃/minで240℃まで昇温させ、スプリット比は50:1であり、試料注入量は5μLである。刺五加均質多糖のメチル化分析データを表1に示す。刺五加均質多糖をメチル化した結果、刺五加均質多糖は主に→,6)-β-Galp(1→で構成され、Glcp残基は、刺五加均質多糖の主要単位であり、1→4、1→6、1→4,6および1→の形態で結合しており、Galp残基は、1→4の形態で結合していることがわかった。
表1 刺五加均質多糖のメチル化分析データ
The GC-MS chromatography conditions were an Agilent 6890-5973N gas chromatography mass spectrometer, the column was an HP-5 MS capillary column (30 m x 250 pm x 0.25 um D), the carrier gas was helium He, and the heater The temperature was 250°C, and the program temperature was raised, that is, the temperature was raised from the initial temperature to 200°C at a rate of 140°C/min, held for 5 min, and further raised to 240°C at a rate of 8°C/min, and the split ratio was The ratio is 50:1, and the sample injection volume is 5 μL. Table 1 shows the methylation analysis data of the homogeneous polysaccharide. As a result of the methylation of the Stinggoka homogeneous polysaccharide, the Stinggoka homogeneous polysaccharide is mainly composed of →,6)-β-Galp(1→, Glcp residue is the main unit of the Stinggoka homogeneous polysaccharide, It was found that they were bound in the 1→4, 1→6, 1→4,6, and 1→ forms, and the Galp residue was bound in the 1→4 form.
Table 1 Methylation analysis data of Sashigoka homogeneous polysaccharide

5.4 刺五加均質多糖のNMR分析
乾燥した刺五加均質多糖を30mg秤量し、0.5mlのDOに溶解し、60℃で1h加熱して完全に溶解させた後、核磁気管に移し、ドイツ・Brucker社のAV300核磁気共鳴装置でHスペクトルと13Cスペクトルを測定し、その結果を図6および図7に示す。スペクトルからわかるように、刺五加均質多糖のHスペクトルの信号分布範囲は狭く、主にδ2.0-6.0ppm(4.19、4.09、4.07、4.00、3.95、3.90、3.70、3.68、3.65、3.64、3.62、3.61、3.60、3.59、3.58、3.55、3.54および3.52 ppm)の範囲内である。一方、そのCスペクトルの信号範囲は、δ60-110 ppm(107.41、106.83、106.36、103.62、95.72、92.11、91.85、84.00,81.31、76.81、76.64、76.31、75.50、71.24、71.14、71.00、69.89、69.21、69.14、62.30、61.26、61.05、60.68、および60.42ppm)である。刺五加均質多糖における個々の糖残基のアノマー炭素の化学シフト帰属を表2に示す。
表2 刺五加均質多糖の炭化水素の化学シフト帰属
5.4 NMR analysis of Sashigoka homogeneous polysaccharide Weighed 30 mg of dried Sashigoka homogeneous polysaccharide, dissolved it in 0.5 ml of D2O , heated it at 60°C for 1 hour to completely dissolve it, and then transferred it to a nuclear magnetic tube. The 1 H spectrum and 13 C spectrum were measured using an AV300 nuclear magnetic resonance apparatus manufactured by Brucker, Germany, and the results are shown in FIGS. 6 and 7. As can be seen from the spectrum, the signal distribution range of the 1 H spectrum of the homogeneous polysaccharide is narrow, mainly δ2.0-6.0 ppm (4.19, 4.09, 4.07, 4.00, 3.0 ppm). 95, 3.90, 3.70, 3.68, 3.65, 3.64, 3.62, 3.61, 3.60, 3.59, 3.58, 3.55, 3.54 and 3.52 ppm). On the other hand, the signal range of the C spectrum is δ60-110 ppm (107.41, 106.83, 106.36, 103.62, 95.72, 92.11, 91.85, 84.00, 81.31 , 76.81, 76.64, 76.31, 75.50, 71.24, 71.14, 71.00, 69.89, 69.21, 69.14, 62.30, 61.26, 61 .05, 60.68, and 60.42 ppm). Table 2 shows the chemical shift assignments of the anomeric carbons of individual sugar residues in the homogeneous polysaccharide.
Table 2 Chemical shift assignment of hydrocarbons in the homogeneous polysaccharide

実施例2 刺五加均質多糖の抗酸化活性の評価
現代医学では、皮膚老化を引き起こす主な原因は、様々な要因による真皮層や表皮層の酸化ストレスであるため、強力な抗酸化効果を有する物質は、より優れた抗皮膚老化効果を持つと考えられており、本実験では、実施例1によって得られた刺五加均質多糖を、抗酸化活性の評価に用いた。
Example 2 Evaluation of the antioxidant activity of the homogeneous polysaccharide In modern medicine, the main cause of skin aging is oxidative stress in the dermal and epidermal layers caused by various factors, so polysaccharide has a strong antioxidant effect. The substance is believed to have a better anti-skin aging effect, and in this experiment, the homogeneous polysaccharide obtained according to Example 1 was used to evaluate the antioxidant activity.

1、DPPHラジカル消去活性の測定
異なる質量濃度の試料溶液(12.5、25、50、100μg・ml-1)を2mL取り、2mLのDPPH溶液(100μg・ml-1)を添加し、十分に混合した後、遮光して30min反応させる。517nmで反応系の吸光度値(Am)を測定する。同時に、溶媒ブランク群(An、DPPH溶液を等量のメタノールに置き換える)および試料ブランク群(Ao、試料溶液を等量のメタノールで置き換える)を設定する。VCを陽性対照群として用いる。実験は並行して3回行い、抽出液によるDPPHの消去率を以下の式に従って算出する。
1. Measurement of DPPH radical scavenging activity Take 2 mL of sample solutions with different mass concentrations (12.5, 25, 50, 100 μg·ml −1 ), add 2 mL of DPPH solution (100 μg·ml −1 ), and stir thoroughly. After mixing, the mixture is protected from light and allowed to react for 30 minutes. The absorbance value (Am) of the reaction system is measured at 517 nm. At the same time, a solvent blank group (An, replacing the DPPH solution with an equal volume of methanol) and a sample blank group (Ao, replacing the sample solution with an equal volume of methanol) are set up. VC is used as a positive control group. The experiment is conducted three times in parallel, and the elimination rate of DPPH by the extract is calculated according to the following formula.

2、ABTS消去活性の測定
異なる質量濃度の試料溶液(12.5、25、50、100μg・ml-1)を0.4mL取り、4mLのABTS溶液を添加し、6min反応させた後、734nmでその吸光度(Ai)を測定する。同時に、溶媒ブランク群(Aj、ABTS溶液を等量のメタノールで置き換える)、試料ブランク群(Ah、試料溶液を等量のメタノールで置き換える)および陽性対照群を設定する。実験は並行して3回行い、抽出液によるABTSの消去率を以下の式に従って算出する。
2. Measurement of ABTS + scavenging activity Take 0.4 mL of sample solutions with different mass concentrations (12.5, 25, 50, 100 μg ml −1 ), add 4 mL of ABTS + solution, and react for 6 min. Measure its absorbance (Ai) at 734 nm. At the same time, set up a solvent blank group (Aj, replacing the ABTS + solution with an equal volume of methanol), a sample blank group (Ah, replacing the sample solution with an equal volume of methanol) and a positive control group. The experiment is performed three times in parallel, and the elimination rate of ABTS + by the extract is calculated according to the following formula.

3、還元力の測定
異なる質量濃度の試料溶液(12.5、25、50、100μg・ml-1)を0.8mL取り、2mLのリン酸緩衝液(PH=6.6)および2mLの1%フェリシアン化カリウムを添加し、50℃で20min水浴処理した後、2mLの10%トリクロロ酢酸を添加し、3000 rpmで10min遠心分離し、2mLの上澄み液を取って2mLの脱イオン水、0.4mLの0.1%塩化第二鉄を添加し、5min反応させた後、700nmで吸光度の値を測定し、VCを陽性対照群として用い、実験は並行して3回行い、測定された吸光度の値が大きいほど、還元能力が強くなる。
3. Measurement of reducing power Take 0.8 mL of sample solutions with different mass concentrations (12.5, 25, 50, 100 μg·ml −1 ), add 2 mL of phosphate buffer (PH = 6.6) and 2 mL of 1 After adding % potassium ferricyanide and water bathing at 50 °C for 20 min, 2 mL of 10% trichloroacetic acid was added, centrifuged at 3000 rpm for 10 min, 2 mL of supernatant was taken, and 2 mL of deionized water and 0.4 mL were added. After adding 0.1% ferric chloride of The larger the value, the stronger the reduction ability.

結果:表3-5に示すように、刺五加均質多糖がDPPHラジカルおよびABTS を消去するIC50値はそれぞれ、3.17±0.57μg・mL-1および15.26±5.79μg・mL-1であり、還元力のEC50値は36.02±10.89μg・mL-1であり、その抗酸化力は陽性薬のビタミンCよりも強く、その差は統計的にも有意であったことから(P<0.01)、実施例1で調製した刺五加均質多糖が強い抗酸化活性を有することが示された。
Results: As shown in Table 3-5, the IC 50 values for scavenging DPPH radical and ABTS + by the homogeneous polysaccharide were 3.17 ± 0.57 μg·mL −1 and 15.26 ± 5.79 μg, respectively.・mL -1 , and the EC50 value of reducing power is 36.02±10.89μg・mL -1 , and its antioxidant power is stronger than the positive drug vitamin C, and the difference is statistically significant. (P<0.01), indicating that the homogeneous polysaccharide prepared in Example 1 had strong antioxidant activity.

実施例3 刺五加均質多糖を含むエッセンスエマルジョンの調製
本実験では、実施例1で得られた刺五加均質多糖を用いてエッセンスエマルジョンを調製し、画分の重量パーセントと生産プロセスは、以下のとおりである。
Example 3 Preparation of an essence emulsion containing a homogeneous polysaccharide obtained in Example 1 In this experiment, an essence emulsion was prepared using the homogeneous polysaccharide obtained in Example 1, and the weight percentages of the fractions and the production process were as follows. It is as follows.

生産プロセス:撹拌しながらA相とB相をそれぞれ70℃まで加熱し、すべてを溶解して均一に混合するようにし、続いて、70℃でB相をA相に加え、W/Q型エマルションを形成する。均一に撹拌した後、室温まで冷却すると、製品を得る。 Production process: Heat phase A and phase B to 70℃ each with stirring to ensure everything is dissolved and mixed uniformly, then add phase B to phase A at 70℃ to form a W/Q type emulsion. form. After uniform stirring and cooling to room temperature, the product is obtained.

本発明の好適な実施例で用いられる基剤の成分は上述のとおりであり、本実施例で用いられる基剤の成分は、本発明の薬物組成物の効能を最適化することができる。しかし、化粧品に適用できる他のメーカーが製造した一般的な基剤も本発明に使用することができ、その使用量が中国の化粧品添加剤投与量基準を満たしていれば、本発明の効果に影響しないため、ここでその詳細が省略される。 The components of the base used in the preferred embodiment of the present invention are as described above, and the components of the base used in this embodiment can optimize the efficacy of the drug composition of the present invention. However, common bases manufactured by other manufacturers that are applicable to cosmetics can also be used in the present invention, and as long as the amount used meets the Chinese cosmetic additive dosage standards, it will not affect the effects of the present invention. Since it has no effect, its details are omitted here.

本発明で使用される均質化・乳化装置は、上海FLUKO流体機械製造有限公司が生産したFV-30L FISCO真空均質化・乳化機であり、均質化、撹拌や温度制御などの機能を有する。他のメーカーが生産した化粧品調製用の均質化・乳化装置もまた、本発明に使用可能であり、本発明に記載のプロセスパラメータに従って厳密に操作される限り、本発明に記載の効果を達成することができる。 The homogenization/emulsification device used in the present invention is a FV-30L FISCO vacuum homogenization/emulsification machine produced by Shanghai FLUKO Fluid Machine Manufacturing Co., Ltd., and has functions such as homogenization, stirring, and temperature control. Homogenization and emulsification equipment for cosmetic preparation produced by other manufacturers can also be used in the present invention and will achieve the effects described in the present invention, provided they are operated strictly according to the process parameters described in the present invention. be able to.

実施例4 刺五加均質多糖を含むエッセンスエマルジョンの抗皮膚老化活性の評価
本実験では、実施例3で得られた刺五加均質多糖を含むエッセンスエマルジョンを抗皮膚老化活性の評価に用いた。
Example 4 Evaluation of the anti-skin aging activity of an essence emulsion containing the homogeneous polysaccharide obtained in Example 3. In this experiment, the essence emulsion containing the homogeneous polysaccharide obtained in Example 3 was used to evaluate the anti-skin aging activity.

1 材料と方法
1.1 実験動物 質量(20±2)gの実験動物SPFグレードの昆明種雌マウス40匹を、広東省実験動物センターから入手し、実験動物品質ライセンス番号:44005800003406、広州中医薬大学科学技術産業園の動物舎(使用ライセンス番号:SYXK(広東)2013-0014)で飼育して実験を行った。本研究の最終目的は、女性に適した抗皮膚老化の化粧品を開発することであるため、実験動物としてはすべて雌マウスを使用した。マウスは、動物倫理の原則に従って処分された。
1 Materials and Methods 1.1 Experimental Animals 40 experimental animal SPF grade Kunming female mice with a mass of (20 ± 2) g were obtained from Guangdong Provincial Laboratory Animal Center, Laboratory Animal Quality License Number: 44005800003406, Guangzhou Traditional Chinese Medicine. The animals were kept in the animal house of the University Science and Technology Industry Park (license number: SYXK (Guangdong) 2013-0014) and experiments were conducted. Since the ultimate goal of this research is to develop anti-skin aging cosmetics suitable for women, all female mice were used as experimental animals. Mice were disposed of according to principles of animal ethics.

1.2 材料と試薬 刺五加均質多糖を含むエッセンスエマルジョンは、実施例3で調製したエッセンスエマルジョンであり、D-ガラクトースは北京solarbio生物科技有限公司から入手し、HA測定キットは上海酵聯生物科技有限公司から入手し、HYP測定キット、SOD測定キット、クマシーブリリアントブルーは南京建成生物工程研究所から入手した。 1.2 Materials and Reagents The essence emulsion containing the homogeneous polysaccharide was the essence emulsion prepared in Example 3, D-galactose was obtained from Beijing Solarbio Biotechnology Co., Ltd., and the HA measurement kit was obtained from Shanghai Fermention Biotechnology Co., Ltd. Science and Technology Co., Ltd., and the HYP measurement kit, SOD measurement kit, and Coomassie Brilliant Blue were obtained from Nanjing Jiancheng Biological Engineering Research Institute.

1.3 群分けとモデリング まず、雌マウスを7d適応的に飼育し、現在の環境に順応させた後に実験を実行する。30匹の雌マウスを乱数表による群分け法で3群に分け、そのうちの2群のマウスをモデリング群として、D-ガラクトースを1.0g・kg-1・d-1皮下注射し、合計30d注射し、残りの1群のマウスをブランク群として、同量の生理食塩水を毎日注射した。30d後、モデリング群とブランク群の皮膚外観を比較すると、モデル群では皮膚の弛みと小皺が顕著に見られたが、ブランク群ではその逆であった。2群の皮膚老化したモデルマウスをモデル群と刺五加均質多糖群に分けた。マウスの背中の毛をハサミで短く切り、さらにカミソリで剃った。 1.3 Grouping and Modeling First, female mice are adaptively housed for 7 d and experiments are performed after they are acclimatized to the current environment. Thirty female mice were divided into three groups using a random number table, two of which were used as the modeling group, and D-galactose was subcutaneously injected at 1.0 g·kg -1 ·d -1 for a total of 30 days. The remaining one group of mice served as a blank group and received daily injections of the same amount of saline. Comparing the skin appearance of the modeling group and the blank group after 30 d, skin laxity and fine wrinkles were noticeable in the model group, but the opposite was true in the blank group. Two groups of model mice with skin aging were divided into a model group and a homogeneous polysaccharide group. The hair on the mouse's back was cut short with scissors and then shaved with a razor.

1.4 マウス皮膚外用エッセンスエマルジョン 刺五加均質多糖群のマウスには、実施例3で得られた6%の刺五加均質多糖を含むエッセンスエマルジョンを使用し、モデル群には、刺五加多糖を含まないエッセンスエマルジョンを使用し、具体的には、マウスの背中の中央位置に4cm×7cmの領域を選択し、各群のクリームを各群のマウスの選択した対応する皮膚領域の表面に塗布し、マウス1匹あたりに1日0.3gを塗布し、24h後、皮膚を洗浄して再塗布し、21d継続して塗布し、この期間中、手動で4回脱毛も行った。 1.4 Essence emulsion for external use on mouse skin The essence emulsion containing 6% of the homogeneous polysaccharide obtained in Example 3 was used for the mice in the homogeneous polysaccharide group; Using an essence emulsion that does not contain polysaccharides, specifically, a 4 cm x 7 cm area was selected at the center of the back of the mouse, and the cream of each group was applied to the surface of the selected corresponding skin area of each group of mice. 0.3 g per mouse per day; after 24 h, the skin was washed and reapplied; continued application for 21 d; manual depilation was also performed 4 times during this period.

1.5 マウス皮膚の表現特性の観察 各群のマウスの薬剤投与部位の皮膚の色、滑らかさ、皺などの表現特性を比較し、撮影して記録した。その後、実験マウスを首切りで死なせ、薬剤投与部位の皮膚を素早く剥がし、皮下脂肪などの結合組織を除去し、平らに敷き伸べた後、直径2cmのパンチで中央位置でマウスの皮膚を切り取って水分量を測定し、残った皮膚を-20℃で冷凍保存して皮膚のヒドロキシプロリンなどの成分を測定するために用いる。 1.5 Observation of expressive characteristics of mouse skin Expressive characteristics such as color, smoothness, and wrinkles of the skin at the drug administration site of mice in each group were compared and photographed and recorded. After that, the experimental mouse was killed by decapitation, the skin at the drug injection site was quickly peeled off, connective tissue such as subcutaneous fat was removed, and the mouse was spread out flat, and the mouse skin was cut out at the center using a punch with a diameter of 2 cm. The moisture content is measured, and the remaining skin is stored frozen at -20°C and used to measure components such as hydroxyproline in the skin.

1.6 皮膚水分量の測定 パンチで切り取った皮膚の湿潤重量を正確に計量した後、直ちにオーブンに入れて50℃で12h乾燥させ、乾燥重量を計量し、各実験群の皮膚水分量を算出した。式は、
である。
1.6 Measurement of skin moisture content After accurately weighing the wet weight of the skin cut out with a punch, it was immediately placed in an oven and dried at 50°C for 12 hours, the dry weight was measured, and the skin moisture content of each experimental group was calculated. did. ceremony,
It is.

1.7 皮膚におけるヒドロキシプロリン(HYP)の含有量の測定 薬剤投与部位の皮膚組織を0.5g取り、氷浴で予冷した生理食塩水で洗浄し、濾紙で乾燥させ、その後、氷浴で予冷した生理食塩水に加え、ガラスホモジナイザーを用いて10%濃度のホモジネートに研磨した。得られたホモジネートを0℃で3000r/minで10min遠心分離し、上澄み液を取る。HYPキットの使用説明書に記載されている方法に従って、超微量マイクロプレート分光光度計を用いてOD値を測定し、各実験群のマウスの皮膚におけるHYPの含有量を算出した。 1.7 Measurement of the content of hydroxyproline (HYP) in the skin Take 0.5 g of skin tissue from the drug administration site, wash it with physiological saline pre-cooled in an ice bath, dry it with filter paper, and then pre-cool it in an ice bath. The mixture was added to normal saline solution and polished to a 10% homogenate using a glass homogenizer. The obtained homogenate is centrifuged at 3000 r/min for 10 min at 0°C, and the supernatant is collected. According to the method described in the instruction manual of the HYP kit, the OD value was measured using an ultramicroplate spectrophotometer, and the content of HYP in the skin of mice in each experimental group was calculated.

1.8 皮膚におけるヒアルロン酸(HA)の含有量の測定 薬剤投与部位の皮膚組織を0.5g取り、氷浴で予冷したPBS緩衝液に加え、ガラスホモジナイザーを用いて10%濃度のホモジネートに研磨した。得られたホモジネートを0℃で1000r/minで4min遠心分離し、上澄み液を取る。HAキットの使用説明書に記載されている方法に従って、超微量マイクロプレート分光光度計を用いてOD値を測定し、各実験群のマウスの皮膚におけるHAの含有量を算出した。 1.8 Measurement of hyaluronic acid (HA) content in the skin Take 0.5 g of skin tissue from the drug administration site, add it to PBS buffer pre-cooled in an ice bath, and polish to a 10% homogenate using a glass homogenizer. did. The obtained homogenate is centrifuged at 1000 r/min for 4 minutes at 0°C, and the supernatant is collected. According to the method described in the instruction manual of the HA kit, the OD value was measured using an ultra-microplate spectrophotometer, and the content of HA in the skin of mice in each experimental group was calculated.

1.9 皮膚におけるスーパーオキシドジスムターゼ(SOD)の活性の測定 薬剤投与部位の皮膚組織を0.5g取り、氷浴で予冷した生理食塩水で洗浄した後、氷浴で予冷した生理食塩水に加え、ガラスホモジナイザーを用いて10%濃度のホモジネートに研磨した。得られたホモジネートを0℃で3000r/minで10min遠心分離し、上澄み液を取る。SODキットの使用説明書に記載されている方法に従って、超微量マイクロプレート分光光度計を用いてOD値を測定し、各実験群のマウスの皮膚におけるSODの活性を算出した。 1.9 Measurement of superoxide dismutase (SOD) activity in the skin Take 0.5 g of skin tissue from the drug administration site, wash it with physiological saline pre-cooled in an ice bath, and add it to the physiological saline pre-cooled in an ice bath. , and polished to a 10% homogenate using a glass homogenizer. The obtained homogenate is centrifuged at 3000 r/min for 10 min at 0°C, and the supernatant is collected. According to the method described in the instruction manual of the SOD kit, the OD value was measured using an ultra-trace microplate spectrophotometer, and the activity of SOD in the skin of mice in each experimental group was calculated.

1.10 統計的手法に関しては、SPSS18.0統計ソフトを利用してデータを分析し、データの算出には
で表し、群間比較には一元配置分散分析を用い、等分散性検定の結果が有意であった場合にはDunnett T3検定を、等分散性検定の結果が有意でなかった場合にはLSD検定を用いてペアごとに比較し、P<0.05で統計的有意差があると判断した。
1.10 Regarding statistical methods, SPSS 18.0 statistical software was used to analyze the data, and data calculations were performed using SPSS18.0 statistical software.
One-way analysis of variance was used for between-group comparisons, and Dunnett T3 test was used if the results of the homogeneity of variance test were significant, and LSD test was used if the results of the homogeneity of variance test were not significant. Pairwise comparisons were made using , and a statistically significant difference was determined at P<0.05.

2 結果
2.1 皮膚外観の比較 各群のマウスの皮膚を観察したところ、モデル群のマウスはブランク群の動物に比べて、皮膚が弛み、皺が多く、体毛の再生が遅いことがわかった。6%刺五加均質多糖を含むものを塗ったマウスは、モデル群に比べて、皮膚の皺、滑らかさ、弛みなどに明らかな改善を示した。
2 Results 2.1 Comparison of skin appearance When the skin of mice in each group was observed, it was found that mice in the model group had looser skin, more wrinkles, and slower body hair regeneration than animals in the blank group. . Mice coated with 6% homogeneous polysaccharide showed clear improvement in skin wrinkles, smoothness, and laxity compared to the model group.

2.2 マウスの皮膚水分量、HYP含有量、HA含有量、SOD活性に対する刺五加均質多糖の影響 三群のマウスの皮膚組織の水分量、HYP含有量、HA含有量、SOD活性の測定結果を表6に示す。モデル群のマウスの皮膚組織の水分量、HYP含有量、HA含有量、SOD活性は、ブランク群に比べて明らかに低く(P<0.01)、マウスの皮膚老化モデルの構築に成功したことが示された。モデル群と比較して、刺五加均質多糖群のマウスの皮膚の水分量、HYP含有量、HA含有量、SOD活性は明らかに増加し、統計学的に有意な差が認められた(P<0.01)。ブランク群と比較して、刺五加均質多糖群のマウスの皮膚の水分量、HYP含有量、HA含有量、SOD活性などの指標に有意な差がなかった(P>0.01)。
2.2 Effects of staghorn homogeneous polysaccharide on skin moisture content, HYP content, HA content, and SOD activity in mice Measurement of water content, HYP content, HA content, and SOD activity in skin tissue of three groups of mice The results are shown in Table 6. Moisture content, HYP content, HA content, and SOD activity in the skin tissue of mice in the model group were clearly lower than those in the blank group (P<0.01), indicating that the mouse skin aging model was successfully constructed. It has been shown. Compared with the model group, the moisture content, HYP content, HA content, and SOD activity of the skin of mice in the homogeneous polysaccharide group were clearly increased, and statistically significant differences were observed (P <0.01). Compared with the blank group, there were no significant differences in the skin moisture content, HYP content, HA content, SOD activity, and other indicators of the mice in the homogeneous polysaccharide group (P>0.01).

モデル群と比較して、P<0.05、△△P<0.01。 Compared with the model group, P<0.05, △△ P<0.01.

要約すると、本実験の結果、ブランク群のマウスは、皮膚が滑らかでハリがあり、弾力性があることを発見した。D-ガラクトースを注射した皮膚老化モデルのマウスは、皮膚が弛み、皺が多く増加し、皮膚の水分量、ヒドロキシプロリンの含有量、ヒアルロン酸の含有量、スーパーオキシドジスムターゼの活性などの指標が大幅に低下した。測定した結果、モデルマウスは、6%の刺五加均質多糖を含むエッセンスエマルジョンを外用した場合、皮膚の外観が明らかに改善され、かつマウスの皮膚の水分量、ヒアルロン酸の含有量、ヒドロキシプロリンの含有量、スーパーオキシドジスムターゼ活性などの指標も明らかに改善された。 In summary, as a result of this experiment, we found that the mice in the blank group had smooth, firm, and elastic skin. In skin aging model mice injected with D-galactose, the skin becomes loose and wrinkles increase, and indicators such as skin moisture content, hydroxyproline content, hyaluronic acid content, and superoxide dismutase activity significantly increase. It declined to . As a result of measurement, when model mice were externally applied with an essence emulsion containing 6% homogeneous polysaccharide, the skin appearance was clearly improved, and the moisture content, hyaluronic acid content, and hydroxyproline content of the mouse skin were significantly improved. Indices such as the content of superoxide dismutase and superoxide dismutase activity were also clearly improved.

最後に、本明細書では、上記の実施例は、本発明の技術的解決手段をさらに説明するために使用されているだけであり、本発明の保護範囲を限定するものとして理解されるべきではなく、本発明の上記に従って当業者が行ったいくつかの非本質的な改良および調整は、本発明の保護範囲に含まれることを述べる必要がある。 Finally, in this specification, the above examples are only used to further explain the technical solutions of the present invention, and should not be understood as limiting the protection scope of the present invention. It is necessary to mention that some non-essential improvements and adjustments made by those skilled in the art according to the above description of the present invention fall within the protection scope of the present invention.

Claims (6)

1) 乾燥の刺五加飲片を粉砕し、篩にかけた後、薬粉末の5~8倍量の水を添加し、80~100℃の温度で、毎回2h、合計3回抽出し、抽出液を合わせ、遠心分離して上澄み液を収集し、かつ上澄み液を濃縮して濃縮液を得るステップと、
2) 濃縮液を冷却した後、α-アミラーゼを0.1~0.4%の重量になるように添加し、pH値を7.0に調整し、60℃の水浴中でヨウ素-ヨウ化カリウム試薬に晒して溶液が変色しなくなるまで酵素分解を行い、そして、100℃に急速に昇温して5min保持して酵素を失活させ、遠心分離して上澄み液を収集するステップと、
3) ステップ2)で収集した上澄み液とSevage試薬を1:1の体積比で混合し、30min激しく振とうした後、12h静置し、上層の多糖溶液を収集し、上層の多糖溶液とSevage試薬を1:1の体積比で混合し、UVスキャンでタンパク質の特徴的な吸収ピークがなくなるまで上記の操作を繰り返し、前記Sevage試薬はクロロホルムとn-ブタノールを体積比4:1で混合して得られるステップと、
4) ステップ3)で最終的に収集した上層の多糖溶液を濃縮した後、4~6倍の体積量の無水エタノールを添加し、4℃で48h静置して沈殿させ、その後、遠心分離して沈殿物を収集し、沈殿物に無水エタノールを添加して上記の操作を3回繰り返した後、凍結乾燥し、刺五加の粗多糖粉末を得るステップと、
5) ステップ4)で得られた刺五加の粗多糖粉末を蒸留水で完全に溶解した後、DEAE Fast Flowイオンクロマトグラフィーカラムで分離し、溶出条件として、流速が2.5mL/minであり、純水、0.05mol/L、0.1mol/L、0.2mol/L、0.4mol/L、1mol/Lの塩化ナトリウム溶液で順次溶出させ、続いて硫酸-フェノール法による追従検出を行い、溶出液を収集するステップと、
6) ステップ5)で収集した溶出液を濃縮した後、Sephadex G-200デキストランゲルカラムで再分離し、蒸留水で0.5mL/minの流速で溶出し、フェノール-硫酸法で検出した後、溶出曲線のメインピーク部分を収集するステップと、
7) ステップ6)で収集した溶出曲線のメインピーク部分の溶液を濃縮した後、カットオフ分子量3500Daの透析バッグを用いて2d透析して脱塩し、最後に透析バッグ内の溶液を濃縮して凍結乾燥し、多糖粉末を得るステップと、を含むことを特徴とする、刺五加多糖の調製方法。
1) After crushing the dried Sashigoka drink pieces and passing them through a sieve, add 5 to 8 times the amount of water to the medicinal powder, and extract at a temperature of 80 to 100°C for 2 hours each time, 3 times in total to prepare the extract. combining, centrifuging to collect the supernatant, and concentrating the supernatant to obtain a concentrate;
2) After cooling the concentrate, add α-amylase to a weight of 0.1 to 0.4%, adjust the pH value to 7.0, and add iodine-iodine in a water bath at 60°C. Exposing the solution to a potassium reagent to perform enzymatic decomposition until the solution no longer changes color, rapidly raising the temperature to 100°C and holding for 5 minutes to inactivate the enzyme, and collecting the supernatant by centrifugation;
3) Mix the supernatant liquid collected in step 2) and Sevage reagent at a volume ratio of 1:1, shake vigorously for 30 min, let stand for 12 h, collect the upper layer polysaccharide solution, and mix with the upper layer polysaccharide solution and Sevage reagent. The reagents were mixed in a volume ratio of 1:1 and the above operation was repeated until the characteristic absorption peak of the protein disappeared in the UV scan.The Sevage reagent was prepared by mixing chloroform and n-butanol in a volume ratio of 4:1. The steps you can take and
4) After concentrating the upper polysaccharide solution finally collected in step 3), add 4 to 6 times the volume of absolute ethanol, let it stand at 4°C for 48 hours to precipitate it, and then centrifuge it. collecting the precipitate, adding absolute ethanol to the precipitate, repeating the above operation three times, and then freeze-drying it to obtain a crude polysaccharide powder of Sashigoka;
5) After completely dissolving the crude polysaccharide powder of Sashigoka obtained in step 4) in distilled water, it was separated using a DEAE Fast Flow ion chromatography column, and the elution conditions were a flow rate of 2.5 mL/min. , pure water, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, 1 mol/L sodium chloride solution, followed by follow-up detection using the sulfuric acid-phenol method. performing and collecting the eluate;
6) After concentrating the eluate collected in step 5), it was reseparated using a Sephadex G-200 dextran gel column, eluted with distilled water at a flow rate of 0.5 mL/min, and detected using the phenol-sulfuric acid method. collecting a main peak portion of the elution curve;
7) After concentrating the solution in the main peak part of the elution curve collected in step 6), it is desalted by dialysis for 2 days using a dialysis bag with a cut-off molecular weight of 3500 Da, and finally the solution in the dialysis bag is concentrated. A method for preparing a sashigoka polysaccharide, comprising the step of freeze-drying to obtain a polysaccharide powder .
1) 乾燥の刺五加飲片を粉砕し、100メッシュの篩にかけ、篩にかけた薬粉末をその重量の5~8倍量の水で、80~100℃の温度で、毎回2h、合計3回抽出し、抽出液を合わせて3000rpm/minで20min遠心分離して上澄み液を収集し、かつ回転蒸発により上澄み液を元の体積の5分の1に濃縮して濃縮液を得るステップと、
2) 濃縮液を冷却した後、α-アミラーゼを0.1~0.4%の重量になるように添加し、pH値を7.0に調整し、60℃の水浴中で酵素分解を4h行い、この時、ヨウ素-ヨウ化カリウム試薬に晒して溶液が変色しなくなり、そして、100℃に急速に昇温して5min保持して酵素を失活させた後、3000rpm/minで10min遠心分離して上澄み液を収集するステップと、
3) ステップ2)で収集した上澄み液とSevage試薬を1:1の体積比で混合し、30min激しく振とうした後、12h静置し、上層の多糖溶液を収集し、上層の多糖溶液とSevage試薬を1:1の体積比で混合し、UVスキャンでタンパク質の特徴的な吸収ピークがなくなるまで上記の操作を繰り返し、前記Sevage試薬がクロロホルムとn-ブタノールを4:1の体積比で混合して製造されるステップと、
4) ステップ3)で最終的に収集した上層の多糖溶液を濃縮した後、4~6倍の体積量の無水エタノールを添加し、4℃で48h静置して沈殿させ、その後、3000rpm/minで10min遠心分離して沈殿物を収集し、沈殿物に無水エタノールを添加して上記の操作を3回繰り返した後、最終的に得られた沈殿物を凍結乾燥し、刺五加の粗多糖粉末を得るステップと、
5) ステップ4)で得られた刺五加の粗多糖粉末を蒸留水で完全に溶解した後、DEAE Fast Flowイオンクロマトグラフィーカラムで分離し、溶出条件として、流速が2.5mL/minであり、純水、0.05mol/L、0.1mol/L、0.2mol/L、0.4mol/L、1mol/Lの塩化ナトリウム溶液で順次溶出させ、続いて全自動コレクターを用いて溶出液を勾配で収集し、各勾配溶液を3倍のカラム体積で溶出し、一チューブあたりに5.0mLで、合計30本のチューブを収集し、かつ硫酸-フェノール法によるセプタムチューブ追従検出を行うステップと、
6) ステップ5)で収集した溶出液を濃縮した後、Sephadex G-200デキストランゲルカラムで再分離し、蒸留水で0.5mL/minの流速で溶出し、全自動コレクターを用いて一チューブあたりに5.0mLで収集し、フェノール-硫酸で検出した後、溶出曲線のメインピーク部分を収集するステップと、
7) ステップ6)で収集した溶出曲線のメインピーク部分の溶液を濃縮した後、カットオフ分子量3500Daの透析バッグを用いて2d透析して脱塩し、最後に透析バッグ内の溶液を濃縮して凍結乾燥し、多糖粉末を得るステップと、を含むことを特徴とする、抗皮膚老化効果を有する、刺五加多糖の調製方法。
1) Grind the dried sashigoka drink and pass it through a 100 mesh sieve.The sieved medicinal powder is mixed with 5 to 8 times its weight of water at a temperature of 80 to 100°C for 2 hours each time, 3 times in total. extracting, combining the extracts, centrifuging at 3000 rpm/min for 20 min to collect the supernatant, and concentrating the supernatant to one-fifth of the original volume by rotary evaporation to obtain a concentrate;
2) After cooling the concentrate, add α-amylase to a weight of 0.1 to 0.4%, adjust the pH value to 7.0, and perform enzymatic decomposition in a 60°C water bath for 4 hours. At this time, the solution no longer changes color when exposed to the iodine-potassium iodide reagent, and then the temperature is rapidly raised to 100°C and held for 5 minutes to inactivate the enzyme, followed by centrifugation at 3000 rpm/min for 10 minutes. and collecting the supernatant;
3) Mix the supernatant liquid collected in step 2) and Sevage reagent at a volume ratio of 1:1, shake vigorously for 30 min, let stand for 12 h, collect the upper layer polysaccharide solution, and mix with the upper layer polysaccharide solution and Sevage reagent. Mix the reagents in a 1:1 volume ratio and repeat the above operation until the characteristic absorption peak of the protein disappears in the UV scan, and the Sevage reagent mixes chloroform and n-butanol in a 4:1 volume ratio a step manufactured by
4) After concentrating the upper layer polysaccharide solution finally collected in step 3), add 4 to 6 times the volume of absolute ethanol, let it stand at 4°C for 48 hours to precipitate it, and then turn the solution at 3000 rpm/min. Collect the precipitate by centrifugation for 10 min, add absolute ethanol to the precipitate, repeat the above operation three times, freeze-dry the final precipitate, and prepare the crude polysaccharide of sashigoka. obtaining a powder;
5) After completely dissolving the crude polysaccharide powder of Sashigoka obtained in step 4) in distilled water, it was separated using a DEAE Fast Flow ion chromatography column, and the elution conditions were a flow rate of 2.5 mL/min. , pure water, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, 1 mol/L sodium chloride solution, and then the eluate was collected using a fully automatic collector. Collect 30 tubes with a gradient, elute each gradient solution with 3 column volumes, 5.0 mL per tube, and perform septum tube follow-up detection using the sulfuric acid-phenol method. and,
6) After concentrating the eluate collected in step 5), it was reseparated using a Sephadex G-200 dextran gel column, eluted with distilled water at a flow rate of 0.5 mL/min, and collected per tube using a fully automatic collector. collecting the main peak portion of the elution curve after detecting with phenol-sulfuric acid;
7) After concentrating the solution in the main peak part of the elution curve collected in step 6), it is desalted by dialysis for 2 days using a dialysis bag with a cut-off molecular weight of 3500 Da, and finally the solution in the dialysis bag is concentrated. A method for preparing a stinging polysaccharide having anti-skin aging effect, characterized in that it comprises the step of freeze-drying to obtain a polysaccharide powder .
請求項1または2に記載の抗皮膚老化効果を有する、刺五加多糖の調製方法により、得られた、抗皮膚老化効果を有する、刺五加多糖A stricken polysaccharide having an anti-skin aging effect obtained by the method for preparing a stricken polysaccharide having an anti-skin aging effect according to claim 1 or 2 . 抗皮膚老化効果を有するスキンケア化粧品または皮膚用の治療薬の製造における、請求 項3に記載の刺五加多糖の使用。 Use of the stingogen polysaccharide according to claim 3 in the manufacture of skin care cosmetics or therapeutic agents for the skin having anti-skin aging effects. 請求項3に記載の刺五加多糖および化粧品の分野で使用される賦形剤を含む、スキンケア化粧品。A skin care cosmetic product, comprising the polysaccharide according to claim 3 and an excipient used in the field of cosmetics. 請求項3に記載の刺五加多糖および医学的に許容される担体を含む、皮膚用の治療薬。A dermatological therapeutic agent comprising a stingogen polysaccharide according to claim 3 and a medically acceptable carrier.
JP2021534247A 2020-07-20 2020-08-18 Stir-fried homogeneous polysaccharide and its preparation method and application Active JP7414303B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010733740.1A CN111961141B (en) 2020-07-20 2020-07-20 Acanthopanax root uniform polysaccharide and preparation method and application thereof
CN202010733740.1 2020-07-20
PCT/CN2020/109792 WO2022016644A1 (en) 2020-07-20 2020-08-18 Acanthopanax senticosus harms homogeneous polysaccharide, preparation method therefor and use thereof

Publications (2)

Publication Number Publication Date
JP2022544723A JP2022544723A (en) 2022-10-21
JP7414303B2 true JP7414303B2 (en) 2024-01-16

Family

ID=73363210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021534247A Active JP7414303B2 (en) 2020-07-20 2020-08-18 Stir-fried homogeneous polysaccharide and its preparation method and application

Country Status (5)

Country Link
JP (1) JP7414303B2 (en)
CN (1) CN111961141B (en)
AU (1) AU2020459437B2 (en)
GB (1) GB2613696A (en)
WO (1) WO2022016644A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214412B (en) * 2021-05-11 2022-10-25 黑龙江大学 Extraction method and application of acanthopanax fruit polysaccharide and polysaccharide
CN114276408A (en) * 2022-01-18 2022-04-05 长春中医药大学 Extraction method and application of acanthopanax senticosus glycoprotein
CN115078562B (en) * 2022-05-06 2023-09-05 天津中医药大学 Preparation method and structure characterization method of red ginseng oligosaccharide homolog
CN114907496B (en) * 2022-06-22 2023-05-02 常熟理工学院 Fig leaf polysaccharide and preparation method and application thereof
CN115406985A (en) * 2022-08-17 2022-11-29 南京师范大学 Method for characterizing polysaccharide structure information and method for identifying authenticity or quality of traditional Chinese medicine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103609937B (en) * 2013-11-18 2015-08-12 无限极(中国)有限公司 Radix Et Caulis Acanthopanacis Senticosi polysaccharide is preparing the application had in the health food of neuroprotective efficacy
CN105131142B (en) * 2015-09-23 2017-03-22 长春市传染病医院 Industrialization production method and application of acanthopanax senticosus polysaccharide
KR101856374B1 (en) * 2016-10-26 2018-05-11 에스케이바이오랜드 주식회사 Cosmetic composition comprising steamed root extract of Acanthopanax senticosus for protecting photo-damaged skin
CN107383230A (en) * 2017-08-22 2017-11-24 广州聚注通用技术研究院有限公司 The extracting method of Radix Et Caulis Acanthopanacis Senticosi polysaccharide with radioresistance activity of fighting against senium and application
CN108030813A (en) * 2017-09-19 2018-05-15 广州青岚生物科技有限公司 A kind of clarification process and method of quality control of the pharmaceutical composition with delay skin aging
CN111410698B (en) * 2020-03-13 2022-01-04 广东药科大学 Camel thorn sugar polymer and preparation method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
International Journal of Biological Macromolecules,2013年04月26日,Vol.59,p290-294,doi:10.1016/j.ijbiomac.2013.04.067
Oxidative Medicine and Cellular Longevity,2016年03月06日,Vol.2016, Articles No.3859721,p1-8,doi:10.1155/2016/3859721
日本栄養・食糧学会誌,2004年,Vol.57, No.6,p257-263,doi:10.4327/jsnfs.57.257

Also Published As

Publication number Publication date
CN111961141B (en) 2023-07-07
GB202216547D0 (en) 2022-12-21
AU2020459437B2 (en) 2024-01-04
CN111961141A (en) 2020-11-20
GB2613696A (en) 2023-06-14
WO2022016644A1 (en) 2022-01-27
JP2022544723A (en) 2022-10-21
AU2020459437A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7414303B2 (en) Stir-fried homogeneous polysaccharide and its preparation method and application
Rozi et al. Sequential extraction, characterization and antioxidant activity of polysaccharides from Fritillaria pallidiflora Schrenk
Gong et al. Physicochemical properties and biological activities of polysaccharides from Lycium barbarum prepared by fractional precipitation
Chen et al. Chemical characterization and immunostimulatory effects of a polysaccharide from Polygoni Multiflori Radix Praeparata in cyclophosphamide-induced anemic mice
Zhou et al. Structural characterization and immunomodulatory activities of two polysaccharides from Rehmanniae Radix Praeparata
Liu et al. Immunopontentiating and antitumor activities of a polysaccharide from Pulsatilla chinensis (Bunge) Regel
CN110538112A (en) Glycyrrhiza glabra extract composition with function of enhancing skin immune barrier and preparation method and application thereof
Wang et al. Structural properties and in vitro and in vivo immunomodulatory activity of an arabinofuranan from the fruits of Akebia quinata
Yin et al. Isolation, purification, structural analysis and coagulatory activity of water-soluble polysaccharides from Ligustrum lucidum Ait flowers
Pang et al. Two glycoproteins from medicinal insect Periplaneta americana (L.) promote diabetic wound healing via macrophage polarization modulation
Liu et al. Extraction, purification and structural characterization of polysaccharides from Apocynum venetum L. roots with anti-inflammatory activity
CN111410698A (en) Camel thorn sugar polymer and preparation method and application thereof
CN112920287B (en) Amomum villosum polysaccharide with immunoregulation effect and preparation method and application thereof
CN117281885A (en) Application of selenium-enriched yam glycoprotein as immunomodulating drug
CN112071374A (en) Mathematical regression model for optimizing dogwood leaf polysaccharide extraction and application thereof
LU503068B1 (en) Acanthopanax senticosushomogeneous polysaccharide, and preparation methodand use thereof
CN102276754A (en) Organosulfate glucan in hedysarum polybotys saccharide as well as preparation method and application thereof
CN115414379A (en) Application of notoginseng polysaccharide SQP20 in preparation of medicine for treating intestinal injury and inflammatory infiltration
CN116655820B (en) Ampelopsis grossedentata acidic polysaccharide AGP-3a, extraction and separation method thereof and application thereof in preparation of anti-inflammatory cosmetics
CN107865927A (en) A kind of clarification process and method of quality control of the pharmaceutical composition that there are treatment livid ring around eye to act on
KR100497665B1 (en) A composition containing the extract of processed ginseng for treatment of skin disease
CN114957499B (en) Angelica dahurica polysaccharide composition and application thereof in expelling toxin, beautifying, whitening or removing freckles
CN105640797B (en) Dihydromyricetin and application of the bletilla polysaccharide composition in beautifying whitening
Gong et al. Structural elucidation and anti-psoriasis activity of a novel polysaccharide from Saussurea Costus
CN109762075B (en) Coreopsis tinctoria sugar polymer and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230519

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20230915

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20230915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7414303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150