JP7411128B2 - Magnetic recording media and magnetic recording/reproducing devices - Google Patents

Magnetic recording media and magnetic recording/reproducing devices Download PDF

Info

Publication number
JP7411128B2
JP7411128B2 JP2023028851A JP2023028851A JP7411128B2 JP 7411128 B2 JP7411128 B2 JP 7411128B2 JP 2023028851 A JP2023028851 A JP 2023028851A JP 2023028851 A JP2023028851 A JP 2023028851A JP 7411128 B2 JP7411128 B2 JP 7411128B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
recording medium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023028851A
Other languages
Japanese (ja)
Other versions
JP2023054371A (en
Inventor
拓都 黒川
栄貴 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2023054371A publication Critical patent/JP2023054371A/en
Priority to JP2023217245A priority Critical patent/JP7566118B2/en
Application granted granted Critical
Publication of JP7411128B2 publication Critical patent/JP7411128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、磁気記録媒体および磁気記録再生装置に関する。 The present invention relates to a magnetic recording medium and a magnetic recording/reproducing device.

磁気記録媒体は、金属薄膜型と塗布型の二種類に大別される。金属薄膜型磁気記録媒体は、蒸着等によって形成された金属薄膜の磁性層を有する磁気記録媒体である。これに対し、塗布型磁気記録媒体(例えば特許文献1参照)は、強磁性粉末を結合剤とともに含む磁性層を有する磁気記録媒体である。塗布型磁気記録媒体は、金属薄膜型磁気記録媒体と比べて化学的耐久性に優れるため、大容量の情報を長期間保存するためのデータストレージメディアとして有用な磁気記録媒体である。以下において、塗布型磁気記録媒体を、単に磁気記録媒体と記載する。 Magnetic recording media are roughly divided into two types: metal thin film type and coating type. A metal thin film magnetic recording medium is a magnetic recording medium having a magnetic layer of a metal thin film formed by vapor deposition or the like. On the other hand, a coated magnetic recording medium (for example, see Patent Document 1) is a magnetic recording medium that has a magnetic layer containing ferromagnetic powder together with a binder. Coating type magnetic recording media have better chemical durability than metal thin film type magnetic recording media, and are therefore useful magnetic recording media as data storage media for storing large amounts of information for long periods of time. In the following, the coated magnetic recording medium will be simply referred to as a magnetic recording medium.

特開2012-43495号公報Japanese Patent Application Publication No. 2012-43495

磁気記録媒体には、磁性層の表面平滑性を高めることが望まれる(例えば特許文献1の段落0003参照)。磁性層の表面平滑性を高めることは、電磁変換特性の向上につながるためである。 For magnetic recording media, it is desirable to improve the surface smoothness of the magnetic layer (see, for example, paragraph 0003 of Patent Document 1). This is because increasing the surface smoothness of the magnetic layer leads to improved electromagnetic conversion characteristics.

近年、データストレージ用途に用いられる磁気記録媒体は、温度および湿度が管理されたデータセンターで使用されることがある。一方、データセンターではコスト低減のために省電力化が求められている。省電力化のためには、データセンターにおける温湿度の管理条件を現在より緩和できるか、または管理を不要にできることが望ましい。しかし、温湿度の管理条件を緩和し、または管理を行わないと、磁気記録媒体が、天候変化、季節の変化等に起因する環境変化に晒されることが想定される。 In recent years, magnetic recording media used for data storage applications are sometimes used in temperature and humidity controlled data centers. On the other hand, data centers are required to save power in order to reduce costs. In order to save power, it is desirable to be able to relax the current temperature and humidity management conditions in data centers, or to eliminate the need for management. However, if the temperature and humidity management conditions are relaxed or not managed, it is assumed that the magnetic recording medium will be exposed to environmental changes due to weather changes, seasonal changes, and the like.

以上の点に関して、本発明者らの検討により、磁性層の表面平滑性が高い磁気記録媒体では、低湿下(例えば相対湿度0~30%程度の環境下)において、高温(例えば30~50℃)から低温(例えば0℃超~15℃)への温度変化(例えば15~50℃程度の温度変化)が生じると、電磁変換特性が低下する現象が発生することが明らかとなった。 Regarding the above points, the inventors have found that magnetic recording media with high surface smoothness of the magnetic layer can be used at high temperatures (for example, 30 to 50°C) under low humidity (for example, in an environment with relative humidity of about 0 to 30%) ) to a low temperature (for example, over 0°C to 15°C) (for example, a temperature change of about 15 to 50°C), it has become clear that a phenomenon occurs in which the electromagnetic conversion characteristics deteriorate.

そこで本発明の目的は、磁性層の表面平滑性が高い磁気記録媒体において、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下を抑制することにある。 Therefore, an object of the present invention is to suppress deterioration of electromagnetic conversion characteristics caused by a temperature change from high temperature to low temperature under low humidity in a magnetic recording medium whose magnetic layer has a high surface smoothness.

本発明の一態様は、
非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、
上記磁性層の表面において測定される中心線平均表面粗さRa(以下、「磁性層表面粗さRa」とも記載する。)は1.0nm以上1.6nm以下であり、かつ
上記磁性層の表面においてエタノール洗浄後に光学干渉法により測定されるスペーシングSafterと、上記磁性層の表面においてエタノール洗浄前に光学干渉法により測定されるスペーシングSbeforeとの差分(Safter-Sbefore)(以下、「エタノール洗浄前後のスペーシング差分(Safter-Sbefore)」または単に「差分(Safter-Sbefore)」とも記載する。)は0nm超6.0nm以下である磁気記録媒体、
に関する。
One aspect of the present invention is
A magnetic recording medium having a magnetic layer containing ferromagnetic powder and a binder on a non-magnetic support,
The center line average surface roughness Ra (hereinafter also referred to as "magnetic layer surface roughness Ra") measured on the surface of the magnetic layer is 1.0 nm or more and 1.6 nm or less, and the surface of the magnetic layer The difference between the spacing S after measured by optical interferometry after washing with ethanol and the spacing S before measured by optical interferometry before washing with ethanol on the surface of the magnetic layer (S after −S before ) (hereinafter referred to as , a magnetic recording medium in which the spacing difference before and after ethanol cleaning (S after - S before ) or simply "difference (S after - S before )" is greater than 0 nm and less than or equal to 6.0 nm;
Regarding.

一態様では、上記差分(Safter-Sbefore)は、1.0nm以上6.0nm以下であることができる。 In one embodiment, the difference (S after −S before ) can be 1.0 nm or more and 6.0 nm or less.

一態様では、上記差分(Safter-Sbefore)は、2.0nm以上5.0nm以下であることができる。 In one embodiment, the difference (S after −S before ) can be 2.0 nm or more and 5.0 nm or less.

一態様では、上記磁気記録媒体は、上記非磁性支持体と上記磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有することができる。 In one embodiment, the magnetic recording medium may have a nonmagnetic layer containing a nonmagnetic powder and a binder between the nonmagnetic support and the magnetic layer.

一態様では、上記磁気記録媒体は、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することができる。 In one aspect, the magnetic recording medium can have a back coat layer containing nonmagnetic powder and a binder on the surface side of the nonmagnetic support opposite to the surface side having the magnetic layer.

一態様では、上記磁気記録媒体は、磁気テープであることができる。 In one aspect, the magnetic recording medium can be a magnetic tape.

本発明の更なる態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。 A further aspect of the present invention relates to a magnetic recording and reproducing apparatus including the above magnetic recording medium and a magnetic head.

本発明の一態様によれば、表面平滑性が高い磁性層を有し、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下が抑制された磁気記録媒体、およびこの磁気記録媒体を含む磁気記録再生装置を提供することができる。 According to one aspect of the present invention, there is provided a magnetic recording medium that has a magnetic layer with high surface smoothness and suppresses deterioration of electromagnetic conversion characteristics caused by temperature change from high temperature to low temperature under low humidity, and this magnetic recording medium. A magnetic recording/reproducing device including a recording medium can be provided.

[磁気記録媒体]
本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、上記磁性層の表面において測定される中心線平均表面粗さRaは1.0nm以上1.6nm以下であり、かつ上記磁性層の表面においてエタノール洗浄後に光学干渉法により測定されるスペーシングSafterと、上記磁性層の表面においてエタノール洗浄前に光学干渉法により測定されるスペーシングSbeforeとの差分(Safter-Sbefore)は0nm超6.0nm以下である磁気記録媒体に関する。
[Magnetic recording medium]
One aspect of the present invention is a magnetic recording medium having a magnetic layer containing ferromagnetic powder and a binder on a nonmagnetic support, wherein the center line average surface roughness Ra measured on the surface of the magnetic layer is 1. .0 nm or more and 1.6 nm or less, and a spacing S after that is measured by optical interferometry on the surface of the magnetic layer after cleaning with ethanol, and a spacing S after that is measured by optical interferometry on the surface of the magnetic layer before cleaning with ethanol. This relates to a magnetic recording medium in which the difference from the spacing S before (S after −S before ) is more than 0 nm and less than or equal to 6.0 nm.

本発明および本明細書において、「エタノール洗浄」とは、磁気記録媒体から切り出した試料片を液温20~25℃のエタノール(200g)に浸漬して100秒間超音波洗浄(超音波出力:40kHz)することをいうものとする。洗浄対象の磁気記録媒体が磁気テープの場合には、長さ5cmの試料片を切り出してエタノール洗浄に付す。磁気テープの幅および磁気テープから切り出される試料片の幅は、通常、1/2インチ(0.0127メートル)である。1/2インチ(0.0127メートル)幅以外の磁気テープについても、長さ5cmの試料片を切り出してエタノール洗浄に付せばよい。洗浄対象の磁気記録媒体が磁気ディスクの場合には、5cm×1.27cmのサイズの試料片を切り出してエタノール洗浄に付す。以下に詳述するエタノール洗浄後のスペーシングの測定は、エタノール洗浄後の試料片を、温度23℃相対湿度50%の環境下に24時間放置した後に行うものとする。 In the present invention and this specification, "ethanol cleaning" refers to immersing a sample piece cut out from a magnetic recording medium in ethanol (200 g) at a liquid temperature of 20 to 25°C and ultrasonically cleaning it for 100 seconds (ultrasonic output: 40 kHz). ). If the magnetic recording medium to be cleaned is a magnetic tape, a sample piece with a length of 5 cm is cut out and subjected to ethanol cleaning. The width of the magnetic tape and the width of the sample pieces cut from the magnetic tape are typically 1/2 inch (0.0127 meters). For magnetic tapes other than 1/2 inch (0.0127 meter) wide, a sample piece 5 cm long may be cut out and washed with ethanol. If the magnetic recording medium to be cleaned is a magnetic disk, a sample piece measuring 5 cm x 1.27 cm is cut out and subjected to ethanol cleaning. The measurement of spacing after ethanol cleaning, which will be described in detail below, is performed after the sample piece after ethanol cleaning has been left in an environment at a temperature of 23° C. and a relative humidity of 50% for 24 hours.

本発明および本明細書において、磁気記録媒体の「磁性層(の)表面」とは、磁気記録媒体の磁性層側表面と同義である。 In the present invention and this specification, the "surface of the magnetic layer" of the magnetic recording medium has the same meaning as the surface of the magnetic layer side of the magnetic recording medium.

本発明および本明細書において、磁気記録媒体の磁性層表面において光学干渉法により測定されるスペーシングとは、以下の方法により測定される値とする。
磁気記録媒体(詳しくは上記の試料片。以下同様。)と透明な板状部材(例えばガラス板等)を、磁気記録媒体の磁性層表面が透明な板状部材と対向するように重ね合わせた状態で、磁気記録媒体の磁性層側とは反対側から5.05×10N/m(0.5atm)の圧力で押圧部材を押しつける。この状態で、透明な板状部材を介して磁気記録媒体の磁性層表面に光を照射し(照射領域:150000~200000μm)、磁気記録媒体の磁性層表面からの反射光と透明な板状部材の磁気記録媒体側表面からの反射光との光路差によって発生する干渉光の強度(例えば干渉縞画像のコントラスト)に基づき、磁気記録媒体の磁性層表面と透明な板状部材の磁気記録媒体側表面との間のスペーシング(距離)を求める。ここで照射される光は特に限定されるものではない。照射される光が、複数波長の光を含む白色光のように、比較的広範な波長範囲にわたり発光波長を有する光の場合には、透明な板状部材と反射光を受光する受光部との間に、干渉フィルタ等の特定波長の光または特定波長域以外の光を選択的にカットする機能を有する部材を配置し、反射光の中の一部の波長の光または一部の波長域の光を選択的に受光部に入射させる。照射させる光が単一の発光ピークを有する光(いわゆる単色光)の場合には、上記の部材は用いなくてもよい。受光部に入射させる光の波長は、一例として、例えば500~700nmの範囲にあることができる。ただし、受光部に入射させる光の波長は、上記範囲に限定されるものではない。また、透明な板状部材は、この部材を介して磁気記録媒体に光を照射し干渉光が得られる程度に、照射される光を透過する透明性を有する部材であればよい。
上記スペーシングの測定により得られる干渉縞画像を300000ポイントに分割して各ポイントのスペーシング(磁気記録媒体の磁性層表面と透明な板状部材の磁気記録媒体側表面との間の距離)を求め、これをヒストグラムとし、このヒストグラムにおける最頻値を、スペーシングとする。差分(Safter-Sbefore)は、上記300000ポイントにおけるエタノール洗浄後の最頻値からエタノール洗浄前の最頻値を差し引いた値をいうものとする。
同じ磁気記録媒体から2つの試料片を切り出し、一方をエタノール洗浄なしで上記スペーシングの値Sbeforeを求め、他方をエタノール洗浄に付した後に上記スペーシングの値Safterを求めることによって、差分(Safter-Sbefore)を求めてもよい。または、エタノール洗浄前に上記スペーシングの値を求めた試料片を、その後にエタノール洗浄に付した後に上記スペーシングの値を求めることによって差分(Safter-Sbefore)を求めてもよい。
以上の測定は、例えばMicro Physics社製Tape Spacing Analyzer等の市販のテープスペーシングアナライザー(Tape Spacing Analyzer;TSA)を用いて行うことができる。実施例におけるスペーシング測定は、Micro Physics社製Tape Spacing Analyzerを用いて実施した。
In the present invention and this specification, the spacing measured by optical interferometry on the surface of the magnetic layer of a magnetic recording medium is a value measured by the following method.
A magnetic recording medium (more specifically, the sample piece mentioned above; the same applies hereinafter) and a transparent plate-like member (for example, a glass plate) are stacked so that the surface of the magnetic layer of the magnetic recording medium faces the transparent plate-like member. In this state, a pressing member is pressed with a pressure of 5.05×10 4 N/m (0.5 atm) from the side opposite to the magnetic layer side of the magnetic recording medium. In this state, light is irradiated onto the surface of the magnetic layer of the magnetic recording medium through the transparent plate-like member (irradiation area: 150,000 to 200,000 μm 2 ), and the reflected light from the surface of the magnetic layer of the magnetic recording medium and the transparent plate-like member are The magnetic layer surface of the magnetic recording medium and the magnetic recording medium of the transparent plate-like member are determined based on the intensity of the interference light generated due to the optical path difference between the light reflected from the magnetic recording medium side surface of the member (for example, the contrast of the interference fringe image). Find the spacing (distance) between it and the side surface. The light irradiated here is not particularly limited. If the emitted light is light that has emission wavelengths over a relatively wide range of wavelengths, such as white light that includes light of multiple wavelengths, a transparent plate-like member and a light-receiving part that receives reflected light may be used. In between, a member such as an interference filter that has the function of selectively cutting off light of a specific wavelength or light outside of a specific wavelength range is placed, and a member having a function of selectively cutting off light of a specific wavelength or light outside of a specific wavelength range is placed in between. Light is selectively made incident on the light receiving section. If the light to be irradiated is light having a single emission peak (so-called monochromatic light), the above-mentioned member may not be used. The wavelength of the light incident on the light receiving section can be, for example, in the range of 500 to 700 nm. However, the wavelength of the light incident on the light receiving section is not limited to the above range. Further, the transparent plate-like member may be any member as long as it has transparency that allows the irradiated light to pass therethrough to the extent that interference light can be obtained by irradiating the light onto the magnetic recording medium through the member.
The interference fringe image obtained by the above spacing measurement is divided into 300,000 points, and the spacing of each point (distance between the magnetic layer surface of the magnetic recording medium and the magnetic recording medium side surface of the transparent plate-like member) is calculated. This is determined as a histogram, and the mode in this histogram is defined as the spacing. The difference (S after - S before ) is the value obtained by subtracting the mode before ethanol washing from the mode after ethanol washing at the 300,000 points.
Two sample pieces are cut out from the same magnetic recording medium, one is not washed with ethanol to find the spacing value S before , and the other is washed with ethanol and then the spacing value S after is found to find the difference ( S after −S before ) may also be calculated. Alternatively, the difference (S after - S before ) may be determined by using a sample piece for which the spacing value was determined before washing with ethanol, and then washing the sample piece with ethanol and then determining the spacing value.
The above measurements can be performed using a commercially available tape spacing analyzer (Tape Spacing Analyzer; TSA) such as Tape Spacing Analyzer manufactured by Micro Physics. Spacing measurements in Examples were performed using Tape Spacing Analyzer manufactured by Micro Physics.

上記磁気記録媒体は、磁性層の表面において測定される中心線平均表面粗さRaが1.0nm以上1.6nm以下である。即ち、上記磁気記録媒体は、表面平滑性が高い磁性層を有する磁気記録媒体である。かかる磁気記録媒体では、エタノール洗浄前後の上記スペーシングの差分(Safter-Sbefore)が0nm超6.0nm以下であることにより、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下を抑制することができる。この点に関する本発明者らの推察は、以下の通りである。 The magnetic recording medium has a center line average surface roughness Ra measured on the surface of the magnetic layer of 1.0 nm or more and 1.6 nm or less. That is, the above magnetic recording medium is a magnetic recording medium having a magnetic layer with high surface smoothness. In such a magnetic recording medium, since the above-mentioned spacing difference (S after - S before ) before and after ethanol cleaning is more than 0 nm and less than 6.0 nm, electromagnetic conversion due to temperature change from high temperature to low temperature under low humidity is prevented. Deterioration of characteristics can be suppressed. The inventors' speculations regarding this point are as follows.

磁気記録媒体に記録された情報の再生は、通常、磁性層表面と磁気ヘッド(以下、単に「ヘッド」とも記載する。)とを接触させ摺動させることにより行われる。
一方、低湿高温下では、磁性層表面に有機成分が浸み出やすいと考えられる。そして低湿下で高温から低温への温度変化が生じると、磁性層表面に浸み出ていた有機成分が固化または高粘度化すると推察される。このような固化または高粘度化した有機成分が、磁性層表面と磁気ヘッドとの摺動により磁気ヘッドに付着してヘッド汚れとなることが、電磁変換特性の低下を引き起こすと考えられる。磁性層表面の平滑性が高い磁気記録媒体では、磁性層表面と磁気ヘッドとの摺動時の摩擦係数が上昇しやすく電磁変換特性が低下しやすい傾向にあるうえに、上記のようにヘッド汚れが発生することが、磁性層表面の平滑性が高い磁気記録媒体において、低湿下で高温から低温への温度変化が生じると電磁変換特性の低下が発生する理由ではないかと本発明者らは考えている。したがって、低湿下において高温から低温への温度変化が生じる際に磁性層表面で固化または高粘度化する有機成分の量を低減することができれば、電磁変換特性の低下を抑制することにつながると考えられる。
Reproduction of information recorded on a magnetic recording medium is usually performed by bringing the surface of the magnetic layer into contact with a magnetic head (hereinafter also simply referred to as "head") and causing them to slide.
On the other hand, under low humidity and high temperature conditions, it is thought that organic components tend to seep out onto the surface of the magnetic layer. It is presumed that when the temperature changes from high temperature to low temperature under low humidity, the organic components that have oozed out onto the surface of the magnetic layer solidify or become highly viscous. It is thought that such solidified or highly viscous organic components adhere to the magnetic head due to sliding between the surface of the magnetic layer and the magnetic head, resulting in head contamination, which causes deterioration of electromagnetic conversion characteristics. In magnetic recording media with highly smooth magnetic layer surfaces, the coefficient of friction during sliding between the magnetic layer surface and the magnetic head tends to increase and the electromagnetic conversion characteristics tend to deteriorate. The inventors believe that this is the reason why electromagnetic conversion characteristics deteriorate when the temperature changes from high to low temperature under low humidity in magnetic recording media with highly smooth magnetic layer surfaces. ing. Therefore, we believe that if we can reduce the amount of organic components that solidify or become highly viscous on the surface of the magnetic layer when the temperature changes from high to low temperatures under low humidity, this will lead to suppressing the deterioration of electromagnetic conversion characteristics. It will be done.

ところで、磁性層表面には、通常、磁性層表面とヘッドとが摺動する際にヘッドと主に接触(いわゆる真実接触)する部分(突起)と、この部分より低い部分(以下、「素地部分」と記載する。)とが存在する。先に説明したスペーシングは、磁性層表面とヘッドとが摺動する際のヘッドと素地部分との距離の指標になる値であると、本発明者らは考えている。ただし磁性層表面上に何らかの成分が存在していると、素地部分とヘッドとの間に介在している上記成分の量が多いほど、スペーシングは狭くなると考えられる。他方、この成分がエタノール洗浄によって除去されるとスペーシングが広がるため、エタノール洗浄後のスペーシングSafterの値が、エタノール洗浄前のスペーシングSbeforeの値より大きくなる。したがって、エタノール洗浄前後の上記スペーシングの差分(Safter-Sbefore)は、素地部分とヘッドとの間に介在する上記成分の量の指標とすることができると考えられる。
以上の点に関して本発明者らは、エタノール洗浄によって除去される成分が、上記のように低湿下での高温から低温への温度変化により磁性層表面で固化または高粘度化する有機成分であると考えている。そのため、エタノール洗浄前後の上記スペーシングの差分(Safter-Sbefore)を小さくすること、即ち上記成分量を低減することは、低湿下で高温から低温への温度変化が生じた後に磁性層表面と磁気ヘッドとの摺動により上記有機成分が磁気ヘッドに付着してヘッド汚れが生じることを抑制することに寄与すると本発明者らは推察している。これにより、磁性層表面の平滑性が高い磁気記録媒体において、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下を抑制することが可能になると本発明者らは考えている。これに対し、本発明者らの検討によれば、特許文献1に記載されているn-ヘキサン洗浄前後のスペーシングの差分の値と、磁性層表面の平滑性が高い磁気記録媒体における低湿下での高温から低温への温度変化に起因する電磁変換特性の低下との間には、相関は見られなかった。これは、n-ヘキサン洗浄では、上記成分を除去できないか十分に除去できないことによるものと推察される。
上記成分の詳細は明らかではない。あくまでも推察として、本発明者らは、上記成分は、磁性層に添加剤(例えば潤滑剤)として通常添加される有機成分および/または結合剤に由来する成分ではないかと考えている。結合剤に由来する成分については、結合剤として使用される樹脂(通常、分子量分布を有する。)の中で比較的低分子量の成分が、低湿高温下で磁性層表面に浸み出しやすいのではないかと本発明者らは推察している。
ただし以上は本発明者らの推察であって、本発明を何ら限定するものではない。
By the way, the surface of the magnetic layer usually has a part (protrusion) that mainly contacts the head when the magnetic layer surface and the head slide (so-called true contact), and a part lower than this part (hereinafter referred to as "base part"). ) exists. The present inventors believe that the spacing described above is a value that is an index of the distance between the head and the base portion when the head slides on the surface of the magnetic layer. However, if some component exists on the surface of the magnetic layer, it is thought that the larger the amount of the component present between the base portion and the head, the narrower the spacing. On the other hand, when this component is removed by ethanol cleaning, the spacing widens, so the value of the spacing S after after the ethanol cleaning becomes larger than the value of the spacing S before before the ethanol cleaning. Therefore, it is considered that the difference in spacing (S after −S before ) before and after ethanol cleaning can be used as an index of the amount of the component present between the base portion and the head.
Regarding the above points, the present inventors believe that the components removed by ethanol cleaning are organic components that solidify or become highly viscous on the surface of the magnetic layer due to temperature changes from high to low temperatures under low humidity, as described above. thinking. Therefore, reducing the spacing difference (S after − S before ) before and after ethanol cleaning, that is, reducing the amount of the above components, is important because the magnetic layer surface is The inventors of the present invention conjecture that this contributes to suppressing the occurrence of head stains due to the organic components adhering to the magnetic head due to the sliding movement between the organic component and the magnetic head. The inventors believe that this makes it possible to suppress the deterioration of electromagnetic conversion characteristics caused by temperature changes from high to low temperatures under low humidity in magnetic recording media with highly smooth magnetic layer surfaces. There is. On the other hand, according to the study by the present inventors, the value of the difference in spacing before and after cleaning with n-hexane described in Patent Document 1, and the value of the difference in spacing under low humidity in a magnetic recording medium with a highly smooth magnetic layer surface. No correlation was found between the decrease in electromagnetic conversion characteristics caused by the temperature change from high temperature to low temperature. This is presumed to be because the above components cannot be removed or cannot be removed sufficiently by n-hexane cleaning.
Details of the above components are not clear. As a matter of speculation, the present inventors believe that the above-mentioned components may originate from organic components and/or binders that are commonly added to magnetic layers as additives (eg, lubricants). As for components derived from the binder, relatively low molecular weight components of the resin used as the binder (which usually has a molecular weight distribution) may easily leach onto the surface of the magnetic layer under low humidity and high temperature. The present inventors speculate that this is the case.
However, the above is speculation by the present inventors, and does not limit the present invention in any way.

以下、上記磁気記録媒体について、更に詳細に説明する。 The above magnetic recording medium will be explained in more detail below.

<磁性層>
(磁性層表面粗さRa)
上記磁気記録媒体の磁性層表面において測定される中心線平均表面粗さRa(磁性層表面粗さRa)は、1.0nm以上1.6nm以下である。磁性層表面粗さRaが1.6nm以下であることは、上記磁気記録媒体が優れた電磁変換特性を発揮できることに寄与し得る。電磁変換特性の更なる向上の観点からは、磁性層表面粗さRaは、1.5nm以下であることが好ましい。しかし、そのような表面平滑性が高い磁性層を有する磁気記録媒体では、何ら対策を施さなければ、低湿下で高温から低温への温度変化に起因して電磁変換特性が低下してしまう。これに対し、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)が上記範囲である上記磁気記録媒体では、表面平滑性が高い磁性層を有するにも関わらず、低湿下で高温から低温への温度変化に起因して電磁変換特性の低下が発生することを抑制することができる。また、磁性層表面粗さRaが1.0nm以上であれば、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)を上記範囲とすることにより、低湿下で高温から低温への温度変化に起因して電磁変換特性が低下することを抑制することができる。この点から、上記磁気記録媒体の磁性層表面粗さRaは、1.0nm以上であり、1.1nm以上であることが好ましい。
<Magnetic layer>
(Magnetic layer surface roughness Ra)
The centerline average surface roughness Ra (magnetic layer surface roughness Ra) measured on the magnetic layer surface of the magnetic recording medium is 1.0 nm or more and 1.6 nm or less. The fact that the magnetic layer surface roughness Ra is 1.6 nm or less can contribute to the magnetic recording medium being able to exhibit excellent electromagnetic conversion characteristics. From the viewpoint of further improving electromagnetic conversion characteristics, the surface roughness Ra of the magnetic layer is preferably 1.5 nm or less. However, in a magnetic recording medium having such a magnetic layer with high surface smoothness, if no measures are taken, the electromagnetic conversion characteristics will deteriorate due to temperature change from high temperature to low temperature under low humidity. On the other hand, in the above-mentioned magnetic recording medium in which the spacing difference (S after − S before ) before and after ethanol cleaning is within the above range, although it has a magnetic layer with a high surface smoothness, it does not change from high temperature to low temperature under low humidity. It is possible to suppress deterioration of electromagnetic conversion characteristics due to temperature changes. In addition, if the magnetic layer surface roughness Ra is 1.0 nm or more, by setting the spacing difference (S after − S before ) before and after ethanol cleaning within the above range, it will be able to withstand temperature changes from high temperature to low temperature under low humidity. It is possible to suppress deterioration of electromagnetic conversion characteristics due to this. From this point of view, the magnetic layer surface roughness Ra of the magnetic recording medium is 1.0 nm or more, preferably 1.1 nm or more.

本発明および本明細書における磁性層の表面において測定される中心線平均表面粗さRaは、原子間力顕微鏡(Atomic Force Microscope;AFM)により磁性層表面の面積40μm×40μmの領域において測定される値とする。測定条件の一例としては、下記の測定条件を挙げることができる。後述の実施例に示す磁性層表面粗さRaは、下記測定条件下での測定によって求めた値である。
AFM(Veeco社製Nanoscope4)をタッピングモードで用いて磁気テープの磁性層の表面の面積40μm×40μmの領域を測定する。探針としてはBRUKER社製RTESP-300を使用し、スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとする。
The centerline average surface roughness Ra measured on the surface of the magnetic layer in the present invention and this specification is measured in an area of 40 μm x 40 μm on the surface of the magnetic layer using an atomic force microscope (AFM). value. Examples of measurement conditions include the following measurement conditions. The magnetic layer surface roughness Ra shown in Examples below is a value determined by measurement under the following measurement conditions.
A region with an area of 40 μm×40 μm on the surface of the magnetic layer of the magnetic tape is measured using AFM (Nanoscope 4 manufactured by Veeco) in tapping mode. As the probe, RTESP-300 manufactured by BRUKER is used, the scanning speed (probe moving speed) is 40 μm/sec, and the resolution is 512 pixels×512 pixels.

磁性層表面粗さRaは、公知の方法により制御することができる。例えば、磁性層に含まれる各種粉末(例えば、強磁性粉末、任意に含まれ得る非磁性粉末等)のサイズ、磁気記録媒体の製造条件等により磁性層表面粗さRaは変わり得る。したがって、これらを調整することにより、磁性層表面粗さRaが1.0nm以上1.6nm以下の磁気記録媒体を得ることができる。 The magnetic layer surface roughness Ra can be controlled by a known method. For example, the surface roughness Ra of the magnetic layer can vary depending on the size of various powders (for example, ferromagnetic powder, non-magnetic powder that may be optionally included, etc.) included in the magnetic layer, manufacturing conditions of the magnetic recording medium, etc. Therefore, by adjusting these, a magnetic recording medium having a magnetic layer surface roughness Ra of 1.0 nm or more and 1.6 nm or less can be obtained.

(エタノール洗浄前後のスペーシング差分(Safter-Sbefore))
上記磁気記録媒体の磁性層表面において光学干渉法により測定されるエタノール洗浄前後のスペーシング差分(Safter-Sbefore)は、0nm超6.0nm以下である。スペーシング差分(Safter-Sbefore)が6.0nm以下であることにより、磁性層表面の平滑性が高い上記磁気記録媒体において、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下を抑制することができる。この点から、差分(Safter-Sbefore)は6.0nm以下であり、5.0nm以下であることが好ましく、4.0nm以下であることがより好ましい。詳細を後述するように、差分(Safter-Sbefore)は磁気記録媒体の製造工程における磁性層の表面処理等によって制御することができる。ただし、本発明者らの検討の結果、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)が0nmになるほど磁性層の表面処理を実施してしまうと、磁性層表面の平滑性が高い磁気記録媒体において、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下を抑制することが困難になることも判明した。この理由は明らかではない。あくまでも推察として、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)が0nmになるほど磁性層の表面処理を実施してしまうと、走行安定性の向上に寄与する成分(例えば潤滑剤)が磁気記録媒体から過剰に除去されてしまうことが一因ではないかと、本発明者らは考えている。この点から、上記磁気記録媒体のエタノール洗浄前後のスペーシング差分(Safter-Sbefore)は0nm超であり、1.0nm以上であることが好ましく、2.0nm以上であることがより好ましい。
(Spacing difference before and after ethanol cleaning (S after - S before ))
The spacing difference (S after −S before ) before and after ethanol cleaning measured on the magnetic layer surface of the magnetic recording medium by optical interferometry is more than 0 nm and less than 6.0 nm. Since the spacing difference (S after −S before ) is 6.0 nm or less, electromagnetic conversion due to temperature change from high temperature to low temperature under low humidity is reduced in the above magnetic recording medium in which the surface of the magnetic layer is highly smooth. Deterioration of characteristics can be suppressed. From this point of view, the difference (S after −S before ) is 6.0 nm or less, preferably 5.0 nm or less, and more preferably 4.0 nm or less. As will be described in detail later, the difference (S after −S before ) can be controlled by surface treatment of the magnetic layer in the manufacturing process of the magnetic recording medium. However, as a result of the studies conducted by the present inventors, if the surface treatment of the magnetic layer is carried out to the extent that the spacing difference (S after - S before ) before and after ethanol cleaning becomes 0 nm, the surface of the magnetic layer has a high smoothness. It has also been found that in recording media, it becomes difficult to suppress the deterioration of electromagnetic conversion characteristics caused by temperature changes from high to low temperatures under low humidity. The reason for this is not clear. This is just a guess: If the surface treatment of the magnetic layer is carried out to the extent that the spacing difference (S after - S before ) before and after ethanol cleaning is 0 nm, components that contribute to improving running stability (for example, lubricant) will become magnetic. The present inventors believe that one of the reasons is that it is excessively removed from the recording medium. From this point of view, the spacing difference (S after - S before ) of the magnetic recording medium before and after ethanol cleaning is more than 0 nm, preferably 1.0 nm or more, and more preferably 2.0 nm or more.

(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を一種または二種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
(Ferromagnetic powder)
As the ferromagnetic powder contained in the magnetic layer, one type or a combination of two or more types of ferromagnetic powders known as ferromagnetic powders used in the magnetic layers of various magnetic recording media can be used. It is preferable to use ferromagnetic powder having a small average particle size from the viewpoint of improving recording density. From this point of view, the average particle size of the ferromagnetic powder is preferably 50 nm or less, more preferably 45 nm or less, even more preferably 40 nm or less, even more preferably 35 nm or less, and 30 nm or less. It is even more preferable that it is, even more preferably that it is 25 nm or less, and even more preferably that it is 20 nm or less. On the other hand, from the viewpoint of magnetization stability, the average particle size of the ferromagnetic powder is preferably 5 nm or more, more preferably 8 nm or more, even more preferably 10 nm or more, and still more preferably 15 nm or more. is more preferable, and even more preferably 20 nm or more.

六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
Hexagonal ferrite powder A preferred example of the ferromagnetic powder is hexagonal ferrite powder. For details on hexagonal ferrite powder, see, for example, paragraphs 0012 to 0030 of JP2011-225417A, paragraphs 0134 to 0136 of JP2011-216149A, paragraphs 0013 to 0030 of JP2012-204726A, and Paragraphs 0029 to 0084 of Japanese Patent Application Publication No. 2015-127985 can be referred to.

本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。 In the present invention and this specification, "hexagonal ferrite powder" refers to a ferromagnetic powder in which a hexagonal ferrite type crystal structure is detected as the main phase by X-ray diffraction analysis. The main phase refers to a structure to which the most intense diffraction peak belongs in an X-ray diffraction spectrum obtained by X-ray diffraction analysis. For example, if the most intense diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to a hexagonal ferrite crystal structure, it is determined that a hexagonal ferrite crystal structure has been detected as the main phase. shall be taken as a thing. When only a single structure is detected by X-ray diffraction analysis, this detected structure is taken as the main phase. The hexagonal ferrite type crystal structure includes at least iron atoms, divalent metal atoms, and oxygen atoms as constituent atoms. The divalent metal atom is a metal atom that can become a divalent cation as an ion, and includes alkaline earth metal atoms such as strontium atom, barium atom, and calcium atom, lead atom, and the like. In the present invention and this specification, hexagonal strontium ferrite powder refers to powder in which the main divalent metal atoms contained in this powder are strontium atoms, and hexagonal barium ferrite powder refers to powder in which the main divalent metal atoms contained in this powder are strontium atoms. The divalent metal atom is a barium atom. The main divalent metal atoms are the divalent metal atoms that account for the largest percentage on an atomic percent basis among the divalent metal atoms contained in this powder. However, the divalent metal atoms mentioned above do not include rare earth atoms. A "rare earth atom" in the present invention and herein is selected from the group consisting of scandium atom (Sc), yttrium atom (Y), and lanthanide atom. Lanthanoid atoms include lanthanum atom (La), cerium atom (Ce), praseodymium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), europium atom (Eu), and gadolinium atom (Gd). ), terbium atom (Tb), dysprosium atom (Dy), holmium atom (Ho), erbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu). Ru.

以下に、六方晶フェライト粉末の一態様である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。 Below, hexagonal strontium ferrite powder, which is one embodiment of hexagonal ferrite powder, will be explained in more detail.

六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。 The activation volume of the hexagonal strontium ferrite powder is preferably in the range of 800 to 1600 nm 3 . Finely divided hexagonal strontium ferrite powder exhibiting an activation volume within the above range is suitable for producing a magnetic recording medium exhibiting excellent electromagnetic conversion characteristics. The activation volume of the hexagonal strontium ferrite powder is preferably 800 nm 3 or more, and can also be, for example, 850 nm 3 or more. In addition, from the viewpoint of further improving electromagnetic conversion characteristics, the activated volume of the hexagonal strontium ferrite powder is more preferably 1500 nm 3 or less, even more preferably 1400 nm 3 or less, and 1300 nm 3 or less. is more preferable, it is even more preferable that it is 1200 nm 3 or less, and even more preferably that it is 1100 nm 3 or less. The same applies to the activation volume of hexagonal barium ferrite powder.

「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
"Activation volume" is a unit of magnetization reversal and is an index indicating the magnetic size of a particle. The activation volume described in the present invention and this specification and the anisotropy constant Ku described later are measured using a vibrating sample magnetometer at magnetic field sweep speeds of 3 minutes and 30 minutes in the coercive force Hc measurement section (measurement Temperature: 23° C.±1° C.), a value determined from the following relational expression between Hc and activation volume V. Note that the unit of the anisotropy constant Ku is 1erg/cc=1.0×10 −1 J/m 3 .
Hc=2Ku/Ms {1-[(kT/KuV)ln(At/0.693)] 1/2 }
[In the above formula, Ku: anisotropy constant (unit: J/m 3 ), Ms: saturation magnetization (unit: kA/m), k: Boltzmann constant, T: absolute temperature (unit: K), V: activity volume (unit: cm 3 ), A: spin precession frequency (unit: s −1 ), t: magnetic field reversal time (unit: s)]

熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。 The anisotropy constant Ku can be cited as an index of reduction in thermal fluctuation, in other words, improvement in thermal stability. The hexagonal strontium ferrite powder can preferably have a Ku of 1.8×10 5 J/m 3 or more, more preferably 2.0×10 5 J/m 3 or more. Moreover, Ku of the hexagonal strontium ferrite powder can be, for example, 2.5×10 5 J/m 3 or less. However, since a higher Ku means higher thermal stability and is preferable, it is not limited to the values exemplified above.

六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一態様では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
The hexagonal strontium ferrite powder may or may not contain rare earth atoms. When the hexagonal strontium ferrite powder contains rare earth atoms, it is preferable that the rare earth atoms are contained at a content (bulk content) of 0.5 to 5.0 at % based on 100 at % iron atoms. In one embodiment, the hexagonal strontium ferrite powder containing rare earth atoms can have rare earth atoms unevenly distributed in the surface layer. In the present invention and this specification, "rare earth atom uneven distribution in the surface layer" refers to the rare earth atom content (hereinafter, "Rare earth atom surface content" or simply "surface layer content" for rare earth atoms) is 100 at.% of iron atoms in the solution obtained by completely dissolving hexagonal strontium ferrite powder with acid. Rare earth atom content (hereinafter referred to as "rare earth atom bulk content" or simply "bulk content" with respect to rare earth atoms),
Rare earth atom surface layer content/rare earth atom bulk content>1.0
This means that the ratio of The rare earth atom content of the hexagonal strontium ferrite powder described below is synonymous with the rare earth atom bulk content. On the other hand, partial dissolution using an acid dissolves the surface layer of the particles constituting the hexagonal strontium ferrite powder, so the rare earth atom content in the solution obtained by partial dissolution is This is the rare earth atom content in the surface layer of the particles. The fact that the rare earth atom content in the surface layer satisfies the ratio of "rare earth atom surface layer content/rare earth atom bulk content >1.0" means that rare earth atoms are present in the surface layer in the particles constituting the hexagonal strontium ferrite powder. It means that it is omnipresent (that is, it is present more than inside). In the present invention and the present specification, the surface layer portion refers to a partial region from the surface of the particle constituting the hexagonal strontium ferrite powder toward the inside.

六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
When the hexagonal strontium ferrite powder contains rare earth atoms, the rare earth atom content (bulk content) is preferably in the range of 0.5 to 5.0 atom % based on 100 atom % of iron atoms. It is believed that the uneven distribution of rare earth atoms in the surface layer of the particles constituting the hexagonal strontium ferrite powder, which contains rare earth atoms at a bulk content in the above range, contributes to suppressing the reduction in reproduction output during repeated reproduction. Conceivable. This is due to the fact that the hexagonal strontium ferrite powder contains rare earth atoms in the bulk content within the above range, and that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder. It is presumed that this is because it can increase the The higher the value of the anisotropy constant Ku, the more the phenomenon called thermal fluctuation can be suppressed (in other words, the thermal stability can be improved). By suppressing the occurrence of thermal fluctuations, it is possible to suppress a decrease in reproduction output during repeated reproduction. The uneven distribution of rare earth atoms in the particle surface of hexagonal strontium ferrite powder contributes to stabilizing the spin of iron (Fe) sites in the crystal lattice in the surface layer, which increases the anisotropy constant Ku. It is speculated that this will increase.
In addition, it is assumed that using hexagonal strontium ferrite powder, which has rare earth atoms unevenly distributed in the surface layer, as the ferromagnetic powder for the magnetic layer also contributes to suppressing the surface of the magnetic layer from being scraped by sliding with the magnetic head. Ru. That is, it is surmised that the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer may also contribute to improving the running durability of the magnetic recording medium. This is due to the uneven distribution of rare earth atoms on the surface of the particles constituting the hexagonal strontium ferrite powder, which improves the interaction between the particle surface and the organic substances (e.g. binders and/or additives) contained in the magnetic layer. It is presumed that this is because the magnetic layer contributes to the strength of the magnetic layer, and as a result, the strength of the magnetic layer is improved.
From the viewpoint of further suppressing the decline in reproduction output during repeated reproduction and/or further improving running durability, the rare earth atom content (bulk content) is in the range of 0.5 to 4.5 at%. It is more preferably in the range of 1.0 to 4.5 atom %, even more preferably in the range of 1.5 to 4.5 atom %.

上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。 The above bulk content is the content determined by completely melting the hexagonal strontium ferrite powder. In the present invention and this specification, unless otherwise specified, the atomic content refers to the bulk content determined by completely dissolving the hexagonal strontium ferrite powder. The hexagonal strontium ferrite powder containing rare earth atoms may contain only one kind of rare earth atoms, or may contain two or more kinds of rare earth atoms. The above-mentioned bulk content when two or more types of rare earth atoms are included is calculated for the total of two or more types of rare earth atoms. This point also applies to other components in the present invention and this specification. That is, unless otherwise specified, one kind of a certain component may be used, or two or more kinds thereof may be used. When two or more types are used, the content or content rate refers to the total of the two or more types.

六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。 When the hexagonal strontium ferrite powder contains rare earth atoms, the rare earth atoms contained may be at least one kind of rare earth atoms. Preferred rare earth atoms from the viewpoint of further suppressing a decrease in reproduction output during repeated reproduction include neodymium atoms, samarium atoms, yttrium atoms, and dysprosium atoms, with neodymium atoms, samarium atoms, and yttrium atoms being more preferred; Atom is more preferred.

希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。 In the hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer, it is sufficient that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the degree of uneven distribution is not limited. For example, for a hexagonal strontium ferrite powder that has rare earth atoms unevenly distributed in the surface layer, the surface layer content of rare earth atoms determined by partial melting under the melting conditions described below and the rare earth content determined by completely melting under the melting conditions described below. The ratio of atoms to the bulk content, "surface layer content/bulk content" is more than 1.0, and can be 1.5 or more. When the "surface layer content ratio/bulk content ratio" is larger than 1.0, it means that rare earth atoms are unevenly distributed in the surface layer (that is, more present than in the interior) in the particles that make up the hexagonal strontium ferrite powder. do. In addition, the ratio of the surface layer content of rare earth atoms determined by partial dissolution under the dissolution conditions described below and the bulk content of rare earth atoms determined by total dissolution under the dissolution conditions described below, ``surface layer content/ Bulk content" can be, for example, 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, or 4.0 or less. However, in a hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer, it is sufficient that the rare earth atoms are unevenly distributed in the surface layer of the particles constituting the hexagonal strontium ferrite powder, and the above "surface layer content/bulk content" is sufficient. The "rate" is not limited to the illustrated upper or lower limits.

六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
Partial and total dissolution of hexagonal strontium ferrite powder will be explained below. For hexagonal strontium ferrite powders that are present as powders, the partially dissolved and fully dissolved sample powders are taken from the same lot of powder. On the other hand, for hexagonal strontium ferrite powder contained in the magnetic layer of a magnetic recording medium, a part of the hexagonal strontium ferrite powder taken out from the magnetic layer is subjected to partial melting, and the other part is subjected to total melting. . The hexagonal strontium ferrite powder can be taken out from the magnetic layer by, for example, the method described in paragraph 0032 of JP-A-2015-91747.
The above-mentioned partial dissolution means that the hexagonal strontium ferrite powder is dissolved to such an extent that residual hexagonal strontium ferrite powder can be visually confirmed in the liquid at the end of dissolution. For example, by partial dissolution, it is possible to dissolve a region of 10 to 20 mass % of the particles constituting the hexagonal strontium ferrite powder, assuming that the entire particle is 100 mass %. On the other hand, the above-mentioned complete dissolution means that the hexagonal strontium ferrite powder is dissolved to a state where no residual hexagonal strontium ferrite powder is visually confirmed in the liquid upon completion of dissolution.
The above-mentioned partial dissolution and measurement of the surface layer content are performed, for example, by the following method. However, the dissolution conditions such as the amount of sample powder described below are merely examples, and any dissolution conditions that allow partial dissolution and complete dissolution can be adopted as desired.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 1 mol/L hydrochloric acid is held on a hot plate with a set temperature of 70° C. for 1 hour. The obtained solution is filtered through a 0.1 μm membrane filter. Elemental analysis of the filtrate thus obtained is performed using an inductively coupled plasma (ICP) analyzer. In this way, the content of rare earth atoms in the surface layer relative to 100 atom % of iron atoms can be determined. When multiple types of rare earth atoms are detected by elemental analysis, the total content of all rare earth atoms is taken as the surface layer content. This point also applies to the measurement of bulk content.
On the other hand, the measurement of the total dissolution and bulk content is performed, for example, by the following method.
A container (for example, a beaker) containing 12 mg of sample powder and 10 mL of 4 mol/L hydrochloric acid is held on a hot plate with a set temperature of 80° C. for 3 hours. Thereafter, it is possible to determine the bulk content relative to 100 atom % of iron atoms by performing the same steps as the above-described partial dissolution and measurement of the surface layer content.

磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一態様では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。 From the viewpoint of increasing reproduction output when reproducing data recorded on a magnetic recording medium, it is desirable that the mass magnetization σs of the ferromagnetic powder contained in the magnetic recording medium is high. In this regard, a hexagonal strontium ferrite powder that contains rare earth atoms but does not have rare earth atoms unevenly distributed in the surface layer tends to have a significantly lower σs than a hexagonal strontium ferrite powder that does not contain rare earth atoms. On the other hand, a hexagonal strontium ferrite powder having rare earth atoms unevenly distributed in the surface layer is considered to be preferable in order to suppress such a large decrease in σs. In one aspect, σs of the hexagonal strontium ferrite powder can be 45 A·m 2 /kg or more, and can also be 47 A·m 2 /kg or more. On the other hand, from the viewpoint of noise reduction, σs is preferably 80 A·m 2 /kg or less, more preferably 60 A·m 2 /kg or less. σs can be measured using a known measuring device capable of measuring magnetic properties, such as a vibrating sample magnetometer. In the present invention and this specification, unless otherwise specified, mass magnetization σs is a value measured at a magnetic field strength of 15 kOe. 1 [kOe]=10 6 /4π [A/m].

六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一態様では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一態様では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。 Regarding the content of constituent atoms (bulk content) of the hexagonal strontium ferrite powder, the strontium atomic content can be in the range of, for example, 2.0 to 15.0 atomic% with respect to 100 atomic% of iron atoms. . In one embodiment, the hexagonal strontium ferrite powder may contain only strontium atoms as divalent metal atoms. In another aspect, the hexagonal strontium ferrite powder can also contain one or more other divalent metal atoms in addition to strontium atoms. For example, it can contain barium atoms and/or calcium atoms. When divalent metal atoms other than strontium atoms are included, the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 5, respectively, relative to 100 at% of iron atoms. It can be in the range of .0 at.%.

六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一態様では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一態様では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一態様では、ビスマス原子(Bi)を含まないものであることができる。 As the crystal structure of hexagonal ferrite, magnetoplumbite type (also called "M type"), W type, Y type, and Z type are known. The hexagonal strontium ferrite powder may have any crystal structure. Crystal structure can be confirmed by X-ray diffraction analysis. The hexagonal strontium ferrite powder may have a single crystal structure or two or more types of crystal structures detected by X-ray diffraction analysis. For example, in one embodiment, the hexagonal strontium ferrite powder can have only an M-type crystal structure detected by X-ray diffraction analysis. For example, M-type hexagonal ferrite is represented by the composition formula AFe 12 O 19 . Here, A represents a divalent metal atom, and if the hexagonal strontium ferrite powder is M type, A is only a strontium atom (Sr), or if A contains multiple divalent metal atoms, As mentioned above, strontium atoms (Sr) account for the largest amount on an atomic percent basis. The divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content. The hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms, and oxygen atoms, and may also contain rare earth atoms. Furthermore, the hexagonal strontium ferrite powder may or may not contain atoms other than these atoms. As an example, the hexagonal strontium ferrite powder may contain aluminum atoms (Al). The content of aluminum atoms can be, for example, 0.5 to 10.0 atomic % with respect to 100 atomic % of iron atoms. From the viewpoint of further suppressing the reduction in playback output during repeated playback, the hexagonal strontium ferrite powder contains iron atoms, strontium atoms, oxygen atoms, and rare earth atoms, and the content of atoms other than these atoms is 100 iron atoms. %, it is preferably 10.0 atom % or less, more preferably in the range of 0 to 5.0 atom %, and may be 0 atom %. That is, in one embodiment, the hexagonal strontium ferrite powder may not contain atoms other than iron atoms, strontium atoms, oxygen atoms, and rare earth atoms. The content expressed in atomic % above is the content of each atom (unit: mass %) obtained by completely melting the hexagonal strontium ferrite powder, and is converted to the value expressed in atomic % using the atomic weight of each atom. It can be calculated by converting. Furthermore, in the present invention and this specification, "not containing" an atom means that the content thereof as measured by an ICP analyzer after being completely dissolved is 0% by mass. The detection limit of an ICP analyzer is usually 0.01 ppm (parts per million) or less on a mass basis. The above-mentioned "does not contain" is used to mean that it is contained in an amount below the detection limit of the ICP analyzer. In one embodiment, the hexagonal strontium ferrite powder can be free of bismuth atoms (Bi).

金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
Metal Powder A preferable specific example of the ferromagnetic powder is a ferromagnetic metal powder. For details of the ferromagnetic metal powder, reference can be made to, for example, paragraphs 0137 to 0141 of JP-A No. 2011-216149 and paragraphs 0009 to 0023 of JP-A No. 2005-251351.

ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε-Iron Oxide Powder A preferred example of the ferromagnetic powder is ε-iron oxide powder. In the present invention and this specification, "ε-iron oxide powder" refers to a ferromagnetic powder in which an ε-iron oxide type crystal structure is detected as the main phase by X-ray diffraction analysis. For example, if the most intense diffraction peak in an X-ray diffraction spectrum obtained by X-ray diffraction analysis is attributed to the ε-iron oxide type crystal structure, it is assumed that the ε-iron oxide type crystal structure has been detected as the main phase. shall judge. Known methods for producing ε-iron oxide powder include a method for producing it from goethite, a reverse micelle method, and the like. All of the above manufacturing methods are publicly known. Further, regarding a method for producing ε-iron oxide powder in which a portion of Fe is substituted with substitution atoms such as Ga, Co, Ti, Al, Rh, etc., see, for example, J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J. Mater. Chem. C, 2013, 1, pp. 5200-5206 etc. can be referred to. However, the method for producing the ε-iron oxide powder that can be used as the ferromagnetic powder in the magnetic layer of the magnetic recording medium is not limited to the method mentioned above.

ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。 The activated volume of the ε-iron oxide powder is preferably in the range of 300 to 1500 nm 3 . Finely divided ε-iron oxide powder exhibiting an activation volume within the above range is suitable for producing a magnetic recording medium exhibiting excellent electromagnetic conversion characteristics. The activated volume of the ε-iron oxide powder is preferably 300 nm 3 or more, and can also be, for example, 500 nm 3 or more. Further, from the viewpoint of further improving electromagnetic conversion characteristics, the activated volume of the ε-iron oxide powder is more preferably 1400 nm 3 or less, even more preferably 1300 nm 3 or less, and 1200 nm 3 or less. is more preferable, and even more preferably 1100 nm 3 or less.

熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。 The anisotropy constant Ku can be cited as an index of reduction in thermal fluctuation, in other words, improvement in thermal stability. The ε-iron oxide powder can preferably have a Ku of 3.0×10 4 J/m 3 or more, more preferably 8.0×10 4 J/m 3 or more. Further, Ku of the ε-iron oxide powder can be, for example, 3.0×10 5 J/m 3 or less. However, since a higher Ku means higher thermal stability, which is preferable, it is not limited to the values exemplified above.

磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一態様では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。 From the viewpoint of increasing reproduction output when reproducing data recorded on a magnetic recording medium, it is desirable that the mass magnetization σs of the ferromagnetic powder contained in the magnetic recording medium is high. In this regard, in one aspect, the σs of the ε-iron oxide powder can be 8 A·m 2 /kg or more, and can also be 12 A·m 2 /kg or more. On the other hand, from the viewpoint of noise reduction, σs of the ε-iron oxide powder is preferably 40 A·m 2 /kg or less, more preferably 35 A·m 2 /kg or less.

本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
In the present invention and this specification, unless otherwise specified, the average particle size of various powders such as ferromagnetic powder is a value measured by the following method using a transmission electron microscope.
The powder is photographed using a transmission electron microscope at a magnification of 100,000 times and printed on photographic paper at a total magnification of 500,000 times to obtain a photograph of the particles constituting the powder. Select the target particle from the obtained particle photo, trace the outline of the particle with a digitizer, and measure the size of the particle (primary particle). Primary particles refer to independent particles without agglomeration.
The above measurements are performed on 500 randomly extracted particles. The arithmetic mean of the particle sizes of the 500 particles thus obtained is defined as the average particle size of the powder. As the transmission electron microscope, for example, a transmission electron microscope model H-9000 manufactured by Hitachi may be used. Furthermore, the particle size can be measured using known image analysis software, such as Carl Zeiss image analysis software KS-400. Unless otherwise specified, the average particle size shown in the examples below was measured using a transmission electron microscope H-9000 model manufactured by Hitachi as a transmission electron microscope and image analysis software KS-400 manufactured by Carl Zeiss as image analysis software. It is a value. In the present invention and herein, powder refers to a collection of particles. For example, ferromagnetic powder means a collection of multiple ferromagnetic particles. Furthermore, an aggregate of multiple particles is not limited to an embodiment in which the particles constituting the aggregate are in direct contact with each other, but also includes an embodiment in which a binder, an additive, etc., which will be described later, are interposed between the particles. Ru. The term particle is sometimes used to refer to powder.

粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。 As a method for collecting sample powder from a magnetic recording medium for particle size measurement, for example, the method described in paragraph 0015 of JP-A No. 2011-048878 can be adopted.

本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
In the present invention and this specification, unless otherwise specified, the size of the particles constituting the powder (particle size) is as follows:
(1) If the particle is needle-shaped, spindle-shaped, columnar (however, the height is larger than the maximum major axis of the bottom surface), etc., it is expressed by the length of the major axis that makes up the particle, that is, the major axis length,
(2) If it is plate-shaped or columnar (however, the thickness or height is smaller than the maximum major axis of the plate surface or bottom surface), it is expressed by the maximum major axis of the plate surface or bottom surface,
(3) If the particle is spherical, polyhedral, unspecified, etc., and the long axis constituting the particle cannot be determined from the shape, it is expressed by an equivalent circle diameter. The equivalent circle diameter refers to what is determined by the circular projection method.

また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
In addition, the average acicular ratio of the powder can be determined by measuring the short axis length of the particles in the above measurement, determining the value of (major axis length / short axis length) of each particle, and calculating the average acicular ratio of the 500 particles. Refers to the arithmetic mean of the values obtained for the particles. Here, unless otherwise specified, the short axis length refers to the length of the short axis constituting the particle in the case of (1) in the above particle size definition, and the thickness or height in the case of (2). In the case of (3), there is no distinction between the major axis and the minor axis, so (major axis length/minor axis length) is regarded as 1 for convenience.
Unless otherwise specified, when the particle shape is specific, for example, in the case of the above definition (1) of particle size, the average particle size is the average major axis length, and in the case of the same definition (2), the average particle size is This is the average plate diameter. In the case of the same definition (3), the average particle size is the average diameter (also referred to as average particle diameter or average particle diameter).

磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層の強磁性粉末以外の成分は、少なくとも結合剤であり、任意に一種以上の更なる添加剤が含まれ得る。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。 The content (filling rate) of the ferromagnetic powder in the magnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass. Components other than the ferromagnetic powder of the magnetic layer are at least a binder, and optionally one or more additional additives may be included. It is preferable that the filling rate of ferromagnetic powder in the magnetic layer is high from the viewpoint of improving recording density.

(結合剤、硬化剤)
上記磁気記録媒体は塗布型磁気記録媒体であって、磁性層に結合剤を含む。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
(Binder, hardening agent)
The magnetic recording medium is a coated magnetic recording medium, and includes a binder in the magnetic layer. A binder is one or more resins. As the binder, various resins commonly used as binders for coated magnetic recording media can be used. For example, binders include polyurethane resins, polyester resins, polyamide resins, vinyl chloride resins, acrylic resins copolymerized with styrene, acrylonitrile, methyl methacrylate, etc., cellulose resins such as nitrocellulose, epoxy resins, phenoxy resins, polyvinyl acetals, A resin selected from polyvinyl alkyral resins such as polyvinyl butyral can be used alone, or a plurality of resins can be used in combination. Among these, preferred are polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins. These resins may be homopolymers or copolymers. These resins can also be used as a binder in the nonmagnetic layer and/or back coat layer described below.
Regarding the above binders, reference can be made to paragraphs 0028 to 0031 of JP-A No. 2010-24113. The average molecular weight of the resin used as the binder can be, for example, 10,000 or more and 200,000 or less as a weight average molecular weight. The weight average molecular weight in the present invention and this specification is a value determined by gel permeation chromatography (GPC) under the following measurement conditions in terms of polystyrene. The weight average molecular weight of the binder shown in the Examples below is a value determined by converting the value measured under the following measurement conditions into polystyrene.
GPC device: HLC-8120 (manufactured by Tosoh Corporation)
Column: TSK gel Multipore HXL-M (manufactured by Tosoh Corporation, 7.8mm ID (Inner Diameter) x 30.0cm)
Eluent: Tetrahydrofuran (THF)

一態様では、結合剤として、酸性基を含む結合剤を用いることができる。酸性基は、強磁性粉末の粒子表面への吸着サイトとして寄与することができる。本発明および本明細書における「酸性基」とは、水中または水を含む溶媒(水性溶媒)中でHを放出してアニオンに解離可能な基およびその塩の形態を包含する意味で用いるものとする。酸性基の具体例としては、例えば、スルホン酸基、硫酸基、カルボキシ基、リン酸基、それらの塩の形態等を挙げることができる。例えば、スルホン酸基(-SOH)の塩の形態とは、-SOMで表され、Mが水中または水性溶媒中でカチオンになり得る原子(例えばアルカリ金属原子等)を表す基を意味する。この点は、上記の各種の基の塩の形態についても同様である。酸性基を含む結合剤の一例としては、例えば、スルホン酸基およびその塩からなる群から選ばれる少なくとも一種の酸性基を含む樹脂(例えばポリウレタン樹脂、塩化ビニル樹脂等)を挙げることができる。ただし、磁性層に含まれる樹脂は、これらの樹脂に限定されるものではない。また、酸性基を含む結合剤において、酸性基含有量は、例えば0.03~0.50meq/gの範囲であることができる。eqは当量( equivalent)であり、SI単位に換算不可の単位である。樹脂に含まれる酸性基等の各種官能基の含有量は、官能基の種類に応じて公知の方法で求めることができる。結合剤は、磁性層形成用組成物中に、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。エタノール洗浄前後のスペーシング差分(Safter-Sbefore)を小さくする観点からは、結合剤に由来する成分が低湿高温下で磁性層表面に浸み出す量を低減することが好ましい。この点から、磁性層形成に用いる結合剤の使用量を減量することを、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)を小さくする手段の1つとして挙げることができる。 In one aspect, a binder containing an acidic group can be used as the binder. The acidic groups can serve as adsorption sites on the particle surface of the ferromagnetic powder. In the present invention and this specification, the term "acidic group" is used to include a group that can be dissociated into an anion by releasing H + in water or a water-containing solvent (aqueous solvent), and a salt form thereof. shall be. Specific examples of acidic groups include sulfonic acid groups, sulfuric acid groups, carboxy groups, phosphoric acid groups, and salt forms thereof. For example, the salt form of a sulfonic acid group (-SO 3 H) is a group represented by -SO 3 M, where M represents an atom that can become a cation (for example, an alkali metal atom, etc.) in water or an aqueous solvent. means. This point also applies to the salt forms of the various groups mentioned above. An example of a binder containing an acidic group includes, for example, a resin containing at least one acidic group selected from the group consisting of a sulfonic acid group and a salt thereof (eg, polyurethane resin, vinyl chloride resin, etc.). However, the resin contained in the magnetic layer is not limited to these resins. Further, in the binder containing acidic groups, the acidic group content can be in the range of, for example, 0.03 to 0.50 meq/g. eq is equivalent and is a unit that cannot be converted into SI units. The content of various functional groups such as acidic groups contained in the resin can be determined by known methods depending on the type of functional group. The binder can be used in the composition for forming a magnetic layer in an amount of, for example, 1.0 to 30.0 parts by weight based on 100.0 parts by weight of the ferromagnetic powder. From the viewpoint of reducing the spacing difference (S after - S before ) before and after ethanol cleaning, it is preferable to reduce the amount of components derived from the binder seeping onto the surface of the magnetic layer under low humidity and high temperature. From this point of view, reducing the amount of binder used in forming the magnetic layer can be cited as one means of reducing the spacing difference (S after - S before ) before and after ethanol cleaning.

また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。 A curing agent can also be used in conjunction with a resin that can be used as a binder. In one embodiment, the curing agent can be a thermosetting compound, which is a compound in which a curing reaction (crosslinking reaction) proceeds by heating, and in another embodiment, a photocuring compound, in which a curing reaction (crosslinking reaction) proceeds by light irradiation. It can be a chemical compound. As a curing reaction progresses during the magnetic layer forming process, at least a portion of the curing agent may be contained in the magnetic layer in a reacted (crosslinked) state with other components such as a binder. This point also applies to layers formed using the composition when the composition used to form the other layer contains a curing agent. Preferred curing agents are thermosetting compounds, with polyisocyanates being preferred. For details of the polyisocyanate, paragraphs 0124 to 0125 of JP-A No. 2011-216149 can be referred to. The curing agent is contained in the magnetic layer forming composition in an amount of, for example, 0 to 80.0 parts by mass based on 100.0 parts by mass of the binder, and preferably 50.0 to 80.0 parts by mass from the viewpoint of improving the strength of the magnetic layer. It can be used in amounts of parts by weight.

(添加剤)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。
(Additive)
The magnetic layer contains a ferromagnetic powder and a binder, and may contain one or more additives as necessary. Examples of the additives include the above-mentioned curing agents. In addition, examples of additives included in the magnetic layer include non-magnetic powder (for example, inorganic powder, carbon black, etc.), lubricant, dispersant, dispersion aid, fungicide, antistatic agent, antioxidant, etc. I can do it.

例えば潤滑剤としては、脂肪酸、脂肪酸エステルおよび脂肪酸アミドを挙げることができ、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上を用いて磁性層を形成することができる。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
磁性層形成用組成物における脂肪酸含有量は、強磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。磁性層形成用組成物における脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0.1~10.0質量部であり、好ましくは1.0~7.0質量部である。磁性層形成用組成物における脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。
また、上記磁気記録媒体が非磁性支持体と磁性層との間に非磁性層を有する場合、非磁性層形成用組成物における脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは1.0~10.0質量部であり、より好ましくは1.0~7.0質量部である。非磁性層形成用組成物における脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~8.0質量部である。非磁性層形成用組成物における脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~1.0質量部である。
本発明および本明細書において、特記しない限り、ある成分は、一種のみ用いてもよく二種以上用いてもよい。ある成分が二種以上用いられる場合の含有量とは、これら二種以上の合計含有量をいうものとする。
For example, examples of the lubricant include fatty acids, fatty acid esters, and fatty acid amides, and the magnetic layer can be formed using one or more selected from the group consisting of fatty acids, fatty acid esters, and fatty acid amides.
Examples of fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid, and elaidic acid. is preferred, and stearic acid is more preferred. The fatty acid may be contained in the magnetic layer in the form of a salt such as a metal salt.
Examples of fatty acid esters include esters of lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, erucic acid, and elaidic acid. Specific examples include butyl myristate, butyl palmitate, butyl stearate, neopentyl glycol dioleate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, oleyl oleate, isocetyl stearate, stearin. Examples include isotridecyl stearate, octyl stearate, isooctyl stearate, amyl stearate, butoxyethyl stearate, and the like.
Examples of fatty acid amides include amides of the various fatty acids mentioned above, such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, and the like.
The fatty acid content in the composition for forming a magnetic layer is, for example, 0 to 10.0 parts by mass, preferably 0.1 to 10.0 parts by mass, and more preferably It is 1.0 to 7.0 parts by mass. The fatty acid ester content in the composition for forming a magnetic layer is, for example, 0.1 to 10.0 parts by weight, preferably 1.0 to 7.0 parts by weight, per 100.0 parts by weight of the ferromagnetic powder. The fatty acid amide content in the composition for forming a magnetic layer is, for example, 0 to 3.0 parts by mass, preferably 0 to 2.0 parts by mass, and more preferably 0 parts by mass, per 100.0 parts by mass of ferromagnetic powder. ~1.0 part by mass.
Further, when the magnetic recording medium has a nonmagnetic layer between the nonmagnetic support and the magnetic layer, the fatty acid content in the composition for forming a nonmagnetic layer is, for example, 0.0 parts per 100.0 parts by mass of the nonmagnetic powder. ~10.0 parts by weight, preferably 1.0 to 10.0 parts by weight, more preferably 1.0 to 7.0 parts by weight. The fatty acid ester content in the composition for forming a nonmagnetic layer is, for example, 0 to 10.0 parts by weight, preferably 0.1 to 8.0 parts by weight, per 100.0 parts by weight of the nonmagnetic powder. The fatty acid amide content in the composition for forming a nonmagnetic layer is, for example, 0 to 3.0 parts by weight, preferably 0 to 1.0 parts by weight, per 100.0 parts by weight of the nonmagnetic powder.
In the present invention and this specification, unless otherwise specified, one kind of a certain component may be used, or two or more kinds thereof may be used. When two or more types of certain components are used, the content refers to the total content of these two or more types.

また、磁性層形成のために用いられる非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011-048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、研磨剤の分散性を向上するための分散剤として挙げることができる。強磁性粉末の分散性を向上するための分散剤については、特開2017-016721号公報の段落0035を参照できる。また、分散剤については、特開2012-133837号公報の段落0061および0071も参照できる。磁性層の添加剤については、特開2016-51493号公報の段落0035~0077も参照できる。
分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
各種添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。
In addition, the non-magnetic powder used for forming the magnetic layer includes non-magnetic powder that can function as an abrasive, and non-magnetic powder that can function as a protrusion-forming agent that forms moderately protruding protrusions on the surface of the magnetic layer. Examples include magnetic powder (eg, non-magnetic colloid particles). Note that the average particle size of colloidal silica (silica colloidal particles) shown in the Examples below is a value determined by the method described in paragraph 0015 of JP 2011-048878A as the method for measuring the average particle size. . Examples of additives that can be used in the magnetic layer containing an abrasive include the dispersants described in paragraphs 0012 to 0022 of JP-A No. 2013-131285 as a dispersant for improving the dispersibility of the abrasive. be able to. Regarding the dispersant for improving the dispersibility of the ferromagnetic powder, paragraph 0035 of JP 2017-016721A can be referred to. Further, regarding the dispersant, paragraphs 0061 and 0071 of JP-A-2012-133837 can also be referred to. Regarding additives for the magnetic layer, paragraphs 0035 to 0077 of JP-A No. 2016-51493 can also be referred to.
The dispersant may be included in the nonmagnetic layer. Regarding the dispersant that can be included in the nonmagnetic layer, paragraph 0061 of JP 2012-133837A can be referred to.
Various additives can be used in any amount by appropriately selecting commercially available products or by manufacturing them by known methods depending on the desired properties.

以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。 The magnetic layer described above can be provided directly on the surface of the nonmagnetic support or indirectly via the nonmagnetic layer.

<非磁性層>
次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末および結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
<Nonmagnetic layer>
Next, the nonmagnetic layer will be explained. The magnetic recording medium may have a magnetic layer directly on the non-magnetic support, or may have a non-magnetic layer containing non-magnetic powder and a binder between the non-magnetic support and the magnetic layer. Good too. The nonmagnetic powder used in the nonmagnetic layer may be an inorganic powder or an organic powder. Further, carbon black or the like can also be used. Examples of the inorganic substance include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. These nonmagnetic powders are available as commercial products, and can also be produced by known methods. For details thereof, paragraphs 0146 to 0150 of JP-A No. 2011-216149 can be referred to. Regarding carbon black that can be used in the nonmagnetic layer, paragraphs 0040 to 0041 of JP-A No. 2010-24113 can also be referred to. The content (filling rate) of the nonmagnetic powder in the nonmagnetic layer is preferably in the range of 50 to 90% by mass, more preferably in the range of 60 to 90% by mass.

非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。 For other details such as the binder and additives of the nonmagnetic layer, known techniques regarding nonmagnetic layers can be applied. Further, for example, regarding the type and content of the binder, the type and content of the additive, and the like, known techniques regarding the magnetic layer can also be applied.

本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。 In the present invention and herein, a non-magnetic layer is intended to include a substantially non-magnetic layer containing a small amount of ferromagnetic powder, for example as an impurity or intentionally, along with the non-magnetic powder. Here, a substantially non-magnetic layer means that this layer has a residual magnetic flux density of 10 mT or less, a coercive force of 7.96 kA/m (100 Oe) or less, or a residual magnetic flux density of 10 mT or less. A layer having a coercive force of 7.96 kA/m (100 Oe) or less. Preferably, the nonmagnetic layer has no residual magnetic flux density and no coercive force.

<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
<Nonmagnetic support>
Next, the nonmagnetic support will be explained. Examples of the nonmagnetic support (hereinafter also simply referred to as "support") include known ones such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, aromatic polyamide, and the like. Among these, polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferred. These supports may be subjected to corona discharge, plasma treatment, adhesive treatment, heat treatment, etc. in advance.

<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもできる。バックコート層には、カーボンブラックおよび無機粉末のいずれか一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7029774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
<Back coat layer>
The magnetic recording medium may also have a back coat layer containing nonmagnetic powder and a binder on the surface of the nonmagnetic support opposite to the surface having the magnetic layer. The back coat layer preferably contains one or both of carbon black and inorganic powder. Regarding the binder contained in the back coat layer and various additives that may be optionally included, known techniques related to the back coat layer can be applied, and known techniques related to the formulation of the magnetic layer and/or nonmagnetic layer can be applied. You can also do it. For example, the descriptions in paragraphs 0018 to 0020 of JP-A No. 2006-331625 and in column 4, line 65 to column 5, line 38 of US Patent No. 7,029,774 can be referred to regarding the back coat layer.

<各種厚み>
上記磁気記録媒体における非磁性支持体および各層の厚みについて、非磁性支持体の厚みは、例えば3.0~80.0μmであり、好ましくは3.0~50.0μmの範囲であり、より好ましくは3.0~10.0μmの範囲である。
<Various thicknesses>
Regarding the thickness of the nonmagnetic support and each layer in the magnetic recording medium, the thickness of the nonmagnetic support is, for example, 3.0 to 80.0 μm, preferably 3.0 to 50.0 μm, and more preferably is in the range of 3.0 to 10.0 μm.

磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化することができ、例えば10nm~100nmであり、高密度記録化の観点から、好ましくは20~90nmの範囲であり、更に好ましくは30~70nmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。 The thickness of the magnetic layer can be optimized depending on the saturation magnetization of the magnetic head used, the head gap length, and the recording signal band, and is, for example, 10 nm to 100 nm, and preferably 20 to 90 nm from the viewpoint of high-density recording. The range is more preferably 30 to 70 nm. It is sufficient that there is at least one magnetic layer, and the magnetic layer may be separated into two or more layers having different magnetic properties, and a structure related to a known multilayer magnetic layer can be applied. The thickness of the magnetic layer when it is separated into two or more layers is the total thickness of these layers.

非磁性層の厚みは、例えば50nm以上であり、好ましくは70nm以上であり、より好ましくは100nm以上である。一方、非磁性層の厚みは、800nm以下であることが好ましく、500nm以下であることがより好ましい。 The thickness of the nonmagnetic layer is, for example, 50 nm or more, preferably 70 nm or more, and more preferably 100 nm or more. On the other hand, the thickness of the nonmagnetic layer is preferably 800 nm or less, more preferably 500 nm or less.

バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmの範囲であることが更に好ましい。 The thickness of the back coat layer is preferably 0.9 μm or less, more preferably in the range of 0.1 to 0.7 μm.

磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡によって断面観察を行う。断面観察において任意の1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。 The thickness of each layer of the magnetic recording medium and the nonmagnetic support can be determined by a known film thickness measurement method. As an example, a cross section in the thickness direction of a magnetic recording medium is exposed using a known method such as an ion beam or a microtome, and then the exposed cross section is observed using a scanning electron microscope. Various thicknesses can be determined as the arithmetic mean of the thickness determined at any one location during cross-sectional observation, or the thickness determined at two or more randomly extracted locations, for example, two locations. Alternatively, the thickness of each layer may be determined as a design thickness calculated from manufacturing conditions.

<製造方法>
(各層形成用組成物の調製)
磁性層、非磁性層およびバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。各層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる全ての原料は、どの工程の最初または途中で添加してもよい。また、個々の原料を2つ以上の工程で分割して添加してもよい。
<Manufacturing method>
(Preparation of composition for forming each layer)
Compositions for forming the magnetic layer, nonmagnetic layer, and backcoat layer usually contain a solvent in addition to the various components described above. As the solvent, various organic solvents commonly used for manufacturing coated magnetic recording media can be used. The amount of solvent in each layer-forming composition is not particularly limited, and can be the same as in each layer-forming composition of a typical coating-type magnetic recording medium. The process of preparing the composition for forming each layer usually includes at least a kneading process, a dispersion process, and a mixing process provided before and after these processes as necessary. Each individual process may be divided into two or more stages. All raw materials used in the present invention may be added at the beginning or during any step. Further, individual raw materials may be added in divided portions in two or more steps.

各層形成用組成物を調製するためには、公知技術を用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については、特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるためには、分散メディアとして、ガラスビーズおよびその他の分散ビーズからなる群から選ばれる一種以上の分散ビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズの粒径(ビーズ径)および充填率は最適化して用いることができる。分散機は公知のものを使用することができる。磁性層形成用組成物の調製において分散処理を強化することは、強磁性粉末の粒子表面への結合剤の吸着を促進することにつながると考えられる。強磁性粉末の粒子表面への結合剤の吸着を促進できれば、低湿高温下で磁性層表面に浸み出す結合剤由来の成分の量を低減することができ、その結果、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)を小さくすることができると推察される。したがって、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)を小さくする手段の1つとしては、分散処理を強化することを挙げることができる。分散処理の強化の具体的態様とは、例えば、分散時間の長時間化、分散に用いる分散ビーズの小径化等を挙げることができる。分散時間、分散ビーズのビーズ径等の各種分散条件は、使用する分散機に応じて設定することができる。また、各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。 Known techniques can be used to prepare each layer-forming composition. In the kneading step, it is preferable to use a kneader with strong kneading power, such as an open kneader, continuous kneader, pressure kneader, or extruder. Details of these kneading treatments are described in JP-A-1-106338 and JP-A-1-79274. Moreover, in order to disperse each layer-forming composition, one or more types of dispersion beads selected from the group consisting of glass beads and other dispersion beads can be used as the dispersion medium. As such dispersed beads, zirconia beads, titania beads, and steel beads, which are high specific gravity dispersed beads, are suitable. The particle size (bead diameter) and packing rate of these dispersed beads can be optimized and used. A known disperser can be used. It is believed that strengthening the dispersion treatment in preparing the magnetic layer forming composition leads to promoting adsorption of the binder to the particle surfaces of the ferromagnetic powder. If the adsorption of the binder to the particle surface of the ferromagnetic powder can be promoted, the amount of components derived from the binder that seep onto the magnetic layer surface under low humidity and high temperature can be reduced, and as a result, the spacing before and after ethanol cleaning can be reduced. It is presumed that the difference (S after - S before ) can be reduced. Therefore, one way to reduce the spacing difference (S after - S before ) before and after ethanol cleaning is to strengthen the dispersion process. Specific aspects of strengthening the dispersion process include, for example, lengthening the dispersion time and reducing the diameter of the dispersion beads used for dispersion. Various dispersion conditions such as dispersion time and diameter of dispersed beads can be set depending on the dispersion machine used. Moreover, each layer-forming composition may be filtered by a known method before being subjected to the coating process. Filtration can be performed, for example, by filter filtration. As the filter used for filtration, for example, a filter with a pore size of 0.01 to 3 μm (eg, a glass fiber filter, a polypropylene filter, etc.) can be used.

(塗布工程)
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-24113号公報の段落0051を参照できる。
(Coating process)
The magnetic layer can be formed by, for example, directly applying the composition for forming a magnetic layer onto a nonmagnetic support, or by applying the composition in a multilayer manner sequentially or simultaneously with the composition for forming a nonmagnetic layer. The back coat layer can be formed by applying a back coat layer forming composition to the side of the nonmagnetic support opposite to the side having the magnetic layer (or where the magnetic layer will be provided later). For details of coating for forming each layer, paragraph 0051 of JP-A No. 2010-24113 can be referred to.

(その他の工程)
塗布工程後には、乾燥処理、磁性層の配向処理、表面平滑化処理(カレンダ処理)等の各種処理を行うことができる。各種工程については、特開2010-24113号公報の段落0052~0057を参照できる。
(Other processes)
After the coating step, various treatments such as drying treatment, magnetic layer orientation treatment, surface smoothing treatment (calendar treatment), etc. can be performed. Regarding various steps, paragraphs 0052 to 0057 of JP-A No. 2010-24113 can be referred to.

磁性層形成用組成物の塗布工程後の任意の段階で、磁性層形成用組成物を塗布して形成された塗布層の加熱処理を行うことが好ましい。この加熱処理は、一例として、カレンダ処理の前および/または後に実施することができる。加熱処理は、例えば、上記磁性層形成用組成物の塗布層が形成された支持体を加熱雰囲気下に置くことにより実施することができる。加熱雰囲気は、雰囲気温度65~90℃の雰囲気であることができ、雰囲気温度65~75℃の雰囲気であることがより好ましい。この雰囲気は、例えば大気雰囲気であることができる。加熱雰囲気下での加熱処理は、例えば20~50時間実施することができる。一態様では、この加熱処理により、硬化剤の硬化性官能基の硬化反応を進行させることができる。 It is preferable that the coated layer formed by applying the magnetic layer forming composition is subjected to a heat treatment at an arbitrary stage after the step of applying the magnetic layer forming composition. This heat treatment can be performed, by way of example, before and/or after calendering. The heat treatment can be carried out, for example, by placing the support on which the coating layer of the magnetic layer forming composition is formed in a heated atmosphere. The heating atmosphere can be an atmosphere with an ambient temperature of 65 to 90°C, and more preferably an atmosphere with an ambient temperature of 65 to 75°C. This atmosphere can be, for example, an atmospheric atmosphere. The heat treatment in a heated atmosphere can be carried out for, for example, 20 to 50 hours. In one embodiment, this heat treatment allows the curing reaction of the curable functional group of the curing agent to proceed.

(好ましい製造方法の一態様)
上記磁気記録媒体の好ましい製造方法としては、磁性層表面を、好ましくは上記加熱処理の後に、アルコールを浸潤させたワイピング材によって拭き取ること(以下、「アルコール拭き取り処理」とも記載する。)を含む製造方法を挙げることができる。このアルコール拭き取り処理によって除去可能な成分が、低湿高温下で磁性層表面に浸み出し、高温から低温への温度変化により磁性層表面で固化または高粘度化することが、先に記載したように、低湿下での高温から低温への温度変化に起因する電磁変換特性低下を引き起こす原因と考えられる。アルコール拭き取り処理に使用するアルコールとしては、炭素数2~4のアルコールが好ましく、エタノール、1-プロパノールおよび2-プロパノールがより好ましく、エタノールが更に好ましい。アルコール拭き取り処理は、磁気記録媒体の製造工程において一般に実施される乾式拭き取り処理に準じて、乾式拭き取り処理で使用されるワイピング材に代えて、アルコールを浸潤させたワイピング材を用いて実施することができる。例えば、テープ状の磁気記録媒体(磁気テープ)については、磁気テープを磁気テープカートリッジに収容する幅にスリットした後またはスリットする前に、磁気テープを送り出しローラーと巻き取ローラーとの間で走行させ、走行中の磁気テープの磁性層表面にアルコールを浸潤させたワイピング材(例えば布(例えば不織布)または紙(例えばティッシュペーパー))を押し付けることにより、磁性層表面のアルコール拭き取り処理を行うことができる。上記走行における磁気テープの走行速度および磁性層表面の長手方向に与えられる張力(以下、単に「張力」と記載する。)は、磁気記録媒体の製造工程において一般に実施される乾式拭き取り処理で一般に採用されている処理条件と同様にすることができる。例えば、アルコール拭き取り処理における磁気テープの走行速度は、60~600m/分程度とすることができ、張力は、0.196~3.920N(ニュートン)程度とすることができる。また、アルコール拭き取り処理は、少なくとも1回行うことができる。先に記載したように、アルコール洗浄前後のスペーシング差分(Safter-Sbefore)が0nmになるほど磁性層の表面処理を実施してしまうと、磁性層表面の平滑性が高い磁気記録媒体において、低湿下での高温から低温への温度変化に起因する電磁変換特性の低下を抑制することが困難になるため、この点を考慮してアルコール拭き取り処理の処理条件および処理回数を設定することが好ましい。
また、アルコール拭き取り処理の前および/または後に、磁性層表面に、塗布型磁気記録媒体の製造工程において一般に実施される研磨処理および/または乾式拭き取り処理(以下、これらを「乾式表面処理」と記載する。)を1回以上行うこともできる。乾式表面処理によれば、例えばスリットにより発生した切り屑等の製造工程中で発生して磁性層表面に付着している異物を除去することができる。
以上ではテープ状の磁気記録媒体(磁気テープ)を例に説明した。ディスク状の磁気記録媒体(磁気ディスク)についても、上記記載を参照して各種処理を実施することができる。
(One aspect of a preferred manufacturing method)
A preferred manufacturing method for the magnetic recording medium includes wiping the surface of the magnetic layer, preferably after the heat treatment, with a wiping material soaked with alcohol (hereinafter also referred to as "alcohol wiping treatment"). Here are some methods. As mentioned earlier, components that can be removed by this alcohol wiping process seep out onto the surface of the magnetic layer under low humidity and high temperature, and solidify or become highly viscous on the surface of the magnetic layer as the temperature changes from high to low temperature. This is thought to be the cause of the deterioration of electromagnetic conversion characteristics due to temperature changes from high to low temperatures under low humidity. The alcohol used in the alcohol wiping treatment is preferably an alcohol having 2 to 4 carbon atoms, more preferably ethanol, 1-propanol and 2-propanol, and even more preferably ethanol. The alcohol wiping process can be carried out using a wiping material impregnated with alcohol instead of the wiping material used in the dry wiping process, in accordance with the dry wiping process that is generally performed in the manufacturing process of magnetic recording media. can. For example, for tape-shaped magnetic recording media (magnetic tape), after or before slitting the magnetic tape to a width that accommodates it in a magnetic tape cartridge, the magnetic tape is run between a feed roller and a take-up roller. By pressing a wiping material (for example, cloth (e.g., non-woven fabric) or paper (e.g., tissue paper)) impregnated with alcohol onto the surface of the magnetic layer of the running magnetic tape, the surface of the magnetic layer can be wiped with alcohol. . The running speed of the magnetic tape during the above-mentioned running and the tension applied in the longitudinal direction of the magnetic layer surface (hereinafter simply referred to as "tension") are generally adopted in the dry wiping process commonly carried out in the manufacturing process of magnetic recording media. The processing conditions can be the same as those currently used. For example, the running speed of the magnetic tape in the alcohol wiping process can be about 60 to 600 m/min, and the tension can be about 0.196 to 3.920 N (Newton). Moreover, the alcohol wiping process can be performed at least once. As described above, if the surface treatment of the magnetic layer is carried out so that the spacing difference (S after − S before ) before and after alcohol cleaning becomes 0 nm, in a magnetic recording medium with a highly smooth magnetic layer surface, Since it is difficult to suppress the deterioration of electromagnetic conversion characteristics due to temperature changes from high to low temperatures under low humidity, it is preferable to set the processing conditions and number of treatments for alcohol wiping treatment with this point in mind. .
Furthermore, before and/or after the alcohol wiping treatment, the surface of the magnetic layer may be subjected to a polishing treatment and/or a dry wiping treatment (hereinafter referred to as "dry surface treatment") which is generally performed in the manufacturing process of coated magnetic recording media. ) can be performed more than once. According to the dry surface treatment, it is possible to remove foreign matter, such as chips generated by slits, generated during the manufacturing process and attached to the surface of the magnetic layer.
The above description has been made using a tape-shaped magnetic recording medium (magnetic tape) as an example. Various processes can also be performed on a disk-shaped magnetic recording medium (magnetic disk) with reference to the above description.

以上説明した本発明の一態様にかかる磁気記録媒体は、例えばテープ状の磁気記録媒体(磁気テープ)であることができる。磁気テープは、通常、磁気テープカートリッジに収容されて流通され、使用される。磁気テープカートリッジを磁気記録再生装置に装着し、磁気テープを磁気記録再生装置内で走行させて磁気テープ表面(磁性層表面)と磁気ヘッドとを接触させ摺動させることにより、磁気テープへの情報の記録および再生を行うことができる。ただし、本発明の一態様にかかる磁気記録媒体は、磁気テープに限定されるものではない。摺動型の磁気記録再生装置において使用される各種磁気記録媒体(磁気テープ、ディスク状の磁気記録媒体(磁気ディスク)等)として、本発明の一態様にかかる磁気記録媒体は好適である。上記の摺動型の装置とは、磁気記録媒体への情報の記録および/または記録された情報の再生を行う際に磁性層表面とヘッドとが接触し摺動する装置をいう。 The magnetic recording medium according to one aspect of the present invention described above can be, for example, a tape-shaped magnetic recording medium (magnetic tape). Magnetic tape is generally distributed and used in magnetic tape cartridges. Information is transferred to the magnetic tape by attaching a magnetic tape cartridge to a magnetic recording/reproducing device, running the magnetic tape within the magnetic recording/reproducing device, and causing the magnetic tape surface (magnetic layer surface) and magnetic head to come into contact and slide. can be recorded and played back. However, the magnetic recording medium according to one embodiment of the present invention is not limited to a magnetic tape. The magnetic recording medium according to one embodiment of the present invention is suitable as various magnetic recording media (magnetic tape, disk-shaped magnetic recording medium (magnetic disk), etc.) used in a sliding type magnetic recording and reproducing device. The above-mentioned sliding type device refers to a device in which the surface of a magnetic layer and a head come into contact and slide when recording information on a magnetic recording medium and/or reproducing recorded information.

上記のように製造された磁気記録媒体には、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気記録媒体の走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。上記磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であってもよく、ディスク状の磁気記録媒体(磁気ディスク)であってもよい。以下では、磁気テープを例にサーボパターンの形成について説明する。 A servo pattern is formed on the magnetic recording medium manufactured as described above by a known method in order to enable tracking control of the magnetic head in a magnetic recording/reproducing device, control of the running speed of the magnetic recording medium, etc. I can do it. "Formation of a servo pattern" can also be referred to as "recording of a servo signal." The magnetic recording medium may be a tape-shaped magnetic recording medium (magnetic tape) or a disk-shaped magnetic recording medium (magnetic disk). Below, formation of a servo pattern will be explained using a magnetic tape as an example.

サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。 Servo patterns are usually formed along the longitudinal direction of the magnetic tape. Examples of control methods (servo control) using servo signals include timing-based servo (TBS), amplitude servo, and frequency servo.

ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。 As shown in ECMA (European Computer Manufacturers Association)-319, a timing-based servo system is employed in magnetic tapes (generally referred to as "LTO tapes") that comply with the LTO (Linear Tape-Open) standard. In this timing-based servo system, a servo pattern is composed of a plurality of pairs of magnetic stripes (also called "servo stripes") that are non-parallel to each other and are continuously arranged in the longitudinal direction of the magnetic tape. As mentioned above, the reason why the servo pattern is composed of a pair of non-parallel magnetic stripes is to tell the servo signal reading element passing over the servo pattern its passing position. Specifically, the above-mentioned pair of magnetic stripes are formed so that the interval between them changes continuously along the width direction of the magnetic tape, and the servo signal reading element reads the interval to read the servo pattern. The relative position of the servo signal reading element and the servo signal reading element can be known. This relative position information enables tracking of the data tracks. For this purpose, a plurality of servo tracks are usually set on the servo pattern along the width direction of the magnetic tape.

サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。 The servo band is composed of servo signals that are continuous in the longitudinal direction of the magnetic tape. A plurality of servo bands are usually provided on a magnetic tape. For example, in an LTO tape, the number is five. The area sandwiched between two adjacent servo bands is called a data band. The data band is composed of a plurality of data tracks, and each data track corresponds to each servo track.

また、一態様では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。 Further, in one aspect, as shown in Japanese Patent Application Laid-Open No. 2004-318983, each servo band includes information indicating the number of the servo band (“servo band ID (identification)” or “UDIM (Unique Data Band Identification)”). (also called "Method information") is embedded. This servo band ID is recorded by shifting a specific one of a plurality of pairs of servo stripes in the servo band so that its position is relatively displaced in the longitudinal direction of the magnetic tape. Specifically, the way in which a specific one of a plurality of pairs of servo stripes is shifted is changed for each servo band. As a result, the recorded servo band ID becomes unique for each servo band, and therefore, by simply reading one servo band with a servo signal reading element, that servo band can be uniquely identified.

なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。 Note that as a method for uniquely specifying a servo band, there is also a method using a staggered method as shown in ECMA-319. In this staggered method, a plurality of groups of non-parallel magnetic stripes (servo stripes) arranged consecutively in the longitudinal direction of the magnetic tape are recorded so as to be shifted in the longitudinal direction of the magnetic tape for each servo band. do. This combination of shifting between adjacent servo bands is unique on the entire magnetic tape, so it is possible to uniquely identify a servo band when reading a servo pattern with two servo signal reading elements. It is possible.

また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。 Furthermore, as shown in ECMA-319, each servo band is usually embedded with information indicating the position in the longitudinal direction of the magnetic tape (also called "LPOS (Longitudinal Position) information"). Like the UDIM information, this LPOS information is also recorded by shifting the positions of a pair of servo stripes in the longitudinal direction of the magnetic tape. However, unlike the UDIM information, in this LPOS information, the same signal is recorded in each servo band.

上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
It is also possible to embed other information different from the above-mentioned UDIM information and LPOS information into the servo band. In this case, the embedded information may be different for each servo band, such as UDIM information, or may be common to all servo bands, such as LPOS information.
Further, as a method of embedding information in the servo band, it is also possible to employ methods other than those described above. For example, a predetermined code may be recorded by thinning out a predetermined pair from a group of pairs of servo stripes.

サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。 The servo pattern forming head is called a servo write head. The servo write head has a pair of gaps corresponding to the pair of magnetic stripes, equal to the number of servo bands. Usually, a core and a coil are connected to each pair of gaps, and by supplying current pulses to the coils, the magnetic field generated in the core can cause a leakage magnetic field in the pair of gaps. When forming a servo pattern, by inputting a current pulse while running the magnetic tape over the servo write head, a magnetic pattern corresponding to a pair of gaps is transferred onto the magnetic tape, thereby forming a servo pattern. I can do it. The width of each gap can be appropriately set depending on the density of the servo pattern to be formed. The width of each gap can be set to, for example, 1 μm or less, 1 to 10 μm, or 10 μm or more.

磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。 Before forming servo patterns on a magnetic tape, the magnetic tape is usually subjected to demagnetization (erase) processing. This erasing process can be performed by applying a uniform magnetic field to the magnetic tape using a DC magnet or an AC magnet. Erase processing includes DC (Direct Current) erase and AC (Alternating Current) erase. AC erase is performed by gradually lowering the strength of the magnetic field while reversing the direction of the magnetic field applied to the magnetic tape. On the other hand, DC erasing is performed by applying a unidirectional magnetic field to the magnetic tape. There are two more methods for DC erase. The first method is horizontal DC erase, which applies a unidirectional magnetic field along the length of the magnetic tape. The second method is vertical DC erase, which applies a unidirectional magnetic field along the thickness of the magnetic tape. The erase process may be performed on the entire magnetic tape, or may be performed on each servo band of the magnetic tape.

形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。 The direction of the magnetic field of the servo pattern to be formed is determined depending on the erase direction. For example, when a magnetic tape is subjected to horizontal DC erasing, the servo pattern is formed such that the direction of the magnetic field is opposite to the erasing direction. Thereby, the output of the servo signal obtained by reading the servo pattern can be increased. As shown in Japanese Patent Application Laid-Open No. 2012-53940, when a magnetic pattern is transferred using the above-mentioned gap to a vertical DC erased magnetic tape, the formed servo pattern is read and obtained. The servo signal has a unipolar pulse shape. On the other hand, when a magnetic pattern is transferred onto a horizontal DC erased magnetic tape using the gap, the servo signal obtained by reading the formed servo pattern has a bipolar pulse shape.

[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
[Magnetic recording and reproducing device]
One aspect of the present invention relates to a magnetic recording/reproducing device including the above magnetic recording medium and a magnetic head.

本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体への情報の記録および磁気記録媒体に記録された情報の再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。上記磁気記録再生装置に含まれる磁気ヘッドは、磁気記録媒体への情報の記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録された情報の再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気記録再生装置に含まれる磁気ヘッドは、記録素子と再生素子の両方を1つの磁気ヘッドに備えた構成を有することもできる。再生ヘッドとしては、磁気記録媒体に記録された情報を感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、公知の各種MRヘッドを用いることができる。また、情報の記録および/または情報の再生を行う磁気ヘッドには、サーボパターン読み取り素子が含まれていてもよい。または、情報の記録および/または情報の再生を行う磁気ヘッドとは別のヘッドとして、サーボパターン読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。 In the present invention and this specification, a "magnetic recording and reproducing device" means a device that can perform at least one of recording information on a magnetic recording medium and reproducing information recorded on a magnetic recording medium. do. Such devices are commonly referred to as drives. The magnetic recording and reproducing device may be a sliding type magnetic recording and reproducing device. The magnetic head included in the magnetic recording and reproducing device may be a recording head capable of recording information on a magnetic recording medium, and a reproducing head capable of reproducing information recorded on the magnetic recording medium. It can also be. Further, in one aspect, the magnetic recording and reproducing apparatus described above can include both a recording head and a reproducing head as separate magnetic heads. In another aspect, the magnetic head included in the magnetic recording and reproducing apparatus may have a configuration in which one magnetic head includes both a recording element and a reproducing element. The reproducing head is preferably a magnetic head (MR head) that includes a magnetoresistive (MR) element as a reproducing element, which can read information recorded on a magnetic recording medium with high sensitivity. As the MR head, various known MR heads can be used. Further, a magnetic head that records information and/or reproduces information may include a servo pattern reading element. Alternatively, the magnetic recording and reproducing apparatus may include a magnetic head (servo head) equipped with a servo pattern reading element as a head other than the magnetic head that records and/or reproduces information.

上記磁気記録再生装置において、磁気記録媒体への情報の記録および磁気記録媒体に記録された情報の再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。 In the above magnetic recording/reproducing device, recording of information on the magnetic recording medium and reproduction of information recorded on the magnetic recording medium are performed by bringing the surface of the magnetic layer of the magnetic recording medium and the magnetic head into contact with each other and sliding the magnetic head. I can do it. The above-mentioned magnetic recording/reproducing device may be any device as long as it includes the magnetic recording medium according to one embodiment of the present invention, and known techniques can be applied to the other components.

以下に、本発明を実施例に基づき説明する。但し、本発明は実施例に示す態様に限定されるものではない。なお、以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。 The present invention will be explained below based on examples. However, the present invention is not limited to the embodiments shown in the examples. Note that "parts" and "%" described below indicate "parts by mass" and "% by mass" unless otherwise specified. Further, the steps and evaluations described below were performed in an environment with an ambient temperature of 23° C.±1° C. unless otherwise specified.

[実施例1]
各層形成用組成物の処方を、下記に示す。
[Example 1]
The formulation of each layer-forming composition is shown below.

<磁性層形成用組成物の処方>
(磁性液)
強磁性粉末(表1参照):100.0部
オレイン酸:2.0部
塩化ビニル共重合体(カネカ社製MR-104):表1参照
(重量平均分子量55000、OSOK基(硫酸基のカリウム塩):0.09meq/g)
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量70000、SONa基(スルホン酸基のナトリウム塩):0.07meq/g)
ポリアルキレンイミン系ポリマー(特開2016-51493号公報の段落0115~0123に記載の方法により得られた合成品):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α-アルミナ(BET(Brunauer-Emmett-Teller)比表面積19m/g):6.0部
SONa基含有ポリウレタン樹脂:0.6部
(重量平均分子量70000、SONa基:0.1meq/g)
2,3-ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(突起形成剤液)
コロイダルシリカ(平均粒子サイズ120nm):表1参照
メチルエチルケトン:8.0部
(その他の成分)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3部
<Formulation of magnetic layer forming composition>
(Magnetic liquid)
Ferromagnetic powder (see Table 1): 100.0 parts Oleic acid: 2.0 parts Vinyl chloride copolymer (MR-104 manufactured by Kaneka): See Table 1 (weight average molecular weight 55,000, OSO 3 K group (sulfate group) potassium salt): 0.09meq/g)
SO 3 Na group-containing polyurethane resin: 4.0 parts (weight average molecular weight 70000, SO 3 Na group (sodium salt of sulfonic acid group): 0.07 meq/g)
Polyalkyleneimine polymer (synthetic product obtained by the method described in paragraphs 0115 to 0123 of JP-A-2016-51493): 6.0 parts Methyl ethyl ketone: 150.0 parts Cyclohexanone: 150.0 parts (abrasive liquid )
α-Alumina (BET (Brunauer-Emmett-Teller) specific surface area 19 m 2 /g): 6.0 parts SO 3 Na group-containing polyurethane resin: 0.6 parts (weight average molecular weight 70000, SO 3 Na group: 0.1 meq /g)
2,3-dihydroxynaphthalene: 0.6 parts Cyclohexanone: 23.0 parts (projection forming agent liquid)
Colloidal silica (average particle size 120 nm): see Table 1 Methyl ethyl ketone: 8.0 parts (other ingredients)
Stearic acid: 3.0 parts Stearamide: 0.3 parts Butyl stearate: 6.0 parts Methyl ethyl ketone: 110.0 parts Cyclohexanone: 110.0 parts Polyisocyanate (Coronate (registered trademark) L manufactured by Tosoh Corporation): 3 Department

<非磁性層形成用組成物の処方>
非磁性無機粉末 α-酸化鉄(平均粒子サイズ10nm、BET比表面積75m/g):100.0部
カーボンブラック(平均粒子サイズ:20nm):25.0部
SONa基含有ポリウレタン樹脂(重量平均分子量70000、SONa基含有量0.2meq/g):18.0部
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
<Formulation of composition for forming non-magnetic layer>
Non-magnetic inorganic powder α-iron oxide (average particle size 10 nm, BET specific surface area 75 m 2 /g): 100.0 parts Carbon black (average particle size: 20 nm): 25.0 parts SO 3 Na group-containing polyurethane resin (weight Average molecular weight 70000, SO 3 Na group content 0.2 meq/g): 18.0 parts Stearic acid: 1.0 parts Cyclohexanone: 300.0 parts Methyl ethyl ketone: 300.0 parts

<バックコート層形成用組成物の処方>
非磁性無機粉末:α-酸化鉄(平均粒子サイズ:0.15μm、BET比表面積52m/g):80.0部
カーボンブラック(平均粒子サイズ:20nm):20.0部
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
<Formulation of composition for forming back coat layer>
Non-magnetic inorganic powder: α-iron oxide (average particle size: 0.15 μm, BET specific surface area 52 m 2 /g): 80.0 parts Carbon black (average particle size: 20 nm): 20.0 parts Vinyl chloride copolymer : 13.0 parts Sulfonic acid group-containing polyurethane resin: 6.0 parts Phenylphosphonic acid: 3.0 parts Cyclohexanone: 155.0 parts Methyl ethyl ketone: 155.0 parts Stearic acid: 3.0 parts Butyl stearate: 3.0 parts Part Polyisocyanate: 5.0 parts Cyclohexanone: 200.0 parts

<磁性層形成用組成物の調製>
磁性層形成用組成物を、以下の方法によって調製した。
上記磁性液の各種成分をバッチ式縦型サンドミルを用いて、表1に示す時間で分散(ビーズ分散)することにより、磁性液を調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。
研磨剤液は、上記の研磨剤液の各種成分を混合してビーズ径0.3mmのジルコニアビーズとともに横型ビーズミル分散機に入れ、ビーズ体積/(研磨剤液体積+ビーズ体積)が80%になるように調整し、120分間ビーズミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散濾過装置を用いて、超音波分散濾過処理を施した。こうして研磨剤液を調製した。
調製した磁性液および研磨剤液、ならびに上記の突起形成剤液およびその他の成分をディゾルバー攪拌機に導入し、周速10m/秒で30分間攪拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタで濾過して磁性層形成用組成物を調製した。
<Preparation of composition for forming magnetic layer>
A composition for forming a magnetic layer was prepared by the following method.
Magnetic liquids were prepared by dispersing (bead dispersion) various components of the above magnetic liquid using a batch-type vertical sand mill for the times shown in Table 1. Zirconia beads with a bead diameter of 0.5 mm were used as the dispersion beads.
For the abrasive liquid, mix the various components of the above abrasive liquid and put it into a horizontal bead mill disperser together with zirconia beads with a bead diameter of 0.3 mm, so that the bead volume / (abrasive liquid volume + bead volume) becomes 80%. The solution was adjusted as follows, subjected to bead mill dispersion treatment for 120 minutes, and the treated liquid was taken out and subjected to ultrasonic dispersion filtration treatment using a flow-type ultrasonic dispersion filtration device. A polishing liquid was thus prepared.
The prepared magnetic liquid and abrasive liquid, the above-mentioned protrusion forming agent liquid, and other components were introduced into a dissolver stirrer and stirred at a circumferential speed of 10 m/sec for 30 minutes, and then mixed with a flow type ultrasonic disperser at a flow rate of 7.5 kg. After processing the mixture for 3 passes at a speed of 1 μm/minute, it was filtered through a filter with a pore size of 1 μm to prepare a magnetic layer forming composition.

<非磁性層形成用組成物の調製>
上記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの平均孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
<Preparation of composition for forming non-magnetic layer>
The various components of the composition for forming a non-magnetic layer described above are dispersed for 24 hours using a batch type vertical sand mill using zirconia beads with a bead diameter of 0.1 mm, and then using a filter with an average pore diameter of 0.5 μm. A composition for forming a non-magnetic layer was prepared by filtering the mixture.

<バックコート層形成用組成物の調製>
上記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートおよび200.0部のシクロヘキサノンを除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パス滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバーで撹拌し、得られた分散液を1μmの平均孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
<Preparation of composition for forming back coat layer>
After kneading and diluting the various components of the above-mentioned composition for forming a back coat layer, excluding the lubricant (stearic acid and butyl stearate), polyisocyanate and 200.0 parts of cyclohexanone, using an open kneader, Using a dispersing machine, zirconia beads with a bead diameter of 1 mm were used for 12 passes of dispersion treatment, with a bead filling rate of 80% by volume, a rotor tip circumferential speed of 10 m/sec, and a residence time of 2 minutes per pass. Thereafter, the remaining components were added and stirred with a dissolver, and the resulting dispersion was filtered using a filter having an average pore size of 1 μm to prepare a composition for forming a back coat layer.

<磁気テープの作製>
厚み5.0μmのポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが400nmになるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した後、非磁性層の表面上に乾燥後の厚みが70nmになるように上記で調製した磁性層形成用組成物を塗布して塗布層を形成した。この磁性層形成用組成物の塗布層が湿潤(未乾燥)状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加する垂直配向処理を施し、乾燥させた。その後、この支持体の反対面に乾燥後の厚みが0.4μmになるように上記で調製したバックコート層形成用組成物を塗布し、乾燥させた。こうして磁気テープ原反を作製した。
作製された磁気テープ原反に対し、金属ロールのみから構成されるカレンダにより、速度100m/min、線圧300kg/cm(294kN/m)、カレンダロールの表面温度100℃でカレンダ処理(表面平滑化処理)し、その後、雰囲気温度70℃の環境で36時間、加熱処理を施した。加熱処理後、磁気テープ原反を裁断機によりスリットし、1/2インチ(0.0127メートル)幅の磁気テープを得た。この磁気テープを送り出しローラーと巻き取りローラーとの間で走行させながら(走行速度120m/分、張力:表1参照)、磁性層表面のブレード研磨、乾式拭き取り処理およびアルコール拭き取り処理としてエタノール拭き取り処理をこの順で実施した。具体的には、上記2つのローラーの間にサファイアブレード、乾いたワイピング材(東レ社製トレシー(登録商標))およびエタノールを浸潤させたワイピング材(東レ社製トレシー(登録商標))を配置し、上記2つのローラー間で走行している磁気テープの磁性層表面にサファイアブレードを押し当ててブレード研磨し、その後に上記の乾いたワイピング材により磁性層表面の乾式拭き取り処理を行い、その後に上記のエタノールを浸潤させたワイピング材により磁性層表面のエタノール拭き取り処理を行った。以上により、ブレード研磨、乾式拭き取り処理およびエタノール拭き取り処理がそれぞれ1回磁性層表面に施された。
こうして実施例1の磁気テープを得た。
<Preparation of magnetic tape>
After coating the composition for forming a nonmagnetic layer prepared above on the surface of a polyethylene naphthalate support having a thickness of 5.0 μm so that the thickness after drying becomes 400 nm and drying it to form a nonmagnetic layer. The composition for forming a magnetic layer prepared above was applied onto the surface of the nonmagnetic layer so that the thickness after drying was 70 nm to form a coating layer. While the coating layer of this magnetic layer forming composition was in a wet (undried) state, a vertical alignment treatment was performed by applying a magnetic field with a magnetic field strength of 0.3 T in a direction perpendicular to the surface of the coating layer, and the coating layer was dried. . Thereafter, the composition for forming a back coat layer prepared above was applied to the opposite side of the support so that the thickness after drying was 0.4 μm, and the composition was dried. In this way, an original magnetic tape was produced.
The produced magnetic tape material was calendered (surface smoothed) using a calender consisting only of metal rolls at a speed of 100 m/min, a linear pressure of 300 kg/cm (294 kN/m), and a surface temperature of the calender roll of 100°C. treatment), and then heat treatment was performed for 36 hours in an environment with an ambient temperature of 70°C. After the heat treatment, the original magnetic tape was slit using a cutter to obtain a magnetic tape with a width of 1/2 inch (0.0127 meters). While running this magnetic tape between a feed roller and a take-up roller (running speed 120 m/min, tension: see Table 1), the surface of the magnetic layer was subjected to blade polishing, dry wiping treatment, and ethanol wiping treatment as alcohol wiping treatment. It was carried out in this order. Specifically, a sapphire blade, a dry wiping material (Toraysee (registered trademark) manufactured by Toray Industries, Inc.), and a wiping material soaked with ethanol (Toraysee (registered trademark) manufactured by Toray Industries, Inc.) were placed between the two rollers. , a sapphire blade is pressed against the surface of the magnetic layer of the magnetic tape running between the two rollers, and the blade is polished.Then, the surface of the magnetic layer is dry-wiped with the dry wiping material described above, and then the surface of the magnetic layer described above is The surface of the magnetic layer was wiped with ethanol using a wiping material impregnated with ethanol. As described above, blade polishing, dry wiping treatment, and ethanol wiping treatment were each performed once on the surface of the magnetic layer.
In this way, the magnetic tape of Example 1 was obtained.

[実施例2~8、比較例1~6]
表1に示すように各種条件を変更した点以外、実施例1と同様の方法で磁気テープを作製した。
スリット後の磁性層表面の表面処理については、実施例2~4、6~8比較例4および比較例5では、実施例1と同様にブレード研磨、乾式拭き取り処理およびエタノール拭き取り処理を実施した。
実施例5および比較例6では、張力を変更した点以外、実施例1と同様にブレード研磨、乾式拭き取り処理およびエタノール拭き取り処理を実施した。
比較例1および比較例3では、ブレード研磨および乾式拭き取り処理は実施例1と同様に実施し、エタノール拭き取り処理は実施しなかった。
比較例2では、実施例1と同様にブレード研磨および乾式拭き取り処理を行うことを3回繰り返し、エタノール拭き取り処理は実施しなかった。
[Examples 2 to 8, Comparative Examples 1 to 6]
A magnetic tape was produced in the same manner as in Example 1 except that various conditions were changed as shown in Table 1.
Regarding the surface treatment of the magnetic layer surface after slitting, in Examples 2 to 4, 6 to 8, Comparative Example 4, and Comparative Example 5, blade polishing, dry wiping treatment, and ethanol wiping treatment were performed in the same manner as in Example 1.
In Example 5 and Comparative Example 6, blade polishing, dry wiping treatment, and ethanol wiping treatment were performed in the same manner as in Example 1 except that the tension was changed.
In Comparative Example 1 and Comparative Example 3, blade polishing and dry wiping treatment were performed in the same manner as in Example 1, and ethanol wiping treatment was not performed.
In Comparative Example 2, blade polishing and dry wiping treatment were repeated three times in the same manner as in Example 1, but ethanol wiping treatment was not performed.

表1中、「BaFe」は、平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末である。 In Table 1, "BaFe" is hexagonal barium ferrite powder with an average particle size (average plate diameter) of 21 nm.

表1中、「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
In Table 1, "SrFe1" is hexagonal strontium ferrite powder produced by the following method.
Weighed 1707g of SrCO3 , 687g of H3BO3 , 1120g of Fe2O3 , 45g of Al(OH) 3 , 24g of BaCO3 , 13g of CaCO3 , and 235g of Nd2O3 , and mixed them in a mixer. The mixture was mixed to obtain a raw material mixture.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1390°C, and while stirring the melt, the tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in the form of a rod at a rate of about 6 g/sec. . The tapped liquid was rapidly cooled by rolling with water-cooled twin rollers to produce an amorphous body.
280g of the prepared amorphous material was placed in an electric furnace, heated to 635°C (crystallization temperature) at a heating rate of 3.5°C/min, and held at the same temperature for 5 hours to form hexagonal strontium ferrite particles. Precipitated (crystallized).
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely ground in a mortar, and 1000 g of zirconia beads with a particle size of 1 mm and 800 ml of acetic acid aqueous solution with a concentration of 1% were added to a glass bottle, and dispersed in a paint shaker for 3 hours. I did it. Thereafter, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. The dispersion was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass components, then precipitated in a centrifuge, washed by repeated decantation, and then heated in a heating furnace at an internal temperature of 110°C for 6 hours. After drying for several hours, hexagonal strontium ferrite powder was obtained.
The hexagonal strontium ferrite powder obtained above has an average particle size of 18 nm, an activation volume of 902 nm 3 , an anisotropy constant Ku of 2.2×10 5 J/m 3 , and a mass magnetization σs of 49 A·m 2 / It was kg.
12 mg of sample powder was collected from the hexagonal strontium ferrite powder obtained above, and the sample powder was partially dissolved under the dissolution conditions exemplified above. The obtained filtrate was subjected to elemental analysis using an ICP analyzer, and the neodymium atoms were analyzed using an ICP analyzer. The surface layer content was determined.
Separately, 12 mg of sample powder was collected from the hexagonal strontium ferrite powder obtained above, and this sample powder was completely dissolved under the dissolution conditions exemplified above. The elemental analysis of the obtained filtrate was performed using an ICP analyzer. The bulk content of atoms was determined.
The content of neodymium atoms (bulk content) with respect to 100 atom % of iron atoms in the hexagonal strontium ferrite powder obtained above was 2.9 atom %. Further, the content of neodymium atoms in the surface layer was 8.0 at %. The ratio of the surface layer content to the bulk content, "surface layer content/bulk content," was 2.8, and it was confirmed that neodymium atoms were unevenly distributed in the surface layer of the particles.
The fact that the powder obtained above exhibits a hexagonal ferrite crystal structure was confirmed by scanning CuKα rays at a voltage of 45 kV and an intensity of 40 mA and measuring the X-ray diffraction pattern under the following conditions (X-ray diffraction analysis). confirmed. The powder obtained above exhibited a magnetoplumbite type (M type) hexagonal ferrite crystal structure. Moreover, the crystal phase detected by X-ray diffraction analysis was a single phase of magnetoplumbite type.
PANalytical X'Pert Pro diffractometer, PIXcel detector Soller slit for incident and diffracted beams: 0.017 radian Fixed angle of dispersion slit: 1/4 degree Mask: 10 mm
Anti-scatter slit: 1/4 degree Measurement mode: Continuous Measurement time per step: 3 seconds Measurement speed: 0.017 degrees per second Measurement step: 0.05 degrees

表1中、「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gおよび濃度1%の酢酸水溶液800mlを加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
In Table 1, "SrFe2" is hexagonal strontium ferrite powder produced by the following method.
1725 g of SrCO 3 , 666 g of H 3 BO 3 , 1332 g of Fe 2 O 3 , 52 g of Al(OH) 3 , 34 g of CaCO 3 and 141 g of BaCO 3 were weighed and mixed in a mixer to obtain a raw material mixture.
The obtained raw material mixture was melted in a platinum crucible at a melting temperature of 1380°C, and while stirring the melt, the tap hole provided at the bottom of the platinum crucible was heated, and the melt was tapped in the form of a rod at a rate of about 6 g/sec. . The tapped liquid was rapidly cooled and rolled using water-cooled twin rolls to produce an amorphous body.
280 g of the obtained amorphous material was placed in an electric furnace, heated to 645° C. (crystallization temperature), and held at the same temperature for 5 hours to precipitate (crystallize) hexagonal strontium ferrite particles.
Next, the crystallized product obtained above containing hexagonal strontium ferrite particles was coarsely ground in a mortar, and 1000 g of zirconia beads with a particle size of 1 mm and 800 ml of acetic acid aqueous solution with a concentration of 1% were added to a glass bottle, and dispersed in a paint shaker for 3 hours. I did it. Thereafter, the resulting dispersion was separated from the beads and placed in a stainless steel beaker. The dispersion was allowed to stand at a liquid temperature of 100°C for 3 hours to dissolve the glass components, then precipitated in a centrifuge, washed by repeated decantation, and then heated in a heating furnace at an internal temperature of 110°C for 6 hours. After drying for several hours, hexagonal strontium ferrite powder was obtained.
The average particle size of the obtained hexagonal strontium ferrite powder was 19 nm, the activation volume was 1102 nm 3 , the anisotropy constant Ku was 2.0×10 5 J/m 3 , and the mass magnetization σs was 50 A·m 2 /kg. there were.

表1中、「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.58Fe1.42)であった。また、先にSrFe1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
In Table 1, "ε-iron oxide" is ε-iron oxide powder produced by the following method.
90 g of pure water, 8.3 g of iron (III) nitrate nonahydrate, 1.3 g of gallium (III) nitrate octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate, and To a solution of 1.5 g of polyvinylpyrrolidone (PVP), while stirring using a magnetic stirrer, 4.0 g of an ammonia aqueous solution with a concentration of 25% was added in the atmosphere at an ambient temperature of 25°C. The mixture was stirred for 2 hours while maintaining the ambient temperature at 25°C. A citric acid solution obtained by dissolving 1 g of citric acid in 9 g of pure water was added to the obtained solution, and the mixture was stirred for 1 hour. The powder precipitated after stirring was collected by centrifugation, washed with pure water, and dried in a heating furnace with an internal temperature of 80°C.
800 g of pure water was added to the dried powder and the powder was again dispersed in water to obtain a dispersion. The temperature of the resulting dispersion was raised to 50° C., and 40 g of a 25% ammonia aqueous solution was added dropwise while stirring. After stirring for 1 hour while maintaining the temperature at 50° C., 14 mL of tetraethoxysilane (TEOS) was added dropwise, and the mixture was stirred for 24 hours. 50 g of ammonium sulfate was added to the resulting reaction solution, and the precipitated powder was collected by centrifugation, washed with pure water, and dried in a heating furnace at an internal temperature of 80°C for 24 hours to obtain a ferromagnetic powder precursor. Obtained.
The obtained ferromagnetic powder precursor was loaded into a heating furnace with an internal temperature of 1000° C. under an air atmosphere, and heat-treated for 4 hours.
The heat-treated ferromagnetic powder precursor was poured into a 4 mol/L sodium hydroxide (NaOH) aqueous solution, and stirred for 24 hours while maintaining the liquid temperature at 70°C. The impurity silicic acid compound was removed from the precursor.
Thereafter, the ferromagnetic powder from which the silicic acid compound had been removed was collected by centrifugation and washed with pure water to obtain ferromagnetic powder.
The composition of the obtained ferromagnetic powder was confirmed by high-frequency inductively coupled plasma-optical emission spectrometry (ICP-OES), and it was found that it contained Ga, Co, and Ti substituted ε-iron oxide (ε-Ga 0 .58 Fe 1.42 O 3 ). In addition, X-ray diffraction analysis was performed under the same conditions as described above for SrFe1, and from the peaks of the X-ray diffraction pattern, it was confirmed that the obtained ferromagnetic powder does not contain the crystal structure of α phase and γ phase, ε It was confirmed that the material had a single-phase crystal structure (ε-iron oxide type crystal structure).
The average particle size of the obtained ε-iron oxide powder was 12 nm, the activation volume was 746 nm 3 , the anisotropy constant Ku was 1.2×10 5 J/m 3 , and the mass magnetization σs was 16 A·m 2 /kg. there were.

上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
The activation volume and anisotropy constant Ku of the hexagonal strontium ferrite powder and ε-iron oxide powder described above were previously described for each ferromagnetic powder using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.). This is the value obtained by the method.
Moreover, the mass magnetization σs is a value measured at a magnetic field strength of 15 kOe using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd.).

[磁気テープの評価]
(1)磁性層の表面において測定される中心線平均表面粗さRa(磁性層表面粗さRa)
原子間力顕微鏡(AFM、Veeco社製Nanoscope4)をタッピングモードで用いて、磁気テープの磁性層表面において測定面積40μm×40μmの範囲を測定し、中心線平均表面粗さRaを求めた。探針としてはBRUKER社製RTESP-300を使用し、スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとした。
[Evaluation of magnetic tape]
(1) Center line average surface roughness Ra measured on the surface of the magnetic layer (magnetic layer surface roughness Ra)
Using an atomic force microscope (AFM, Nanoscope 4 manufactured by Veeco) in tapping mode, a measurement area of 40 μm×40 μm was measured on the surface of the magnetic layer of the magnetic tape, and the center line average surface roughness Ra was determined. As the probe, RTESP-300 manufactured by BRUKER was used, the scanning speed (probe moving speed) was 40 μm/sec, and the resolution was 512 pixels×512 pixels.

(2)エタノール洗浄前後のスペーシング差分(Safter-Sbefore
TSA(Tape Spacing Analyzer(Micro Physics社製))を用いて、以下の方法により、エタノール洗浄前後のスペーシング差分(Safter-Sbefore)を求めた。
実施例および比較例の各磁気テープから長さ5cmの試料片を2つ切り出し、一方の試料片についてはエタノール洗浄を行わずに、以下の方法によりスペーシング(Sbefore)を求めた。他方の試料片については先に記載した方法によりエタノール洗浄を行った後に、以下の方法によりスペーシング(Safter)を求めた。
磁気テープ(詳しくは上記試料片)の磁性層表面上に、TSAに備えられたガラス板(Thorlabs,Inc.社製ガラス板(型番:WG10530))を配置した状態で、押圧部材としてTSAに備えられているウレタン製の半球を用いて、この半球を磁気テープのバックコート層表面に、5.05×10N/m(0.5atm)の圧力で押しつけた。この状態で、TSAに備えられているストロボスコープから白色光を、ガラス板を通して磁気テープの磁性層表面の一定領域(150000~200000μm)に照射し、得られる反射光を、干渉フィルタ(波長633nmの光を選択的に透過するフィルタ)を通してCCD(Charge-Coupled Device)で受光することで、この領域の凹凸で生じた干渉縞画像を得た。
この画像を300000ポイントに分割して各ポイントのガラス板の磁気テープ側の表面から磁気テープの磁性層表面までの距離(スペーシング)を求めこれをヒストグラムとし、エタノール洗浄後の試料片について得られたヒストグラムの最頻値Safterから、エタノール洗浄なしの試料片について得られたヒストグラムの最頻値Sbeforeを差し引いて、差分(Safter-Sbefore)を求めた。
(2) Spacing difference before and after ethanol cleaning (S after -S before )
Using TSA (Tape Spacing Analyzer (manufactured by Micro Physics)), the spacing difference (S after - S before ) before and after ethanol cleaning was determined by the following method.
Two sample pieces with a length of 5 cm were cut out from each of the magnetic tapes of Examples and Comparative Examples, and the spacing (S before ) of one of the sample pieces was determined by the following method without washing with ethanol. The other sample piece was washed with ethanol by the method described above, and then the spacing ( Safter ) was determined by the following method.
A glass plate (glass plate manufactured by Thorlabs, Inc. (model number: WG10530)) provided in the TSA was placed on the surface of the magnetic layer of the magnetic tape (more specifically, the above sample piece), and the glass plate provided in the TSA was placed as a pressing member. Using a hemisphere made of urethane, this hemisphere was pressed against the surface of the back coat layer of the magnetic tape at a pressure of 5.05×10 4 N/m (0.5 atm). In this state, white light from a stroboscope installed in the TSA is irradiated onto a certain area (150,000 to 200,000 μm 2 ) of the surface of the magnetic layer of the magnetic tape through the glass plate, and the resulting reflected light is filtered through an interference filter (wavelength: 633 nm). By receiving the light with a CCD (Charge-Coupled Device) through a filter that selectively transmits the light, an image of interference fringes caused by the unevenness of this area was obtained.
This image is divided into 300,000 points, and the distance (spacing) from the surface of the glass plate on the magnetic tape side to the surface of the magnetic layer of the magnetic tape at each point is calculated and used as a histogram. The difference (S after - S before ) was obtained by subtracting the mode S before of the histogram obtained for the sample piece without ethanol washing from the mode S after of the histogram.

(3)n-ヘキサン洗浄前後のスペーシング差分(Sreference-Sbefore)(参考値)
実施例および比較例の各磁気テープから長さ5cmの試料片を更に1つ切り出し、エタノールに代えてn-ヘキサンを用いた点以外は上記と同様に洗浄した後に上記と同様にn-ヘキサン洗浄後のスペーシングを求めた。参考値として、ここで求められたスペーシングSreferenceと上記(2)で求めた洗浄なしの試料片について得られたスペーシングSbeforeの差分(Sreference-Sbefore)を求めた。
(3) Spacing difference before and after n-hexane cleaning (S reference -S before ) (reference value)
Another sample piece of 5 cm in length was cut out from each of the magnetic tapes of Examples and Comparative Examples, and washed in the same manner as above except that n-hexane was used instead of ethanol, and then washed with n-hexane in the same manner as above. Asked for later spacing. As a reference value, the difference (S reference - S before ) between the spacing S reference obtained here and the spacing S before obtained for the unwashed sample piece obtained in (2) above was determined.

(4)電磁変換特性(SNR(Signal-to-Noise-Ratio))
雰囲気温度23℃および相対湿度50%の環境下にて、実施例および比較例の各磁気テープについて、ヘッドを固定した1/2インチ(0.0127メートル)リールテスターを用いて以下の方法によりSNRを測定した。
ヘッド/テープ相対速度を5.5m/secとし、記録は、記録ヘッドとしてMIG(Metal-in-gap)ヘッド(ギャップ長0.15μm、トラック幅1.0μm、1.8T)を使用し、記録電流を各磁気テープの最適記録電流に設定して行った。再生は、再生ヘッドとしてGMR(Giant-magnetoresistive)ヘッド(素子厚み15nm、シールド間隔0.1μm、トラック幅1.0μm)を使用して行った。線記録密度325kfciの信号を記録し、再生信号をシバソク社製のスペクトラムアナライザーで測定した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。信号としては、磁気テープ走行開始後に信号が十分に安定した部分を使用した。以上の条件で記録および再生を行い、キャリア信号の出力値と、スペクトル全帯域の積分ノイズとの比をSNRとし、比較例1を基準(0dB)としたときの相対値として求めたSNR(Broadband-SNR)を表1に示した。ここで求められたSNRが0dB以上であれば、良好な電磁変換特性を有すると評価することができる。
(4) Electromagnetic conversion characteristics (SNR (Signal-to-Noise-Ratio))
In an environment with an ambient temperature of 23°C and a relative humidity of 50%, the SNR of each of the magnetic tapes of Examples and Comparative Examples was measured using a 1/2 inch (0.0127 meter) reel tester with a fixed head according to the following method. was measured.
The head/tape relative speed was 5.5 m/sec, and a MIG (Metal-in-gap) head (gap length 0.15 μm, track width 1.0 μm, 1.8T) was used as the recording head. The current was set to the optimum recording current for each magnetic tape. Reproduction was performed using a GMR (Giant-magnetoresistive) head (element thickness 15 nm, shield interval 0.1 μm, track width 1.0 μm) as a reproduction head. A signal was recorded at a linear recording density of 325 kfci, and the reproduced signal was measured using a spectrum analyzer manufactured by Shibasoku. The unit kfci is a unit of linear recording density (cannot be converted to the SI unit system). As the signal, a portion where the signal was sufficiently stable after the magnetic tape started running was used. Recording and playback were performed under the above conditions, and the ratio between the output value of the carrier signal and the integrated noise of the entire spectrum band was taken as the SNR, and the SNR (Broadband -SNR) are shown in Table 1. If the SNR obtained here is 0 dB or more, it can be evaluated as having good electromagnetic conversion characteristics.

(5)低湿下での高温から低温への温度変化に起因するSNR低下分
実施例および比較例の各磁気テープを、上記(4)で電磁変換特性を評価した後、内部が温度32℃相対湿度20%に保たれたサーモボックスに3時間保管した。その後、磁気テープをサーモボックスから取出し(外気は温度23℃相対湿度50%)、1分以内に内部が温度10℃相対湿度20%に保たれたサーモルームに入れた後、30分以内にサーモルームにおいて上記(4)と同様に記録および再生を3000パス行い、1パス目のSNRと3000パス目のSNRとの差分(3000パス目のSNR-1パス目のSNR)を算出し、SNR低下分とした。ここで求められたSNR低下分が-1.0dB以内であれば、低湿下での高温から低温への温度変化に起因するSNRの低下が抑制されていると評価することができる。
(5) Decreased SNR due to temperature change from high temperature to low temperature under low humidity After evaluating the electromagnetic conversion characteristics of each magnetic tape of the example and comparative example in (4) above, It was stored for 3 hours in a thermobox maintained at 20% humidity. After that, take out the magnetic tape from the thermo box (outside air temperature is 23 degrees Celsius and relative humidity 50%), put it into the thermo room where the inside temperature is kept at 10 degrees Celsius and 20% relative humidity within 1 minute, and then put it into the thermo room within 30 minutes. Perform 3000 passes of recording and playback in the same manner as in (4) above in the room, calculate the difference between the SNR of the 1st pass and the SNR of the 3000th pass (SNR of the 3000th pass - SNR of the 1st pass), and calculate the SNR reduction. It was a minute. If the SNR reduction determined here is within -1.0 dB, it can be evaluated that the SNR reduction due to temperature change from high temperature to low temperature under low humidity is suppressed.

以上の結果を表1(表1-1、表1-2)に示す。 The above results are shown in Table 1 (Table 1-1, Table 1-2).

表1に示すように、実施例の磁気テープは、磁性層表面粗さRaが1.0nm以上1.6nm以下であり、表面平滑性が高い磁性層を有する。電磁変換特性の評価結果(SNR)から、これら実施例の磁気テープが電磁変換特性に優れることが確認できる。
更に、実施例の磁気テープは、上記の通り磁性層の表面平滑性が高く、かつエタノール洗浄前後のスペーシング差分(Safter-Sbefore)が0nm超6.0nm以下である。これら実施例の磁気テープは、表1に示すように、低湿下での高温から低温への温度変化に晒されてもSNR低下分が比較例の磁気テープと比べて小さい。
また、表1に示すように、n-ヘキサン洗浄前後のスペーシング差分(Sreference-Sbefore)の値とエタノール洗浄前後のスペーシング差分(Safter-Sbefore)の値との間には相関は見られない。
As shown in Table 1, the magnetic tape of the example has a magnetic layer surface roughness Ra of 1.0 nm or more and 1.6 nm or less, and has a magnetic layer with high surface smoothness. From the evaluation results (SNR) of electromagnetic conversion characteristics, it can be confirmed that the magnetic tapes of these Examples have excellent electromagnetic conversion characteristics.
Further, in the magnetic tape of the example, the surface smoothness of the magnetic layer is high as described above, and the spacing difference (S after −S before ) before and after ethanol cleaning is more than 0 nm and less than 6.0 nm. As shown in Table 1, the magnetic tapes of these Examples have a smaller SNR drop than the magnetic tapes of Comparative Examples even when exposed to temperature changes from high to low temperatures under low humidity.
Furthermore, as shown in Table 1, there is a correlation between the value of the spacing difference (S reference −S before ) before and after cleaning with n-hexane and the value of the spacing difference (S after −S before ) before and after cleaning with ethanol. cannot be seen.

本発明の一態様は、各種データストレージ用磁気記録媒体の技術分野において有用である。 One embodiment of the present invention is useful in the technical field of magnetic recording media for various data storages.

Claims (7)

非磁性支持体上に強磁性粉末を含む磁性層を有する磁気記録媒体であって、
前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有し、
前記非磁性層の厚みは50nm以上800nm以下であり、
前記磁性層の表面において測定される中心線平均表面粗さRaは1.0nm以上1.6nm以下であり、かつ
前記磁性層の表面においてエタノール洗浄後に光学干渉法により測定されるスペーシングSafterと、前記磁性層の表面においてエタノール洗浄前に光学干渉法により測定されるスペーシングSbeforeとの差分、Safter-Sbefore、は0nm超6.0nm以下である磁気記録媒体。
A magnetic recording medium having a magnetic layer containing ferromagnetic powder on a non-magnetic support,
A non-magnetic layer containing non-magnetic powder is provided between the non-magnetic support and the magnetic layer,
The thickness of the nonmagnetic layer is 50 nm or more and 800 nm or less,
The center line average surface roughness Ra measured on the surface of the magnetic layer is 1.0 nm or more and 1.6 nm or less, and the spacing S after is measured on the surface of the magnetic layer by optical interferometry after washing with ethanol. , a difference between the spacing S before measured by optical interferometry on the surface of the magnetic layer before cleaning with ethanol, S after −S before , is greater than 0 nm and less than or equal to 6.0 nm.
前記差分、Safter-Sbefore、は1.0nm以上6.0nm以下である、請求項1に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the difference, S after −S before , is 1.0 nm or more and 6.0 nm or less. 前記差分、Safter-Sbefore、は2.0nm以上5.0nm以下である、請求項1または2に記載の磁気記録媒体。 3. The magnetic recording medium according to claim 1, wherein the difference, S after −S before , is 2.0 nm or more and 5.0 nm or less. 前記非磁性層の厚みは70nm以上500nm以下である、請求項1~3のいずれか1項に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the nonmagnetic layer has a thickness of 70 nm or more and 500 nm or less. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1~4のいずれか1項に記載の磁気記録媒体。 5. The magnetic recording medium according to claim 1, further comprising a back coat layer containing nonmagnetic powder on a surface side of the nonmagnetic support opposite to a surface side having the magnetic layer. 磁気テープである、請求項1~5のいずれか1項に記載の磁気記録媒体。 The magnetic recording medium according to any one of claims 1 to 5, which is a magnetic tape. 請求項1~6のいずれか1項に記載の磁気記録媒体と、
磁気ヘッドと、
を含む磁気記録再生装置。
A magnetic recording medium according to any one of claims 1 to 6,
magnetic head,
magnetic recording and reproducing devices including;
JP2023028851A 2018-03-29 2023-02-27 Magnetic recording media and magnetic recording/reproducing devices Active JP7411128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023217245A JP7566118B2 (en) 2018-03-29 2023-12-22 Magnetic recording medium and magnetic recording/reproducing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018064064 2018-03-29
JP2018064064 2018-03-29
JP2020208773A JP6868743B2 (en) 2018-03-29 2020-12-16 Magnetic recording medium and magnetic recording / playback device
JP2021066845A JP7236492B2 (en) 2018-03-29 2021-04-12 Magnetic recording medium and magnetic recording/reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021066845A Division JP7236492B2 (en) 2018-03-29 2021-04-12 Magnetic recording medium and magnetic recording/reproducing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023217245A Division JP7566118B2 (en) 2018-03-29 2023-12-22 Magnetic recording medium and magnetic recording/reproducing device

Publications (2)

Publication Number Publication Date
JP2023054371A JP2023054371A (en) 2023-04-13
JP7411128B2 true JP7411128B2 (en) 2024-01-10

Family

ID=68167171

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2019054754A Active JP6812484B2 (en) 2018-03-29 2019-03-22 Magnetic recording medium and magnetic recording / playback device
JP2020208773A Active JP6868743B2 (en) 2018-03-29 2020-12-16 Magnetic recording medium and magnetic recording / playback device
JP2021066845A Active JP7236492B2 (en) 2018-03-29 2021-04-12 Magnetic recording medium and magnetic recording/reproducing device
JP2023028851A Active JP7411128B2 (en) 2018-03-29 2023-02-27 Magnetic recording media and magnetic recording/reproducing devices
JP2023217245A Active JP7566118B2 (en) 2018-03-29 2023-12-22 Magnetic recording medium and magnetic recording/reproducing device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2019054754A Active JP6812484B2 (en) 2018-03-29 2019-03-22 Magnetic recording medium and magnetic recording / playback device
JP2020208773A Active JP6868743B2 (en) 2018-03-29 2020-12-16 Magnetic recording medium and magnetic recording / playback device
JP2021066845A Active JP7236492B2 (en) 2018-03-29 2021-04-12 Magnetic recording medium and magnetic recording/reproducing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023217245A Active JP7566118B2 (en) 2018-03-29 2023-12-22 Magnetic recording medium and magnetic recording/reproducing device

Country Status (1)

Country Link
JP (5) JP6812484B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788069B2 (en) * 2019-05-15 2020-11-18 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device
JP6778787B1 (en) * 2019-05-15 2020-11-04 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device
WO2021149680A1 (en) * 2020-01-21 2021-07-29 ソニーグループ株式会社 Magnetic recording medium and cartridge
JP7247128B2 (en) 2020-01-31 2023-03-28 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP7232206B2 (en) * 2020-02-28 2023-03-02 富士フイルム株式会社 Magnetic Recording Media, Magnetic Tape Cartridges and Magnetic Recording/Reproducing Devices
JP7249969B2 (en) * 2020-03-13 2023-03-31 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic recording/playback devices
JP6858906B2 (en) * 2020-07-17 2021-04-14 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device
JP6884257B2 (en) * 2020-07-17 2021-06-09 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device
JP7266016B2 (en) * 2020-10-29 2023-04-27 富士フイルム株式会社 Magnetic recording medium and magnetic recording/reproducing device
JP7287935B2 (en) * 2020-10-29 2023-06-06 富士フイルム株式会社 Magnetic recording medium and magnetic recording/reproducing device
JPWO2022211065A1 (en) * 2021-03-31 2022-10-06

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229529A (en) 2000-02-15 2001-08-24 Sony Corp Method for quantitative analysis of surface lubricant on magnetic recording medium
JP2012043495A (en) 2010-08-17 2012-03-01 Hitachi Maxell Ltd Magnetic recording medium
JP2017174476A (en) 2016-03-23 2017-09-28 富士フイルム株式会社 Magnetic tape and magnetic tape apparatus
JP2019175535A (en) 2018-03-29 2019-10-10 富士フイルム株式会社 Magnetic recording medium and magnetic recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229529A (en) 2000-02-15 2001-08-24 Sony Corp Method for quantitative analysis of surface lubricant on magnetic recording medium
JP2012043495A (en) 2010-08-17 2012-03-01 Hitachi Maxell Ltd Magnetic recording medium
JP2017174476A (en) 2016-03-23 2017-09-28 富士フイルム株式会社 Magnetic tape and magnetic tape apparatus
JP2019175535A (en) 2018-03-29 2019-10-10 富士フイルム株式会社 Magnetic recording medium and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP2021101405A (en) 2021-07-08
JP2019175537A (en) 2019-10-10
JP7566118B2 (en) 2024-10-11
JP2023054371A (en) 2023-04-13
JP6868743B2 (en) 2021-05-12
JP7236492B2 (en) 2023-03-09
JP6812484B2 (en) 2021-01-13
JP2021044053A (en) 2021-03-18
JP2024019684A (en) 2024-02-09

Similar Documents

Publication Publication Date Title
JP7411128B2 (en) Magnetic recording media and magnetic recording/reproducing devices
JP6778787B1 (en) Magnetic recording medium and magnetic recording / playback device
JP6788069B2 (en) Magnetic recording medium and magnetic recording / playback device
JP7128147B2 (en) Magnetic recording medium and magnetic recording/reproducing device
JP7406662B2 (en) Magnetic tape and magnetic recording/playback equipment
JP2020184386A (en) Magnetic recording medium and magnetic record reproduction device
JP6852217B2 (en) Magnetic recording medium and magnetic recording / playback device
JP7422912B2 (en) Magnetic tape and magnetic recording/playback equipment
JP7351824B2 (en) Magnetic recording media and magnetic recording/reproducing devices
JP6884257B2 (en) Magnetic recording medium and magnetic recording / playback device
JP7422920B2 (en) Magnetic recording media and magnetic recording/reproducing devices
JP7266016B2 (en) Magnetic recording medium and magnetic recording/reproducing device
JP6858906B2 (en) Magnetic recording medium and magnetic recording / playback device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7411128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150