JP7407963B2 - 距離情報生成装置および距離情報生成方法 - Google Patents
距離情報生成装置および距離情報生成方法 Download PDFInfo
- Publication number
- JP7407963B2 JP7407963B2 JP2022551482A JP2022551482A JP7407963B2 JP 7407963 B2 JP7407963 B2 JP 7407963B2 JP 2022551482 A JP2022551482 A JP 2022551482A JP 2022551482 A JP2022551482 A JP 2022551482A JP 7407963 B2 JP7407963 B2 JP 7407963B2
- Authority
- JP
- Japan
- Prior art keywords
- depth image
- reliability
- distance
- upsampling
- information generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 83
- 238000003384 imaging method Methods 0.000 claims description 30
- 238000005259 measurement Methods 0.000 claims description 29
- 230000006870 function Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 230000015654 memory Effects 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 238000004590 computer program Methods 0.000 claims 1
- 239000000284 extract Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 description 45
- 238000010586 diagram Methods 0.000 description 10
- 230000010287 polarization Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 230000010365 information processing Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4808—Evaluating distance, position or velocity data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は、実空間における物体の距離情報を取得する距離情報生成装置および距離情報生成方法に関する。
実物体の位置や動きを取得し、それに応じて情報処理を行ったり警告をしたりする技術は、電子コンテンツ、ロボット、車、監視カメラ、無人航空機(ドローン)、IoT(Internet of Things)など幅広い分野で利用されている。例えば電子コンテンツの分野では、ヘッドマウントディスプレイを装着したユーザの動きを検出し、それに対応するようにゲームを進捗させ、表示中の仮想世界に反映させることにより、没入感のある仮想体験を実現できる。
実物体の位置情報を取得する技術のひとつに、LiDAR(Light Detection and Ranging)がある。LiDARは、実物体に光を照射し、その反射光を観測することにより実物体までの距離を導出する技術である。LiDARとして、パルス状の光の照射から反射光の観測までの時間差に基づき距離を求めるdToF(direct Time of Flight)と、周期変化させた光の位相差に基づき距離を求めるiToF(indirect Time of Flight)が実用化されている(例えば特許文献1および2、非特許文献1参照)。
Dr. David Horsley、"World’s first MEMS ultrasonic time-of-flight sensors、[online]、TDK Technologies & Products Press Conference 2018、[令和2年7月8日検索]、インターネット<URL:https://www.tdk-electronics.tdk.com/download/2431644/f7219af118484fa9afc46dc1699bacca/02-presentation-summary.pdf>
採用する手法によらず一般的な測距技術によれば、距離値が得られる実物体上のポイントが限られたり、粗い粒度での情報しか得られなかったりすることが多い。詳細な情報を計測によって得ようとすると、装置が大がかりになったり結果の出力に時間を要したりして汎用性に乏しくなる。今後、実物体の距離、ひいては位置情報や動きを利用してなされる情報処理が益々多様化することが考えられ、より高い精度で詳細な位置情報を容易に得ることが求められている。
本発明はこうした課題に鑑みてなされたものであり、その目的は、実物体の詳細な位置情報を精度よく容易に取得する技術を提供することにある。
本発明のある態様は距離情報生成装置に関する。この距離情報生成装置は、撮像により得られた、物体までの距離値の分布を表す計測デプス画像のデータを取得する計測デプス画像取得部と、計測デプス画像が表す距離値を所定の手法でアップサンプリングしてなる候補デプス画像を生成するアップサンプリング部と、計測デプス画像と異なる情報に基づき、候補デプス画像が表す距離値の信頼度を画素ごとまたは領域ごとに決定する信頼度決定部と、信頼度に基づき、候補デプス画像から、採用する距離値を読み出し画素値とした出力デプス画像を生成し出力する出力データ生成部と、を備えたことを特徴とする。
本発明のさらに別の態様は距離情報生成方法に関する。この距離情報生成方法は、撮像により得られた、物体までの距離値の分布を表す計測デプス画像のデータを取得するステップと、計測デプス画像が表す距離値を所定の手法でアップサンプリングしてなる候補デプス画像を生成しメモリに格納するステップと、計測デプス画像と異なる情報に基づき、候補デプス画像が表す距離値の信頼度を画素ごとまたは領域ごとに決定するステップと、信頼度に基づき、候補デプス画像から、採用する距離値を読み出し画素値とした出力デプス画像を生成し出力するステップと、を含むことを特徴とする。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。
本発明によると、実物体の詳細な位置情報を精度よく容易に取得できる。
本実施の形態は、物体の距離情報を生成する技術に関する。具体的には、従来の測距技術において取得される、粗い粒度での距離値の2次元分布を精度よく補完(アップサンプリング)し、詳細な距離情報を生成する。その限りにおいて採用する測距技術は特に限定されず、TOFセンサやステレオカメラなど実用化されている手段や測定方法のいずれにも適用できる。
図1は、本実施の形態の距離情報生成システムによる測距環境を説明するための図である。距離情報生成システム12は、撮像装置8と距離情報生成装置10により構成される。撮像装置8はTOFセンサやステレオカメラなど測距のためのセンサを含み、実物体6までの距離を2次元分布として取得する。TOFセンサによれば、特定の波長帯の光を実物体6に照射し、その反射光を撮像素子アレイによって観測することにより、その時間差や位相差により実物体6までの距離を取得できる。
ステレオカメラによれば、左右に離間した2つのカメラにより撮影されたステレオ画像における、同じ実物体6の像の位置ずれに基づき、三角測量の原理により距離を取得できる。これらはいずれも公知の技術である。TOFセンサとステレオカメラは実物体6からの光の2次元分布を検出する点で「撮像」手段と捉えることができるため、本実施の形態ではそれらを撮像装置と総称している。ただし撮像装置8は必要に応じて、撮像した結果である画像に対し演算を行うなどして、距離値の2次元分布を取得する機能も有する。あるいは当該機能は、距離情報生成装置10に設けてもよい。
本実施の形態の撮像装置8はさらに、実物体6のカラー画像を撮影する機能を有する。例えば撮像装置8は、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)など一般的なイメージセンサを含み、上述したTOFのための反射光の検出とともにカラー画像を撮影してもよい。ステレオカメラにより距離を取得する場合は、その一方の撮影画像をカラー画像として利用してもよい。あるいは画角の対応が判明している限り、カラー画像を撮影するためのカメラを、測距のためのカメラと別に設けてもよい。
いずれにしろ撮像装置8は、実物体6までの距離値の2次元分布と、実物体6の色情報の2次元分布であるカラー画像のデータを、所定のタイミングまたは所定の頻度で距離情報生成装置10に出力する。なお後述するように、撮像装置8は複数方位の偏光画像を撮影してもよい。この場合も、カメラレンズの前面に回転により方位を変更可能な偏光板を装着するか、イメージセンサを構成する撮像素子に主軸角度の異なる偏光子層を設けるなどして、同じイメージセンサにより距離値の2次元分布、カラー画像、偏光画像を取得してもよいし、偏光カメラを別途設けてもよい。
距離情報生成装置10は、撮像装置8から距離値の2次元分布とカラー画像のデータを取得し、距離値をアップサンプリングすることにより詳細な距離情報を生成する。すなわち距離情報生成装置10は、TOFあるいはステレオ画像により取得された、隙間のある、あるいは粒度の粗い距離値の2次元分布から、所定の解像度で均等に距離値が表された2次分布のデータを生成する。以後、前者を計測デプス画像、後者を出力デプス画像と呼ぶ。
出力デプス画像の生成において、距離情報生成装置10は、カラー画像など別途取得した実物体6を表す情報に基づき、アップサンプリングに用いる手法を画像平面で切り替える。なお撮像装置8と距離情報生成装置10は同じ装置として実現してもよい。あるいは距離情報生成装置10、または撮像装置8および距離情報生成装置10を、ゲーム装置、携帯端末、パーソナルコンピュータ、ヘッドマウントディスプレイなど、距離情報を用いて情報処理を行う装置の一部としてもよい。
図2は、距離情報生成装置10が生成する距離情報を例示している。(a)は、図1で示した環境において、撮像装置8が実物体6を撮影した一般的な画像である。図ではグレースケールとしているが、カラー撮影することにより、距離情報生成装置10において距離情報の生成に利用できる。(b)は対応して取得される計測デプス画像を示している。この画像も、距離値をグレースケールで表しているが、実際には色の変化で表される。図示するように、計測デプス画像では比較的大きな領域単位で距離値が対応づけられる。
(c)は、距離情報生成装置10が生成した出力デプス画像を示している。距離情報生成装置10が、計測デプス画像を適切にアップサンプリングすることにより、格段に細かい単位で距離値が表されたデプス画像を生成できる。これにより、物体単位での距離のみならず、各物体の表面の形状なども特定でき、物体認識や動き検出なども精度よく行える。結果として、それらのデータを用いた情報処理の精度を高めたり、応用範囲を広げたりできる。
図3は、距離情報生成装置10の内部回路構成を示している。距離情報生成装置10は、CPU(Central Processing Unit)23、GPU(Graphics Processing Unit)24、メインメモリ26を含む。これらの各部は、バス30を介して相互に接続されている。バス30にはさらに入出力インターフェース28が接続されている。入出力インターフェース28には、USBやIEEE1394などの周辺機器インターフェースや、有線又は無線LANのネットワークインターフェースからなる通信部32、ハードディスクドライブや不揮発性メモリなどの記憶部34、必要に応じて外部の装置へデータを出力する出力部36、撮像装置8や図示しない入力装置からデータを入力する入力部38、磁気ディスク、光ディスクまたは半導体メモリなどのリムーバブル記録媒体を駆動する記録媒体駆動部40が接続される。
CPU23は、記憶部34に記憶されているオペレーティングシステムを実行することにより距離情報生成装置10の全体を制御する。CPU23はまた、リムーバブル記録媒体から読み出されてメインメモリ26にロードされた、あるいは通信部32を介してダウンロードされた各種プログラムを実行する。GPU24は、ジオメトリエンジンの機能とレンダリングプロセッサの機能とを有し、CPU23からの命令に従って描画処理や画像解析などを行う。メインメモリ26はRAM(Random Access Memory)により構成され、処理に必要なプログラムやデータを記憶する。
図4は、本実施の形態の距離情報生成装置10の機能ブロックの構成を示している。図示する各機能ブロックは、ハードウェア的には、図3で示したCPU23、GPU24、メインメモリ26などで実現でき、ソフトウェア的にはハードディスクや記録媒体からメインメモリ26にロードされたコンピュータプログラムなどで実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
距離情報生成装置10は、計測デプス画像のデータを取得する計測デプス画像取得部50、カラー画像のデータを取得するカラー画像取得部56、距離値のアップサンプリングを実施するアップサンプリング部52、アップサンプリング結果の信頼度を画素ごとまたは領域ごとに決定する信頼度決定部58、信頼度に基づきアップサンプリング結果を取捨選択し出力デプス画像を生成する出力データ生成部60、および、生成された出力デプス画像を出力する出力部62を備える。
計測デプス画像取得部50は、撮像装置8が計測したデプス画像のデータを取得する。距離情報生成装置10が距離情報を継続して生成する場合、計測デプス画像取得部50は計測デプス画像のデータを所定のフレームレートで取得する。カラー画像取得部56は、撮像装置8が撮影してなるカラー画像のデータを取得する。当該カラー画像は、計測デプス画像取得部50が取得する計測デプス画像と同じタイミングで撮影されたものである。上述のとおりカラー画像と計測デプス画像は、視野の対応がとれているものとする。
例えば上述のとおり、同じイメージセンサにより両者を取得すれば、視野は自ずと一致する。異なるカメラとする場合は、事前のキャリブレーションにより、視野の対応関係を取得しておくことができる。アップサンプリング部52は、計測デプス画像取得部50が取得した計測デプス画像を、所定の手法によりアップサンプリングすることにより、候補となる距離値を表したデプス画像(以後、候補デプス画像と呼ぶ)を生成する。
画素値の補間や画像の拡大において、従来、バイリニア法、ニアレストネイバー法、バイラテラル法、メディアン法、ガウス補間法など様々な手法が実用化されている。さらに近年では、深層学習(ディープラーニング)の分野における画像処理の技術としてCNN(Convolution Neural Network)も広く知られるようになってきた。これらの手法はいずれも、一般的な画像の見た目を良好にできる点で効果を発揮するが、デプス画像を対象とした場合、実物体がどのような形状変化をしているかといった観点で十分な精度を得られない場合がある。
例えばバイリニア法やCNNによると、物体の輪郭部分など段差がある形状においてその変化が鈍り、実際の段差より緩い傾斜があるような結果が得られやすい。これは、それらの手法では共通して、回帰分析により画素値に連続関数を当てはめることに起因する。一方、回帰を用いずサンプル点の画素値を直接利用するような手法によれば、サンプル点の選び方などが距離値の精度に影響する。
例えばメディアン法は、近傍にある所定数のサンプル点の画素値の中央値を対象画素の画素値とする手法である。この場合、サンプル点に選ばれなかった画素値は結果に反映されないため、傾いた平面など滑らかに変化する物体表面の像の領域において精度が出ない場合がある。このように、デプス画像を処理対象としたアップサンプリングでは、どの手法においても実体を反映しづらい形状(距離の変化)が存在する。
そこで本実施形態では、例えば複数の手法で仮にアップサンプリングした結果を候補デプス画像として取得しておき、信頼度の高い結果を画素ごと、あるいは領域ごとに取捨選択する。この場合、アップサンプリング部52は図示するように、第1処理部54a、第2処理部54b、第3処理部54c、・・・といった複数の独立した処理機構を有し、それぞれ異なる手法でデプス画像のアップサンプリングを実施する。例えば第1処理部54a、第2処理部54b、第3処理部54cはそれぞれ、CNN、メディアン法、ニアレストネイバー法により、計測デプス画像のアップサンプリングを行う。
アップサンプリング部52が実施するアップサンプリングの手法は事前に決定し、第1処理部54a、第2処理部54b、第3処理部54c、・・・に割り当てておく。したがって第1処理部54a、第2処理部54b、第3処理部54c、・・・はそれぞれ、処理に必要なフィルタや各種パラメータを内部のメモリに保持している。またCNNを用いる第1処理部54aは、適用する連続関数の学習結果を保持している。当該学習結果は、距離情報生成装置10がネットワークを介して接続したサーバなどから取得してもよい。あるいは第1処理部54a自体を、クラウド環境などに設けてもよい。
なお図では、独立してアップサンプリングを行う機能ブロックとして、第1処理部54a、第2処理部54b、第3処理部54c、・・・を示しているが、処理部の数は特に限定されない。例えば1つの処理部であっても、信頼度がしきい値以下の結果については無効とすることにより、誤差が大きいことが予測される距離値を出力データから外すことができる。アップサンプリング部52に複数の処理部を設ける場合、その数を増やすほど処理の負荷が大きくなり結果の出力遅延にもつながる。また信頼度が低い傾向の手法は、結果の採用頻度が低く全体として無駄が大きい。
したがって距離情報生成装置10の処理性能と、出力データに求められる精度などに応じて適切な数を設定する。代表的には4つ程度の処理部を設ける。信頼度決定部58は、カラー画像取得部56が取得したカラー画像を利用して、物体の形状や表面の特性、計測状況などの観点から、アップサンプリング部52における処理結果の信頼度を画素ごとまたは領域ごとに導出する。信頼度決定部58は例えば、CNNを用いてカラー画像から物体の輪郭を表すエッジ領域を抽出する。当該処理はCNNにおいて一般的なものである。
そして信頼度決定部58は、エッジ領域あるいは当該領域から所定範囲にある領域に含まれる画素に対しては、メディアン法によるアップサンプリング結果に高い信頼度を与え、それ以外の領域の画素に対しては、CNNによるアップサンプリング結果に高い信頼度を与える。このようにすると、上述した各種手法による弱点を補い合うようにして、全ての画素に対し精度の高い距離値が得られる。
アップサンプリング部52が1つの手法によりアップサンプリングを行う場合、信頼度決定部58は、当該アップサンプリングの結果を採用するか否かを、信頼度として決定してもよい。例えばアップサンプリング部52がCNNによるアップサンプリングのみを実施する場合、信頼度決定部58は、エッジ領域に含まれる画素に対してアップサンプリング結果を不採用とし、それ以外の領域では採用とする。前者の場合、出力デプス画像における当該画素の値として無効データが代入される。
このように信頼度決定部58が決定する信頼度は、複数のアップサンプリング結果に与える順位でもよいし、1つのアップサンプリング結果の採用/不採用を表すものでもよい。つまり信頼度は数として表すのに限らず、どの手法による結果を採用するか、または採用しないか、を表す情報でもよい。信頼度決定部58が信頼度を決定する手段はCNNに限らず、エッジ抽出、テンプレートマッチング、特徴点抽出など一般的な画像解析技術のいずれを用いてもよい。
また信頼度決定部58が信頼度を決定する根拠はエッジ領域か否かに限らない。例えば信頼度決定部58は、カラー画像を用いてCNNにより被写体認識を行い、推定される形状に好適なアップサンプリング手法、不向きなアップサンプリング手法を、事前の登録情報に基づき特定することにより、前者の信頼度を上げ、後者の信頼度を下げてもよい。
あるいは信頼度決定部58は、サンプル点、すなわち計測により得られた距離値の密度によって、サンプル点から直接アップサンプリングを行う手法の信頼度を調整してもよい。例えばメディアン法でアップサンプリングを行う場合、距離値が得られている画素が所定範囲内にない、あるいは所定数に達しない画素を特定し、当該画素についてはメディアン法による結果に低い信頼度を与える。あるいは信頼度決定部58は、計測デプス画像における距離の計測値の信頼性が低い画素を特定し、当該画素から所定範囲の領域について、全てのアップサンプリング手法に低い信頼度を与えてもよい。
ここで距離の計測値の信頼性が低い場合として、鏡面反射成分が多い領域、表面のテクスチャが一部のみ変化している領域、黒い物体の像、TOFセンサにおいて観測された光子の数の極大点が複数検出されている場合、などがある。信頼度決定部58は、これらの状況に起因して計測値の信頼性が低いと推定される画素を、カラー画像を解析することにより特定してもよい。このとき、あらかじめ学習させた結果に基づき、CNNにより該当画素を推定してもよい。
あるいは信頼度決定部58は、上述した偏光画像により計測値の信頼性が低い画素を特定してもよい。カラーフィルタの上層に偏光子層を設けることにより、カラー偏光画像を撮影できる偏光カメラは広く知られている。例えば微細なワイヤグリッドからなる偏光子を0°、45°、90°、135°の主軸角度で撮像素子の上層に設け、偏光子およびカラーフィルタを透過した光を電荷に変換して読み出すことにより、4種類の方位の偏光画像をカラー画像として得ることができる(例えば特開2012-80065号公報参照)。
この場合、4方位の偏光画像を画素ごとに足し合わせることによって自然光のカラー画像を取得できる。また各画素について、方位に対する偏光強度の依存性を得ることにより、物体表面の反射特性、すなわち鏡面反射成分が支配的か拡散反射成分が支配的かを特定できる(例えば特開2009-58533号公報)。したがって信頼度決定部58は、4方位の偏光画像から鏡面反射成分が支配的な領域を特定し、当該領域において計測された距離値やそれを用いたアップサンプリングの結果の信頼度を低くする。
さらに信頼度決定部58は、撮像装置8と実物体との間の相対的な動き情報を信頼度決定の根拠に用いてもよい。例えば本実施の形態の距離情報生成システム12を図示しないヘッドマウントディスプレイに搭載する場合、信頼度決定部58は、ヘッドマウントディスプレイに内蔵させたモーションセンサの計測値を取得する。ヘッドマウントディスプレイの加速度や角速度が大きいと、撮影されたカラー画像にはぶれ(モーションブラー)が生じる。
この場合、カラー画像を用いた画像認識には誤差が生じるため、それに基づく信頼度自体の精度が悪化する。そのため信頼度決定部58は例えば、モーションセンサが計測する加速度や角速度、あるいはそれらから得られる速度など、動きの大きさを表すパラメータがしきい値を超えた期間において、信頼度の決定処理を中断してもよい。あるいは当該期間、信頼度決定部58は、全てのアップサンプリング結果の信頼度を低く設定してもよいし、出力デプス画像の出力自体を中断するようにしてもよい。
なお距離情報生成システム12を固定とし、実物体を、コントローラなどモーションセンサを搭載した物とした場合も同様に動き情報を取得できる。距離情報生成システム12と実物体の双方にモーションセンサを搭載してもよい。いずれにしろ、両者の相対的な動きを特定し、その大きさによって信頼度の決定処理を切り替えればよく、モーションセンサの代わりに外部カメラなどにより動き情報を取得してもよい。
信頼度決定部58にはあらかじめ、各アップサンプリング手法に対し、精度が高く得られる条件と精度が低くなりやすい条件とを対応づけたテーブルを格納しておく。ここで精度が低くなりやすい条件とは、フィルタ係数を変化させても、あるいはCNNの場合はいくら学習しても、一定以上精度が出ない条件を意味し、事前の実験や学習結果により特定できる。精度が高く得られる条件も同様に、事前の実験や学習結果によって、最適なフィルタ係数やアルゴリズムなどとともに登録する。
そして運用時、信頼度決定部58は、カラー画像などの解析結果が、精度が高く得られる条件に合致するアップサンプリング手法の信頼度を上げる。また当該解析結果が、精度が低くなりやすい条件に合致するアップサンプリング手法の信頼度を下げる。あるいはベースとなるアップサンプリング手法を1つ定めておき、当該手法で精度が低くなりやすい条件を満たす部分のみ、精度が高く得られる別の手法を選択するように信頼度を決定してもよい。
上述のとおり計測値自体の信頼性も考慮して、多角的に信頼度を評価する場合、信頼度決定部58は例えば、i番目のアップサンプリング手法の信頼度を表すスコアS(i)を次のように算出してもよい。
S(i)=Σsi(x)
ここでsi(x)は、要素xに対する信頼度のスコアを表す関数である。要素xは例えば、エッジ領域か否か、物体の形状、色、反射特性、相対速度といったものである。関数si(x)は、同じ要素xでもアップサンプリング手法によって変化する場合と、アップサンプリング手法によらず同じ変化となる場合とがある。
S(i)=Σsi(x)
ここでsi(x)は、要素xに対する信頼度のスコアを表す関数である。要素xは例えば、エッジ領域か否か、物体の形状、色、反射特性、相対速度といったものである。関数si(x)は、同じ要素xでもアップサンプリング手法によって変化する場合と、アップサンプリング手法によらず同じ変化となる場合とがある。
出力データ生成部60は、信頼度決定部58が決定した信頼度に基づき、アップサンプリング部52が生成した候補デプス画像から、信頼度の高い距離値を画素ごとに決定し読み出すことにより、出力デプス画像を生成する。信頼度決定部58が、アップサンプリング結果に対し信頼度の順位を付与する場合、出力データ生成部60は、最も順位の高いアップサンプリング結果を読み出す。信頼度決定部58が、上述したスコア値を算出する場合、出力データ生成部60は、最も高いスコア値を得たアップサンプリング結果を読み出す。
また信頼度決定部58が、アップサンプリングの結果を不採用と決定した画素、あるいは、スコア値が全てしきい値以下の画素については、出力データ生成部60はアップサンプリング結果を読み出さない。この場合、出力データ生成部60は、出力デプス画像の当該画素に対して、0など無効であることを示す値を格納する。
なお出力データ生成部60は、候補デプス画像から読み出した距離値からなるデプス画像に対し、さらにフィルタ処理を施してもよい。例えばガウシアンフィルタなどを用いて平滑化することにより、アップサンプリング手法が異なることに起因して、隣接する画素の距離値が不自然に変化するのを防止できる。この場合、出力データ生成部60は、異なるアップサンプリング結果を採用した領域の境界近傍においてのみ、平滑化処理を実施してもよい。
出力部62は、出力データ生成部60が生成した出力デプス画像を出力する。出力先は、出力デプス画像を用いて情報処理を行う別のモジュールでもよいし、距離情報生成装置10の記憶領域などでもよい。なお計測デプス画像取得部50やカラー画像取得部56は、撮像装置8が計測あるいは撮影した画素列順に、計測デプス画像およびカラー画像を即時取得してもよい。
アップサンプリング部52の各処理部は、計測デプス画像のうちアップサンプリングに必要な行数のデータを一時格納するラインバッファと、アップサンプリングした結果を一時格納するラインバッファを内部に保持する。そして出力データ生成部60は、アップサンプリングされた結果が一時格納されているラインバッファから、採用する距離値を画素ごとに読み出すことにより出力デプス画像を生成し、出力部62に順次供給する。このように各機能ブロックが、前の機能ブロックにおける1フレーム分の処理を待たずに各自の処理を開始することにより、計測した距離情報を詳細化して出力するまでを低遅延で行える。
図5は、距離情報生成装置10が距離情報を生成する処理手順を示している。まず計測デプス画像取得部50およびカラー画像取得部56はそれぞれ、撮像装置8から計測デプス画像70および撮影されたカラー画像72を取得する。続いてアップサンプリング部52は、計測デプス画像70を所定の手法でアップサンプリングすることにより、1つまたは複数の候補デプス画像74を生成する(S10)。候補デプス画像74の解像度(画像サイズ)は、出力デプス画像の解像度と同じとする。
一方、信頼度決定部58は、カラー画像を解析することにより、候補デプス画像が表す距離値の信頼度を画素ごとまたは領域ごとに決定する(S12)。また信頼度決定部58は、カラー画像とともに取得した偏光画像に基づき、物体表面の反射特性を取得したり、撮像装置8と物体の相対的な動き情報をモーションセンサから取得し、それに基づきモーションブラーの発生期間を検出したりして、信頼度に反映させてもよい。なおカラー画像の解析結果、物体の反射特性、撮像装置8と物体の相対的な動き情報は、その全てを信頼度に反映させてもよいし、いずれか1つあるいは2つを信頼度に反映させてもよい。
例えばカラー画像を用いず、偏光画像による反射特性、および/または動き情報のみを信頼度決定の根拠としてもよい。いずれにしろ信頼度決定部58は、出力デプス画像に対応する画像平面において、画素ごとに信頼度を対応づけた信頼度画像76を生成する。出力データ生成部60は、信頼度画像76が表す信頼度の情報に基づき、採用する距離値を候補デプス画像74から読み出すことで、最終的な出力デプス画像78を生成する(S14)。
出力部62は生成された出力デプス画像のデータを、外部のモジュールに出力したり内部の記憶領域に格納したりする。以上のとおりこれらの処理は実際には、画素列単位で実施し、1フレーム分の処理を待つことなく次の処理を開始することにより距離情報を高速に出力する。図示する処理を、撮像装置8が所定のレートで取得した各時刻の計測デプス画像70について繰り返すことにより、出力デプス画像78も当該レートで出力できる。
図6は、アップサンプリング部52が生成する候補デプス画像の実例を示している。(a)はCNNによる結果、(b)は重み付きメディアン法による結果であり、わかりやすさのため一部領域を拡大して示している。CNNによる候補デプス画像80aでは、例えば領域106aに見られるように、実物体の輪郭において実際にはない中間値が表れる。結果として、同じ撮影環境において準備された真値(Ground Truth)との差分画像82aにおいて、例えば領域108aに見られるように、輪郭部分に大きな誤差が現れる。重み付きメディアン法による候補デプス画像80bでは、例えば領域106bに見られるように、傾斜している滑らかな表面に対し段差があるような距離値が算出される。結果として、真値との差分画像82bにおいて、例えば領域108bに見られるように、表面を表す領域に比較的大きい誤差が表れる。
図7は、信頼度決定部58が信頼度を決定する際に根拠とするエッジ領域の抽出結果の実例を示している。信頼度決定部58は、(a)に示すカラー画像に基づき、(b)に示すエッジ画像を生成する。エッジ画像は上述のとおりCNNにより推定してもよいし、一般的なエッジ抽出フィルタにより生成してもよい。図のエッジ画像は、CNNによりエッジが推定される領域を黒で表している。信頼度決定部58は例えば、当該エッジの領域、あるいはそこから所定範囲内にある領域について、重み付きメディアン法など回帰解析のない手法の信頼度を上げ、それ以外の領域についてはCNNなどサンプル点の依存性のない手法の信頼度を上げる。
図8は、出力データ生成部60により生成される出力デプス画像の実例を示している。この例で出力データ生成部60は、図7で示したエッジ画像に基づき決定された信頼度により、図6で示した候補デプス画像から画素ごとにいずれかの距離値を読み出した結果、出力デプス画像84を生成している。出力デプス画像84および真値との差分画像86に示すように、輪郭部分に中間値が発生せず、傾斜した滑らかな表面の変化がそのまま反映された、精度の高い距離値が得られている。
図9は、候補デプス画像と出力デプス画像の距離値の結果を比較している。同図は、左上の破線90で示すように、画像平面の左上の頂点から右下へ45°の傾斜を有する直線上における距離値の変化を、真値92、CNNによる候補デプス画像94、重み付きメディアン法による候補デプス画像96、および出力デプス画像98で比較している。CNNによる候補デプス画像94では、物体の輪郭を表すエッジ領域100において、真値92にはない中間値が表れている。
一方、重み付きメディアン法による候補デプス画像96では、物体表面の傾斜を表す領域102において距離値が離散的になっており、真値92のような滑らかな変化が得られていない。図8で示したエッジ画像などに基づく信頼度を用い、出力データ生成部60がそれらの候補データを統合した結果、生成される出力デプス画像98では、エッジ領域や傾斜領域104において滑らかかつ中間値のない距離値が得られている。すなわち本実施の形態によって、真値92に近い距離情報が生成されていることがわかる。
以上述べた本実施の形態によれば、計測されたデプス画像をアップサンプリングするとともに、実物体や計測の状況を別の手段によって特定することにより、アップサンプリングの結果に信頼度を付与し、採用する結果を画素ごとに取捨選択する。例えば物体の輪郭を表すエッジ領域か否かで画素を分類し、それぞれに適した手法で得られた距離値を採用する。あるいは、精度が得られないことが予測される領域について、アップサンプリングの結果を無効とする。
これにより、一般的な画像の補間とは異なり、見た目より値の精度が求められるデプス画像においても、従来の手法を利用しながら容易に良好な結果を導出できる。またアップサンプリング結果の信頼度は、CNNを用いたり、偏光画像に基づく物体表面の反射特性やモーションセンサによる動き情報などを利用したりして決定することにより、距離値の取捨選択の精度を高め、ひいては距離情報を高精度かつ高解像度で出力できる。
以上、本発明を実施の形態をもとに説明した。上記実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
8 撮像装置、 10 距離情報生成装置、 23 CPU、 24 GPU、 26 メインメモリ、 50 計測デプス画像取得部、 52 アップサンプリング部、 54a 第1処理部、 54b 第2処理部、 54c 第3処理部、 56 カラー画像取得部、 58 信頼度決定部、 60 出力データ生成部、 62 出力部。
以上のように本発明は、距離情報生成装置、情報処理装置、ゲーム装置、コンテンツ処理装置、ヘッドマウントディスプレイなどの各種装置と、それを含むシステムなどに利用可能である。
Claims (12)
- 撮像により得られた、物体までの距離値の分布を表す計測デプス画像のデータを取得する計測デプス画像取得部と、
前記計測デプス画像が表す距離値を所定の手法でアップサンプリングしてなる候補デプス画像を生成するアップサンプリング部と、
前記計測デプス画像と異なる情報に基づき、前記候補デプス画像が表す距離値の信頼度を画素ごとまたは領域ごとに決定する信頼度決定部と、
前記信頼度に基づき、前記候補デプス画像から、採用する距離値を読み出し画素値とした出力デプス画像を生成し出力する出力データ生成部と、
を備えたことを特徴とする距離情報生成装置。 - 前記アップサンプリング部は、複数の手法でアップサンプリングを実施することにより複数の候補デプス画像を生成し、
前記出力データ生成部は、前記信頼度に基づき、前記複数の候補デプス画像のうち採用する距離値を画素ごとに選択することを特徴とする請求項1に記載の距離情報生成装置。 - 前記信頼度決定部は、対応する視野で撮影されたカラー画像の、CNN(Convolution Neural Network)による解析結果に基づき、前記信頼度を決定することを特徴とする請求項1または2に記載の距離情報生成装置。
- 前記信頼度決定部は、前記カラー画像に基づき物体のエッジ領域を抽出し、当該エッジ領域か否かで、前記信頼度を変化させることを特徴とする請求項3に記載の距離情報生成装置。
- 前記信頼度決定部は、前記カラー画像に基づき物体認識を行い、推定される形状に好適であることが登録されたアップサンプリング手法による距離値の前記信頼度を高くすることを特徴とする請求項3または4に記載の距離情報生成装置。
- 前記信頼度決定部は、物体の色および表面の反射特性の少なくともいずれかに基づき、前記計測デプス画像における距離値の信頼性を評価し、前記信頼度に反映させることを特徴とする請求項1から5のいずれかに記載の距離情報生成装置。
- 前記信頼度決定部は、前記計測デプス画像において距離値が得られている画素が所定範囲内にない、あるいは所定数に達しない画素を特定し、当該画素について、前記信頼度を調整することを特徴とする請求項1から6のいずれかに記載の距離情報生成装置。
- 前記信頼度決定部は、前記物体、および前記計測デプス画像の取得に用いた撮像装置の少なくともいずれかに内蔵されたモーションセンサの計測値を取得し、当該計測値から得られる動きの大きさがしきい値を超えている期間において、前記信頼度の決定処理を中断することを特徴とする請求項1から7のいずれかに記載の距離情報生成装置。
- 前記出力データ生成部は、前記出力デプス画像のうち異なる手法でアップサンプリングされた結果を採用した領域の境界において、平滑化処理を施すことを特徴とする請求項1から8のいずれかに記載の距離情報生成装置。
- 前記出力データ生成部は、前記出力デプス画像のうち、信頼度が所定の基準に満たない画素について、無効データ対応づけることを特徴とする請求項1から9のいずれかに記載の距離情報生成装置。
- 撮像により得られた、物体までの距離値の分布を表す計測デプス画像のデータを取得するステップと、
前記計測デプス画像が表す距離値を所定の手法でアップサンプリングしてなる候補デプス画像を生成しメモリに格納するステップと、
前記計測デプス画像と異なる情報に基づき、前記候補デプス画像が表す距離値の信頼度を画素ごとまたは領域ごとに決定するステップと、
前記信頼度に基づき、前記候補デプス画像から、採用する距離値を読み出し画素値とした出力デプス画像を生成し出力するステップと、
を含むことを特徴とする、距離情報生成装置による距離情報生成方法。 - 撮像により得られた、物体までの距離値の分布を表す計測デプス画像のデータを取得する機能と、
前記計測デプス画像が表す距離値を所定の手法でアップサンプリングしてなる候補デプス画像を生成する機能と、
前記計測デプス画像と異なる情報に基づき、前記候補デプス画像が表す距離値の信頼度を画素ごとまたは領域ごとに決定する機能と、
前記信頼度に基づき、前記候補デプス画像から、採用する距離値を読み出し画素値とした出力デプス画像を生成し出力する機能と、
をコンピュータに実現させることを特徴とするコンピュータプログラム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/035924 WO2022064583A1 (ja) | 2020-09-24 | 2020-09-24 | 距離情報生成装置および距離情報生成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2022064583A1 JPWO2022064583A1 (ja) | 2022-03-31 |
JP7407963B2 true JP7407963B2 (ja) | 2024-01-04 |
Family
ID=80845596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022551482A Active JP7407963B2 (ja) | 2020-09-24 | 2020-09-24 | 距離情報生成装置および距離情報生成方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230316558A1 (ja) |
EP (1) | EP4220078A4 (ja) |
JP (1) | JP7407963B2 (ja) |
WO (1) | WO2022064583A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007179236A (ja) | 2005-12-27 | 2007-07-12 | Sony Corp | 画像生成装置及び方法 |
US20150015569A1 (en) | 2013-07-15 | 2015-01-15 | Samsung Electronics Co., Ltd. | Method and apparatus for processing depth image |
CN111652921A (zh) | 2020-04-21 | 2020-09-11 | 深圳大学 | 一种单目深度预测模型的生成方法及单目深度预测方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6906793B2 (en) | 2000-12-11 | 2005-06-14 | Canesta, Inc. | Methods and devices for charge management for three-dimensional sensing |
CN101542232B (zh) | 2007-08-07 | 2011-10-19 | 松下电器产业株式会社 | 法线信息生成装置以及法线信息生成方法 |
JP5682437B2 (ja) | 2010-09-07 | 2015-03-11 | ソニー株式会社 | 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法 |
EP3343246A1 (en) * | 2016-12-30 | 2018-07-04 | Xenomatix NV | System for characterizing surroundings of a vehicle |
JP2019152616A (ja) | 2018-03-06 | 2019-09-12 | オムロン株式会社 | 光測距センサ |
-
2020
- 2020-09-24 WO PCT/JP2020/035924 patent/WO2022064583A1/ja unknown
- 2020-09-24 EP EP20955177.9A patent/EP4220078A4/en active Pending
- 2020-09-24 US US18/044,914 patent/US20230316558A1/en active Pending
- 2020-09-24 JP JP2022551482A patent/JP7407963B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007179236A (ja) | 2005-12-27 | 2007-07-12 | Sony Corp | 画像生成装置及び方法 |
US20150015569A1 (en) | 2013-07-15 | 2015-01-15 | Samsung Electronics Co., Ltd. | Method and apparatus for processing depth image |
CN111652921A (zh) | 2020-04-21 | 2020-09-11 | 深圳大学 | 一种单目深度预测模型的生成方法及单目深度预测方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230316558A1 (en) | 2023-10-05 |
WO2022064583A1 (ja) | 2022-03-31 |
EP4220078A1 (en) | 2023-08-02 |
EP4220078A4 (en) | 2024-05-29 |
JPWO2022064583A1 (ja) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10755428B2 (en) | Apparatuses and methods for machine vision system including creation of a point cloud model and/or three dimensional model | |
KR101893047B1 (ko) | 이미지 처리 방법 및 이미지 처리 장치 | |
WO2021140886A1 (ja) | 三次元モデル生成方法、情報処理装置およびプログラム | |
WO2012005140A1 (ja) | 点群データ処理装置、点群データ処理システム、点群データ処理方法、および点群データ処理プログラム | |
US20200175663A1 (en) | Image processing system, server apparatus, image processing method, and image processing program | |
US20100182480A1 (en) | Image processing apparatus, image matching method, and computer-readable recording medium | |
JP6577703B2 (ja) | 画像処理装置及び画像処理方法、プログラム、記憶媒体 | |
US10545215B2 (en) | 4D camera tracking and optical stabilization | |
CN113686314B (zh) | 船载摄像头的单目水面目标分割及单目测距方法 | |
EP2372652B1 (en) | Method for estimating a plane in a range image and range image camera | |
WO2021168804A1 (zh) | 图像处理方法、图像处理装置和图像处理系统 | |
US11816854B2 (en) | Image processing apparatus and image processing method | |
CN116095473A (zh) | 镜头自动对焦方法、装置、电子设备和计算机存储介质 | |
WO2024158569A1 (en) | Systems and methods for dynamic image rendering using a depth map | |
JP7020240B2 (ja) | 認識装置、認識システム、プログラムおよび位置座標検出方法 | |
JP5805013B2 (ja) | 撮像画像表示装置、撮像画像表示方法、プログラム | |
JP7298687B2 (ja) | 物体認識装置及び物体認識方法 | |
JP7407963B2 (ja) | 距離情報生成装置および距離情報生成方法 | |
JP2020140497A (ja) | 演算装置、視差算出方法 | |
JP5926626B2 (ja) | 画像処理装置及びその制御方法、プログラム | |
JP7034690B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP3151472B2 (ja) | 3次元物体像の生成方法 | |
JP6320165B2 (ja) | 画像処理装置及びその制御方法、並びにプログラム | |
JP5891751B2 (ja) | 画像間差分装置および画像間差分方法 | |
WO2024201810A1 (ja) | 障害物検出装置、システム、方法、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7407963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |