JP7412922B2 - Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics - Google Patents

Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics Download PDF

Info

Publication number
JP7412922B2
JP7412922B2 JP2019152783A JP2019152783A JP7412922B2 JP 7412922 B2 JP7412922 B2 JP 7412922B2 JP 2019152783 A JP2019152783 A JP 2019152783A JP 2019152783 A JP2019152783 A JP 2019152783A JP 7412922 B2 JP7412922 B2 JP 7412922B2
Authority
JP
Japan
Prior art keywords
withstand voltage
electrodes
insulating material
pair
voltage characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019152783A
Other languages
Japanese (ja)
Other versions
JP2021032684A (en
Inventor
光祐 和田
政秀 金子
良三 野々垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019152783A priority Critical patent/JP7412922B2/en
Priority to PCT/JP2020/031129 priority patent/WO2021039501A1/en
Publication of JP2021032684A publication Critical patent/JP2021032684A/en
Application granted granted Critical
Publication of JP7412922B2 publication Critical patent/JP7412922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/16Construction of testing vessels; Electrodes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Description

本発明は、絶縁材の耐電圧特性評価方法及び耐電圧特性測定装置に関する。 The present invention relates to a method for evaluating withstand voltage characteristics of an insulating material and an apparatus for measuring withstand voltage characteristics.

絶縁材の一般的な耐電圧特性試験が知られている(JIS C2110)。また、特許文献1には、絶縁材を挟み込む二つの電極と、この電極を押えるばねとを有し、この二つの電極間に電圧を印加することで耐電圧特性性を試験する方法及び試験装置が開示されている(特許文献1参照)。 A general withstand voltage characteristic test for insulation materials is known (JIS C2110). Further, Patent Document 1 discloses a method and a testing device for testing voltage resistance characteristics by applying a voltage between the two electrodes, which includes two electrodes that sandwich an insulating material and a spring that presses the electrodes. is disclosed (see Patent Document 1).

特開2000-9789号公報Japanese Patent Application Publication No. 2000-9789

例えば、アルミダイカスト製の機器に絶縁材を装着した際、機器等にバリが残っていたり、装着箇所に異物が存在したりすると、そのバリや異物等(以下、「バリ等」と称する)による押圧が絶縁材の狭い範囲に集中して干渉し、絶縁材の耐電圧特性に影響を与える可能性がある。しかしながら、従来の試験方法や試験装置では、バリ等が絶縁材に干渉した場合の耐電圧特性を測定し、また評価することができなかった。 For example, when insulating material is installed on equipment made of aluminum die-casting, if burrs remain on the equipment or foreign objects are present at the installation location, the burrs or foreign objects (hereinafter referred to as "burrs, etc.") may Pressure may concentrate in a narrow area of the insulating material and interfere with it, affecting the withstand voltage characteristics of the insulating material. However, with conventional testing methods and testing equipment, it has not been possible to measure or evaluate the withstand voltage characteristics when burrs or the like interfere with the insulating material.

本発明は、以上の課題を解決することを目的としており、バリ等による押圧が絶縁材の狭い範囲に集中して干渉した状況を想定しての耐電圧特性を評価し得る絶縁材の耐電圧特性評価方法及び耐電圧特性測定装置を提供することにある。 The present invention aims to solve the above problems, and is capable of evaluating the withstand voltage characteristics of an insulating material assuming a situation where pressure caused by burrs etc. concentrates on a narrow range of the insulating material and interferes with the insulating material. An object of the present invention is to provide a characteristic evaluation method and a withstand voltage characteristic measuring device.

本発明は、絶縁材の耐電圧特性評価方法であって、絶縁材を一対の電極で挟んで局所的に押圧し、その電極間に絶縁材の厚みの薄い部分を形成し、その電極間に電圧を印加して絶縁材の耐電圧特性を評価する耐電圧特性評価方法である。局所的に押圧するとは、押圧力が、絶縁材の狭い範囲に集中することを意味する。 The present invention is a method for evaluating withstand voltage characteristics of an insulating material, in which an insulating material is sandwiched between a pair of electrodes and locally pressed, a thin part of the insulating material is formed between the electrodes, and a thin part of the insulating material is formed between the electrodes. This is a withstand voltage characteristic evaluation method that evaluates the withstand voltage characteristics of an insulating material by applying a voltage. Locally pressing means that the pressing force is concentrated in a narrow area of the insulating material.

本発明によれば、絶縁材を一対の電極で挟んで局所的に押圧し、一対の電極間に絶縁材の厚みの薄い部分を形成することで、バリ等から干渉を受けている部分を疑似的に作ることができる。更に、一対の電極間に電圧を印加することにより、この厚みの薄い部分での絶縁破壊の有無を確認することができる。その結果、本発明によれば、バリ等が絶縁材に局所的に干渉した状況を想定しての耐電圧特性を評価できる。 According to the present invention, the insulating material is sandwiched between a pair of electrodes and pressed locally to form a thin part of the insulating material between the pair of electrodes, thereby simulating the part that is being interfered with by burrs etc. can be made. Furthermore, by applying a voltage between the pair of electrodes, it is possible to check whether there is dielectric breakdown in this thin portion. As a result, according to the present invention, withstand voltage characteristics can be evaluated assuming a situation where burrs or the like locally interfere with the insulating material.

また、一対の電極のうち、少なくとも一方の電極は尖端部を有し、尖端部を絶縁材に突き刺すことによって、尖端部と他方の電極との間に厚みの薄い部分を形成してもよい。尖端部を絶縁材に突き刺すことによって絶縁材に意図的に傷を付けて厚みの薄い部分を形成でき、その状態での耐電圧特性を評価できる。 Alternatively, at least one of the pair of electrodes may have a tip, and the tip may be pierced into an insulating material to form a thin portion between the tip and the other electrode. By piercing the insulating material with the tip, it is possible to intentionally damage the insulating material to form a thinner part, and the withstand voltage characteristics in that state can be evaluated.

また、一対の電極のうち、少なくとも一方の電極と絶縁材との間に異物を配置し、一対の電極によって異物及び絶縁材を挟むことによって、異物と他方の電極との間に厚みの薄い部分を形成してもよい。電極そのものではなく、異物によって絶縁材を局所的に押圧することによって絶縁材の厚みの薄い部分を形成でき、その状態での耐電圧特性を評価できる。 In addition, by placing a foreign object between at least one electrode of a pair of electrodes and the insulating material, and sandwiching the foreign object and the insulating material between the pair of electrodes, a thin part can be formed between the foreign object and the other electrode. may be formed. By locally pressing the insulating material with a foreign object rather than the electrode itself, a thinner part of the insulating material can be formed, and the withstand voltage characteristics in that state can be evaluated.

また、絶縁材の厚みの薄い部分の厚みを変えながら電極間に電圧を印加して絶縁材の耐電圧特性を評価してもよい。例えば、尖端部の突き刺し深さを変えたり、異物の大きさを変えたりすることでて厚みの薄い部分の厚みを変えることができる。そして、厚みの薄い部分の厚みを変えながら適宜に電圧を印加することにより、絶縁破壊が生じる厚みを評価することができる。 Alternatively, the withstand voltage characteristics of the insulating material may be evaluated by applying a voltage between the electrodes while changing the thickness of the thin portion of the insulating material. For example, the thickness of the thin portion can be changed by changing the piercing depth of the tip or by changing the size of the foreign object. Then, by applying an appropriate voltage while changing the thickness of the thin portion , it is possible to evaluate the thickness at which dielectric breakdown occurs.

また、電極間に印加する電圧を変えながら絶縁材の耐電圧特性を評価してもよい。電極間に印加する電圧を変えることで、絶縁破壊が生じる電圧を評価することができる。 Further, the voltage resistance characteristics of the insulating material may be evaluated while changing the voltage applied between the electrodes. By changing the voltage applied between the electrodes, the voltage at which dielectric breakdown occurs can be evaluated.

また、絶縁材の厚みの薄い部分の厚み及び電極間に印加する電圧の双方を変えながら絶縁材の耐電圧特性を評価してもよい。厚みの薄い部分の厚み及び電極間に印加する電圧の双方を変えながら絶縁材の耐電圧特性を評価することで、厚みの薄い部分の厚み及び電極間に印加する電圧と絶縁破壊との因果関係を評価することができる。 Further, the withstand voltage characteristics of the insulating material may be evaluated while changing both the thickness of the thin portion of the insulating material and the voltage applied between the electrodes. By evaluating the withstand voltage characteristics of an insulating material while changing both the thickness of the thin part and the voltage applied between the electrodes, we can determine the causal relationship between the thickness of the thin part and the voltage applied between the electrodes and dielectric breakdown. can be evaluated.

また、本発明は、絶縁材の耐電圧特性を評価するための耐電圧特性測定装置であって、一対の電極と、一対の電極を対向方向に移動させ、絶縁材を挟んだ状態で一対の電極間の距離を調整可能な電極間距離調整部と、一対の電極間に電圧を印加する電圧印加部と、絶縁材の絶縁破壊の有無を評価するための指標値を測定する指標値測定部と、を備えている。 The present invention also provides a withstand voltage characteristic measuring device for evaluating the withstand voltage characteristics of an insulating material, in which a pair of electrodes are moved in opposing directions, and a pair of electrodes are moved in opposite directions, and a An inter-electrode distance adjustment section that can adjust the distance between electrodes, a voltage application section that applies voltage between a pair of electrodes, and an index value measurement section that measures an index value for evaluating the presence or absence of dielectric breakdown of an insulating material. It is equipped with.

本発明では、絶縁材を挟んだ状態で一対の電極間の距離を電極間距離調整部によって調整することで絶縁材を局所的に押圧して厚みの薄い部分を形成できる。更に、電圧印加部によって一対の電極間に電圧を印加することにより、この厚みの薄い部分での絶縁破壊の有無を確認することができる。その結果、本発明によれば、バリ等が絶縁材に局所的に干渉した状況を想定しての耐電圧特性を評価できる。 In the present invention, by adjusting the distance between a pair of electrodes with the insulating material sandwiched therebetween using the inter-electrode distance adjustment section, the insulating material can be locally pressed to form a thin portion. Furthermore, by applying a voltage between the pair of electrodes using the voltage application section, it is possible to check whether or not there is dielectric breakdown in this thin portion. As a result, according to the present invention, withstand voltage characteristics can be evaluated assuming a situation where burrs or the like locally interfere with the insulating material.

また、一対の電極のうち、少なくとも一方の電極に設けられると共に、他方の電極に向けて配置された尖端部を更に備えていてもよい。電極間距離調整部によって一対の電極間の距離を調整することにより、尖端部を絶縁材に突き刺して尖端部と他方の電極との間に厚みの薄い部分を形成できる。その結果、絶縁材に意図的に傷を付けて厚みの薄い部分を形成した状態での耐電圧特性を評価できる。 Further, the device may further include a tip portion provided on at least one of the pair of electrodes and disposed toward the other electrode. By adjusting the distance between the pair of electrodes using the inter-electrode distance adjusting section, it is possible to pierce the tip into the insulating material and form a thin portion between the tip and the other electrode. As a result, it is possible to evaluate the withstand voltage characteristics in a state where the insulating material is intentionally damaged to form a thin portion.

また、電圧印加部は、一対の電極間に印加する電圧を変化させることができてもよい。電極間に印加する電圧を変えることで、絶縁破壊が生じる電圧を評価することができる。 Further, the voltage application unit may be able to change the voltage applied between the pair of electrodes. By changing the voltage applied between the electrodes, the voltage at which dielectric breakdown occurs can be evaluated.

また、一対の電極は上下方向に対向して配置されており、一対の電極のうち、少なくとも一方の電極を保持する昇降部と、昇降部を昇降可能に支持する柱部と、を備え、電極間距離調整部は、昇降部に固定されると共に、上下方向に延在する軸部と、軸部を上下方向に移動可能に支持すると共に、軸部の上下方向の移動量を調整可能な基本構造部と、を備えていてもよい。基本構造部によって軸部の上下方向の移動量を調整することにより、昇降部を昇降させて一対の電極間の距離を簡単に調整することができる。 Further, the pair of electrodes are arranged to face each other in the vertical direction, and include an elevating part that holds at least one of the pair of electrodes, and a column part that supports the elevating part so that it can rise and fall. The distance adjustment section includes a shaft section that is fixed to the elevating section and extends in the vertical direction, and a base that supports the shaft section movably in the vertical direction and can adjust the amount of vertical movement of the shaft section. It may also include a structural part. By adjusting the amount of vertical movement of the shaft portion using the basic structure, the distance between the pair of electrodes can be easily adjusted by raising and lowering the elevating portion.

本発明によれば、バリ等が絶縁材に局所的に干渉した状況を想定しての耐電圧特性を評価することができる。 According to the present invention, withstand voltage characteristics can be evaluated assuming a situation where burrs or the like locally interfere with the insulating material.

本発明の実施形態に係る耐電圧特性測定装置の側面図である。FIG. 1 is a side view of a withstand voltage characteristic measuring device according to an embodiment of the present invention. 実施形態に係る耐電圧特性測定装置に設置された絶縁材と電極との関係を模式的に示す拡大図である。FIG. 3 is an enlarged view schematically showing the relationship between an insulating material and an electrode installed in the withstand voltage characteristic measuring device according to the embodiment. 電極の側面を示す拡大図である。FIG. 3 is an enlarged view showing a side surface of an electrode. 電極の変形例を示し、(a)図は第1の変形例を示す側面図であり、(b)図は第2の変形例を示す側面図であり、(c)図は第3の変形例を示す側面図であり、(d)図は第4の変形例を示す側面図である。Modifications of the electrode are shown, (a) is a side view of the first modification, (b) is a side view of the second modification, and (c) is the third modification. It is a side view which shows an example, and (d) is a side view which shows a 4th modification. 電極の変形例を示し、(a)図は第5の変形例を示す側面図であり、(b)図は(a)図のb-b線に沿った断面図である。Modifications of the electrodes are shown, with (a) being a side view showing a fifth modification, and (b) being a sectional view taken along line bb in (a). 他の実施形態に係る耐電圧特性測定装置の側面図である。FIG. 7 is a side view of a withstand voltage characteristic measuring device according to another embodiment. 他の実施形態に係る耐電圧特性測定装置に設置された絶縁材と電極との関係を模式的に示す拡大図である。FIG. 7 is an enlarged view schematically showing the relationship between an insulating material and an electrode installed in a withstand voltage characteristic measuring device according to another embodiment.

以下、図面を参照しつつ本発明に係る耐電圧特性測定装置及び耐電圧特性評価方法の実施形態について詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a withstand voltage characteristic measuring device and a withstand voltage characteristic evaluation method according to the present invention will be described in detail with reference to the drawings.

まず、図1及び図2を参照して、実施形態に係る耐電圧特性測定装置1について説明する。耐電圧特性測定装置1は、電気的な絶縁材の絶縁破壊の有無を評価するための指標値を測定する装置であり、耐電圧特性測定装置1で測定された指標値に基づいて、絶縁材の耐電圧特性を評価することができる。ここで、この指標値とは、例えば、電圧値、電流値、または抵抗値などであり、それらの複合値であっても良い。また、耐電圧特性とは、耐電圧(絶縁耐力ともいう)に関係する性質を広く含む。従って、耐電圧のみならず、耐電圧と絶縁材の厚みとの相関関係や絶縁抵抗なども含まれる。 First, with reference to FIGS. 1 and 2, a withstand voltage characteristic measuring device 1 according to an embodiment will be described. The withstand voltage characteristic measuring device 1 is a device that measures an index value for evaluating the presence or absence of dielectric breakdown of an electrical insulating material, and based on the index value measured by the withstanding voltage characteristic measuring device 1, It is possible to evaluate the withstand voltage characteristics of Here, this index value is, for example, a voltage value, a current value, or a resistance value, and may be a composite value thereof. In addition, withstand voltage characteristics broadly include properties related to withstand voltage (also referred to as dielectric strength). Therefore, it includes not only the withstand voltage but also the correlation between the withstand voltage and the thickness of the insulating material, insulation resistance, etc.

耐電圧特性測定装置1は、対向して配置された一対の電極3、4と、一対の電極3,4の少なくとも一方の電極(例えば、電極3)を、電極3、4同士の対向方向Dに移動させる昇降部10と、昇降部10を移動させて一対の電極3、4間を所定距離で保持するマイクロメーター6と、を備えている。一対の電極3、4同士の間には、測定対象となる絶縁シートW(絶縁材の一例)が配置されている。マイクロメーター6は、電極間距離調整部の一例である。 The withstand voltage characteristic measuring device 1 measures a pair of electrodes 3 and 4 arranged facing each other, and at least one electrode (for example, electrode 3) of the pair of electrodes 3 and 4, in a direction D in which the electrodes 3 and 4 face each other. The micrometer 6 includes an elevating section 10 that moves the elevating section 10 and a micrometer 6 that moves the elevating section 10 and maintains a predetermined distance between the pair of electrodes 3 and 4. An insulating sheet W (an example of an insulating material) to be measured is arranged between the pair of electrodes 3 and 4. The micrometer 6 is an example of an inter-electrode distance adjusting section.

本実施形態に係る一対の電極3、4は、対向方向Dの一例である上下方向(例えば、鉛直方向)に配置されている。そして、下方の電極4は定位置に固定されており、上方の電極3は上下方向に移動可能である。ここで、対向方向Dとは、一対の電極3、4が相対的に接近、離間する方向を意味している。従って、一対の電極3、4は、上下方向に限定されず、横方向(例えば、水平方向)あるいは上下方向や横方向から傾いた斜め方向に配置されていてもよい。また、本実施形態では、上方の電極3が移動可能である態様を例に説明するが、下方の電極4が移動可能であっても良く、また、電極3と電極4との両方が対向方向Dに移動可能であっても良い。 The pair of electrodes 3 and 4 according to this embodiment are arranged in an up-down direction (for example, a vertical direction), which is an example of a facing direction D. The lower electrode 4 is fixed at a fixed position, and the upper electrode 3 is movable in the vertical direction. Here, the opposing direction D means a direction in which the pair of electrodes 3 and 4 relatively approach and separate. Therefore, the pair of electrodes 3 and 4 is not limited to the vertical direction, but may be arranged laterally (for example, horizontally) or in an oblique direction tilted from the vertically or horizontally. Further, in this embodiment, an example will be described in which the upper electrode 3 is movable, but the lower electrode 4 may be movable, and both the electrode 3 and the electrode 4 may be moved in opposite directions. It may be possible to move to D.

下方の電極(以下、「固定電極」と称する)4は平板状である。固定電極4は、複数の脚柱部8の先端に固定され、脚柱部8はベースプレート7から立設されている。固定電極4を支持する脚柱部8あるいはベースプレート7は電気的な絶縁性を有する。固定電極4の両方の表面のうち、脚柱部8とは反対側となる表面に測定対象となる絶縁シートWが載置される。 The lower electrode (hereinafter referred to as "fixed electrode") 4 has a flat plate shape. The fixed electrode 4 is fixed to the tips of a plurality of pedestals 8, and the pedestals 8 are erected from the base plate 7. The pillar portion 8 or base plate 7 that supports the fixed electrode 4 has electrical insulation properties. Of both surfaces of the fixed electrode 4, an insulating sheet W to be measured is placed on the surface opposite to the pillar section 8.

絶縁シートWの形状や厚み等は適宜に選択できるが、本実施形態に係る絶縁シートWの厚みは、例えば、0.1mm以上であってもよい。また、絶縁シートWの厚みは5mm以下であってもよく、更に1mm以下の薄い絶縁シートWであってもよい。また、絶縁シートWは、柔軟性がある絶縁シートでもよい。柔軟性のある絶縁シートとしては、樹脂シートが挙げられる。樹脂シートは、熱硬化性樹脂から構成される樹脂シート、熱可塑性樹脂から構成される樹脂シートのいずれでもよい。また、樹脂シートにはフィラーが充填されていてもよい。フィラーとしては、無機粒子などが挙げられ、無機粒子としては、例えば、炭化物、窒化物、酸化物、水酸化物、炭素系材料などが挙げられる。樹脂シートの一例として窒化ホウ素を含む放熱シートが挙げられる。 Although the shape, thickness, etc. of the insulating sheet W can be selected as appropriate, the thickness of the insulating sheet W according to this embodiment may be, for example, 0.1 mm or more. Further, the thickness of the insulating sheet W may be 5 mm or less, and may be further thinner than 1 mm. Further, the insulating sheet W may be a flexible insulating sheet. Examples of flexible insulating sheets include resin sheets. The resin sheet may be either a resin sheet made of a thermosetting resin or a resin sheet made of a thermoplastic resin. Further, the resin sheet may be filled with filler. Examples of the filler include inorganic particles, and examples of the inorganic particles include carbides, nitrides, oxides, hydroxides, and carbon-based materials. An example of the resin sheet is a heat dissipation sheet containing boron nitride.

絶縁シートWには、複数の孔Waが形成されている。絶縁シートWに当接する固定電極4には、絶縁シートWの複数の孔Waに対応した複数の雌ネジ4aが形成されている。固定電極4の雌ネジ4aには、下方から金属製(導電性)のボルト9が螺合し、固定電極4から突き出たボルト9の軸部が絶縁シートWの孔Waに通されて絶縁シートWを位置決めする。 A plurality of holes Wa are formed in the insulating sheet W. A plurality of female screws 4a corresponding to a plurality of holes Wa of the insulating sheet W are formed in the fixed electrode 4 that comes into contact with the insulating sheet W. A metal (conductive) bolt 9 is screwed into the female thread 4a of the fixed electrode 4 from below, and the shaft portion of the bolt 9 protruding from the fixed electrode 4 is passed through the hole Wa of the insulating sheet W, and the insulating sheet Position W.

上方の電極(以下、「可動電極」と称する)3は、昇降部10によって保持されている。可動電極3(図3参照)は、滑り止め加工が施された円柱状の摘み部31と、摘み部31の一方の端部から突出した針部32と、摘み部31の他方の端部から突出した接続軸部33とを備えている。針部32の先端は、鋭角状に尖った尖端部32aである。接続軸部33には雄ネジが設けられている。 The upper electrode (hereinafter referred to as "movable electrode") 3 is held by a lifting section 10. The movable electrode 3 (see FIG. 3) includes a cylindrical knob 31 with a non-slip finish, a needle 32 protruding from one end of the knob 31, and a needle 32 protruding from the other end of the knob 31. A protruding connecting shaft portion 33 is provided. The tip of the needle portion 32 is an acutely pointed tip portion 32a. The connecting shaft portion 33 is provided with a male thread.

可動電極3は、絶縁シートWを局所的に押圧できる形状であれば良い。局所的に押圧するとは、押圧力が、絶縁シートWの狭い範囲に集中することを意味し、つまり、絶縁シートWの全面ではなく、一部分のみに当接して押圧することを意味する。例えば、5mm程度の範囲で当接して押圧することを意味し、2mm以下であっても良く、0.5mm以下であっても良く、0.1mm以下であっても良い。 The movable electrode 3 may have any shape as long as it can press the insulating sheet W locally. Locally pressing means that the pressing force is concentrated in a narrow range of the insulating sheet W, that is, it means that the pressing force is pressed by contacting only a part of the insulating sheet W, not the entire surface. For example, it means contacting and pressing within a range of about 5 mm 2 , which may be 2 mm 2 or less, 0.5 mm 2 or less, or 0.1 mm 2 or less.

可動電極3は、様々な形態を使用することができる。例えば、図4の(a)図に示されるように、第1の変形例として、円柱状の胴体部34の先端が拡径し、その先端に円錐状の尖端部32bを設けた可動電極3Aであってもよい。また、図4の(b)図に示されるように、第2の変形例として、円柱状の胴体部34の先端が拡径し、胴体部34の先端に凸曲面32cが設けられた可動電極3Bであってもよい。また、図4の(c)図に示されるように、第3の変形例として、円柱状の胴体部34の先端が拡径し、その先端の円周に沿って複数の尖端部32dが設けられた可動電極3Cであってもよい。また、図4の(d)図に示されるように、第4の変形例として、円柱状の胴体部34の先端が拡径し、その先端がテーパ状に縮径し、更に複数の複数の尖端部32eが設けられた可動電極3Dであってもよい。 The movable electrode 3 can take various forms. For example, as shown in FIG. 4(a), as a first modification, a movable electrode 3A has a cylindrical body portion 34 whose diameter is expanded at the tip and a conical tip portion 32b is provided at the tip. It may be. In addition, as shown in FIG. 4B, as a second modification, a movable electrode is provided in which the tip of the cylindrical body portion 34 is expanded in diameter and a convex curved surface 32c is provided at the tip of the body portion 34. It may be 3B. In addition, as shown in FIG. 4C, as a third modification, the diameter of the tip of the cylindrical body portion 34 is expanded, and a plurality of tip portions 32d are provided along the circumference of the tip. The movable electrode 3C may be a fixed movable electrode 3C. In addition, as shown in FIG. 4(d), as a fourth modification, the tip of the cylindrical body portion 34 is expanded in diameter, the tip is tapered and reduced in diameter, and a plurality of The movable electrode 3D may be provided with a pointed end 32e.

また、本実施形態及び上記の変形例1、3、4では、尖端部32b、32d、32eは点状に尖った形状であったが、例えば、図5の(a)図及び(b)図に示されるように、第5の変形例として、刃物のような線状の尖端部32fを備えた可動電極3Eであってもよい。 Further, in the present embodiment and the above-mentioned Modifications 1, 3, and 4, the pointed end portions 32b, 32d, and 32e have point-shaped points, but for example, FIGS. As shown in FIG. 2, as a fifth modification, a movable electrode 3E may be provided with a linear pointed end 32f like a knife.

図1に示されるように、昇降部10は、ベースプレート7から立設された複数のガイド柱11(柱部)と、ガイド柱11に沿って昇降可能な昇降プレート5と、昇降プレート5と一緒に昇降する支持プレート12と、を備えている。昇降プレート5の昇降領域(可動領域)よりも上方には、ガイド柱11に固定された固定プレート14が配置されている。固定プレート14と昇降プレート5とは、昇降プレート5の引き上げを支援する弾性体15、例えばコイルバネによって接続されている。 As shown in FIG. 1, the elevating section 10 includes a plurality of guide columns 11 (column sections) erected from the base plate 7, an elevating plate 5 that can be raised and lowered along the guide columns 11, and the elevating plate 5. A support plate 12 that moves up and down. A fixed plate 14 fixed to the guide column 11 is arranged above the elevating area (movable area) of the elevating plate 5. The fixed plate 14 and the lifting plate 5 are connected by an elastic body 15, such as a coil spring, that supports lifting of the lifting plate 5.

可動電極3は、針部32の尖端部32aが下方を向き、接続軸部33が上方を向くように配置され、接続軸部33は、支持プレート12に螺合して固定されている。支持プレート12は、電気的な絶縁性を有するロッド部材13を介して昇降プレート5に固定されている。昇降プレート5は、軸受け部51を介してガイド柱11に対して昇降可能に取り付けられている。 The movable electrode 3 is arranged such that the pointed end 32a of the needle portion 32 faces downward and the connecting shaft portion 33 faces upward, and the connecting shaft portion 33 is screwed and fixed to the support plate 12. The support plate 12 is fixed to the lifting plate 5 via a rod member 13 having electrical insulation properties. The elevating plate 5 is attached to the guide column 11 via a bearing portion 51 so as to be movable up and down.

マイクロメーター6は、固定プレート14に固定されたマイクロメーターヘッド6a(基本構造部)と、固定プレート14を貫通して上下方向に延在するスピンドル6b(軸部)と、を備えている。スピンドル6bの下端部は昇降プレート5に固定され、上部はマイクロメーターヘッド6a内に収容されている。マイクロメーターヘッド6aは、ネジ機構によってスピンドル6bを上下方向に移動可能に支持すると共に、マイクロメーターヘッド6aを回転することでスピンドル6bの上下方向の移動量を調整可能である。 The micrometer 6 includes a micrometer head 6a (basic structure) fixed to a fixed plate 14, and a spindle 6b (shaft) extending vertically through the fixed plate 14. The lower end of the spindle 6b is fixed to the lifting plate 5, and the upper end is accommodated in the micrometer head 6a. The micrometer head 6a supports the spindle 6b so as to be movable in the vertical direction using a screw mechanism, and can adjust the amount of vertical movement of the spindle 6b by rotating the micrometer head 6a.

耐電圧特性測定装置1は、電圧印加測定部20を備えている。電圧印加測定部20は、固定電極4及び可動電極3間(一対の電極3、4間)に電圧を印加する電圧印加機能と、絶縁材の絶縁破壊の有無を評価するための指標値を測定する指標値測定機能とを備えている。この指標値とは、例えば、一対の電極3、4間の電圧値や抵抗値、一対の電極3、4間を流れる電流値等である。この指標値を確認することで、一対の電極3、4間での通電状態の有無が確認される。通電状態は絶縁破壊が生じている状態を意味している。絶縁破壊が生じる限界までの電圧は「耐電圧」である。また、一対の電極3、4間の抵抗値を測定することにより、電気的に接続されていないはずの一対の電極3、4間の抵抗値(絶縁抵抗)を評価することができる。 The withstand voltage characteristic measuring device 1 includes a voltage application measuring section 20 . The voltage application measurement unit 20 has a voltage application function of applying a voltage between the fixed electrode 4 and the movable electrode 3 (between the pair of electrodes 3 and 4), and measures an index value for evaluating the presence or absence of dielectric breakdown of the insulating material. It also has an index value measurement function. This index value is, for example, a voltage value or resistance value between a pair of electrodes 3 and 4, a current value flowing between a pair of electrodes 3 and 4, and the like. By checking this index value, it is confirmed whether or not there is current flowing between the pair of electrodes 3 and 4. The energized state means a state where dielectric breakdown has occurred. The voltage up to the limit at which dielectric breakdown occurs is the "withstanding voltage." Furthermore, by measuring the resistance value between the pair of electrodes 3 and 4, it is possible to evaluate the resistance value (insulation resistance) between the pair of electrodes 3 and 4, which should not be electrically connected.

耐電圧特性を評価するために、絶縁シートWには高電圧を印加する必要があり、したがって電圧印加測定部20の検査回路は高電圧出力回路である。電圧印加測定部20としては、市販の耐電圧試験装置や絶縁抵抗検査装置等を適宜に利用することができる。 In order to evaluate the withstand voltage characteristics, it is necessary to apply a high voltage to the insulating sheet W, and therefore the test circuit of the voltage application and measurement section 20 is a high voltage output circuit. As the voltage application and measurement section 20, a commercially available withstand voltage testing device, insulation resistance testing device, etc. can be used as appropriate.

電圧印加測定部20の高電圧出力回路は、絶縁シートWと固定電極4とを接続するボルト9に通電可能に接続されており、また、可動電極3が固定された支持プレート12に取り付けられた金属製(通電可能)のボルト12aに通電可能に接続されている。 The high voltage output circuit of the voltage application and measurement section 20 is electrically connected to a bolt 9 that connects the insulating sheet W and the fixed electrode 4, and is also attached to a support plate 12 to which the movable electrode 3 is fixed. It is electrically connected to a metal (electrically conductable) bolt 12a.

次に、本実施形態に係る耐電圧特性評価方法を説明する。まず、耐電圧特性測定装置1の可動電極3と固定電極4との間(一対の電極3、4間)に絶縁シートWを設置する(絶縁材設置工程)。本実施形態においては、絶縁シートWを固定電極4上に載置し、ボルト9を螺合して固定する。次に、一対の電極3、4間に所定の電圧を印加し、可動電極3が絶縁シートWに干渉していない状態で絶縁破壊が生じていないことを確認する(初期確認工程)。 Next, a method for evaluating withstand voltage characteristics according to this embodiment will be explained. First, an insulating sheet W is installed between the movable electrode 3 and the fixed electrode 4 (between the pair of electrodes 3 and 4) of the withstand voltage characteristic measuring device 1 (insulating material installation step). In this embodiment, the insulating sheet W is placed on the fixed electrode 4 and fixed by screwing the bolt 9 together. Next, a predetermined voltage is applied between the pair of electrodes 3 and 4, and it is confirmed that no dielectric breakdown has occurred with the movable electrode 3 not interfering with the insulating sheet W (initial confirmation step).

次に、耐電圧特性評価工程を実施する。耐電圧特性評価工程として、例えば、以下の三つの評価方法を実施することができる。各方法について詳しく説明する。 Next, a withstand voltage characteristic evaluation step is performed. As the withstand voltage characteristic evaluation process, for example, the following three evaluation methods can be implemented. Each method will be explained in detail.

第1の評価方法では、可動電極3を段階的に下降させて絶縁シートWに可動電極3の尖端部32aを突き刺す。可動電極3の尖端部32aから固定電極4までの距離は、絶縁シートWの厚みの薄い部分(以下、「薄厚部」と称する)d(図2参照)であり、段階が進むほど、薄厚部dの厚みは薄くなる。各段階において、それぞれ一定の高電圧を印加し、通電状態を確認して絶縁破壊の有無を確認する。絶縁破壊が生じた場合には、その段階での薄厚部dの厚みを、絶縁破壊が生じる限界の厚みとして評価する。なお、一定の電圧を印加した状態で薄厚部dを連続的に変化させて絶縁破壊が生じる限界の厚み(耐電圧特性の一例)を評価してもよい。 In the first evaluation method, the movable electrode 3 is lowered in stages to pierce the insulating sheet W with the tip 32a of the movable electrode 3. The distance from the tip 32a of the movable electrode 3 to the fixed electrode 4 is a thinner part (hereinafter referred to as "thinner part") d (see FIG. 2) of the insulating sheet W, and as the stage progresses, the thinner part becomes smaller. The thickness of d becomes thinner. At each stage, a constant high voltage is applied, and the energization state is checked to see if there is any dielectric breakdown. When dielectric breakdown occurs, the thickness of the thin portion d at that stage is evaluated as the limit thickness at which dielectric breakdown occurs. Note that the thickness limit at which dielectric breakdown occurs (an example of withstand voltage characteristics) may be evaluated by continuously changing the thin portion d while a constant voltage is applied.

第2の評価方法では、絶縁シートWに可動電極3の尖端部32aを突き刺し、更に、薄厚部dの厚みが基準となる所定の深さとなるまで、可動電極3を下降させる。この状態で、薄厚部dの厚みは変えず、印加する電圧の大きさを段階的に変えていく。各段階において、通電状態を確認して絶縁破壊の有無を確認する。絶縁破壊が生じた場合には、その段階での電圧を耐電圧(耐電圧特性の一例)として評価する。なお、印加する電圧を連続的に変化させて耐電圧を評価するようにしてもよい。 In the second evaluation method, the tip portion 32a of the movable electrode 3 is pierced into the insulating sheet W, and the movable electrode 3 is lowered until the thickness of the thin portion d reaches a predetermined depth as a reference. In this state, the magnitude of the applied voltage is changed stepwise without changing the thickness of the thin portion d. At each stage, check the current status and check for insulation breakdown. When dielectric breakdown occurs, the voltage at that stage is evaluated as a withstand voltage (an example of withstand voltage characteristics). Note that the withstand voltage may be evaluated by continuously changing the applied voltage.

第3の評価方法は、第1の評価方法と第2の評価方法とを複合させた方法である。具体的には、薄厚部dを段階的に変更し、更に、各段階において、複数の異なる電圧を印加し、通電状態を確認して絶縁破壊の有無を確認する。この第3の評価方法によれば、絶縁破壊を生じさせる薄厚部dの厚みと一対の電極3、4間に印加する電圧との相関関係(耐電圧特性の一例)を評価することができる。 The third evaluation method is a combination of the first evaluation method and the second evaluation method. Specifically, the thin portion d is changed stepwise, and at each step, a plurality of different voltages are applied, and the energization state is checked to see if there is any dielectric breakdown. According to this third evaluation method, it is possible to evaluate the correlation between the thickness of the thin portion d that causes dielectric breakdown and the voltage applied between the pair of electrodes 3 and 4 (an example of withstand voltage characteristics).

次に、図6及び図7を参照し、第2の実施形態に係る耐電圧特性測定装置1A及び耐電圧特性評価方法について説明する。なお、第2の実施形態に係る耐電圧特性測定装置1Aは、第1の実施形態に係る耐電圧特性測定装置1と同様の要素や構造を備えている。従って、以下の説明では、相違点を中心に説明し、共通する要素や構造については、同一の符号を付して詳細な説明は省略する。 Next, with reference to FIGS. 6 and 7, a withstand voltage characteristic measuring device 1A and a withstand voltage characteristic evaluation method according to a second embodiment will be described. Note that the withstand voltage characteristic measuring device 1A according to the second embodiment includes the same elements and structure as the withstanding voltage characteristic measuring device 1 according to the first embodiment. Therefore, the following description will focus on the differences, and common elements and structures will be designated by the same reference numerals and detailed descriptions will be omitted.

可動電極30は、例えば支持プレート12に一体、または間接的に固定されている。可動電極30は支持プレート12に通電可能である。可動電極30は、少なくとも10cm以上の広い面で絶縁シートWに当接可能な当接面30aを備えている。本実施形態に係る耐電圧特性測定装置1Aを用いて薄厚部dを形成する場合、まずは可動電極30と絶縁シートWとの間に導電性を有する異物Fを配置する。そして、可動電極30と固定電極4とによって異物F及び絶縁シートWを挟み、その結果として異物Fと固定電極4との間に薄厚部dを形成する。 The movable electrode 30 is, for example, integrally or indirectly fixed to the support plate 12. The movable electrode 30 is capable of supplying electricity to the support plate 12 . The movable electrode 30 includes a contact surface 30a that can contact the insulating sheet W over a wide area of at least 10 cm 2 or more. When forming the thin portion d using the withstand voltage characteristic measuring device 1A according to the present embodiment, a conductive foreign substance F is first placed between the movable electrode 30 and the insulating sheet W. Then, the foreign object F and the insulating sheet W are sandwiched between the movable electrode 30 and the fixed electrode 4, and as a result, a thin portion d is formed between the foreign object F and the fixed electrode 4.

第2の実施形態に係る耐電圧特性測定装置1Aを用いて耐電圧特性評価方法を実施する場合、段階的に異なる形状や大きさの異物Fを挟みながら、一定の電圧を印加して通電状態を確認することで、上述の第1の評価方法と同様の耐電圧特性評価方法を実施できる。また、一定の大きさの異物Fを挟んだ状態で、印加する電圧の大きさを変えながら通電状態を確認することで、上述の第2の評価方法と同様の耐電圧特性評価方法を実施できる。また、段階的に異なる形状や大きさの異物Fを挟みながら、また、各段階において印加する電圧の大きさを変えながら通電状態を確認することで上述の第3の評価方法と同様の耐電圧特性評価方法を実施できる。なお、上記の各段階は連続的な実施でも良い。 When carrying out the withstand voltage characteristic evaluation method using the withstand voltage characteristic measuring device 1A according to the second embodiment, a constant voltage is applied while holding foreign objects F of gradually different shapes and sizes in the energized state. By confirming this, it is possible to implement a withstand voltage characteristic evaluation method similar to the first evaluation method described above. In addition, by checking the energization state while changing the magnitude of the applied voltage with a foreign object F of a certain size sandwiched between them, it is possible to carry out a withstand voltage characteristic evaluation method similar to the second evaluation method described above. . In addition, by checking the energization state while holding foreign objects F of different shapes and sizes step by step, and by changing the magnitude of the voltage applied at each step, the withstand voltage similar to the third evaluation method described above can be achieved. Ability to perform characterization methods. Note that each of the above steps may be performed continuously.

次に、上述の耐電圧特性測定装置1、1A及び耐電圧特性評価方法の作用、効果について説明する。例えば、実機に絶縁シートW(絶縁材)を装着して使用する際、装着箇所に金属異物の混入があったり、製造時のバリ等が残っていたりすると、絶縁シートWの絶縁性に影響を与え、時に、絶縁不良を生じさせる可能性がある。しかしながら、絶縁不良を避けるために絶縁材の厚みを厚くするとコンパクト化に不利に働くため、安易に絶縁材を厚くして絶縁性を担保することは好ましくない。 Next, the functions and effects of the above-described withstand voltage characteristic measuring devices 1 and 1A and withstand voltage characteristic evaluation method will be explained. For example, when using an insulating sheet W (insulating material) attached to an actual machine, if there is metal foreign matter mixed in at the attachment point or burrs from manufacturing remain, the insulation properties of the insulating sheet W may be affected. This can sometimes lead to insulation failure. However, increasing the thickness of the insulating material to avoid insulation defects is detrimental to compactness, so it is not preferable to simply increase the thickness of the insulating material to ensure insulation.

これに対し、耐電圧特性測定装置1、1Aを使用した耐電圧特性評価方法によれば、絶縁シートWを可動電極3、30及び固定電極4で挟んで局所的に押圧し、可動電極3、30と固定電極4との間に絶縁シートWの薄厚部dを形成することで、バリ等から干渉を受けている部分を疑似的に作ることができる。更に、可動電極3、30と固定電極4との間に電圧を印加することにより、この薄厚部dでの絶縁破壊の有無を確認することができる。つまり、この耐電圧特性評価方法によれば、バリ等が絶縁シートWに局所的に干渉した状況を想定しての耐電圧特性を評価できる。その結果、絶縁シートWを実機に装着することなく、バリや異物の影響を受けた状態での絶縁シートWの耐電圧特性を定量的に評価できるようになる。 On the other hand, according to the withstand voltage characteristic evaluation method using the withstand voltage characteristic measuring devices 1 and 1A, the insulating sheet W is sandwiched between the movable electrodes 3 and 30 and the fixed electrode 4 and pressed locally. By forming the thin part d of the insulating sheet W between the fixed electrode 30 and the fixed electrode 4, it is possible to create a simulated part that is subject to interference from burrs or the like. Furthermore, by applying a voltage between the movable electrodes 3, 30 and the fixed electrode 4, it is possible to check whether there is dielectric breakdown in the thin portion d. That is, according to this withstand voltage characteristic evaluation method, the withstand voltage characteristics can be evaluated assuming a situation where burrs or the like locally interfere with the insulating sheet W. As a result, it becomes possible to quantitatively evaluate the withstand voltage characteristics of the insulating sheet W under the influence of burrs and foreign matter without attaching the insulating sheet W to an actual machine.

また、厚みが1mm以下の薄い絶縁シートWの場合には、バリ等による問題、例えば、絶縁シートWが損傷して通電する等の問題が生じやすい。本実施形態の評価方法や評価装置によれば、薄い絶縁シートWも評価できる。また、絶縁シートWに柔軟性がある場合には、絶縁シートWが損傷して通電したり、絶縁シートWの厚みが変形により局所的に小さくなったりして絶縁性が低下する問題が生じやすい。本実施形態の評価方法や評価装置によれば、柔軟性がある絶縁シートWを評価できる。 Further, in the case of a thin insulating sheet W having a thickness of 1 mm or less, problems due to burrs or the like, for example, problems such as damage to the insulating sheet W and conduction of electricity are likely to occur. According to the evaluation method and evaluation apparatus of this embodiment, even a thin insulating sheet W can be evaluated. In addition, if the insulating sheet W is flexible, problems such as the insulating sheet W being damaged and causing current to flow, or the thickness of the insulating sheet W becoming locally reduced due to deformation are likely to occur, resulting in a decrease in insulation properties. . According to the evaluation method and evaluation apparatus of this embodiment, a flexible insulating sheet W can be evaluated.

また、上述の第1の実施形態に係る耐電圧特性測定装置1では、可動電極3の尖端部32aを絶縁シートWに突き刺すことによって薄厚部dを形成している。つまり、絶縁シートWに意図的に傷を付けて薄厚部dを形成でき、その状態での耐電圧特性を評価できる。特に、耐電圧特性測定装置1では、可動電極3の尖端部32aを絶縁シートWに突き刺す深さを適宜に調整し易いので、耐電圧特性の定量的な評価を行い易い。 Further, in the withstand voltage characteristic measuring device 1 according to the first embodiment described above, the thin portion d is formed by piercing the tip portion 32a of the movable electrode 3 into the insulating sheet W. That is, the thin portion d can be formed by intentionally scratching the insulating sheet W, and the withstand voltage characteristics in that state can be evaluated. In particular, in the withstand voltage characteristic measuring device 1, the depth at which the tip portion 32a of the movable electrode 3 is pierced into the insulating sheet W can be easily adjusted as appropriate, so that it is easy to quantitatively evaluate the withstand voltage characteristics.

また、上述の第2の実施形態に係る耐電圧特性測定装置1Aでは、可動電極30と固定電極4とによって異物F及び絶縁シートWを挟むことによって、異物Fと固定電極4との間に薄厚部dを形成している。つまり、異物Fによって絶縁シートWを局所的に押圧することによって薄厚部dを形成でき、その状態での耐電圧特性を評価できる。特に、耐電圧特性測定装置1Aでは、異物Fを用いて薄厚部dを形成しているので、実際に発生し得る異物の形状や寸法等を特定できるのであればに、その異物による耐電圧特性への影響を適切に評価し易くなる。 In addition, in the withstand voltage characteristic measuring device 1A according to the second embodiment described above, by sandwiching the foreign matter F and the insulating sheet W between the movable electrode 30 and the fixed electrode 4, a thin film is formed between the foreign matter F and the fixed electrode 4. It forms part d. That is, by locally pressing the insulating sheet W with the foreign matter F, the thin portion d can be formed, and the withstand voltage characteristics in that state can be evaluated. In particular, in the withstand voltage characteristic measuring device 1A, since the thin part d is formed using the foreign matter F, if the shape and dimensions of the foreign matter that may actually occur can be identified, the withstand voltage characteristics due to the foreign matter can be determined. It becomes easier to appropriately assess the impact on

また、上記の第1の評価方法によれば、尖端部32aの突き刺し深さを変えたり、異物Fの大きさを変えたりすることでて薄厚部dの厚みを変えることができる。そして、薄厚部dの厚みを変えながら適宜に電圧を印加することにより、絶縁破壊が生じる厚みを評価することができる。 Further, according to the first evaluation method described above, the thickness of the thin portion d can be changed by changing the piercing depth of the pointed end 32a or by changing the size of the foreign object F. Then, by applying an appropriate voltage while changing the thickness of the thin portion d, it is possible to evaluate the thickness at which dielectric breakdown occurs.

また、上記の第2の評価方法によれば、可動電極3、30と固定電極4との間に印加する電圧を変えながら絶縁材の耐電圧特性を評価している。その結果、可動電極3、30と固定電極4との間に印加する電圧を変えながら絶縁破壊が生じる電圧を評価することができる。 Furthermore, according to the second evaluation method described above, the withstand voltage characteristics of the insulating material are evaluated while changing the voltage applied between the movable electrodes 3, 30 and the fixed electrode 4. As a result, it is possible to evaluate the voltage at which dielectric breakdown occurs while changing the voltage applied between the movable electrodes 3, 30 and the fixed electrode 4.

また、上記の第3の評価方法によれば、薄厚部dの厚み及び可動電極3、30と固定電極4との間に印加する電圧の双方を変えながら絶縁シートWの耐電圧特性を評価することで、薄厚部d及び印加する電圧と絶縁破壊との因果関係を評価することができる。 Further, according to the third evaluation method described above, the withstand voltage characteristics of the insulating sheet W are evaluated while changing both the thickness of the thin portion d and the voltage applied between the movable electrodes 3, 30 and the fixed electrode 4. By doing so, it is possible to evaluate the causal relationship between the thin portion d, the applied voltage, and dielectric breakdown.

また、上述の各実施形態に係る耐電圧特性測定装置1、1Aでは、マイクロメーター6のマイクロメーターヘッド6a(基本構造部)を操作してスピンドル6bの上下方向の移動量を調整可能である。そして、スピンドル6bの上下方向の移動量を調整することにより、昇降プレート5を昇降させて可動電極3、30と固定電極4との間の距離を簡単に調整することができる。その結果、薄厚部dの厚みを容易に調整できる。 Furthermore, in the withstand voltage characteristic measuring apparatuses 1 and 1A according to each of the embodiments described above, the amount of vertical movement of the spindle 6b can be adjusted by operating the micrometer head 6a (basic structure) of the micrometer 6. By adjusting the amount of vertical movement of the spindle 6b, the distance between the movable electrodes 3, 30 and the fixed electrode 4 can be easily adjusted by raising and lowering the lifting plate 5. As a result, the thickness of the thin portion d can be easily adjusted.

以上、各実施形態に基づいて、耐電圧特性測定装置及び耐電圧評価方法を説明したが、本発明は、これらの実施形態のみには限定されない。例えば、この耐電圧特性評価方法は、上記の各実施形態に係る耐電圧特性測定装置1、1A以外の装置を用いて実施することも可能である。また、各実施形態に係る耐電圧特性測定装置1、1Aは、電圧印加機能と指標値測定機能との両方を備えた電圧印加測定部20を備えているが、この電圧印加機能と指標値測定機能とは別の独立した装置によって実施させることもできる。 Although the withstand voltage characteristic measuring device and the withstand voltage evaluation method have been described above based on each embodiment, the present invention is not limited only to these embodiments. For example, this withstand voltage characteristic evaluation method can also be implemented using a device other than the withstand voltage characteristic measuring devices 1 and 1A according to each of the embodiments described above. Further, the withstand voltage characteristic measuring devices 1 and 1A according to each embodiment include a voltage application measurement section 20 that has both a voltage application function and an index value measurement function. It can also be performed by an independent device separate from the function.

以下、実施例により本発明をより詳細に説明するが、本発明はこれらの例に限定されるものではない。本実施例では、上述の第1の実施形態に係る耐電圧特性測定装置に対応する装置を使用して耐電圧特性評価方法を実施した。絶縁材としては、0.2mmの厚みの絶縁シート(窒化ホウ素60体積%を含むシリコーン樹脂組成物から構成される絶縁シート)を使用した。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples. In this example, a withstand voltage characteristic evaluation method was carried out using a device corresponding to the withstand voltage characteristic measuring device according to the first embodiment described above. As the insulating material, an insulating sheet (insulating sheet made of a silicone resin composition containing 60% by volume of boron nitride) with a thickness of 0.2 mm was used.

(第1の評価方法)
まず、第1の評価方法について説明する。具体的には、可動電極が絶縁シートに干渉する前の状態を初期状態とし、この状態で、DC1.2kVの電圧を60秒間印加した。同じ条件で5回(n1~n5)ほど電圧を印加し、通電が確認されない場合をOK,通電が確認されて絶縁破壊と評価された場合をNGとして評価した。初期状態では、n1~n5まで全てOKであった。
(First evaluation method)
First, the first evaluation method will be explained. Specifically, the state before the movable electrode interfered with the insulating sheet was defined as the initial state, and in this state, a voltage of DC 1.2 kV was applied for 60 seconds. The voltage was applied about 5 times (n1 to n5) under the same conditions, and the evaluation was made as OK if no current was confirmed, and NG if electricity was confirmed and dielectric breakdown was evaluated. In the initial state, all of n1 to n5 were OK.

次に、可動電極を絶縁シートに突き刺し、薄厚部の厚みを0.19mmにし、上記同様にDC1.2kVの電圧を60秒間印加した。同じ条件で5回(n1~n5)ほど電圧を印加し、通電が確認されない場合をOK,通電が確認されて絶縁破壊と評価された場合をNGとして評価した。初期状態では、n1~n5まで全てOKであった。 Next, the movable electrode was pierced into the insulating sheet, the thickness of the thin part was set to 0.19 mm, and a DC voltage of 1.2 kV was applied for 60 seconds in the same manner as above. The voltage was applied about 5 times (n1 to n5) under the same conditions, and the evaluation was made as OK if no current was confirmed, and NG if electricity was confirmed and dielectric breakdown was evaluated. In the initial state, all of n1 to n5 were OK.

同様に、薄厚部の厚みが段階的に小さくなるように変え、それぞれ同じ条件で5回(n1~n5)ほど電圧を印加し、絶縁破壊の有無を評価した。具体的には、薄厚部の厚みが段階的に0.01mmずつ小さくなるようにし、各段階において、それぞれ同じ条件で5回(n1~n5)ほど電圧を印加し、絶縁破壊の有無を評価した(表1参照)。その結果、薄厚部の厚みが0.01mmの場合に、絶縁破壊が生じることが確認された。 Similarly, the thickness of the thin part was changed to become smaller stepwise, and voltage was applied five times (n1 to n5) under the same conditions each time, and the presence or absence of dielectric breakdown was evaluated. Specifically, the thickness of the thin part was decreased step by step by 0.01 mm, and at each step, voltage was applied five times (n1 to n5) under the same conditions to evaluate the presence or absence of dielectric breakdown. (See Table 1). As a result, it was confirmed that dielectric breakdown occurred when the thickness of the thin portion was 0.01 mm.

なお、表1には示されていないが、バリ等に対する耐性が低い絶縁シート(アルミナを70体積%含むシリコーン樹脂組成物から構成される絶縁シート)について、第1の評価方法を実施したところ、0.06mmで絶縁破壊が生じた。つまり、窒化ホウ素60体積%を含むシリコーン樹脂組成物から構成される絶縁シートよりも、バリ等に対する耐性が低い絶縁シートの方が、薄厚部の厚みが大きい状態で絶縁破壊が生じたことになる。その結果、上記第1の評価方法でバリ等に対する耐性が適正に評価できていることが確認された。 Although not shown in Table 1, when the first evaluation method was performed on an insulating sheet with low resistance to burrs etc. (an insulating sheet made of a silicone resin composition containing 70% by volume of alumina), Dielectric breakdown occurred at 0.06 mm. In other words, dielectric breakdown occurred in a state where the thickness of the thin part was greater in an insulating sheet with lower resistance to burrs etc. than in an insulating sheet made of a silicone resin composition containing 60% by volume of boron nitride. . As a result, it was confirmed that the resistance to burrs etc. could be appropriately evaluated using the first evaluation method.

Figure 0007412922000001
Figure 0007412922000001

(第2の評価方法)
次に第2の評価方法について説明する。薄厚部の厚みを0.07mmとし、この状態で、印加する電圧を0kVから絶縁破壊が生じるまで昇圧した。この場合、9.5kVで通電が測定され、絶縁破壊が生じることが確認された(表2参照)。なお、この評価において、第1の評価方法で用いた絶縁シートと同様の絶縁シート(窒化ホウ素60体積%を含むシリコーン樹脂組成物から構成される絶縁シート)を用いた。
(Second evaluation method)
Next, the second evaluation method will be explained. The thickness of the thin part was set to 0.07 mm, and in this state, the applied voltage was increased from 0 kV until dielectric breakdown occurred. In this case, energization was measured at 9.5 kV, and it was confirmed that dielectric breakdown occurred (see Table 2). In this evaluation, an insulating sheet similar to the insulating sheet used in the first evaluation method (an insulating sheet made of a silicone resin composition containing 60% by volume of boron nitride) was used.

また、表2には示されていないが、バリ等に対する耐性が低い絶縁シート(アルミナを70体積%含むシリコーン樹脂組成物から構成される絶縁シート)についても第2の評価方法を実施した。バリ等に対する耐性が低い絶縁シートでは、薄厚部の厚みを0.07mmとし、この状態で、印加する電圧を0kVから絶縁破壊が生じるまで昇圧した場合、9.5kVより低い電圧で通電が測定され、絶縁破壊が生じることが確認された。 Although not shown in Table 2, the second evaluation method was also applied to an insulating sheet (an insulating sheet made of a silicone resin composition containing 70% by volume of alumina) having low resistance to burrs and the like. For an insulating sheet with low resistance to burrs, etc., if the thickness of the thin part is 0.07 mm and the applied voltage is increased from 0 kV until dielectric breakdown occurs in this state, energization is measured at a voltage lower than 9.5 kV. It was confirmed that dielectric breakdown occurred.

Figure 0007412922000002
Figure 0007412922000002

(第3の評価方法)
次に第3の評価方法について説明する。上述の第1の評価方法と同様に、初期状態から薄厚部の厚みが段階的に0.01mmずつ小さくなるように調整し、更に、各段階において、印加する電圧を0kVから絶縁破壊が生じるまで昇圧した(表3参照)。
(Third evaluation method)
Next, the third evaluation method will be explained. Similarly to the first evaluation method described above, the thickness of the thin part was adjusted to decrease stepwise by 0.01 mm from the initial state, and at each step, the applied voltage was adjusted from 0 kV until dielectric breakdown occurred. The pressure was increased (see Table 3).

Figure 0007412922000003
Figure 0007412922000003

この第3の評価方法では、所望の耐電圧特性を有する電圧を10kVとして評価したところ、少なくとも薄厚部の厚みが0.08mmになるまでは、所望の耐電圧特性を有することが確認された。更に、薄厚部の厚みが0.07mmの場合は、絶縁破壊が生じる電圧は9.5kVであり、薄厚部の厚みが0.06mmの場合は、絶縁破壊が生じる電圧は7.1kVであり、薄厚部の厚みが0.05mmの場合は、絶縁破壊が生じる電圧は6.9kVであり、薄厚部の厚みが0.04mmの場合は、絶縁破壊が生じる電圧は6.3kVであり、薄厚部の厚みが0.03mmの場合は、絶縁破壊が生じる電圧は5.5kVであり、薄厚部の厚みが0.02mmの場合は、絶縁破壊が生じる電圧は5.6kVであり、薄厚部の厚みが0.01mmの場合は、絶縁破壊が生じる電圧は2.8kVであった。つまり、第3の評価方法により、薄厚部の厚み及び印加する電圧と絶縁破壊との相関関係を評価することができた。 In this third evaluation method, when the voltage at which the desired withstand voltage characteristics were obtained was set to 10 kV, it was confirmed that the desired withstand voltage characteristics were obtained at least until the thickness of the thin portion reached 0.08 mm. Further, when the thickness of the thin part is 0.07 mm, the voltage at which dielectric breakdown occurs is 9.5 kV, and when the thickness of the thin part is 0.06 mm, the voltage at which dielectric breakdown occurs is 7.1 kV, When the thickness of the thin part is 0.05 mm, the voltage at which dielectric breakdown occurs is 6.9 kV; when the thickness of the thin part is 0.04 mm, the voltage at which dielectric breakdown occurs is 6.3 kV; When the thickness of the thin part is 0.03 mm, the voltage at which dielectric breakdown occurs is 5.5 kV, and when the thickness of the thin part is 0.02 mm, the voltage at which dielectric breakdown occurs is 5.6 kV, and the thickness of the thin part When the distance was 0.01 mm, the voltage at which dielectric breakdown occurred was 2.8 kV. In other words, by the third evaluation method, it was possible to evaluate the correlation between the thickness of the thin portion, the applied voltage, and dielectric breakdown.

1、1A…耐電圧特性測定装置、3…可動電極、32a…尖端部、4…固定電極、6…マイクロメーター(電極間距離調整部)、6a…マイクロメーターヘッド(基本構造部)、6b…スピンドル(軸部)、10…昇降部、11…ガイド部(柱部)、20…電圧印加測定部(電圧印加部、指標値測定部)、d…薄厚部、F…異物、D…対向方向、W…絶縁シート(絶縁材)。 DESCRIPTION OF SYMBOLS 1, 1A...Withstand voltage characteristic measuring device, 3...Movable electrode, 32a...Tip part, 4...Fixed electrode, 6...Micrometer (inter-electrode distance adjustment part), 6a...Micrometer head (basic structure part), 6b... Spindle (shaft part), 10... Lifting part, 11... Guide part (column part), 20... Voltage application measurement part (voltage application part, index value measurement part), d... Thin thickness part, F... Foreign object, D... Opposing direction , W...Insulating sheet (insulating material).

Claims (7)

絶縁材の耐電圧特性評価方法であって、
前記絶縁材を一対の電極で挟んで局所的に押圧し、
前記電極間に前記絶縁材の厚みの薄い部分を形成し、
前記一対の電極のうち、少なくとも一方の前記電極と前記絶縁材との間に異物を配置し、
前記一対の電極によって前記異物及び前記絶縁材を挟むことによって、前記異物と他方の前記電極との間に前記厚みの薄い部分を形成し、
前記電極間に電圧をかけて前記絶縁材の耐電圧特性を評価する、絶縁材の耐電圧特性評価方法。
A method for evaluating withstand voltage characteristics of an insulating material, the method comprising:
The insulating material is sandwiched between a pair of electrodes and pressed locally,
forming a thin portion of the insulating material between the electrodes;
placing a foreign object between at least one of the pair of electrodes and the insulating material;
forming the thin part between the foreign substance and the other electrode by sandwiching the foreign substance and the insulating material between the pair of electrodes;
A method for evaluating withstand voltage characteristics of an insulating material, the method comprising applying a voltage between the electrodes to evaluate the withstand voltage characteristics of the insulating material.
前記厚みの薄い部分の厚みを変えながら前記電極間に電圧を印加して前記絶縁材の耐電圧特性を評価する請求項1記載の耐電圧特性評価方法。 2. The withstand voltage characteristic evaluation method according to claim 1, wherein the withstand voltage characteristics of the insulating material are evaluated by applying a voltage between the electrodes while changing the thickness of the thin portion . 前記電極間に印加する電圧を変えながら前記絶縁材の耐電圧特性を評価する請求項1記載の耐電圧特性評価方法。 The withstand voltage characteristic evaluation method according to claim 1, wherein the withstand voltage characteristics of the insulating material are evaluated while changing the voltage applied between the electrodes. 前記厚みの薄い部分の厚み及び前記電極間に印加する電圧の双方を変えながら前記絶縁材の耐電圧特性を評価する請求項1記載の耐電圧特性評価方法。 2. The method for evaluating withstand voltage characteristics according to claim 1, wherein the withstand voltage characteristics of the insulating material are evaluated while changing both the thickness of the thin portion and the voltage applied between the electrodes. 絶縁材の耐電圧特性を評価するための耐電圧特性測定装置であって、
上下方向に対向して配置された一対の電極と、
前記一対の電極を対向方向に移動させ、前記絶縁材を挟んだ状態で前記一対の電極間の距離を調整可能な電極間距離調整部と、
前記一対の電極間に電圧を印加する電圧印加部と、
前記絶縁材の絶縁破壊の有無を評価するための指標値を測定する指標値測定部と、
前記一対の電極のうち、少なくとも一方の前記電極を保持する昇降部と、
前記昇降部を昇降可能に支持する柱部と、を備え、
前記電極間距離調整部は、
前記昇降部に固定されると共に、上下方向に延在する軸部と、
前記軸部を上下方向に移動可能に支持すると共に、前記軸部の上下方向の移動量を調整可能な基本構造部と、を備えた耐電圧特性測定装置。
A withstand voltage characteristic measuring device for evaluating the withstand voltage characteristics of an insulating material,
A pair of electrodes arranged to face each other in the vertical direction ;
an inter-electrode distance adjustment unit that can move the pair of electrodes in opposing directions and adjust the distance between the pair of electrodes with the insulating material sandwiched therebetween;
a voltage applying section that applies a voltage between the pair of electrodes;
an index value measurement unit that measures an index value for evaluating the presence or absence of dielectric breakdown of the insulating material;
an elevating part that holds at least one of the pair of electrodes;
A column part that supports the elevating part so that it can be raised and lowered,
The inter-electrode distance adjustment section is
a shaft part fixed to the elevating part and extending in the vertical direction;
A withstand voltage characteristic measuring device , comprising: a basic structure part that supports the shaft part so as to be movable in the vertical direction and can adjust the amount of movement of the shaft part in the vertical direction .
前記一対の電極のうち、少なくとも一方の前記電極に設けられると共に、他方の前記電極に向けて配置された尖端部を更に備えている、請求項5記載の耐電圧特性測定装置。 6. The withstand voltage characteristic measuring device according to claim 5, further comprising a tip portion provided on at least one of the pair of electrodes and disposed toward the other electrode. 前記電圧印加部は、前記一対の電極間に印加する電圧を変化させることができる、請求項5記載の耐電圧特性測定装置。 6. The withstand voltage characteristic measuring device according to claim 5, wherein the voltage applying section is capable of changing the voltage applied between the pair of electrodes.
JP2019152783A 2019-08-23 2019-08-23 Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics Active JP7412922B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019152783A JP7412922B2 (en) 2019-08-23 2019-08-23 Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics
PCT/JP2020/031129 WO2021039501A1 (en) 2019-08-23 2020-08-18 Insulating-material withstand-voltage-characteristic evaluation method and withstand-voltage-characteristic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019152783A JP7412922B2 (en) 2019-08-23 2019-08-23 Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics

Publications (2)

Publication Number Publication Date
JP2021032684A JP2021032684A (en) 2021-03-01
JP7412922B2 true JP7412922B2 (en) 2024-01-15

Family

ID=74678145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019152783A Active JP7412922B2 (en) 2019-08-23 2019-08-23 Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics

Country Status (2)

Country Link
JP (1) JP7412922B2 (en)
WO (1) WO2021039501A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646847A (en) * 2022-03-16 2022-06-21 哈尔滨理工大学 Breakdown field strength test system for inorganic powder medium under different pressures
CN117723915B (en) * 2024-02-06 2024-04-16 哈尔滨理工大学 Test electrode and method for composite insulation breakdown characteristics of inorganic powder and gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156367A (en) 2000-11-15 2002-05-31 Electric Power Dev Co Ltd Determination method for allowable foreign matter size of dc-insulating material
JP2009244040A (en) 2008-03-31 2009-10-22 Murata Mfg Co Ltd Method of measuring insulation breakdown voltage of film-like insulating material
CN206193171U (en) 2016-11-24 2017-05-24 华北电力科学研究院有限责任公司 Simulation medium partial discharge's electrode model
CN206649117U (en) 2017-04-28 2017-11-17 哈尔滨理工大学 It is a kind of to be used to measure the electrode structure that pressure influences insulating materials electric breakdown strength
CN109031079A (en) 2018-06-28 2018-12-18 安徽开博电容科技有限公司 A kind of high-voltage metallized membrane capacitance simulation self-healing test method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224538Y2 (en) * 1972-08-31 1977-06-03
JPS6271575U (en) * 1985-10-22 1987-05-07
JPH08262099A (en) * 1995-03-22 1996-10-11 Hitachi Cable Ltd Breakdown voltage tester
JP3147758B2 (en) * 1995-12-27 2001-03-19 住友金属工業株式会社 Evaluation method of insulation layer
KR102013950B1 (en) * 2017-12-19 2019-08-23 대한전선 주식회사 Creeping discharge test jig

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156367A (en) 2000-11-15 2002-05-31 Electric Power Dev Co Ltd Determination method for allowable foreign matter size of dc-insulating material
JP2009244040A (en) 2008-03-31 2009-10-22 Murata Mfg Co Ltd Method of measuring insulation breakdown voltage of film-like insulating material
CN206193171U (en) 2016-11-24 2017-05-24 华北电力科学研究院有限责任公司 Simulation medium partial discharge's electrode model
CN206649117U (en) 2017-04-28 2017-11-17 哈尔滨理工大学 It is a kind of to be used to measure the electrode structure that pressure influences insulating materials electric breakdown strength
CN109031079A (en) 2018-06-28 2018-12-18 安徽开博电容科技有限公司 A kind of high-voltage metallized membrane capacitance simulation self-healing test method

Also Published As

Publication number Publication date
WO2021039501A1 (en) 2021-03-04
JP2021032684A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7412922B2 (en) Method for evaluating withstand voltage characteristics of insulation materials and device for measuring withstand voltage characteristics
CN108539468B (en) Electrical contact and electrical connection device
TWI637446B (en) Inspection jig
EP2624992A1 (en) Welding head with a force sensor, a spring and an adjusting element
JP4684805B2 (en) Probe device and method for adjusting contact pressure between object to be inspected and probe
JP6052787B2 (en) How to determine the quality of cut surfaces by punching
CN207556496U (en) A kind of mechanism for detecting electroconductive terminal for connector height
EP3607332A1 (en) Electrical test apparatus having adjustable contact pressure
WO2008013273A1 (en) Socket for inspection
CN108760539A (en) Printed circuit board deformation test equipment
US20200072719A1 (en) Method for Manufacturing CTOD Test Specimen, and Jig for Controlling Plastic Strain
MX2020005102A (en) Spot welding method.
CN110274827B (en) Test system and method suitable for contact fusion welding force test
CN108614185B (en) Needle seat reverse plug testing device, ICT tester and use method thereof
CN205166161U (en) Electrode force detection device and spot welding machine head provided with same
JP4740799B2 (en) Thin plate container inspection apparatus and inspection method thereof
JP2007292537A (en) Apparatus and method for inspecting electronic component
WO2021149668A1 (en) Probe, measuring device, and measuring method
JP2022079178A (en) Device for electric inspection and method for manufacturing wiring board
JP5579472B2 (en) Energization inspection device
CN215493942U (en) Electrical performance testing device
JP4175562B2 (en) Resistance welding equipment
CN219915811U (en) High-voltage testing device for circuit board
KR102195339B1 (en) Conductive particle
JP6152513B2 (en) Multilayer contact probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7412922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150