JP7410407B2 - Deformation resistance calculation device, deformation resistance calculation method and program - Google Patents

Deformation resistance calculation device, deformation resistance calculation method and program Download PDF

Info

Publication number
JP7410407B2
JP7410407B2 JP2020117591A JP2020117591A JP7410407B2 JP 7410407 B2 JP7410407 B2 JP 7410407B2 JP 2020117591 A JP2020117591 A JP 2020117591A JP 2020117591 A JP2020117591 A JP 2020117591A JP 7410407 B2 JP7410407 B2 JP 7410407B2
Authority
JP
Japan
Prior art keywords
work hardening
deformation resistance
hardening index
variable
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020117591A
Other languages
Japanese (ja)
Other versions
JP2022015013A (en
Inventor
敦 鈴木
修 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020117591A priority Critical patent/JP7410407B2/en
Publication of JP2022015013A publication Critical patent/JP2022015013A/en
Application granted granted Critical
Publication of JP7410407B2 publication Critical patent/JP7410407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、変形抵抗算出装置、変形抵抗算出方法およびプログラムに関する。 The present invention relates to a deformation resistance calculation device, a deformation resistance calculation method, and a program.

鋼材などの変形抵抗を圧縮試験によって測定する方法として、例えば非特許文献1に記載されているような端面拘束圧縮試験が知られている。端面拘束圧縮試験では円柱状の試験片が用いられ、試験片の両端面の中心には円錐形の凹部が形成される。この試験片の両端面を、中心に円錐形の凸部が、その周りに同心円状の突条が形成された挟持面を有する1対の治具で挟持し、試験片の軸方向に圧縮する。これによって、試験片の端面が径方向について変位を拘束された状態で、試験片が軸方向に圧縮される。非特許文献1には、所定の校正曲線を用いて摩擦力の影響を補正し、圧縮率と荷重との関係を相当塑性ひずみと変形抵抗との関係に変換する方法が記載されている。非特許文献1に記載された校正曲線を用いる方法は、摩擦力が変形抵抗に及ぼす影響を簡便に定量化できるため、変形抵抗を高ひずみ域まで測定する方法として広く用いられている。 As a method for measuring the deformation resistance of steel materials or the like by a compression test, an end face restraint compression test is known, for example, as described in Non-Patent Document 1. In the end face restraint compression test, a cylindrical test piece is used, and a conical recess is formed at the center of both end faces of the test piece. Both end surfaces of this test piece are held between a pair of jigs that have a holding surface with a conical protrusion in the center and a concentric protrusion around the convex part, and compressed in the axial direction of the test piece. . As a result, the test piece is compressed in the axial direction while the end face of the test piece is restrained from displacing in the radial direction. Non-Patent Document 1 describes a method of correcting the influence of frictional force using a predetermined calibration curve and converting the relationship between compressibility and load into the relationship between equivalent plastic strain and deformation resistance. The method using a calibration curve described in Non-Patent Document 1 is widely used as a method for measuring deformation resistance up to a high strain range because the influence of frictional force on deformation resistance can be easily quantified.

K. Oaskada, T. Kawasaki & K. Mori, "A Method of Determining Flow Stress under Forming Conditions," Ann. CIRP, 30-1 (1981), pp. 135-138.K. Oaskada, T. Kawasaki & K. Mori, "A Method of Determining Flow Stress under Forming Conditions," Ann. CIRP, 30-1 (1981), pp. 135-138.

しかしながら、上記の非特許文献1に記載された校正曲線(以下、「小坂田らの校正曲線」ともいう)を用いて取得された変形抵抗をFEMに適用して成形解析を実施すると、成形荷重を実際よりも8%程度低く見積もる場合があることが、本発明者らの研究の結果わかった。さらに本発明者らが鋭意検討した結果、圧縮率から平均相当塑性ひずみを算出するための校正曲線は実際には加工硬化指数への依存性が存在するにも関わらず、小坂田らの校正曲線はそれを考慮していないことが誤差の原因の一つであることがわかった。例えば成形に用いる金型の寿命を最大化するためには金型への負荷を正確に算出する必要があるため、端面拘束圧縮試験において変形抵抗をより正確に算出することが求められている。 However, when performing forming analysis by applying the deformation resistance obtained using the calibration curve described in the above-mentioned non-patent document 1 (hereinafter also referred to as "Osakata et al.'s calibration curve") to FEM, the forming load As a result of research conducted by the present inventors, it was found that there are cases where the actual value is estimated to be about 8% lower than the actual value. Furthermore, as a result of intensive study by the present inventors, the calibration curve for calculating the average equivalent plastic strain from the compressibility ratio actually depends on the work hardening index, but the calibration curve of Osakata et al. It was found that one of the causes of error was that this was not taken into consideration. For example, in order to maximize the life of a mold used for molding, it is necessary to accurately calculate the load on the mold, so there is a need to more accurately calculate the deformation resistance in an end face restraint compression test.

そこで、本発明は、端面拘束圧縮試験を用いたことにより算出される変形抵抗の精度を向上させることが可能な変形抵抗算出装置、変形抵抗算出方法およびプログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a deformation resistance calculation device, a deformation resistance calculation method, and a program that can improve the accuracy of deformation resistance calculated by using an end face restraint compression test.

[1]端面拘束圧縮試験において測定された試験片の圧縮率から第1の多項式近似曲線を用いて端面拘束圧縮試験における試験片の拘束係数を算出する拘束係数算出部と、試験片の圧縮率および第1の加工硬化指数から第2の多項式近似曲線を用いて端面拘束圧縮試験における試験片の平均相当塑性ひずみを算出するひずみ算出部と、端面拘束圧縮試験において測定された荷重および前記拘束係数を用いて算出された試験片の変形抵抗と、前記平均相当塑性ひずみとの関係を示す変形抵抗曲線に、加工硬化指数を変数として含む硬化関数を回帰させることによって第2の加工硬化指数を決定する硬化関数回帰部と、第2の加工硬化指数と第1の加工硬化指数との差分が閾値を下回る場合には変形抵抗曲線または回帰させられた硬化関数を出力し、そうでない場合には第1の加工硬化指数を更新してひずみ算出部に平均相当塑性ひずみを再算出させる差分判定部とを備える変形抵抗算出装置。
[2]第2の多項式近似曲線は、圧縮率を変数とする多項式、および第1の加工硬化指数を変数として前記多項式の係数を定義する指数関数式によって定義される、[1]に記載の変形抵抗算出装置。
[3]第1の多項式近似曲線は、前記圧縮率を変数として含み、加工硬化指数を変数として含まない、[1]または[2]に記載の変形抵抗算出装置。
[4]端面拘束圧縮試験において測定された試験片の圧縮率から第1の多項式近似曲線を用いて端面拘束圧縮試験における試験片の拘束係数を算出するステップと、試験片の圧縮率および第1の加工硬化指数から第2の多項式近似曲線を用いて端面拘束圧縮試験における試験片の平均相当塑性ひずみを算出するステップと、端面拘束圧縮試験において測定された荷重および前記拘束係数を用いて算出された試験片の変形抵抗と、前記平均相当塑性ひずみとの関係を示す変形抵抗曲線に、加工硬化指数を変数として含む硬化関数を回帰させることによって第2の加工硬化指数を決定するステップと、第2の加工硬化指数と第1の加工硬化指数との差分が閾値を下回る場合には変形抵抗曲線または回帰させられた硬化関数を出力し、そうでない場合には第1の加工硬化指数を更新して平均相当塑性ひずみを算出するステップを再実行するステップとを含む変形抵抗算出方法。
[5]第2の多項式近似曲線は、圧縮率を変数とする多項式、および第1の加工硬化指数を変数として多項式の係数を定義する指数関数式によって定義される、[4]に記載の変形抵抗算出方法。
[6]第1の多項式近似曲線は、圧縮率を変数として含み、加工硬化指数を変数として含まない、[4]または[5]に記載の変形抵抗算出方法。
[7]端面拘束圧縮試験において測定された試験片の圧縮率から第1の多項式近似曲線を用いて端面拘束圧縮試験における試験片の拘束係数を算出する機能と、試験片の圧縮率および第1の加工硬化指数から第2の多項式近似曲線を用いて端面拘束圧縮試験における試験片の平均相当塑性ひずみを算出する機能と、端面拘束圧縮試験において測定された荷重および前記拘束係数を用いて算出された試験片の変形抵抗と、平均相当塑性ひずみとの関係を示す変形抵抗曲線に、加工硬化指数を変数として含む硬化関数を回帰させることによって第2の加工硬化指数を決定する機能と、第2の加工硬化指数と第1の加工硬化指数との差分が閾値を下回る場合には変形抵抗曲線または回帰させられた硬化関数を出力し、そうでない場合には第1の加工硬化指数を更新して平均相当塑性ひずみを算出する機能を再実行する機能とをコンピュータに実現させるためのプログラム。
[8]第2の多項式近似曲線は、圧縮率を変数とする多項式、および第1の加工硬化指数を変数として多項式の係数を定義する指数関数式によって定義される、[7]に記載のプログラム。
[9]第1の多項式近似曲線は、圧縮率を変数として含み、加工硬化指数を変数として含まない、[7]または[8]に記載のプログラム。
[1] A restraint coefficient calculation unit that calculates the restraint coefficient of the test piece in the end face restraint compression test using the first polynomial approximation curve from the compressibility of the test piece measured in the end face restraint compression test, and the compression ratio of the test piece. and a strain calculation unit that calculates the average equivalent plastic strain of the test piece in the end face restraint compression test using a second polynomial approximation curve from the first work hardening index, and the load measured in the end face restraint compression test and the restraint coefficient. Determine the second work hardening index by regressing a hardening function that includes the work hardening index as a variable onto the deformation resistance curve showing the relationship between the deformation resistance of the test piece calculated using the method and the average equivalent plastic strain. If the difference between the second work hardening index and the first work hardening index is less than a threshold value, the hardening function regression unit outputs the deformation resistance curve or the regressed hardening function; A deformation resistance calculation device comprising: a difference determination unit that updates a work hardening index of 1 and causes a strain calculation unit to recalculate an average equivalent plastic strain.
[2] The second polynomial approximation curve is defined by a polynomial with the compression ratio as a variable, and an exponential function formula that defines the coefficients of the polynomial with the first work hardening index as a variable. Deformation resistance calculation device.
[3] The deformation resistance calculation device according to [1] or [2], wherein the first polynomial approximate curve includes the compression ratio as a variable and does not include the work hardening index as a variable.
[4] Calculating the restraint coefficient of the test piece in the end face restraint compression test using the first polynomial approximation curve from the compressibility of the test piece measured in the end face restraint compression test; calculating the average equivalent plastic strain of the test piece in the end face restraint compression test using a second polynomial approximation curve from the work hardening index; determining a second work hardening index by regressing a hardening function including the work hardening index as a variable on a deformation resistance curve showing the relationship between the deformation resistance of the test piece and the average equivalent plastic strain; If the difference between the work hardening index No. 2 and the first work hardening index is less than a threshold value, the deformation resistance curve or the regressed hardening function is output, and if not, the first work hardening index is updated. and re-executing the step of calculating the average equivalent plastic strain.
[5] The modification according to [4], wherein the second polynomial approximation curve is defined by a polynomial with the compression ratio as a variable and an exponential function formula that defines the coefficients of the polynomial with the first work hardening index as a variable. How to calculate resistance.
[6] The deformation resistance calculation method according to [4] or [5], wherein the first polynomial approximate curve includes the compressibility as a variable and does not include the work hardening index as a variable.
[7] A function that calculates the restraint coefficient of the test piece in the end face restraint compression test using the first polynomial approximation curve from the compressibility of the test piece measured in the end face restraint compression test, and A function that calculates the average equivalent plastic strain of a test piece in an end face restraint compression test using a second polynomial approximation curve from the work hardening index of a function of determining a second work hardening index by regressing a hardening function including the work hardening index as a variable on a deformation resistance curve showing the relationship between the deformation resistance of the test piece and the average equivalent plastic strain; If the difference between the work hardening index and the first work hardening index is less than a threshold value, output the deformation resistance curve or the regressed hardening function, otherwise update the first work hardening index. A program that enables a computer to re-execute the function of calculating the average equivalent plastic strain.
[8] The program according to [7], wherein the second polynomial approximation curve is defined by a polynomial with the compression rate as a variable and an exponential function formula that defines the coefficients of the polynomial with the first work hardening index as a variable. .
[9] The program according to [7] or [8], wherein the first polynomial approximation curve includes the compression ratio as a variable and does not include the work hardening index as a variable.

上記の構成によれば、端面拘束圧縮試験において圧縮率から平均相当塑性ひずみを算出するための多項式近似曲線に加工硬化指数への依存性が反映され、加工硬化指数について自己無撞着な変形抵抗曲線が得られることによって、算出される変形抵抗の精度を向上させることができる。 According to the above configuration, the dependence on the work hardening index is reflected in the polynomial approximation curve for calculating the average equivalent plastic strain from the compressibility in the end face restraint compression test, and the deformation resistance curve is self-consistent with respect to the work hardening index. By obtaining this, it is possible to improve the accuracy of the calculated deformation resistance.

本発明の一実施形態において用いられる端面拘束圧縮試験機の概略的な構成例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a schematic configuration example of an end face restraint compression testing machine used in an embodiment of the present invention. 図1に例に示された変形抵抗算出装置の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the deformation resistance calculating device illustrated in FIG. 1; 本発明の一実施形態における変形抵抗算出方法について概念的に説明するための図である。FIG. 3 is a diagram for conceptually explaining a deformation resistance calculation method in an embodiment of the present invention. 端面拘束圧縮試験に用いられた試験片を示す図である。It is a figure which shows the test piece used for the edge restraint compression test. 図4に示された試験片を別の視点から見た図である。FIG. 5 is a view of the test piece shown in FIG. 4 from another perspective. 端面拘束圧縮試験に用いられた治具を示す図である。FIG. 3 is a diagram showing a jig used for an end face restraint compression test. 本発明の実施例1で得られた変形抵抗曲線を示すグラフである。3 is a graph showing a deformation resistance curve obtained in Example 1 of the present invention. 本発明の比較例1で得られた変形抵抗曲線を示すグラフである。2 is a graph showing a deformation resistance curve obtained in Comparative Example 1 of the present invention. 本発明の実施例2で得られた変形抵抗曲線を示すグラフである。2 is a graph showing a deformation resistance curve obtained in Example 2 of the present invention. 本発明の比較例2で得られた変形抵抗曲線を示すグラフである。2 is a graph showing a deformation resistance curve obtained in Comparative Example 2 of the present invention. 本発明の実施例1および比較例1の結果を適用したFEM解析で算出された圧縮率と荷重との関係を、実際の試験時の結果と比較するグラフである。It is a graph comparing the relationship between the compression ratio and load calculated by FEM analysis applying the results of Example 1 and Comparative Example 1 of the present invention with the results of actual testing. 本発明の実施例1および比較例1の結果を適用したFEM解析で算出された圧縮率と荷重との関係を、実際の試験時の結果と比較するグラフである。It is a graph comparing the relationship between the compression ratio and load calculated by FEM analysis applying the results of Example 1 and Comparative Example 1 of the present invention with the results of actual testing. 本発明の実施例2および比較例2の結果を適用したFEM解析で算出された圧縮率と荷重との関係を、実際の試験時の結果と比較するグラフである。It is a graph comparing the relationship between the compression ratio and the load calculated by FEM analysis applying the results of Example 2 and Comparative Example 2 of the present invention with the results of an actual test. 本発明の実施例2および比較例2の結果を適用したFEM解析で算出された圧縮率と荷重との関係を、実際の試験時の結果と比較するグラフである。It is a graph comparing the relationship between the compression ratio and the load calculated by FEM analysis applying the results of Example 2 and Comparative Example 2 of the present invention with the results of an actual test.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.

図1は、本発明の一実施形態において用いられる端面拘束圧縮試験機の概略的な構成例を示す図である。図示された例において、端面拘束圧縮試験機1は、円柱状の試験片10の両端面を挟持する治具11A,11Bと、治具11A,11Bにそれぞれ連結されたアクチュエータ12A,12Bとを含む。アクチュエータ12A,12Bが治具11Aを治具11Bに接近させる向きの圧力を加えることによって、試験片10が軸方向に圧縮される。試験片10の両端面の中心に円錐形の凹部101が形成され、治具11A,11Bの挟持面の中心に円錐形の凸部111が、その周りに同心円状の突条112が形成されることによって、試験片10の端面は径方向について変位を拘束される。 FIG. 1 is a diagram showing a schematic configuration example of an end face restraint compression testing machine used in an embodiment of the present invention. In the illustrated example, the end face restraint compression testing machine 1 includes jigs 11A and 11B that clamp both end faces of a cylindrical test piece 10, and actuators 12A and 12B connected to the jigs 11A and 11B, respectively. . The actuators 12A and 12B apply pressure in a direction that causes the jig 11A to approach the jig 11B, thereby compressing the test piece 10 in the axial direction. A conical concave portion 101 is formed at the center of both end faces of the test piece 10, a conical convex portion 111 is formed at the center of the clamping surfaces of the jigs 11A and 11B, and a concentric protrusion 112 is formed around the conical convex portion 111. As a result, displacement of the end face of the test piece 10 in the radial direction is restrained.

上記のような端面拘束圧縮試験機1では、制御装置20からの制御信号に従ってアクチュエータ12A,12Bが治具11A,11Bにそれぞれ圧力を加えることによって試験片10を軸方向に圧縮したときの試験片10の端面の変位量が、アクチュエータ12Aに取り付けられたストロークセンサ13を用いて測定される。一方、試験片10に加えられた荷重の大きさは、アクチュエータ12Bに取り付けられた荷重センサ14を用いて測定される。測定された変位量および荷重の大きさのデータは、制御装置20を介して変形抵抗算出装置30に送られる。データは有線または無線の通信によって伝送されてもよいし、制御装置20がデータを記録媒体に書き込み、変形抵抗算出装置30がデータを記録媒体から読み出してもよい。 In the end face restraint compression testing machine 1 as described above, the test piece 10 is compressed in the axial direction by the actuators 12A and 12B applying pressure to the jigs 11A and 11B, respectively, according to the control signal from the control device 20. The amount of displacement of the end surface of 10 is measured using the stroke sensor 13 attached to the actuator 12A. On the other hand, the magnitude of the load applied to the test piece 10 is measured using the load sensor 14 attached to the actuator 12B. The measured displacement amount and load magnitude data are sent to the deformation resistance calculation device 30 via the control device 20. The data may be transmitted by wired or wireless communication, or the control device 20 may write the data on a recording medium, and the deformation resistance calculation device 30 may read the data from the recording medium.

図2は、図1に例に示された変形抵抗算出装置の構成例を示す図である。変形抵抗算出装置30は、プログラムに従って各種の演算を実行するコンピュータであり、CPU(Central Processing Unit)31、RAM(Random Access Memory)32、ROM(Read Only Memory)33、インターフェース34およびドライバ35を含む。変形抵抗算出プログラム331は、図示された例のように変形抵抗算出装置30のROM33に格納されるか、またはドライバ35に接続された記録媒体から読み出される。CPU31は、変形抵抗算出プログラム331を実行することによって変形抵抗算出部311、拘束係数算出部312、ひずみ算出部313、硬化関数回帰部314、および差分判定部315として機能する。他の例において、これらの機能は、PLC(Programmable Logic Controller)やASIC(Application Specific Integrated Circuit)などの回路構成によって実現されてもよい。変形抵抗算出装置30において算出された変形抵抗曲線または硬化関数は、インターフェース34を介してディスプレイまたはプリンタなどから出力されてもよい。 FIG. 2 is a diagram showing an example of the configuration of the deformation resistance calculating device shown in FIG. 1 as an example. The deformation resistance calculation device 30 is a computer that executes various calculations according to a program, and includes a CPU (Central Processing Unit) 31, a RAM (Random Access Memory) 32, a ROM (Read Only Memory) 33, an interface 34, and a driver 35. . The deformation resistance calculation program 331 is stored in the ROM 33 of the deformation resistance calculation device 30 as in the illustrated example, or is read from a recording medium connected to the driver 35. The CPU 31 functions as a deformation resistance calculation section 311, a constraint coefficient calculation section 312, a strain calculation section 313, a hardening function regression section 314, and a difference determination section 315 by executing a deformation resistance calculation program 331. In other examples, these functions may be realized by a circuit configuration such as a PLC (Programmable Logic Controller) or an ASIC (Application Specific Integrated Circuit). The deformation resistance curve or hardening function calculated by the deformation resistance calculation device 30 may be output from a display, a printer, or the like via the interface 34.

図3は、本発明の一実施形態における変形抵抗算出方法について概念的に説明するための図である。図示されているように、まず、図1に示されたような試験機を用いて、端面拘束圧縮試験を実施する。このとき、試験前に試験片の初期高さhおよび試験片の端面の初期直径Dを測定しておく(ステップS101)。試験では、ストロークセンサ13によって測定されたストロークT(または後述するようにストロークTから算出された変位量Δhもしくは圧縮率e)と、荷重センサ14によって測定された荷重Pとの関係を記録する(ステップS102)。ストロークTに対して試験機剛性および初期クリアランスの影響を補正した変位量Δhから圧縮率e(e=(h-Δh)/h)が算出される。変形抵抗σ ̄は、端面の初期直径Dから算出される初期面積S(S=π/4×D )、および端面拘束圧縮試験における拘束係数fを用いて、以下の式(1)のように算出される(ステップS103)。 FIG. 3 is a diagram for conceptually explaining a deformation resistance calculation method according to an embodiment of the present invention. As shown in the figure, first, an end face restraint compression test is performed using a testing machine as shown in FIG. At this time, the initial height h 0 of the test piece and the initial diameter D 0 of the end face of the test piece are measured before the test (step S101). In the test, the relationship between the stroke T measured by the stroke sensor 13 (or the displacement Δh or compression ratio e calculated from the stroke T as described later) and the load P measured by the load sensor 14 is recorded ( Step S102). The compression ratio e (e=(h 0 −Δh)/h 0 ) is calculated from the displacement amount Δh, which is obtained by correcting the effects of the testing machine rigidity and initial clearance on the stroke T. The deformation resistance σ is determined by the following formula ( 1) (step S103).

Figure 0007410407000001
Figure 0007410407000001

ここで、拘束係数fは圧縮による変形の進行とともに変化する値であり、本実施形態では以下の式(2)に示す第1の多項式近似曲線を用いて圧縮率eから算出する(ステップS104)。ここで、係数B,B,B,B,B,B,B,Bは、後述する実施例のように、変形抵抗が既知の試験片について離散化解析で端面拘束圧縮試験を実施し、解析で算出された圧縮率eと荷重Pとの関係から拘束係数fを算出するための校正曲線を逆算し、逆算された校正曲線に対して式(2)を回帰させることによって決定される。離散化解析の手法としては、例えばFEM(有限要素法)が用いられる。離散化解析の他の手法として、例えば有限差分法などが利用可能である。本実施形態において、式(2)に示す第1の多項式近似曲線は、後述する加工硬化指数nを変数として含まない。なお、本実施形態では拘束係数fを算出するために式(2)に示すような圧縮率eに関する7次の多項式近似曲線を用いるが、他の実施形態では6次以下、または8次以上の多項式近似曲線が用いられてもよい。 Here, the constraint coefficient f is a value that changes as the deformation due to compression progresses, and in this embodiment, it is calculated from the compression ratio e using the first polynomial approximation curve shown in the following equation (2) (step S104) . Here, the coefficients B 0 , B 1 , B 2 , B 3 , B 4 , B 5 , B 6 , and B 7 are determined by discretization analysis of the end face of a test piece with known deformation resistance, as in the example described later. Conduct a restraint compression test, calculate the calibration curve for calculating the restraint coefficient f from the relationship between the compression ratio e and the load P calculated in the analysis, and regress equation (2) on the back-calculated calibration curve. determined by As a method of discretization analysis, for example, FEM (finite element method) is used. As another method of discretization analysis, for example, a finite difference method can be used. In this embodiment, the first polynomial approximation curve shown in equation (2) does not include the work hardening index n, which will be described later, as a variable. Note that in this embodiment, a seventh-order polynomial approximation curve regarding the compression ratio e as shown in equation (2) is used to calculate the constraint coefficient f, but in other embodiments, a polynomial approximation curve of the sixth order or less, or the eighth order or more is used. A polynomial approximation curve may be used.

Figure 0007410407000002
Figure 0007410407000002

一方、本実施形態では、端面拘束圧縮における試験片の平均相当塑性ひずみε ̄を、以下の式(3)および(4)に示す第2の多項式近似曲線を用いて圧縮率eおよび加工硬化指数n(第1の加工硬化指数ともいう)から算出する(ステップS105)。ここで、式(3)は、圧縮率eを変数とする多項式である。式(4)は、加工硬化指数nを変数として式(3)の係数A,A,A,A,A,A,A,Aを定義する指数関数式である。1回目の平均相当塑性ひずみε ̄の算出では、加工硬化指数nに適当な初期値、具体的には例えば0.05以上0.35以下の値が設定される。後述する差分判定の結果による2回目の平均相当塑性ひずみε ̄の算出の際には、上記の式における加工硬化指数nの値が更新される。具体的には、例えば、硬化関数回帰によって得られた加工硬化指数n’を式(4)の加工硬化指数nとして用いてもよい。あるいは、加工硬化指数nと加工硬化指数n’との関係に基づいて決定される値(具体的には例えば中間値)、または加工硬化指数n’には関係なく決定される別の値で、加工硬化指数nの値を更新してもよい。式(4)における係数C,C,Cは、上記の式(2)の場合と同様に変形抵抗が既知の試験片について離散化解析で実施された端面拘束圧縮試験の結果から逆算された校正曲線に対して式(3)および式(4)を回帰させることによって決定される。なお、本実施形態では平均相当塑性ひずみε ̄を算出するために式(3)に示すような圧縮率eに関する7次の多項式近似曲線を用いるが、他の実施形態では6次以下、または8次以上の多項式近似曲線が用いられてもよい。また、本実施形態では式(3)の多項式近似曲線の係数を式(4)の指数関数式で定義するが、式(4)に代えて、加工硬化指数nを変数とする他の種類の式、例えば多項式で式(3)の係数を定義してもよい。 On the other hand, in this embodiment, the average equivalent plastic strain ε ̄ p of the test piece in end face restraint compression is determined by the compression ratio e and work hardening using the second polynomial approximation curve shown in equations (3) and (4) below. It is calculated from the index n (also referred to as the first work hardening index) (step S105). Here, equation (3) is a polynomial with the compression ratio e as a variable. Equation (4) is an exponential function equation that defines the coefficients A 0 , A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 of Equation (3) using the work hardening index n as a variable. . In the first calculation of the average equivalent plastic strain ε ̄ p , an appropriate initial value is set for the work hardening index n, specifically, a value of, for example, 0.05 or more and 0.35 or less. When calculating the second average equivalent plastic strain ε ̄ p based on the result of the difference determination described later, the value of the work hardening index n in the above equation is updated. Specifically, for example, the work hardening index n' obtained by hardening function regression may be used as the work hardening index n in equation (4). Alternatively, a value determined based on the relationship between the work hardening index n and the work hardening index n' (specifically, for example, an intermediate value), or another value determined regardless of the work hardening index n', The value of the work hardening index n may be updated. The coefficients C 1 , C 2 , and C 3 in Equation (4) are back-calculated from the results of the end-face restraint compression test performed by discretization analysis on a test piece with known deformation resistance, as in the case of Equation (2) above. It is determined by regressing Equation (3) and Equation (4) on the calculated calibration curve. Note that in this embodiment, a seventh-order polynomial approximation curve regarding the compressibility e as shown in equation (3) is used to calculate the average equivalent plastic strain ε ̄ p , but in other embodiments, a polynomial approximation curve of the sixth order or less, or A polynomial approximation curve of order 8 or higher may be used. Furthermore, in this embodiment, the coefficient of the polynomial approximation curve in equation (3) is defined by the exponential function equation in equation (4), but instead of equation (4), other types of equations in which the work hardening index n is used as a variable may be used. The coefficients of equation (3) may be defined by equations, for example polynomials.

Figure 0007410407000003
Figure 0007410407000003

上記の式(1)~式(4)によって、端面拘束圧縮試験の結果から圧縮率eごとの平均相当塑性ひずみε ̄と変形抵抗σ ̄との関係を表す変形抵抗曲線を得ることができる。一方、金属材料のひずみと変形抵抗との関係を表す関数として、加工硬化指数を変数として含む硬化関数が知られている。一般的には、端面拘束圧縮試験によって得られた変形抵抗曲線に対して硬化関数を回帰させたものがFEMに利用される。硬化関数として、以下の式(5)のSwiftの式が例示される。ここで、係数Kおよびオフセット値εは、加工硬化指数n’(式(4)の加工硬化指数nとは必ずしも一致しないため、第2の加工硬化指数ともいう)とともに変形抵抗曲線に式(5)を回帰させることによって決定される(ステップS106)。なお、式(5)に代えて、n乗硬化則(σ ̄=Kε ̄ n’)やLudwikの式(σ ̄=σ ̄+Kε ̄ n’)など他の硬化関数を用いてもよい。 Using Equations (1) to (4) above, it is possible to obtain a deformation resistance curve representing the relationship between the average equivalent plastic strain ε ̄ p and deformation resistance σ ̄ for each compression ratio e from the results of the end face restraint compression test. . On the other hand, a hardening function that includes a work hardening index as a variable is known as a function representing the relationship between strain and deformation resistance of a metal material. Generally, a curve obtained by regressing a hardening function on a deformation resistance curve obtained by an end face restraint compression test is used for FEM. As a hardening function, the following Swift equation (5) is exemplified. Here, the coefficient K and the offset value ε 0 , together with the work hardening index n' (which is also referred to as the second work hardening index because it does not necessarily match the work hardening index n in equation (4)), are used to form the deformation resistance curve into the equation ( 5) is determined by regression (step S106). In addition, instead of formula (5), other hardening functions such as the n-th power hardening law (σ ̄=Kε ̄ p n' ) or Ludwik's formula (σ ̄=σ ̄ 0 +Kε ̄ p n' ) can also be used. good.

Figure 0007410407000004
Figure 0007410407000004

さらに、本実施形態では、上記のようにして決定された加工硬化指数n’(第2の加工硬化指数)と、式(4)で設定した加工硬化指数n(第1の加工硬化指数)との差分を閾値δ’と比較し、差分が閾値を下回る(|n’-n|≦δ’)場合には、変形抵抗曲線、または変形抵抗曲線に回帰させられた硬化関数を出力して処理を終了する(ステップS107)。閾値δ’については、例えば0.002以上0.01以下の値にすることができる。一方、差分が閾値を超える場合、例えば加工硬化指数n(第1の加工硬化指数)に加工硬化指数n’(第2の加工硬化指数)を代入する(n=n’)などの方法によって加工硬化指数nを更新し、式(3)および式(4)を用いて平均相当塑性ひずみε ̄の算出を再実行する(ステップS105)。再算出された平均相当塑性ひずみε ̄と、既に拘束係数fを用いて算出されている変形抵抗σ ̄との関係を表す新たな変形抵抗曲線について、再び式(5)を回帰させてK,ε,n’を決定する(ステップS106)。この手順を、加工硬化指数n,n’の差分が閾値δ’以下になるまで繰り返す(ステップS107)。 Furthermore, in this embodiment, the work hardening index n' (second work hardening index) determined as described above and the work hardening index n (first work hardening index) set by equation (4) are The difference is compared with the threshold value δ', and if the difference is less than the threshold value (|n'-n|≦δ'), the deformation resistance curve or the hardening function regressed to the deformation resistance curve is output and processed. (Step S107). The threshold value δ' can be set to a value of, for example, 0.002 or more and 0.01 or less. On the other hand, if the difference exceeds the threshold, the work hardening index may be processed by a method such as substituting the work hardening index n' (second work hardening index) for the work hardening index n (first work hardening index) (n=n'). The hardening index n is updated and the calculation of the average equivalent plastic strain ε ̄p is re-executed using equations (3) and (4) (step S105). For a new deformation resistance curve that expresses the relationship between the recalculated average equivalent plastic strain ε ̄ p and the deformation resistance σ ̄ that has already been calculated using the constraint coefficient f, equation (5) is regressed to calculate K , ε 0 , n' are determined (step S106). This procedure is repeated until the difference between the work hardening indices n and n' becomes equal to or less than the threshold value δ' (step S107).

なお、上記で図2を参照して説明した変形抵抗算出装置30では、変形抵抗算出部311が上記でステップS103として説明した変形抵抗σ ̄の算出を実行し、拘束係数算出部312がステップS104として説明した拘束係数fの算出を実行し、ひずみ算出部313がステップS105として説明した平均相当塑性ひずみε ̄の算出を実行し、硬化関数回帰部314がステップS106として説明した変形抵抗曲線への硬化関数の回帰を実行し、差分判定部315がステップS107として説明した加工硬化指数の差分による処理の終了判定を実行する。 In the deformation resistance calculation device 30 described above with reference to FIG. The strain calculation unit 313 calculates the average equivalent plastic strain ε ̄p described as step S105, and the hardening function regression unit 314 calculates the deformation resistance curve described as step S106. The regression of the hardening function is executed, and the difference determination unit 315 executes the termination determination of the process based on the difference in the work hardening index described as step S107.

上記のような本実施形態の構成によれば、端面拘束圧縮試験において圧縮率から平均相当塑性ひずみを算出するための多項式近似曲線に加工硬化指数への依存性が反映され、加工硬化指数について自己無撞着な変形抵抗曲線が得られることによって、算出される変形抵抗の精度を向上させることができる。 According to the configuration of this embodiment as described above, the dependence on the work hardening index is reflected in the polynomial approximation curve for calculating the average equivalent plastic strain from the compressibility in the end face restraint compression test, and the work hardening index is By obtaining a consistent deformation resistance curve, the accuracy of the calculated deformation resistance can be improved.

以下、本発明の一実施例について説明する。まず、FEM(有限要素法)解析で変形抵抗が既知の試験片の端面拘束圧縮試験を実施し、解析で算出された圧縮率eと荷重Pとの関係から、拘束係数fおよび平均相当塑性ひずみε ̄を算出するための校正曲線を逆算した。逆算された拘束係数fの校正曲線に対して上記の式(2)を、平均相当塑性ひずみε ̄の校正曲線に対して上記の式(3)および式(4)をそれぞれ回帰させた。解析では、メタルフォーミングプロセスシミュレーションシステム「Simufact Forming 16.0」でソルバーにMarcを使用し、初期直径Dが8mm、初期高さhが12mm(h/D=1.5)の円柱状の試験片について、2次元軸対称モデルの剛塑性解析を行った。試験片の端面と治具との間は固着、すなわち端面の径方向の変位が完全に拘束されているものとし、圧縮の最大ストロークは端面の初期直径Dの1.2倍とした。上記の通り試験片の初期高さhは初期直径の1.5倍であるため、この場合の圧縮率eの最大値は80%になる。試験片の変形抵抗はn乗硬化則に従うものとし、ひずみ0~10の範囲で以下のように設定した。 An embodiment of the present invention will be described below. First, an end-face restraint compression test was performed on a specimen whose deformation resistance was known using FEM (finite element method) analysis, and from the relationship between the compression ratio e and the load P calculated by the analysis, the restraint coefficient f and the average equivalent plastic strain were determined. The calibration curve for calculating ε ̄ p was back calculated. The above equation (2) was regressed on the calibration curve of the back-calculated constraint coefficient f, and the above equations (3) and (4) were regressed on the calibration curve of the average equivalent plastic strain ε p . In the analysis, we used Marc as a solver with the metal forming process simulation system "Simufact Forming 16.0" and created a circle with an initial diameter D 0 of 8 mm and an initial height h 0 of 12 mm (h 0 /D 0 = 1.5). Rigid-plastic analysis of a two-dimensional axisymmetric model was performed on a columnar specimen. It was assumed that the end face of the test piece and the jig were fixed, that is, the displacement of the end face in the radial direction was completely restrained, and the maximum compression stroke was 1.2 times the initial diameter D 0 of the end face. As mentioned above, since the initial height h 0 of the test piece is 1.5 times the initial diameter, the maximum value of the compressibility e in this case is 80%. The deformation resistance of the test piece was assumed to follow the n-th power hardening law, and was set as follows within the strain range of 0 to 10.

Figure 0007410407000005
Figure 0007410407000005

上記の解析および回帰の結果、以下の表1に示されるように、式(2)における係数B,B,B,B,B,B,B,B、ならびに式(3)および式(4)における係数A,A,A,A,A,A,A,Aおよび係数C,C,Cの値を決定することができた。なお、表1に示された例では各係数が6桁の有効数字で決定されているが、本発明者らによる他の実験の結果、5桁以上の有効数字であれば精度のよい近似が可能である。 As a result of the above analysis and regression, as shown in Table 1 below, the coefficients B 0 , B 1 , B 2 , B 3 , B 4 , B 5 , B 6 , B 7 in equation (2), and the equation It is possible to determine the values of coefficients A 0 , A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and coefficients C 1 , C 2 , C 3 in (3) and Equation (4). did it. In addition, in the example shown in Table 1, each coefficient is determined with 6 significant digits, but as a result of other experiments by the present inventors, accurate approximation is possible with 5 or more significant digits. It is possible.

Figure 0007410407000006
Figure 0007410407000006

次に、実施例1として機械構造用炭素鋼鋼材S10C(JIS G4051に規定)、実施例2として高炭素クロム軸受鋼鋼材SUJ2(JIS G4805に規定)をそれぞれ試験材料として、図1に示した端面拘束圧縮試験機で試験を実施し、図2に示した変形抵抗算出装置を用いて、図3に示した変形抵抗算出方法によって変形抵抗曲線を決定した。また、比較例1および比較例2として、実施例1および実施例2と同じ端面拘束圧縮試験の結果から、小坂田らの校正曲線を用いて変形抵抗曲線を決定した。それぞれの実施例および比較例で得られた変形抵抗曲線に回帰させたSwiftの式を適用したFEM解析で同様の端面拘束圧縮試験を実施し、解析結果として得られた圧縮率eと荷重Pとの関係を実際の試験時の圧縮率eと荷重Pとの関係と比較することによって、算出された変形抵抗の精度を検証した。 Next, using carbon steel for machine structures S10C (specified in JIS G4051) as Example 1 and high carbon chromium bearing steel SUJ2 (specified in JIS G4805) as Example 2, the end faces shown in FIG. A test was conducted using a restraint compression tester, and a deformation resistance curve was determined using the deformation resistance calculation method shown in FIG. 3 using the deformation resistance calculation device shown in FIG. Further, as Comparative Examples 1 and 2, deformation resistance curves were determined from the results of the same end face restraint compression tests as in Examples 1 and 2 using the calibration curve of Osakata et al. A similar end-face restraint compression test was conducted using FEM analysis applying Swift's equation that was regressed to the deformation resistance curve obtained in each example and comparative example, and the compression ratio e and load P obtained as the analysis results were The accuracy of the calculated deformation resistance was verified by comparing the relationship between the compression ratio e and the load P during the actual test.

上記の端面拘束圧縮試験における試験片の形状は、上記の解析の場合と同じである。ただし、試験では、図4および図5に示されるように試験片10の両端面に凹部101を形成し、図6に示されるように凸部111および突条112が形成された治具11で試験片10の両端面に圧力を加えた。また、ストロークは試験片に割れが発生しない範囲で行った。端面拘束圧縮試験は、ひずみ速度0.01s-1および10s-1の2回実施した。試験機剛性などの影響による圧縮率のずれδを補正するために、圧縮率eを算出するための変位量Δhを、ストロークTから以下の式(6)および式(7)を用いて算出した。ここで、α,βは定数であり、α=0.0029、β=0.2287とした。 The shape of the test piece in the above end face restraint compression test is the same as in the above analysis. However, in the test, a jig 11 was used in which recesses 101 were formed on both end surfaces of the test piece 10 as shown in FIGS. 4 and 5, and convex portions 111 and protrusions 112 were formed as shown in FIG. Pressure was applied to both end faces of the test piece 10. Moreover, the stroke was performed within a range that did not cause cracks in the test piece. The end face restraint compression test was performed twice at strain rates of 0.01 s −1 and 10 s −1 . In order to correct the compression ratio deviation δ due to the influence of the testing machine rigidity, etc., the displacement Δh for calculating the compression ratio e was calculated from the stroke T using the following equations (6) and (7). . Here, α and β are constants, and α=0.0029 and β=0.2287.

Figure 0007410407000007
Figure 0007410407000007

図7から図10は、本発明の実施例および比較例でそれぞれ得られた変形抵抗曲線を示すグラフである。図7には実施例1(S10C)、図8には比較例1(S10C)、図9には実施例2(SUJ2)、図10には比較例2(SUJ2)で得られた変形抵抗曲線(太線)が、回帰させられたSwiftの式の近似曲線(細線)とともにそれぞれ示されている。各グラフに示されるように、比較例では平均相当塑性ひずみε ̄が1.0~1.5以上の領域で変形抵抗の傾きが変化し、結果としてこの領域で変形抵抗曲線と近似曲線との間での値の乖離が大きくなった(グラフ中に矢印で示す)。一方、実施例では比較例のような変形抵抗の傾きの変化は発生せず、変形抵抗曲線と近似曲線との間での値の乖離は小さかった。なお、特にひずみ速度が10s-1の場合には平均相当塑性ひずみε ̄が0.4以下(圧縮率が30%以下)の領域で実施例および比較例ともに変形抵抗曲線と近似曲線との間で値の乖離が発生しているが、これは端面拘束圧縮試験において治具や試験片の表面に凹凸や突条を形成していることの影響で変形抵抗曲線に対する近似精度が低くなっているためと考えられる。 FIGS. 7 to 10 are graphs showing deformation resistance curves obtained in Examples of the present invention and Comparative Examples, respectively. Figure 7 shows the deformation resistance curves obtained in Example 1 (S10C), Figure 8 in Comparative Example 1 (S10C), Figure 9 in Example 2 (SUJ2), and Figure 10 in Comparative Example 2 (SUJ2). (thick line) is shown together with the approximate curve (thin line) of the regressed Swift equation. As shown in each graph, in the comparative example, the slope of the deformation resistance changes in the region where the average equivalent plastic strain ε ̄ p is 1.0 to 1.5 or more, and as a result, the deformation resistance curve and the approximate curve change in this region. The discrepancy between the values has become larger (indicated by the arrow in the graph). On the other hand, in the example, the change in the slope of the deformation resistance as in the comparative example did not occur, and the deviation in value between the deformation resistance curve and the approximated curve was small. In particular, when the strain rate is 10 s -1 , the deformation resistance curve and the approximated curve in both the example and the comparative example are There is a discrepancy between the values, but this is because the approximation accuracy for the deformation resistance curve is low due to the unevenness and ridges formed on the surface of the jig and test piece during the end face restraint compression test. This is thought to be due to the presence of

図11から図14は、本発明の実施例および比較例の結果を適用したFEM解析で算出された圧縮率と荷重との関係を、実際の試験時の結果と比較するグラフである。上述のように、FEM解析では、実施例および比較例でそれぞれ得られた変形抵抗曲線に回帰させたSwiftの式が適用されている。図11には実施例1および比較例1(S10C)でひずみ速度0.01s-1の場合、図12には同じくひずみ速度10s-1の場合、図13には実施例2および比較例2(SUJ2)でひずみ速度0.01s-1の場合、図14には同じくひずみ速度10s-1の場合の結果がそれぞれ示されている。各グラフにおいて、圧縮率e(%)に対する荷重P(kN)を示す曲線は、荷重Pの範囲が広いため実施例および比較例におけるFEM解析の結果と、実際の試験時の結果とがほとんど重複するように示されているが、FEM解析の結果として算出された荷重Pの実際の試験時の荷重Pに対する誤差は、比較例よりも実施例において小さくなる(0に近くなる)ことが明確に示されている。 FIGS. 11 to 14 are graphs comparing the relationship between compressibility and load calculated by FEM analysis applying the results of the examples and comparative examples of the present invention with the results of actual tests. As mentioned above, in the FEM analysis, Swift's equation is applied which is regression on the deformation resistance curves obtained in the example and the comparative example. FIG. 11 shows Example 1 and Comparative Example 1 (S10C) at a strain rate of 0.01 s −1 , FIG. 12 shows the same case at a strain rate of 10 s −1 , and FIG. 13 shows Example 2 and Comparative Example 2 ( FIG. 14 shows the results for SUJ2) at a strain rate of 0.01 s -1 and at a strain rate of 10 s -1 . In each graph, the curve showing the load P (kN) against the compression ratio e (%) has a wide range of load P, so the FEM analysis results in the examples and comparative examples almost overlap with the actual test results. However, it is clear that the error of the load P calculated as a result of FEM analysis with respect to the load P during the actual test is smaller (closer to 0) in the example than in the comparative example. It is shown.

上記の結果から、本発明の実施例では、比較例として示した小坂田らの校正曲線を用いる場合よりも精度の高い、具体的にはFEM解析に適用した場合の実際の試験結果に対する誤差がより小さい変形抵抗曲線が得られることが確認された。 From the above results, the example of the present invention has higher accuracy than the case of using the calibration curve of Osakata et al. shown as a comparative example, and specifically, the error with respect to the actual test result when applied to FEM analysis is It was confirmed that a smaller deformation resistance curve could be obtained.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

1…端面拘束圧縮試験機、10…試験片、101…凹部、11A,11B…治具、111…凸部、112…突条、12A,12B…アクチュエータ、13…ストロークセンサ、14…荷重センサ、20…制御装置、30…変形抵抗算出装置、31…CPU、311…変形抵抗算出部、312…拘束係数算出部、313…ひずみ算出部、314…硬化関数回帰部、315…差分判定部、32…RAM、33…ROM、331…変形抵抗算出プログラム、34…インターフェース、35…ドライバ。
DESCRIPTION OF SYMBOLS 1... End face restraint compression tester, 10... Test piece, 101... Recessed part, 11A, 11B... Jig, 111... Convex part, 112... Projection, 12A, 12B... Actuator, 13... Stroke sensor, 14... Load sensor, 20... Control device, 30... Deformation resistance calculation device, 31... CPU, 311... Deformation resistance calculation section, 312... Restraint coefficient calculation section, 313... Strain calculation section, 314... Hardening function regression section, 315... Difference determination section, 32 ...RAM, 33...ROM, 331...deformation resistance calculation program, 34...interface, 35...driver.

Claims (9)

端面拘束圧縮試験において測定された試験片の圧縮率から第1の多項式近似曲線を用いて前記端面拘束圧縮試験における前記試験片の拘束係数を算出する拘束係数算出部と、
前記圧縮率および第1の加工硬化指数から第2の多項式近似曲線を用いて前記端面拘束圧縮試験における前記試験片の平均相当塑性ひずみを算出するひずみ算出部と、
前記端面拘束圧縮試験において測定された荷重および前記拘束係数を用いて算出された前記試験片の変形抵抗と、前記平均相当塑性ひずみとの関係を示す変形抵抗曲線に、加工硬化指数を変数として含む硬化関数を回帰させることによって第2の加工硬化指数を決定する硬化関数回帰部と、
前記第2の加工硬化指数と前記第1の加工硬化指数との差分が閾値を下回る場合には前記変形抵抗曲線または前記回帰させられた硬化関数を出力し、そうでない場合には前記第1の加工硬化指数を更新して前記ひずみ算出部に前記平均相当塑性ひずみを再算出させる差分判定部と
を備える変形抵抗算出装置。
a restraint coefficient calculation unit that calculates a restraint coefficient of the test piece in the end face restraint compression test using a first polynomial approximation curve from the compressibility of the test piece measured in the end face restraint compression test;
a strain calculation unit that calculates an average equivalent plastic strain of the test piece in the end face restraint compression test using a second polynomial approximation curve from the compression ratio and the first work hardening index;
A deformation resistance curve showing the relationship between the deformation resistance of the test piece calculated using the load measured in the end face restraint compression test and the restraint coefficient and the average equivalent plastic strain includes a work hardening index as a variable. a hardening function regression unit that determines a second work hardening index by regressing the hardening function;
If the difference between the second work hardening index and the first work hardening index is less than a threshold value, the deformation resistance curve or the regressed hardening function is output; otherwise, the first work hardening index A deformation resistance calculation device comprising: a difference determination unit that updates a work hardening index and causes the strain calculation unit to recalculate the average equivalent plastic strain.
前記第2の多項式近似曲線は、前記圧縮率を変数とする多項式、および前記第1の加工硬化指数を変数として前記多項式の係数を定義する指数関数式によって定義される、請求項1に記載の変形抵抗算出装置。 The second polynomial approximation curve is defined by a polynomial with the compression ratio as a variable, and an exponential function formula that defines a coefficient of the polynomial with the first work hardening index as a variable. Deformation resistance calculation device. 前記第1の多項式近似曲線は、前記圧縮率を変数として含み、加工硬化指数を変数として含まない、請求項1または請求項2に記載の変形抵抗算出装置。 The deformation resistance calculation device according to claim 1 or 2, wherein the first polynomial approximate curve includes the compression rate as a variable and does not include the work hardening index as a variable. 端面拘束圧縮試験において測定された試験片の圧縮率から第1の多項式近似曲線を用いて前記端面拘束圧縮試験における前記試験片の拘束係数を算出するステップと、
前記圧縮率および第1の加工硬化指数から第2の多項式近似曲線を用いて前記端面拘束圧縮試験における前記試験片の平均相当塑性ひずみを算出するステップと、
前記端面拘束圧縮試験において測定された荷重および前記拘束係数を用いて算出された前記試験片の変形抵抗と、前記平均相当塑性ひずみとの関係を示す変形抵抗曲線に、加工硬化指数を変数として含む硬化関数を回帰させることによって第2の加工硬化指数を決定するステップと、
前記第2の加工硬化指数と前記第1の加工硬化指数との差分が閾値を下回る場合には前記変形抵抗曲線または前記回帰させられた硬化関数を出力し、そうでない場合には前記第1の加工硬化指数を更新して前記平均相当塑性ひずみを算出するステップを再実行するステップと
を含む変形抵抗算出方法。
Calculating a restraint coefficient of the test piece in the end face restraint compression test using a first polynomial approximation curve from the compressibility of the test piece measured in the end face restraint compression test;
Calculating the average equivalent plastic strain of the test piece in the end face restraint compression test using a second polynomial approximation curve from the compression ratio and the first work hardening index;
A deformation resistance curve showing the relationship between the deformation resistance of the test piece calculated using the load measured in the end face restraint compression test and the restraint coefficient and the average equivalent plastic strain includes a work hardening index as a variable. determining a second work hardening index by regressing the hardening function;
If the difference between the second work hardening index and the first work hardening index is less than a threshold value, the deformation resistance curve or the regressed hardening function is output; otherwise, the first work hardening index A method for calculating deformation resistance, comprising: updating the work hardening index and re-executing the step of calculating the average equivalent plastic strain.
前記第2の多項式近似曲線は、前記圧縮率を変数とする多項式、および前記第1の加工硬化指数を変数として前記多項式の係数を定義する指数関数式によって定義される、請求項4に記載の変形抵抗算出方法。 The second polynomial approximate curve is defined by a polynomial with the compression rate as a variable, and an exponential function formula that defines a coefficient of the polynomial with the first work hardening index as a variable. Deformation resistance calculation method. 前記第1の多項式近似曲線は、前記圧縮率を変数として含み、加工硬化指数を変数として含まない、請求項4または請求項5に記載の変形抵抗算出方法。 6. The deformation resistance calculation method according to claim 4, wherein the first polynomial approximation curve includes the compression rate as a variable and does not include the work hardening index as a variable. 端面拘束圧縮試験において測定された試験片の圧縮率から第1の多項式近似曲線を用いて前記端面拘束圧縮試験における前記試験片の拘束係数を算出する機能と、
前記圧縮率および第1の加工硬化指数から第2の多項式近似曲線を用いて前記端面拘束圧縮試験における前記試験片の平均相当塑性ひずみを算出する機能と、
前記端面拘束圧縮試験において測定された荷重および前記拘束係数を用いて算出された前記試験片の変形抵抗と、前記平均相当塑性ひずみとの関係を示す変形抵抗曲線に、加工硬化指数を変数として含む硬化関数を回帰させることによって第2の加工硬化指数を決定する機能と、
前記第2の加工硬化指数と前記第1の加工硬化指数との差分が閾値を下回る場合には前記変形抵抗曲線または前記回帰させられた硬化関数を出力し、そうでない場合には前記第1の加工硬化指数を更新して前記平均相当塑性ひずみを算出する機能を再実行する機能と
をコンピュータに実現させるためのプログラム。
A function of calculating a restraint coefficient of the test piece in the end face restraint compression test using a first polynomial approximation curve from the compressibility of the test piece measured in the end face restraint compression test;
A function of calculating an average equivalent plastic strain of the test piece in the end face restraint compression test using a second polynomial approximation curve from the compression ratio and the first work hardening index;
A deformation resistance curve showing the relationship between the deformation resistance of the test piece calculated using the load measured in the end face restraint compression test and the restraint coefficient and the average equivalent plastic strain includes a work hardening index as a variable. a function of determining a second work hardening index by regressing the hardening function;
If the difference between the second work hardening index and the first work hardening index is less than a threshold value, the deformation resistance curve or the regressed hardening function is output; otherwise, the first work hardening index A program for causing a computer to realize a function of updating a work hardening index and re-executing the function of calculating the average equivalent plastic strain.
前記第2の多項式近似曲線は、前記圧縮率を変数とする多項式、および前記第1の加工硬化指数を変数として前記多項式の係数を定義する指数関数式によって定義される、請求項7に記載のプログラム。 The second polynomial approximation curve is defined by a polynomial with the compression ratio as a variable, and an exponential function formula that defines a coefficient of the polynomial with the first work hardening index as a variable. program. 前記第1の多項式近似曲線は、前記圧縮率を変数として含み、加工硬化指数を変数として含まない、請求項7または請求項8に記載のプログラム。
9. The program according to claim 7, wherein the first polynomial approximation curve includes the compression ratio as a variable and does not include the work hardening index as a variable.
JP2020117591A 2020-07-08 2020-07-08 Deformation resistance calculation device, deformation resistance calculation method and program Active JP7410407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117591A JP7410407B2 (en) 2020-07-08 2020-07-08 Deformation resistance calculation device, deformation resistance calculation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117591A JP7410407B2 (en) 2020-07-08 2020-07-08 Deformation resistance calculation device, deformation resistance calculation method and program

Publications (2)

Publication Number Publication Date
JP2022015013A JP2022015013A (en) 2022-01-21
JP7410407B2 true JP7410407B2 (en) 2024-01-10

Family

ID=80120514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117591A Active JP7410407B2 (en) 2020-07-08 2020-07-08 Deformation resistance calculation device, deformation resistance calculation method and program

Country Status (1)

Country Link
JP (1) JP7410407B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141670A (en) 2012-01-06 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for evaluation of work cracking sensitivity
JP6288884B2 (en) 2014-07-07 2018-03-07 株式会社Ihi Heat treatment equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141670A (en) 2012-01-06 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for evaluation of work cracking sensitivity
JP6288884B2 (en) 2014-07-07 2018-03-07 株式会社Ihi Heat treatment equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
和田林良一,端面拘束圧縮試験による各種金属の鍛造性試験,大阪産業技術研究所テクニカルシート,日本,大阪産業技術研究所,1999年01月19日,No.98041,p.1-2,https://orist.jp/content/files/technicalsheet/98041.PDF
小坂田宏造 他,リング圧縮試験による変形抵抗測定法,日本機械学会論文集(C編),日本,日本機械学会,1989年08月,55巻, 516号,p.2213-2220,https://www.jstage.jst.go.jp/article/kikaic1979/55/516/55_516_2213/_pdf/-char/ja

Also Published As

Publication number Publication date
JP2022015013A (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5582211B1 (en) Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device
JP5866892B2 (en) Stress-strain relationship evaluation method and springback amount prediction method
JP3977805B2 (en) Spherical press-in tester using finite element solution for property value evaluation
KR100948035B1 (en) Method of Acquisition of True Stress-Strain Curves over Large Strain by the Tensile Test and its Finite Element Analysis, and Tensile Test Device using it
CN107407606B (en) Residual stress estimation method and residual stress estimation device
CN107430637B (en) Residual stress estimation method and residual stress estimation device
KR101949070B1 (en) Residual stress estimation method and residual stress estimation apparatus
JP3897477B2 (en) Stress-strain relationship simulation method and springback amount prediction method
US8204699B2 (en) Analyzing apparatus, analyzing method, and computer-readable recording medium storing an analyzing program
JP2009536325A (en) Method and apparatus for contacting a surface point of a workpiece
JP5756410B2 (en) Spring characteristic correcting method and spring characteristic correcting apparatus
JP7410407B2 (en) Deformation resistance calculation device, deformation resistance calculation method and program
US10712316B2 (en) Fixed value residual stress test block and manufacturing and preservation method thereof
JP6984443B2 (en) How to predict the amount of mold wear, its prediction program, and how to specify the wear estimation formula
JP4061341B2 (en) Strain-controlled ultra high cycle fatigue test method and fatigue test apparatus
Meinders et al. A sensitivity analysis on the springback behavior of the unconstrained bending problem
Kovář et al. The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter
JP2022015012A (en) Deformation resistance calculation device, deformation resistance calculation method, and program
JP3454480B2 (en) Permanent bending method for deformable body
JP7385128B2 (en) Deformation resistance calculation method, deformation resistance calculation device, and deformation resistance calculation program
JP2019181801A (en) Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program
JP5737657B2 (en) Bending method and system using a press brake
Murashov et al. Elastoplastic deformation of a roughness element
Weisz-Patrault et al. Non-linear numerical simulation of coiling by elastic finite strain model
JPH06154874A (en) Method and device for processing bottoming for press brake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R151 Written notification of patent or utility model registration

Ref document number: 7410407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151