JP7406398B2 - Hydrophilic surface and its manufacturing method - Google Patents
Hydrophilic surface and its manufacturing method Download PDFInfo
- Publication number
- JP7406398B2 JP7406398B2 JP2020027582A JP2020027582A JP7406398B2 JP 7406398 B2 JP7406398 B2 JP 7406398B2 JP 2020027582 A JP2020027582 A JP 2020027582A JP 2020027582 A JP2020027582 A JP 2020027582A JP 7406398 B2 JP7406398 B2 JP 7406398B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrophilic surface
- filler
- particle
- hydrophilic
- surface according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005660 hydrophilic surface Effects 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000002245 particle Substances 0.000 claims description 124
- 239000000463 material Substances 0.000 claims description 116
- 239000011347 resin Substances 0.000 claims description 64
- 229920005989 resin Polymers 0.000 claims description 64
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 57
- 239000000203 mixture Substances 0.000 claims description 42
- 239000000945 filler Substances 0.000 claims description 40
- 239000011164 primary particle Substances 0.000 claims description 40
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 32
- 229910001593 boehmite Inorganic materials 0.000 claims description 30
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 30
- 239000000377 silicon dioxide Substances 0.000 claims description 26
- 239000010410 layer Substances 0.000 claims description 25
- 239000011236 particulate material Substances 0.000 claims description 22
- 239000011248 coating agent Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 21
- -1 silane compound Chemical class 0.000 claims description 21
- 239000006185 dispersion Substances 0.000 claims description 20
- 239000011247 coating layer Substances 0.000 claims description 18
- 229910000077 silane Inorganic materials 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 11
- 238000000354 decomposition reaction Methods 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 9
- 230000005494 condensation Effects 0.000 claims description 9
- 230000018044 dehydration Effects 0.000 claims description 9
- 238000006297 dehydration reaction Methods 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000002441 X-ray diffraction Methods 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 2
- 239000010408 film Substances 0.000 description 41
- 238000012360 testing method Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 23
- 238000002834 transmittance Methods 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 15
- 230000001699 photocatalysis Effects 0.000 description 14
- 239000000470 constituent Substances 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000007704 transition Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000007771 core particle Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000008119 colloidal silica Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 3
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 2
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- NREFJJBCYMZUEK-UHFFFAOYSA-N 2-[2-[4-[2-[4-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]phenyl]propan-2-yl]phenoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound C1=CC(OCCOCCOC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCCOCCOC(=O)C(C)=C)C=C1 NREFJJBCYMZUEK-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- LTOKKZDSYQQAHL-UHFFFAOYSA-N trimethoxy-[4-(oxiran-2-yl)butyl]silane Chemical compound CO[Si](OC)(OC)CCCCC1CO1 LTOKKZDSYQQAHL-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
Description
本発明は親水表面及びその製造方法に関する。 The present invention relates to a hydrophilic surface and a method for producing the same.
透明材の防汚防曇化技術としては、光触媒性コーティング膜を塗布したり(特許文献1)、機械的・化学的エッチングによりガラス表面に凹凸を形成させたりする方法(特許文献2)等が提案されている。 Antifouling and antifogging technologies for transparent materials include methods such as applying a photocatalytic coating film (Patent Document 1) and forming irregularities on the glass surface by mechanical and chemical etching (Patent Document 2). Proposed.
しかしながら、光触媒材料を利用して防汚防曇性を発揮させるためには、十分な紫外線量が必要であり、使用場所が屋外などに限られる。また、硬いガラス表面に直接凹凸を形成させる方法は、研磨剤のサイズや研磨力によって逆に傷や曇りを発生させることも多く、透明性を損なうことなく均一に凹凸構造を形成させることが難しい。
本発明は上記実情に鑑み完成したものであり、透明部材の表面に均一な凹凸構造を付与することで、使用環境を選ばず耐久性に優れた親水表面及びその製造方法を提供することを解決すべき課題とする。
However, in order to exhibit antifouling and antifogging properties using a photocatalytic material, a sufficient amount of ultraviolet light is required, and the place of use is limited to outdoors. In addition, the method of directly forming unevenness on a hard glass surface often causes scratches or clouding depending on the size of the abrasive and the polishing force, and it is difficult to form an uneven structure uniformly without compromising transparency. .
The present invention was completed in view of the above-mentioned circumstances, and an object of the present invention is to provide a hydrophilic surface that has excellent durability regardless of the usage environment by imparting a uniform uneven structure to the surface of a transparent member, and a method for manufacturing the same. This is an issue that should be addressed.
上記課題を解決するため本発明者らは鋭意検討を行った結果、本願発明者ら開発した粒子材料(PCT/JP2019/008389に記載)からなるフィラーを分散した透明樹脂材料を少なくとも表面に含む透明部材について、表面の有機成分を湿式又は乾式分解して除去することで、最表面に粒子材料が存在する耐久性に優れた親水表面を得ることに成功した。最表面に存在する粒子材料は、水との濡れ性が高い表面を有したナノメートルサイズの粒子の凝集体がさらに凝集した凹凸構造を持つことから、使用環境を選ばず親水表面が得られる。また、凝集粒子の間及び粒子内に透明樹脂材料が入り込んでいるため、この凹凸構造は剥がれたり壊れたりしにくく、耐久性に優れる。ここで透明樹脂材料中にフィラーを分散させた分散液を塗布することで、非処理対象物としてのガラスやアクリル等の一般的な素材に対してその表面に親水表面を形成することができる。 In order to solve the above problems, the present inventors conducted intensive studies and found that a transparent material containing at least on the surface a transparent resin material in which a filler made of a particle material developed by the present inventors (described in PCT/JP2019/008389) is dispersed. By removing the organic components on the surface of the member through wet or dry decomposition, we succeeded in obtaining a highly durable hydrophilic surface with particulate material present on the outermost surface. The particle material present on the outermost surface has an uneven structure in which aggregates of nanometer-sized particles with a surface highly wettable with water are further aggregated, so a hydrophilic surface can be obtained regardless of the usage environment. Furthermore, since the transparent resin material is inserted between and within the aggregated particles, this uneven structure is difficult to peel off or break, and has excellent durability. By applying a dispersion in which a filler is dispersed in a transparent resin material, a hydrophilic surface can be formed on the surface of a general material such as glass or acrylic as an object to be treated.
(1)上記知見に基づいて本発明者らは以下の発明を完成した。すなわち、上記課題を解決する本発明の親水表面は、フィラーを含有する透明樹脂材料からなる樹脂層を表面に有し、
前記フィラーは、
最表面において前記樹脂層をほぼ被覆しており、
外部に連通する表面を基準とする比表面積直径が0.8nm以上80nm以下、表面の組成と内部の組成とが異なる無機物からなる一次粒子から構成され、
脱水縮合により粒子間が結合・融着した凝集体である粒子材料を主成分とする。
(1) Based on the above findings, the present inventors have completed the following invention. That is, the hydrophilic surface of the present invention that solves the above problems has a resin layer made of a transparent resin material containing a filler on the surface,
The filler is
The outermost surface almost covers the resin layer,
Consisting of primary particles made of an inorganic substance with a specific surface area diameter of 0.8 nm or more and 80 nm or less based on the surface that communicates with the outside, and whose surface composition and internal composition are different,
The main component is a particulate material that is an aggregate in which particles are bonded and fused through dehydration condensation.
ここで、フィラーとして含有させる粒子材料は、一次粒子同士が強固に結合した凝集体であり、外力に対しては凝集体全体として作用して高い物理的特性を示すと共に、凝集体を構成する一次粒子の粒径が可視光などの光の波長よりも小さくしていることから透明性に大きな影響を与えない。従って、透明樹脂材料の透明性を損なうことなく高い機械的特性と、安定した表面凹凸構造を提供することができる。 Here, the particle material contained as a filler is an aggregate in which primary particles are strongly bonded to each other, and the aggregate as a whole acts against external forces and exhibits high physical properties. Since the particle size is smaller than the wavelength of light such as visible light, it does not significantly affect transparency. Therefore, high mechanical properties and a stable surface unevenness structure can be provided without impairing the transparency of the transparent resin material.
(2)上記課題を解決する本発明の親水表面の製造方法は、上述の(1)に記載の親水表面を製造する製造方法であって、
前記透明樹脂材料中又は前記透明樹脂材料の前駆体中に前記フィラーを分散させて分散液とする分散液調製工程と、
前記分散液を非処理対象物の表面にて成膜する成膜工程と、
得られた膜表面の有機成分を分解除去する分解除去工程と、
を有する。
(2) A method for manufacturing a hydrophilic surface of the present invention that solves the above problems is a method for manufacturing a hydrophilic surface described in (1) above, comprising:
A dispersion liquid preparation step of dispersing the filler in the transparent resin material or a precursor of the transparent resin material to form a dispersion liquid;
a film forming step of forming the dispersion liquid on the surface of an object to be treated;
a decomposition removal step of decomposing and removing organic components on the surface of the obtained film;
has.
粒子材料の凹凸が最表面に存在することで、耐久性の高い親水表面を得ることができる。 By having the unevenness of the particle material on the outermost surface, a highly durable hydrophilic surface can be obtained.
本発明の親水表面及びその製造方法について以下実施形態に基づき詳細に説明を行う。本実施形態の親水表面は、少なくとも表面近傍において透明性が必要になる部材に採用される。例えばレンズ、ガラス、ミラーに採用される。 The hydrophilic surface of the present invention and its manufacturing method will be described in detail below based on embodiments. The hydrophilic surface of this embodiment is employed in a member that requires transparency at least near the surface. For example, it is used in lenses, glasses, and mirrors.
(親水表面)
本実施形態の親水表面は、フィラーとフィラーを分散する透明樹脂材料とを有する。これらの材料にて全体を構成しても良いし、これらの材料にて最表面に層を形成しても良い。最表面に層を形成する方法では、既存の部材に対して親水表面を形成することができる。なお、本明細書における親水表面とは、水による接触角が10°以下であるものを意味する。
(hydrophilic surface)
The hydrophilic surface of this embodiment includes a filler and a transparent resin material in which the filler is dispersed. The entire structure may be made of these materials, or a layer may be formed on the outermost surface using these materials. In the method of forming a layer on the outermost surface, a hydrophilic surface can be formed on an existing member. Note that the term "hydrophilic surface" as used herein means a surface having a contact angle with water of 10° or less.
本実施形態の親水表面は、透明性などの光学的特性に優れているため、透明な部材の表面に層状に形成されてもその光学的特性を大きく損なうことはない。例えば、親水表面を形成する部材を構成する材料としては、ガラスなどの無機材料や、ポリカーボネート(変性体を含む、本明細書中の全ての樹脂について同じ)、ポリイミドなどのイミド樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル樹脂、ポリメタクリル酸メチルなどのアクリル樹脂、塩化ビニル、ポリプロピレンやポリエチレンなどのポリオレフィン樹脂、エポキシ樹脂、ポリアミド樹脂、ユリア樹脂などの有機材料が挙げられる。 The hydrophilic surface of this embodiment has excellent optical properties such as transparency, so even if it is formed in a layer on the surface of a transparent member, its optical properties will not be significantly impaired. For example, materials constituting the member forming the hydrophilic surface include inorganic materials such as glass, polycarbonate (same for all resins in this specification, including modified products), imide resins such as polyimide, polyethylene terephthalate, etc. Examples include organic materials such as polyester resins such as polybutylene terephthalate, acrylic resins such as polymethyl methacrylate, vinyl chloride, polyolefin resins such as polypropylene and polyethylene, epoxy resins, polyamide resins, and urea resins.
ここで「透明」とは可視光、赤外光、紫外光などの光線が少しでも透過できれば充分であり、その透過率は問題にしない。なお、樹脂材料が透明であるかどうかの基準として光透過率(400nm/2mm)が80%以上であることが採用できる。更に、樹脂材料は架橋構造を有することで樹脂材料自身の物理的特性が向上できる。 Here, "transparent" means that it is sufficient if even a small amount of visible light, infrared light, ultraviolet light, etc. can be transmitted, and the transmittance is not an issue. Note that a light transmittance (400 nm/2 mm) of 80% or more can be adopted as a criterion for whether a resin material is transparent. Furthermore, the physical properties of the resin material itself can be improved by having a crosslinked structure.
本実施形態の親水表面の樹脂層がもつ透明樹脂材料は、前述の透明な樹脂材料から形成することができる。親水表面は最表面に配設されるため、耐候性の高いアクリル樹脂を採用することが好ましい。 The transparent resin material of the resin layer on the hydrophilic surface of this embodiment can be formed from the transparent resin material described above. Since the hydrophilic surface is disposed on the outermost surface, it is preferable to use an acrylic resin with high weather resistance.
フィラーは樹脂層内に分散されている。樹脂層が含有するフィラー濃度は適正に設定される。最表面においてフィラーが露出したときに適正な構造(親水性)や、機械的特性が実現できるように適正に設定できる。フィラーの露出の程度は特に限定しないが個々のフィラーの粒子について、それぞれ投影面積の100%未満であることがフィラーの粒子の脱落防止の観点からは好ましい。なお、フィラーを構成する粒子材料は多孔質であるため、内部に透明樹脂を十分に浸透させることが出来ていれば投影面積の100%まで露出させてもフィラーの脱落は問題にならない場合も想定できる。 The filler is dispersed within the resin layer. The filler concentration contained in the resin layer is appropriately set. It can be set appropriately so that when the filler is exposed on the outermost surface, an appropriate structure (hydrophilicity) and mechanical properties can be achieved. Although the extent of filler exposure is not particularly limited, it is preferable that each filler particle be less than 100% of the projected area from the viewpoint of preventing the filler particles from falling off. In addition, since the particle material that makes up the filler is porous, if the transparent resin can be sufficiently penetrated into the inside, it is assumed that the filler falling off may not be a problem even if 100% of the projected area is exposed. can.
樹脂層中の具体的に好ましいフィラー濃度は、樹脂層が必要な硬度になるように決定するが、その上限値としては、樹脂層中の透明樹脂材料の質量を基準として、90%、80%、70%、60%程度にすることが好ましい。また、下限値は、5%、10%、15%、20%程度にすることができる。これらの上限値と下限値とを任意に組み合わせることができる。 The specifically preferable filler concentration in the resin layer is determined so that the resin layer has the required hardness, and the upper limit thereof is 90%, 80% based on the mass of the transparent resin material in the resin layer. , 70%, and 60%. Further, the lower limit value can be set to about 5%, 10%, 15%, and 20%. These upper limit values and lower limit values can be arbitrarily combined.
親水表面の樹脂層の厚みとしては、1μm以上にすることができる。好ましい下限値としては、5μm、10μm、20μmが例示できる。特に上限はなく、全体がフィラーを分散した材料にて構成されていても良い(この場合でも「樹脂層」の定義に含む)。 The thickness of the resin layer on the hydrophilic surface can be 1 μm or more. Preferred lower limit values include 5 μm, 10 μm, and 20 μm. There is no particular upper limit, and the entire layer may be made of a material in which filler is dispersed (this case is also included in the definition of "resin layer").
フィラーは、PCT/JP2019/008389に記載されている粒子材料を含む。その粒子材料は、親水表面の樹脂層を構成する透明樹脂材料の屈折率と同等な屈折率をもつことが好ましい。例えば、透明樹脂材料の屈折率と無機物粒子の屈折率の差は、0.001~0.01程度であることが好ましい。粒子材料の屈折率の制御方法は後述する。 Fillers include particulate materials described in PCT/JP2019/008389. Preferably, the particle material has a refractive index equivalent to that of the transparent resin material constituting the resin layer on the hydrophilic surface. For example, the difference between the refractive index of the transparent resin material and the refractive index of the inorganic particles is preferably about 0.001 to 0.01. A method for controlling the refractive index of the particle material will be described later.
粒子材料は、外部に連通する表面を基準とする比表面積直径が0.8nm以上80nm以下、表面の組成と内部の組成とが異なる無機物からなる一次粒子から構成され、脱水縮合により粒子間が結合・融着した凝集体である粒子材料を主成分とする。一次粒子の内部と外部の組成比や、構成材料を変化させることで屈折率を自在に制御することができる。更に後述するように、表面に被覆層を形成することでも屈折率を制御することができる。 The particle material is composed of primary particles made of an inorganic substance with a specific surface area diameter of 0.8 nm or more and 80 nm or less based on the surface that communicates with the outside, and whose surface composition and internal composition are different, and the particles are bonded together by dehydration condensation.・The main component is particle material that is a fused aggregate. The refractive index can be freely controlled by changing the composition ratio between the inside and outside of the primary particles and the constituent materials. Furthermore, as described later, the refractive index can also be controlled by forming a coating layer on the surface.
親水表面の樹脂層は、その他の添加剤を有していても良い。添加剤としては、前述の粒子材料以外の一次粒子にまで分散しているナノメートルオーダーのナノ無機物粒子材料が例示できる。ナノ無機物粒子材料としては、シリカやアルミナから構成され、表面にシラン化合物などにより有機官能基を導入したものが挙げられる。表面に導入する有機官能基はハードコート層に含まれる透明樹脂材料の種類により選択でき、フェニル基、ビニル基、フェニルアミノ基、メタクリル基、アルキル基などが例示できる。ナノ無機物粒子材料の粒子径は、500nm以下であることが好ましく、更に好ましい粒子径の上限値は、200nm、100nm、50nm、20nmである。他の添加剤としては、酸化防止剤、光安定剤、帯電防止剤、帯電剤、難燃剤などの通常の添加剤が適宜採用できる。 The resin layer on the hydrophilic surface may contain other additives. Examples of additives include nanometer-order nano-inorganic particle materials that are dispersed in primary particles other than the above-mentioned particle materials. Examples of the nano-inorganic particle material include those made of silica or alumina and having an organic functional group introduced onto the surface with a silane compound or the like. The organic functional group introduced into the surface can be selected depending on the type of transparent resin material contained in the hard coat layer, and examples include phenyl group, vinyl group, phenylamino group, methacrylic group, and alkyl group. The particle size of the nano-inorganic particle material is preferably 500 nm or less, and more preferable upper limit values of the particle size are 200 nm, 100 nm, 50 nm, and 20 nm. As other additives, ordinary additives such as antioxidants, light stabilizers, antistatic agents, charging agents, and flame retardants can be appropriately employed.
親水表面を作成した後、更に光触媒性コーティング膜を形成することができる。光触媒性コーティング膜は最表面に形成することが望ましい。なお、光触媒性コーティング膜は、凝集体からなる粒子材料が露出している表面のうちの一部を覆うように形成することが好ましい。また、全てを覆うように形成する場合には凝集体からなる粒子材料にて形成される表面の凹凸形状を大きく損なわないようにすることが好ましい。光触媒性コーティング膜は、光触媒特性を持つ酸化チタンを含有するものが例示できる。光触媒性コーティング膜に酸化チタンを含有させる場合には、酸化チタンを上述の凝集体からなる粒子材料を構成する一次粒子と同程度の大きさの粒子とした上でそのまま付着させることができる他、上述した透明樹脂中に分散させた状態で薄膜化することにより光触媒性コーティング膜を形成しても良い。また、前述の凝集体からなる粒子材料を構成する一次粒子の一部に酸化チタンからなる一次粒子を含有させ、凝集体を露出させたときに最表面に酸化チタンを配置できるようにしても良い。 After creating the hydrophilic surface, a photocatalytic coating can be further applied. It is desirable to form the photocatalytic coating film on the outermost surface. Note that the photocatalytic coating film is preferably formed so as to cover a part of the surface where the particulate material consisting of aggregates is exposed. In addition, when forming so as to cover the entire surface, it is preferable not to significantly impair the uneven shape of the surface formed by the particle material made of aggregates. An example of the photocatalytic coating film is one containing titanium oxide having photocatalytic properties. When titanium oxide is contained in the photocatalytic coating film, the titanium oxide can be made into particles of the same size as the primary particles constituting the particle material consisting of the above-mentioned aggregates, and then the titanium oxide can be attached as is. A photocatalytic coating film may be formed by forming a thin film while being dispersed in the above-mentioned transparent resin. Further, primary particles made of titanium oxide may be included in some of the primary particles constituting the particle material made of the above-mentioned aggregates, so that when the aggregates are exposed, titanium oxide can be placed on the outermost surface. .
(粒子材料)
本発明の親水表面にフィラーとして用いられる粒子材料について以下詳細に説明を行う。
(particle material)
The particle material used as a filler on the hydrophilic surface of the present invention will be explained in detail below.
本実施形態の粒子材料は、一次粒子が脱水縮合により結合・融着して凝集した凝集体である。凝集体の粒径は特に限定しない。一次粒子の間が結合・融着されていることから特許文献1~3とは異なり一次粒子間が強固に結合され、粒子材料の機械的強度が向上できる。粒径が大きいほど強度を向上することができるため、混合できる限度で粒径を大きくすることが好ましい。例えば薄膜などのように物理的に粒子材料が侵入できない可能性があるような形態に適用する場合には、適用する部分の形態に物理的に侵入できるように、粒子材料の適正な粒度分布が決定される。 The particle material of this embodiment is an aggregate in which primary particles are combined and fused together through dehydration condensation and aggregated. The particle size of the aggregate is not particularly limited. Since the primary particles are bonded and fused, unlike Patent Documents 1 to 3, the primary particles are strongly bonded and the mechanical strength of the particle material can be improved. The larger the particle size, the higher the strength, so it is preferable to increase the particle size to the extent that mixing is possible. When applying to a form that the particulate material may not be able to physically penetrate, such as a thin film, it is important to ensure that the particulate material has an appropriate particle size distribution so that it can physically penetrate the form of the part to which it is applied. It is determined.
体積平均粒径の好ましい下限値としては、0.1μm、0.15μm、0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1.0μmなどが例示できる。体積平均粒径の好ましい上限値としては、500μm、100μm、10μm、5μmなどが例示できる。更に、大きな粒径と小さな粒径とのように複数の粒径にピークをもつようにすることができる。 The preferable lower limit of the volume average particle diameter is 0.1 μm, 0.15 μm, 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μm, 0.6 μm, 0.7 μm, 0.8 μm, 0.9 μm. , 1.0 μm, etc. Preferred upper limit values of the volume average particle diameter include 500 μm, 100 μm, 10 μm, and 5 μm. Furthermore, it is possible to have peaks at a plurality of particle sizes, such as a large particle size and a small particle size.
そして、本実施形態の粒子材料は、外気に連通する表面を基準とする比表面積直径が0.8nm以上80nm以下である。比表面積直径は、比表面積(単位質量あたりの表面積)と粒子材料を構成する材料の比重とから算出される値であり、一次粒子の凝集体として構成される2次粒子では、2次粒子を構成する一次粒子の粒径に近い値が算出される。 The particle material of this embodiment has a specific surface area diameter of 0.8 nm or more and 80 nm or less, based on the surface that communicates with the outside air. The specific surface area diameter is a value calculated from the specific surface area (surface area per unit mass) and the specific gravity of the material constituting the particle material. A value close to the particle size of the constituent primary particles is calculated.
比表面積直径は、下限値としては1nm、5nm、10nmを採用することができ、上限値としては30nm、50nm、70nmを採用することができる。 For the specific surface area diameter, 1 nm, 5 nm, and 10 nm can be adopted as the lower limit, and 30 nm, 50 nm, and 70 nm can be adopted as the upper limit.
凝集体を構成する一次粒子(以下、適宜「構成一次粒子」と称する)は、表面の組成と内部の組成とが異なる無機物からなる。表面の組成と内部の組成とを異なるものにすることにより、構成一次粒子内において内部を構成する材料が外部に影響を及ぼし難くなる。また、外部からの影響が内部に及び難くなる。そして表面の組成と内部の組成とが相互作用を起こすことで予期できない効果を発揮できることがある。予期できない効果としては、内部の組成としてγアルミナを採用したときに表面を別の材料(例えばシリカ)にすることによりγアルミナの結晶の相転移の態様に影響を与えることが例示できる。γアルミナは、加熱により相転移することが知られているが、表面を別の材料にて構成した構成一次粒子中に存在するγアルミナは、γアルミナ単独では相転移が生じる温度にまで加熱しても相転移しないことを確認している。従って、脱水縮合による凝集体の製造を900℃以上(好ましくは950℃以上、1000℃以上)で行うことができる。 The primary particles constituting the aggregate (hereinafter appropriately referred to as "constituent primary particles") are made of an inorganic substance whose surface composition and internal composition are different. By making the surface composition different from the internal composition, the material constituting the inside of the constituent primary particles becomes less likely to affect the outside. In addition, it becomes difficult for external influences to reach the inside. The interaction between the surface composition and the internal composition can sometimes produce unexpected effects. An example of an unexpected effect is that when γ alumina is used as the internal composition, changing the surface to another material (for example, silica) affects the phase transition of the γ alumina crystal. It is known that γ-alumina undergoes a phase transition when heated, but γ-alumina present in constituent primary particles whose surfaces are made of another material cannot be heated to a temperature at which a phase transition occurs when γ-alumina alone is used. It has been confirmed that there is no phase transition. Therefore, the production of aggregates by dehydration condensation can be performed at 900°C or higher (preferably 950°C or higher, 1000°C or higher).
また、内部の組成としてベーマイトを採用し、表面としてシリカを採用すると、加熱によるベーマイトからアルミナ(特にγアルミナ)への転移が抑制できる。従って、脱水縮合による凝集体の製造を250℃超で行うことができる。 Furthermore, if boehmite is used as the internal composition and silica is used as the surface, the transition from boehmite to alumina (especially γ alumina) due to heating can be suppressed. Therefore, the production of aggregates by dehydration condensation can be carried out at temperatures above 250°C.
なお、このような構成一次粒子を主成分とするものであれば、その他の組成(例えば全体が単一の組成からなるもの)をもつ一次粒子を含有することも可能である。ここで「主成分とする」とは、50質量%以上含有することを意味し、好ましくは70%以上、更に好ましくは90%以上含有する。構成一次粒子以外に一次粒子として含有することが可能な粒子としては、原子番号38以上の元素の酸化物からなる第2粒子が例示できる。具体的に含有することが好ましい酸化物に含まれる原子番号が38以上の元素としては、ジルコニウムが挙げられる。構成一次粒子の粒子形状としては特に限定しない。 In addition, as long as the main component is primary particles having such a structure, it is also possible to contain primary particles having other compositions (for example, those having a single composition as a whole). Here, "containing as a main component" means containing 50% by mass or more, preferably 70% or more, more preferably 90% or more. Examples of particles that can be included as primary particles in addition to the constituent primary particles include second particles made of an oxide of an element having an atomic number of 38 or more. An example of an element having an atomic number of 38 or more that is preferably contained in the oxide is zirconium. The particle shape of the constituent primary particles is not particularly limited.
構成一次粒子の表面の組成、内部の組成のそれぞれについてどのような組成の無機物を採用するかは任意である。ここで、表面の組成としてはシリカを選択することが好ましい。シリカは表面に対して種々の表面処理を行うことが容易であり、物理的安定性、化学的安定性共に高いほか、合成が容易であるからである。光学的な特性向上の観点からは非晶質シリカを採用することが好ましい。 The composition of the inorganic substance to be used for each of the surface composition and internal composition of the constituent primary particles is arbitrary. Here, it is preferable to select silica as the surface composition. This is because the surface of silica can be easily subjected to various surface treatments, has high physical stability and chemical stability, and is easy to synthesize. From the viewpoint of improving optical properties, it is preferable to use amorphous silica.
表面と内部との比率については特に限定しない。表面については内部を概ね隙間無く被覆することが好ましい。 There is no particular limitation on the ratio between the surface and the inside. As for the surface, it is preferable to cover the inside with almost no gaps.
本実施形の粒子材料は、表面に有機物からなる被覆層をもつことができる。被覆層は構成一次粒子の表面を被覆する層である。被覆層の厚みは特に限定しないが粒子材料の表面を概ね隙間無く被覆することが好ましい。被覆層を有する場合には、凝集した構成一次粒子の間に介在させることもできるほか、構成一次粒子が凝集した状態でその表面を被覆して構成一次粒子同士が直接凝集した状態になった上で被覆されていることもできる。被覆層は構成一次粒子の表面に対して共有結合されているか分子間力結合などにより物理的に結合されているかの何れかが望ましい。被覆層を構成する有機物としては、シラン化合物の縮合物であることが好ましい。シラン化合物としては1つのSiにORを2つ以上もつ化合物とすると縮合物からなる被覆層が形成できる。シラン化合物の縮合物を製造する方法としては、前述のシラン化合物を構成一次粒子(凝集体を形成する前後を問わない)の表面に接触させた状態で縮合させることにより行うことができる。構成一次粒子は、無機材料から構成され、その表面にはOH基を有することが通常である。そのため前述のシラン化合物は、構成一次粒子の表面に存在するOH基と反応して共有結合を形成することができる。 The particle material of this embodiment can have a coating layer made of an organic substance on the surface. The coating layer is a layer that covers the surface of the constituent primary particles. Although the thickness of the coating layer is not particularly limited, it is preferable that the surface of the particle material is coated almost without any gaps. When a coating layer is provided, it can be interposed between the aggregated primary particles, or it can be coated on the surface of the aggregated primary particles so that the primary particles are directly aggregated with each other. It can also be coated with It is desirable that the coating layer is either covalently bonded to the surface of the constituent primary particles or physically bonded to it by intermolecular force bonding or the like. The organic substance constituting the coating layer is preferably a condensate of silane compounds. When the silane compound is a compound having two or more ORs in one Si, a coating layer consisting of a condensate can be formed. A method for producing a condensate of a silane compound can be carried out by condensing the above-mentioned silane compound while in contact with the surface of the constituent primary particles (regardless of whether or not they are formed into aggregates). The constituent primary particles are composed of an inorganic material and usually have OH groups on their surfaces. Therefore, the above-mentioned silane compound can react with the OH group present on the surface of the constituent primary particles to form a covalent bond.
また、本実施形態の粒子材料は、表面又は内部の組成としてAl2O3を採用する場合に、X線回折での2θが45°~49°と64°~67°とにそれぞれ存在するピークの半値幅が0.5°以上であることが好ましい。2θが45°~49°の範囲にあるピーク(第1ピーク)は、γアルミナであり、2θが64°~67°の範囲にあるピーク(第2ピーク)は、γアルミナである。この範囲に存在するピークの半値幅が0.5°以上になるとαアルミナが生成していないため好ましい。 In addition, when the particle material of this embodiment employs Al 2 O 3 as the surface or internal composition, peaks of 2θ in X-ray diffraction exist at 45° to 49° and 64° to 67°, respectively. It is preferable that the half value width of is 0.5° or more. The peak (first peak) with 2θ in the range of 45° to 49° is γ alumina, and the peak (second peak) with 2θ in the range of 64° to 67° is γ alumina. If the half width of the peak existing in this range is 0.5° or more, α alumina is not produced, which is preferable.
更に、本実施形態の粒子材料は、表面又は内部の組成としてベーマイトを採用する場合に、X線回折での2θが37°~39°と71°~73°とにそれぞれ存在するピークの半値幅が2.5°以下であるか、及び/又は、45°~49°と64°~67°とにそれぞれ存在するピークの半値幅が2.5°以下であることが好ましい。2θがこれらの範囲にあるピークは、ベーマイトであり、この範囲に存在するピークの半値幅が2.5°以下になるとベーマイトが残存しているため好ましい。 Furthermore, when boehmite is employed as the surface or internal composition of the particle material of this embodiment, the half-value width of the peak that exists at 2θ of 37° to 39° and 71° to 73° in X-ray diffraction, respectively. is preferably 2.5° or less, and/or the half widths of the peaks present at 45° to 49° and 64° to 67° are preferably 2.5° or less. A peak with 2θ in these ranges is boehmite, and if the half width of the peak in this range is 2.5° or less, boehmite remains, which is preferable.
(粒子材料の製造方法)
本実施形態の粒子材料の製造方法は、上述の粒子材料を好適に製造できる製造方法である。本実施形態の粒子材料の製造方法は、分散工程と被覆工程と必要に応じて選択できるその他の工程とを有する。その他の工程としては、凝集工程、改質工程、粒度分布調整工程などが挙げられる。
(Method for manufacturing particle material)
The method for manufacturing particulate material of this embodiment is a manufacturing method that can suitably manufacture the above-mentioned particulate material. The method for producing particulate material according to the present embodiment includes a dispersion step, a coating step, and other steps that can be selected as necessary. Other processes include an aggregation process, a modification process, a particle size distribution adjustment process, and the like.
分散工程は、内部の組成をもつ粒子(コア粒子)を液体分散媒中に分散させて分散液とする工程である。コア粒子は、常法により得ることができる。例えば、内部の組成の前駆体となる化合物を反応させて製造できる。例えば内部の組成としてベーマイトを採用する場合には、粉砕などにより適正な粒径とした水酸化アルミニウムを前駆体として採用し、水熱処理することでベーマイトからなるコア粒子を得ることができる。また、適正な粒径とした酸化アルミニウムを前駆体として採用し、酸やアルカリ水溶液中で加熱することでコア粒子を得ることができる。 The dispersion step is a step in which particles having an internal composition (core particles) are dispersed in a liquid dispersion medium to form a dispersion liquid. Core particles can be obtained by conventional methods. For example, it can be produced by reacting a compound that is a precursor of the internal composition. For example, when boehmite is used as the internal composition, core particles made of boehmite can be obtained by using aluminum hydroxide as a precursor, which has been pulverized to an appropriate particle size, and then subjected to hydrothermal treatment. Further, core particles can be obtained by employing aluminum oxide having an appropriate particle size as a precursor and heating it in an acid or alkaline aqueous solution.
被覆工程は、得られた分散液に対して、反応により表面の組成になる化合物である前駆体を添加し表面の組成を生成することによってコア粒子の表面を表面の組成にて被覆・形成した被覆粒子とする工程である。内部の組成と表面の組成との比率は、添加する前駆体の量により制御できる。前駆体としては、どのような化合物を採用しても良い。表面の組成としてシリカを採用する場合は、前駆体としてテトラエトキシシランを採用することができる。テトラエトキシシランは、水の存在下で容易にシリカを生成する。例えば、テトラエトキシシランを酸性若しくは塩基性の雰囲気下で加水分解するいわゆるゾルゲル法が採用できる。 In the coating step, the surface of the core particles was coated and formed with the surface composition by adding a precursor, which is a compound that becomes the surface composition by reaction, to the obtained dispersion to generate the surface composition. This is a step of forming coated particles. The ratio of internal composition to surface composition can be controlled by the amount of precursor added. Any compound may be used as the precursor. When silica is used as the surface composition, tetraethoxysilane can be used as the precursor. Tetraethoxysilane readily forms silica in the presence of water. For example, a so-called sol-gel method can be employed in which tetraethoxysilane is hydrolyzed in an acidic or basic atmosphere.
凝集工程は、被覆工程の後に行う工程であり、被覆工程にて得られた被覆粒子を加熱して凝集させる工程である。得られた凝集体は、必要な粒度分布になるように粉砕操作や分級操作を行うことができる。凝集工程における加熱温度は被覆粒子間において脱水縮合が生じる温度である。例えば250℃超の温度、450℃以上、500℃以上が例示できる。この温度範囲にて加熱することで得られた粒子材料の強度が向上できる。 The aggregation step is a step performed after the coating step, and is a step of heating and aggregating the coated particles obtained in the coating step. The obtained aggregate can be subjected to a pulverization operation or a classification operation so as to obtain the required particle size distribution. The heating temperature in the aggregation step is the temperature at which dehydration condensation occurs between coated particles. For example, the temperature may be higher than 250°C, 450°C or higher, or 500°C or higher. By heating in this temperature range, the strength of the obtained particle material can be improved.
改質工程は、被覆工程後に行う工程であり、被覆工程により得られた被覆粒子に対してシラン化合物を表面に接触させて改質する工程である。凝集工程と組み合わせる場合には、前後いずれでも行うことができる。 The modification step is a step performed after the coating step, and is a step of modifying the coated particles obtained by the coating step by bringing the silane compound into contact with the surface thereof. When combined with the aggregation step, it can be performed either before or after the aggregation step.
(親水表面の製造方法)
本実施形態の親水表面の製造方法は、特に限定しない。例えば、その後の工程により固化可能なフィラー分散液に非処理対象物をディッピングして被覆したり、フィラー分散液をスプレーして被覆したりした後に固化させたり、フィラー分散液を流延法などにより成膜した後に非処理対象の表面を被覆したりしたその後に表面の有機成分を分解除去する分解除去工程にて表面にフィラーを露出する方法が挙げられる。分解除去工程は、非処理対象物に被覆する前の膜に対して行い、フィラーが露出した後にその膜で被覆を行っても良い。
(Method for producing hydrophilic surface)
The method for manufacturing the hydrophilic surface of this embodiment is not particularly limited. For example, the object to be treated may be coated by dipping it in a filler dispersion that can be solidified in a subsequent process, or it may be coated by spraying a filler dispersion and then solidified, or the filler dispersion may be coated with a filler dispersion by a casting method, etc. Examples include a method in which the filler is exposed on the surface in a decomposition and removal step in which the surface of the untreated object is coated after the film is formed, and then organic components on the surface are decomposed and removed. The decomposition and removal step may be performed on the film before it is coated on the object to be treated, and after the filler is exposed, the film may be coated with the film.
表面に光触媒性コーティング膜を形成する場合には、フィラー分散液により被覆した後に、光触媒作用がある粒子(酸化チタンなど)を分散させた光触媒性コーティング液によって、フィラー分散液と同様の方法により被処理対象物の表面を被覆することができる。本工程は、後述する分解工程の後に行うこともできる。また、前述したフィラー分散液中に光触媒作用がある粒子を分散させてフィラーと同時に被覆することもできる。 When forming a photocatalytic coating film on the surface, after coating with a filler dispersion, it is coated with a photocatalytic coating liquid in which particles with photocatalytic action (titanium oxide, etc.) are dispersed in the same manner as the filler dispersion. The surface of the object to be treated can be coated. This step can also be performed after the decomposition step described below. Further, particles having a photocatalytic action can be dispersed in the above-described filler dispersion and coated simultaneously with the filler.
フィラー分散液は、透明樹脂材料と、その透明樹脂材料を溶解可能な溶媒と、フィラーとの混合物を採用したり、重合などにより透明樹脂材料になる液状の前駆体(モノマーなど)と、フィラーとの混合物を採用したりできる。フィラー分散液を固化するためには溶媒を蒸発させたり、前駆体を反応させて透明樹脂材料に変化させたりする。 The filler dispersion liquid may be a mixture of a transparent resin material, a solvent that can dissolve the transparent resin material, and a filler, or a liquid precursor (monomer, etc.) that becomes a transparent resin material through polymerization, etc., and a filler. A mixture of these can be used. In order to solidify the filler dispersion, the solvent is evaporated or the precursor is reacted to transform it into a transparent resin material.
分解除去工程で採用できる分解方法は特に限定しない。酸、アルカリ、過酸化物、過マンガン酸カリウムなどの無機過酸化物に接触させる方法、プラスマ処理(酸素プラズマ、アークプラズマなど)、オゾン処理、コロナ放電処理、レーザーアブレーション処理、フレイム処理などが挙げられる。分解除去工程は、フィラーの粒子の投影面積の100%未満が露出する程度に至るまで行うことができる。 The decomposition method that can be employed in the decomposition and removal step is not particularly limited. Methods include contact with acids, alkalis, peroxides, inorganic peroxides such as potassium permanganate, plasma treatment (oxygen plasma, arc plasma, etc.), ozone treatment, corona discharge treatment, laser ablation treatment, flame treatment, etc. It will be done. The decomposition removal step can be carried out to the extent that less than 100% of the projected area of the filler particles is exposed.
親水表面を製造した後、電子線照射を行うこともできる。透明樹脂材料の種類によっては電子線照射により内部への特性変化は抑えながら最表面での架橋反応を進行させて硬化させることが可能になる。 Electron beam irradiation can also be carried out after producing the hydrophilic surface. Depending on the type of transparent resin material, electron beam irradiation makes it possible to proceed with a crosslinking reaction on the outermost surface and cure it while suppressing changes in internal properties.
本発明の親水表面及びその製造方法について実施例に基づき以下詳細に説明を行う。 The hydrophilic surface of the present invention and its manufacturing method will be described in detail below based on Examples.
(試験A)
(試験1:表面の組成としてシリカ、内部の組成としてベーマイトを採用した一次粒子からなる凝集体である粒子材料の製造)
川研ファインケミカル株式会社製のアルミゾル10A(Al2O3を10質量%含有:短径×長径は10nm×50nm:コア粒子に相当)100質量部にイソプロパノール(IPA)40質量部を加えて、テトラエトキシシラン(TEOS:表面の組成であるシリカの前駆体)10質量部を添加した。この混合比を採用することで最終的に得られる粒子材料中のベーマイトとシリカとの質量比は理論上78:22である。
(Test A)
(Test 1: Production of particle material that is an aggregate consisting of primary particles with silica as the surface composition and boehmite as the internal composition)
40 parts by mass of isopropanol (IPA) was added to 100 parts by mass of Aluminum Sol 10A manufactured by Kawaken Fine Chemicals Co., Ltd. (containing 10% by mass of Al 2 O 3 : short axis x long axis is 10 nm x 50 nm: equivalent to core particles), and 40 parts by mass of isopropanol (IPA) was added. 10 parts by mass of ethoxysilane (TEOS: a precursor of silica, which is the composition of the surface) was added. By employing this mixing ratio, the mass ratio of boehmite to silica in the final particle material is theoretically 78:22.
室温で24時間反応したのちアンモニア水で中和して構成一次粒子からなるゲル状の沈殿物を得た。沈殿物を純水で洗浄し、160℃、2時間乾燥し、ジェットミルで平均粒子径を2μm以下に粉砕して実施例1-0の粒子材料を得た。 After reacting at room temperature for 24 hours, the mixture was neutralized with aqueous ammonia to obtain a gel-like precipitate consisting of primary particles. The precipitate was washed with pure water, dried at 160° C. for 2 hours, and ground with a jet mill to an average particle size of 2 μm or less to obtain particle material of Example 1-0.
実施例1-0の粒子材料を650℃2時間熱処理して実施例1-1の粒子材料を得た。850℃、2時間熱処理して実施例1-2の粒子材料を得た。 The particle material of Example 1-0 was heat-treated at 650° C. for 2 hours to obtain the particle material of Example 1-1. A heat treatment was performed at 850° C. for 2 hours to obtain the particle material of Example 1-2.
実施例1-1の粒子材料を1100℃、2時間熱処理して実施例1-3の粒子材料を得た。実施例1-1の粒子材料を1200℃、2時間熱処理して実施例1-4の粒子材料を得た。更に実施例1-0の粒子材料を、250℃(実施例1-5)、400℃(実施例1-6)、450℃(実施例1-7)で2時間熱処理して各実施例の粒子材料を得た。実施例1-0~実施例1-7の粒子材料の体積平均粒径、比表面積、屈折率を表1に示す。体積平均粒径はレーザー回折式粒度測定装置を用いて行った。比表面積は、窒素を用いたBET法にて測定した。粒子の屈折率は以下の方法で定義した。屈折率が既知の2種類の溶媒で配合比の異なる混合溶媒を複数水準用意し、これに粒子を分散させた際、透過率80%以上(589nm/10mm)かつ最も混合液が透明である点の混合液の屈折率が粒子の屈折率とした。また混合液の透過率が80%に満たない場合は光学的に非完全不透明と定義した。実施例1-0~1-4のそれぞれのXRDスペクトルは図1に、実施例1-5~1-7のそれぞれのXRDスペクトルは図3にまとめた。それぞれのXRDの測定結果から算出した各実施例における2θが45°~49°と64°~67°とにそれぞれ存在するピークの半値幅(FWHM)を表2に示す。 The particle material of Example 1-1 was heat-treated at 1100° C. for 2 hours to obtain the particle material of Example 1-3. The particle material of Example 1-1 was heat-treated at 1200° C. for 2 hours to obtain the particle material of Example 1-4. Furthermore, the particle material of Example 1-0 was heat-treated at 250°C (Example 1-5), 400°C (Example 1-6), and 450°C (Example 1-7) for 2 hours to obtain the results of each Example. A particle material was obtained. Table 1 shows the volume average particle diameter, specific surface area, and refractive index of the particle materials of Examples 1-0 to 1-7. The volume average particle diameter was measured using a laser diffraction particle size measuring device. The specific surface area was measured by the BET method using nitrogen. The refractive index of the particles was defined by the following method. When we prepare multiple levels of mixed solvents with different blending ratios of two types of solvents with known refractive indexes, and disperse particles in these, the transmittance is 80% or more (589nm/10mm) and the mixed liquid is the most transparent. The refractive index of the mixed liquid was taken as the refractive index of the particles. Furthermore, if the transmittance of the mixed liquid was less than 80%, it was defined as optically not completely opaque. The XRD spectra of Examples 1-0 to 1-4 are summarized in FIG. 1, and the XRD spectra of Examples 1-5 to 1-7 are summarized in FIG. 3. Table 2 shows the full width at half maximum (FWHM) of the peaks present at 2θ of 45° to 49° and 64° to 67° in each Example calculated from the respective XRD measurement results.
表1より明らかなように、実施例1-0の粒子材料は、ベーマイトの屈折率である1.65とシリカの屈折率である1.45~1.47と両者の混合比(78:22)とから算出される値(約1.60)と近い値を示している。そして実施例1-1~1-4の粒子材料は、高温での加熱によりベーマイトがγアルミナに転移された結果、屈折率が高くなり1.61~1.63になった。 As is clear from Table 1, the particle material of Example 1-0 has a refractive index of boehmite of 1.65, a refractive index of silica of 1.45 to 1.47, and a mixing ratio of both (78:22). ) is close to the value calculated from (approximately 1.60). In the particle materials of Examples 1-1 to 1-4, boehmite was transferred to γ alumina by heating at high temperatures, and as a result, the refractive index increased to 1.61 to 1.63.
また、XRDの測定結果から2θが45°~49°と64°~67°とにそれぞれ存在するピークの半値幅はそれぞれ0.7°以上で有り、αアルミナに由来する結晶の生成は認められなかった。通常、ベーマイトは、1200℃程度で加熱するとαアルミナになるが、表面をシリカで覆うことでαアルミナ化が抑制できることがわかった。 Furthermore, from the XRD measurement results, the half-widths of the peaks existing at 2θ of 45° to 49° and 64° to 67° are each 0.7° or more, and the formation of crystals derived from α alumina is not observed. There wasn't. Normally, when boehmite is heated to about 1200°C, it becomes alpha alumina, but it has been found that by covering the surface with silica, alpha alumina formation can be suppressed.
また、それぞれの実施例における比表面積直径は、650℃までの加熱では340m2/g弱程度と変わりなく、それより高い温度(例えば850℃以上)では加熱の温度が高くなるにつれて大きくなり、構成一次粒子同士の焼結が進んでいることが認められ、粒子材料の強度が高くなっていることが推測できる。 In addition, the specific surface area diameter in each example remains the same at about 340 m 2 /g when heated up to 650°C, but increases as the heating temperature increases at higher temperatures (for example, 850°C or higher), and the specific surface area diameter increases as the heating temperature increases. It was observed that the primary particles were sintered with each other, and it can be inferred that the strength of the particle material was increased.
(試験2:有機物から成る被覆層の形成:その1)
実施例1-2の粒子材料(160℃で乾燥後850℃で焼結)を表3に示した配合量でミキサーに入れたのち、表3に示す有機物配合量(シラン化合物の量)に相当するシラン化合物溶液を撹拌しながら投入して表面処理を行った。シラン化合物溶液は、シラン化合物としてのビニルトリメトキシシラン(信越化学製KBM-1003)、IPA、水の等量混合液とした。
(Test 2: Formation of a coating layer made of organic matter: Part 1)
After putting the particulate material of Example 1-2 (dried at 160°C and sintered at 850°C) in the blending amount shown in Table 3 into a mixer, The surface treatment was carried out by adding a silane compound solution with stirring. The silane compound solution was a mixture of equal amounts of vinyltrimethoxysilane (KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane compound, IPA, and water.
その後室温で1日放置して熟成させた後160℃2時間加熱し液成分を揮発させ実施例2-1~2-3の複合凝集体を得た。この表面処理により粒子材料の表面に有機物からなる被覆層が形成された。 Thereafter, the mixture was left to mature at room temperature for one day, and then heated at 160° C. for 2 hours to volatilize the liquid components to obtain composite aggregates of Examples 2-1 to 2-3. Through this surface treatment, a coating layer made of an organic substance was formed on the surface of the particle material.
表3より明らかなように、シラン化合物の処理量を多くすることで被覆層を厚くすることが可能になり、被覆層を厚くするにつれて屈折率が小さくなることが分かった。 As is clear from Table 3, it is possible to increase the thickness of the coating layer by increasing the amount of the silane compound treated, and it was found that as the coating layer becomes thicker, the refractive index decreases.
(試験3:有機物から成る被覆層の形成:その2)
実施例1-0の粒子材料(160℃で乾燥のみ)を表4に示した配合量でミキサーに入れたのち、表4に示す有機物配合量(シラン化合物の量)に相当するシラン化合物溶液を撹拌しながら投入して表面処理を行った。シラン化合物溶液は、シラン化合物としてのビニルトリメトキシシラン(信越化学製KBM-1003)、IPA、水の等量混合液とした。
(Test 3: Formation of a coating layer made of organic matter: Part 2)
After putting the particle material of Example 1-0 (only dried at 160°C) into a mixer in the amount shown in Table 4, a silane compound solution corresponding to the amount of organic compound (amount of silane compound) shown in Table 4 was added. It was added while stirring to perform surface treatment. The silane compound solution was a mixture of equal amounts of vinyltrimethoxysilane (KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane compound, IPA, and water.
その後室温で1日放置して熟成させた後160℃2時間加熱し液成分を揮発させ実施例3-1~3-3の複合凝集体を得た。この表面処理により粒子材料の表面に有機物からなる被覆層が形成された。 Thereafter, the mixture was left to mature at room temperature for one day, and then heated at 160° C. for 2 hours to volatilize the liquid components to obtain composite aggregates of Examples 3-1 to 3-3. Through this surface treatment, a coating layer made of an organic substance was formed on the surface of the particle material.
表4より明らかなように、シラン化合物の添加量を増やして有機物からなる被覆層を厚くすることにより屈折率を小さくすることが可能になった。 As is clear from Table 4, it became possible to reduce the refractive index by increasing the amount of the silane compound added and making the coating layer made of organic matter thicker.
(試験4:有機物から成る被覆層の形成:その3)
TEOSの添加量を表5に記載の量に変更した以外は、上述した実施例1-2と同様の方法にて実施例4-1、4-2、及び4-3の粒子材料を製造した。
(Test 4: Formation of a coating layer made of organic matter: Part 3)
Particle materials of Examples 4-1, 4-2, and 4-3 were produced in the same manner as in Example 1-2 above, except that the amount of TEOS added was changed to the amount listed in Table 5. .
測定された屈折率の値は、TEOSの添加量を増加させることで屈折率を制御できることが分かった。 It was found that the measured refractive index value can be controlled by increasing the amount of TEOS added.
更に、実施例1-2、4-1、4-2、及び4-3の各粒子材料100質量部に対してメチルトリメトキシシラン(KBM-13、信越化学工業製)50質量部を反応させたものをそれぞれ実施例4-4、4-5、4-6、及び4-7の粒子材料として屈折率を測定した(表6)。 Furthermore, 50 parts by mass of methyltrimethoxysilane (KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.) was reacted with 100 parts by mass of each of the particle materials of Examples 1-2, 4-1, 4-2, and 4-3. The refractive index was measured using the particles as particle materials of Examples 4-4, 4-5, 4-6, and 4-7, respectively (Table 6).
表6より明らかなように、KBM-13により表面処理を行うことで屈折率を制御することが可能であることが分かった。KBM-13の処理により元の粒子材料の屈折率よりも小さくすることができた。 As is clear from Table 6, it was found that the refractive index could be controlled by surface treatment with KBM-13. By processing KBM-13, the refractive index could be made lower than that of the original particle material.
(試験5:表面にシリカの層を形成しない場合)
TEOSを添加しないこと以外は、試験1の実施例1-0~1-7と同様の方法で粒子材料を製造し、それぞれ比較例1-0~1-7の粒子材料とした。比較例の粒子材料は、全体がベーマイトまたはベーマイトが加熱により変化したγアルミナから形成されている。
(Test 5: When no silica layer is formed on the surface)
Particle materials were produced in the same manner as Examples 1-0 to 1-7 of Test 1, except that TEOS was not added, and were used as particle materials of Comparative Examples 1-0 to 1-7, respectively. The particle material of the comparative example is formed entirely of boehmite or gamma alumina in which boehmite has been modified by heating.
比較例の粒子材料について比表面積、屈折率、XRDの結果を表7に示す。比較例1-0、1-1、1-2、1-3、1-4については測定したXRDスペクトルを図2に示し、比較例1-5~1-7については測定したXRDスペクトルを図4に示す。 Table 7 shows the specific surface area, refractive index, and XRD results for the particle material of the comparative example. Figure 2 shows the measured XRD spectra for Comparative Examples 1-0, 1-1, 1-2, 1-3, and 1-4, and the measured XRD spectra for Comparative Examples 1-5 to 1-7 are shown in Figure 2. 4.
表7より明らかなように、表面にシリカの層を有しないことで加熱により一次粒子同士の融着が進んで比表面積が小さくなっており、一次粒子の肥大化が認められた。そのため粒子の肥大化により光線の透過性に影響が生じることが分かった。また、1200℃で加熱した比較例1-4ではXRDによる測定したスペクトルにおける2θが45°~49°と64°~67°とにそれぞれ存在するピークの半値幅はそれぞれ0.2°となりγアルミナがα化していることが分かった。その結果、比表面積も小さくなって粒子の肥大化が認められた。このことからベーマイトの表面にシリカからなる層を形成することにより加熱によるαアルミナ化を抑制できることが分かった。 As is clear from Table 7, by not having a silica layer on the surface, the primary particles were fused together due to heating, the specific surface area became smaller, and enlargement of the primary particles was observed. Therefore, it was found that the enlargement of the particles affected the light transmittance. In addition, in Comparative Example 1-4 heated at 1200°C, the half-width of the peaks existing at 2θ of 45° to 49° and 64° to 67° in the spectrum measured by XRD was 0.2°, and the γ aluminium was found to be alpha. As a result, the specific surface area also became smaller and enlargement of the particles was observed. From this, it was found that by forming a layer made of silica on the surface of boehmite, it was possible to suppress α-alumina formation due to heating.
(試験6)
実施例2-2の粒子材料(屈折率=1.54)10質量部と東レダウコーニング製二液シリコーンOE-6631(屈折率=1.54、光透過率(450nm/1mm)=100%)100質量部を自転公転ミキサーで混合してシリコーン熱硬化物を得た。厚さ2mmの金型に入れて、150℃/1時間加熱して硬化させた。この硬化片の光透過率を測定したところ、99%(400nm/2mm)であった。また引っ張り強度は樹脂のみの強度を1として1.5であった。
(Test 6)
10 parts by mass of the particle material of Example 2-2 (refractive index = 1.54) and two-component silicone OE-6631 manufactured by Dow Corning Toray (refractive index = 1.54, light transmittance (450 nm/1 mm) = 100%) 100 parts by mass were mixed using a rotation-revolution mixer to obtain a thermoset silicone material. It was placed in a mold with a thickness of 2 mm and heated at 150° C. for 1 hour to harden it. When the light transmittance of this cured piece was measured, it was 99% (400 nm/2 mm). Moreover, the tensile strength was 1.5, taking the strength of the resin alone as 1.
(試験7)
実施例2-2の粒子材料(屈折率=1.52)20質量部と市販の水酸基含有アクリル樹脂/ブチルエーテル化メラミン樹脂からなるクリヤー塗料(硬化後の屈折率=1.51)100質量部をディスパーで混合してクリヤー塗料を得た。塗膜が30μmになるように板ガラスの表面に塗膜を作成した。
(Test 7)
20 parts by mass of the particle material of Example 2-2 (refractive index = 1.52) and 100 parts by mass of a commercially available clear paint consisting of hydroxyl group-containing acrylic resin/butyl etherified melamine resin (refractive index after curing = 1.51). A clear paint was obtained by mixing with a disper. A coating film was created on the surface of a plate glass so that the coating film had a thickness of 30 μm.
145℃/30分焼き付けしてクリヤー膜を得た。この膜の光透過率を測定したところ、99.8%(400nm/30μm)であった。この場合に膜厚2mmに換算すると光透過率は87%であった。また引っ張り強度は樹脂のみの強度を1として1.2であった。 A clear film was obtained by baking at 145°C for 30 minutes. When the light transmittance of this film was measured, it was 99.8% (400 nm/30 μm). In this case, the light transmittance was 87% when converted to a film thickness of 2 mm. Moreover, the tensile strength was 1.2, taking the strength of the resin alone as 1.
(試験8)
実施例2-3の粒子材料(屈折率=1.52)30質量部とサンユレック製LE-1421(二液タイプ、屈折率1.51)100質量部を混合して厚さ300μmの板に成形した。
(Test 8)
30 parts by mass of the particle material of Example 2-3 (refractive index = 1.52) and 100 parts by mass of LE-1421 manufactured by Sanyurec (two-component type, refractive index 1.51) were mixed and formed into a plate with a thickness of 300 μm. did.
硬化条件は80℃/1時間+120℃/1時間であった。この板の光透過率を測定したところ、97%(400nm/300μm)であった。この場合に膜厚2mmに換算すると光透過率は82%であった。また曲げ弾性率は樹脂のみの弾性率を1として1.4であった。 The curing conditions were 80°C/1 hour + 120°C/1 hour. When the light transmittance of this plate was measured, it was 97% (400 nm/300 μm). In this case, the light transmittance was 82% when converted to a film thickness of 2 mm. Moreover, the bending elastic modulus was 1.4, taking the elastic modulus of the resin alone as 1.
(試験9)
実施例2-1の粒子材料(屈折率=1.59)20質量部と市販のポリカーボネート100質量部をニーダーで混練してペレットを得た。
(Test 9)
20 parts by mass of the particle material of Example 2-1 (refractive index = 1.59) and 100 parts by mass of commercially available polycarbonate were kneaded in a kneader to obtain pellets.
射出成型して厚さ2mmのテストピースを作成した。光透過率を測定したところ、95%であった。曲げ弾性率は樹脂のみの弾性率を1として1.2であった。 A test piece with a thickness of 2 mm was prepared by injection molding. When the light transmittance was measured, it was 95%. The bending elastic modulus was 1.2, with the elastic modulus of the resin alone being 1.
(試験10)
実施例4-5の粒子材料にメチルトリメトキシシランで処理した粒子材料(屈折率=1.490)20質量部と市販のポリメチルメタクリレート100質量部をニーダーで混練してペレットを得た。射出成型して厚さ2mmのテストピースを作成した。光透過率を測定したところ、98%であった。また曲げ弾性率は樹脂のみの弾性率を1として1.2であった。
(Test 10)
Pellets were obtained by kneading the particle material of Example 4-5 with 20 parts by mass of the particle material (refractive index = 1.490) treated with methyltrimethoxysilane and 100 parts by mass of commercially available polymethyl methacrylate. A test piece with a thickness of 2 mm was prepared by injection molding. When the light transmittance was measured, it was 98%. Moreover, the bending elastic modulus was 1.2, taking the elastic modulus of the resin alone as 1.
(試験11)
実施例2-1の粒子材料(屈折率=1.59)30質量部と三菱化学製透明PIタイプA(屈折率=1.60)100質量部(固形分換算を混合して流延法で厚さ100μmのフィルムを作成した。
(Test 11)
30 parts by mass of the particle material of Example 2-1 (refractive index = 1.59) and 100 parts by mass of transparent PI type A manufactured by Mitsubishi Chemical (refractive index = 1.60) (in terms of solid content) were mixed and cast using a casting method. A film with a thickness of 100 μm was created.
このフィルムの光透過率を測定したところ、99%(400nm/100μm)であった。この場合に膜厚2mmに換算すると光透過率は82%であった。曲げ弾性率は樹脂のみの弾性率を1として1.1であった。 When the light transmittance of this film was measured, it was 99% (400 nm/100 μm). In this case, the light transmittance was 82% when converted to a film thickness of 2 mm. The bending elastic modulus was 1.1, with the elastic modulus of the resin alone being 1.
(試験12)
実施例2-2の粒子材料に対して、粒子材料の質量を基準として3質量%のグリシジルプロピルトリメトキシシランで処理した以外は試験7と同じように塗膜を作成した。膜の光透過率は98%(400nm/300μm)、引っ張り強度は試験7と比較して20%向上した。膜の光透過率は、膜厚2mmに換算すると光透過率は87%であった。曲げ弾性率は樹脂のみの弾性率を1として1.4であった。
(Test 12)
A coating film was prepared in the same manner as in Test 7, except that the particulate material of Example 2-2 was treated with 3% by mass of glycidylpropyltrimethoxysilane based on the mass of the particulate material. The light transmittance of the film was 98% (400 nm/300 μm), and the tensile strength was improved by 20% compared to Test 7. The light transmittance of the film was 87% when converted to a film thickness of 2 mm. The bending elastic modulus was 1.4, with the elastic modulus of the resin alone being 1.
(試験13)
実施例4-7の粒子材料(屈折率=1.42)30質量部とシリコーン樹脂(二液型:株式会社ダイセル製CELVENUS A1070(屈折率=1.41)100質量部を自転公転ミキサーで混合し、厚さ2mmの金型に入れて、80℃/1時間と150℃/4時間加熱して硬化させた。この硬化片の光透過率を測定したところ、92%(400nm/2mm)であった。また引っ張り強度は樹脂のみの強度を1として1.6であった。
(Test 13)
30 parts by mass of the particle material of Example 4-7 (refractive index = 1.42) and 100 parts by mass of silicone resin (two-component type: CELVENUS A1070 (refractive index = 1.41) manufactured by Daicel Corporation) were mixed in a rotation-revolution mixer. It was placed in a mold with a thickness of 2 mm, and heated at 80°C for 1 hour and at 150°C for 4 hours to cure it.The light transmittance of this cured piece was measured at 92% (400 nm/2 mm). The tensile strength was 1.6, taking the strength of the resin alone as 1.
(試験14)
比較例1-2の粒子材料について試験6と同様の方法にてテストピースを作成して光透過率を測定した。その結果、膜厚2mmに換算すると光透過率は10%未満であり不透明であった。引っ張り強度は樹脂のみの強度を1として1.5であった。
(Test 14)
A test piece was prepared using the particle material of Comparative Example 1-2 in the same manner as in
(試験15)
比較例1-4について試験8と同様の方法にてテストピースを作成して光透過率を測定した。その結果、膜厚2mmに換算すると光透過率は10未満%であり不透明であった。これはαアルミナ化に伴う粒子の肥大化により光線の散乱が生じたことによる影響であると推測される。また曲げ弾性率は樹脂のみの弾性率を1として1.6であった。
(Test 15)
Regarding Comparative Examples 1-4, test pieces were prepared in the same manner as Test 8, and the light transmittance was measured. As a result, the light transmittance was less than 10% when converted to a film thickness of 2 mm, and the film was opaque. This is presumed to be due to the scattering of light rays due to the enlargement of particles accompanying α-alumina formation. Moreover, the bending elastic modulus was 1.6, taking the elastic modulus of the resin alone as 1.
(試験16~22)
粒子材料としてゲル法シリカ(富士シリシア製、サイリシア:比表面積285m2/g)にて製造したものを採用した以外は、試験6、8、6~11、及び13と同様の方法にてそれぞれ試験14~22のテストピースを作成し、光透過率及び強度(引っ張り強度又は曲げ弾性率)を測定した。結果を表8に示す。
(Exams 16-22)
Tests were conducted in the same manner as Tests 6, 8, 6 to 11, and 13, except that gel method silica (manufactured by Fuji Silysia, Silysia: specific surface area 285 m 2 /g) was used as the particle material. 14 to 22 test pieces were prepared and their light transmittance and strength (tensile strength or flexural modulus) were measured. The results are shown in Table 8.
表8より明らかなように、表面にシリカ層が形成されていないことから加熱により肥大化した粒子材料(比較例1-2及び1-4:試験例14及び15)や、従来から用いられているシリカの凝集体(ゲル法シリカ:試験例16~22)では、樹脂中に分散させることによりある程度の強度向上は実現できるものの、透明性が充分で無いことが分かった。 As is clear from Table 8, particle materials that enlarged due to heating because no silica layer was formed on the surface (Comparative Examples 1-2 and 1-4: Test Examples 14 and 15), and It was found that with the silica aggregates (gel method silica: Test Examples 16 to 22), although a certain degree of strength improvement could be achieved by dispersing them in a resin, the transparency was not sufficient.
(追加試験及び考察)
実施例4-1の粒子材料を製造する際にTEOSと共にコロイダルシリカを表9に示す量だけ添加して実施例5-1~5-3を製造した。比較例5-1として、実施例4-1の粒子材料を製造する際にTEOSを除き、コロイダルシリカを表9に示す量だけ添加して製造した。
(Additional tests and considerations)
When producing the particle material of Example 4-1, colloidal silica was added together with TEOS in the amount shown in Table 9 to produce Examples 5-1 to 5-3. Comparative Example 5-1 was produced by removing TEOS from the particle material of Example 4-1 and adding colloidal silica in the amount shown in Table 9.
表より明らかなように、TEOSを加えることによりコロイダルシリカを添加しても透明性を保ったまま(屈折率の測定が可能)であった。比較例5-1では外部と連通しない細孔が生じたために屈折率の測定ができなかったものと推測される。 As is clear from the table, transparency was maintained (refractive index measurement possible) even when colloidal silica was added by adding TEOS. It is presumed that in Comparative Example 5-1, the refractive index could not be measured because pores that did not communicate with the outside were formed.
(追加考察)
ベーマイトは高温にて加熱することでγアルミナに転移するため、この生成・消失を検討することで、ベーマイトからγアルミナへの転移が表面に存在するシリカによりどのように影響を受けるかを検討した。
(Additional consideration)
Boehmite transforms into γ-alumina when heated at high temperatures, so by examining its formation and disappearance, we investigated how the transition from boehmite to γ-alumina is affected by the silica present on the surface. .
具体的には、図3及び4の結果から、ベーマイトの消失及びγアルミナの生成を解析し、加熱温度の変化と表面のシリカの有無の影響を検討した。各ピークについて2θが38°、50°、64°、72°近傍のピークがベーマイト由来のピークであり、45°、67°近傍のピークがγアルミナ由来のピークである。上述のベーマイト由来の各ピークが全て存在し、その半値幅(FWHM)が全て狭い(例えば2.5°以下、好ましくは0.5°以下)である場合にベーマイトが主成分であると判断した。また、上述のγアルミナ由来の各ピークが全て存在し、その半値幅が全て0.5°以上(好ましくは3.0°以上)である場合にγアルミナが相当量生成したと判断した。解析結果を図5に示す。 Specifically, based on the results shown in FIGS. 3 and 4, the disappearance of boehmite and the formation of γ alumina were analyzed, and the effects of changes in heating temperature and the presence or absence of silica on the surface were examined. Regarding each peak, peaks near 2θ of 38°, 50°, 64°, and 72° are peaks derived from boehmite, and peaks near 45° and 67° are peaks derived from γ alumina. Boehmite was determined to be the main component when all of the above-mentioned boehmite-derived peaks were present and their half-widths at half maximum (FWHM) were all narrow (for example, 2.5° or less, preferably 0.5° or less). . Further, when all of the above-mentioned peaks derived from γ alumina were present and their half widths were all 0.5° or more (preferably 3.0° or more), it was determined that a considerable amount of γ alumina had been produced. The analysis results are shown in Figure 5.
今回の各試料は最初はベーマイトのみから構成されγアルミナは殆ど含有していないため、γアルミナ由来のピークが上述した基準で観測された場合にベーマイトからγアルミナへの転移が進行していることが分かる。更に、これらの試料について屈折率を測定し図5に合わせて示す。 Each sample this time was initially composed of only boehmite and contained almost no γ-alumina, so if a peak derived from γ-alumina was observed using the above criteria, it would indicate that the transition from boehmite to γ-alumina was progressing. I understand. Furthermore, the refractive index of these samples was measured and shown in FIG.
図5より明らかなように、250℃で加熱した比較例1-5ではγアルミナ由来のピークは小さくベーマイトが主成分であったが、400℃で加熱した比較例1-6、450℃で加熱した比較例1-7と加熱温度を高くするにつれてγアルミナに転移されていることが分かったγアルミナに転移していることで屈折率も大きくなった。 As is clear from Figure 5, in Comparative Example 1-5 heated at 250°C, the peak derived from γ alumina was small and boehmite was the main component, but in Comparative Example 1-6 heated at 400°C, Boehmite was the main component. It was found that as the heating temperature was increased, the refractive index was increased due to the transition to γ alumina.
それに対して表面をシリカで形成した実施例1-5~1-7は、250℃(実施例1-5)、400℃(実施例1-6)、450℃(実施形態1-7)で加熱してもいずれもベーマイトが主成分でγアルミナの生成は殆ど認められなかった。屈折率も大きな変動を示さなかった。このように高温で加熱できることベーマイトのままで粒子材料間を強固に結合させることができた。 On the other hand, Examples 1-5 to 1-7, in which the surface was formed of silica, were Even when heated, boehmite was the main component and almost no γ alumina was observed. The refractive index also did not show large fluctuations. Being able to heat the material at such high temperatures made it possible to form a strong bond between the particle materials while keeping the boehmite intact.
参考までに実施例1-0及び比較例1-0についてTG-DTA測定を行った結果を図6に示す。実施例1-0の試料は、460℃近傍にて吸熱ピークが認められ、この温度付近でベーマイトがγアルミナに転移していることが分かった。それに対して比較例1-0の試料は、420℃近傍にて吸熱ピークが認められ、この温度は表面をシリカにて形成している実施例1-0における吸熱ピークを示す温度よりも40℃低いものであった。 For reference, the results of TG-DTA measurements for Example 1-0 and Comparative Example 1-0 are shown in FIG. In the sample of Example 1-0, an endothermic peak was observed near 460°C, and it was found that boehmite was transformed to γ alumina around this temperature. On the other hand, in the sample of Comparative Example 1-0, an endothermic peak was observed near 420°C, which was 40°C higher than the temperature showing the endothermic peak in Example 1-0, whose surface was made of silica. It was low.
(試験B)実施例1
実施例5-4として、前述の実施例5-1(表9)のコロイダルシリカ配合量が5、比表面積直径が7.8、ベーマイト:シリカ(理論比)が45:55 になった以外は同じように調製した粒子材料を製造した。平均粒子径は10μm、屈折は1.53であった。
(Test B) Example 1
Example 5-4 was the same as Example 5-1 (Table 9) except that the colloidal silica content was 5, the specific surface area diameter was 7.8, and the boehmite:silica (theoretical ratio) was 45:55. A particulate material prepared in the following manner was manufactured. The average particle diameter was 10 μm, and the refraction was 1.53.
この実施例5-4の粒子材料をフィラーとして43部、アクリレート BPE-200(新中村化学工業)31部、同3G(新中村化学工業)69部に分散させ、ラジカル重合開始剤 Omnirad 651(I.G.M Resins.)1部を配合した後、ガラス板上に塗布し、365nmのLEDライトを用いて2分加熱し、透明膜を得た。この表面を、過マンガン酸カリウム溶液で洗浄し、表面100μm分の樹脂を除去して、粒子材料が最表面に露出している透明膜を得た。粒子材料が表面に露出しているかどうかはFE-SEMにより確認した。粒子形状が観察できれば粒子材料が十分に露出していると判断した(以下同じ)。この表面の水との接触角を測定したところ、0°であった。 The particle material of Example 5-4 was dispersed in 43 parts of filler, 31 parts of acrylate BPE-200 (Shin Nakamura Chemical Industries), and 69 parts of acrylate BPE-3G (Shin Nakamura Chemical Industries), and the radical polymerization initiator Omnirad 651 (I.G.M. Resins.) After blending 1 part, it was applied on a glass plate and heated for 2 minutes using a 365 nm LED light to obtain a transparent film. This surface was washed with a potassium permanganate solution to remove 100 μm of resin from the surface to obtain a transparent film in which the particle material was exposed on the outermost surface. Whether the particle material was exposed on the surface was confirmed by FE-SEM. If the particle shape could be observed, it was determined that the particle material was sufficiently exposed (the same applies hereinafter). When the contact angle of this surface with water was measured, it was 0°.
実施例2
透明膜の表面を酸素プラズマアッシャで表面100μm分の樹脂を除去した以外は、実施例1と同様の方法で粒子材料が最表面に露出している透明膜を得た。この表面の水との接触角を測定したところ、0°であった。
Example 2
A transparent film in which the particle material was exposed on the outermost surface was obtained in the same manner as in Example 1, except that 100 μm of resin was removed from the surface of the transparent film using an oxygen plasma asher. When the contact angle of this surface with water was measured, it was 0°.
実施例3
塗布する透明樹脂板をアクリル樹脂板にした以外は、実施例1と同様の方法で粒子材料が最表面に露出している透明膜を得た。この表面の水との接触角を測定したところ、0°であった。
Example 3
A transparent film in which the particle material was exposed on the outermost surface was obtained in the same manner as in Example 1, except that the transparent resin plate to be coated was an acrylic resin plate. When the contact angle of this surface with water was measured, it was 0°.
実施例4
実施例1と同様の方法で粒子が最表面に露出している透明膜を得た。この透明膜の表面にさらに光触媒性コーティング膜(具体的にあげるなら石原産業さんの塗料 ST-K211等)を塗布し、この表面の水との接触角を測定したところ、0°であった。
Example 4
A transparent film in which particles were exposed on the outermost surface was obtained in the same manner as in Example 1. A photocatalytic coating film (specifically, Ishihara Sangyo's paint ST-K211, etc.) was further applied to the surface of this transparent film, and the contact angle of this surface with water was measured and found to be 0°.
比較例1
表面の樹脂を除去しない以外は実施例1と同じ方法で透明膜を作製した。この表面の水との接触角を測定したところ43°であった。
Comparative example 1
A transparent film was produced in the same manner as in Example 1 except that the resin on the surface was not removed. The contact angle of this surface with water was measured and was 43°.
比較例2
粒子材料を4部にした以外は実施例1と同様の方法で透明膜を作製したが、100μm分の樹脂を除去しても最表面に樹脂が残った。この表面の水との接触角を測定したところ34°であった。樹脂材料を全く除去していない比較例1よりは接触角が小さくなり、表面にある程度の粒子材料は露出しているものと思われるが、今回用いた条件(粒子材料の種類、含有量など)では十分な露出ではなかった。
Comparative example 2
A transparent film was produced in the same manner as in Example 1 except that the particulate material was changed to 4 parts, but even after removing 100 μm of resin, the resin remained on the outermost surface. The contact angle of this surface with water was measured and was 34°. The contact angle is smaller than Comparative Example 1 in which no resin material was removed, and it seems that some particulate material is exposed on the surface, but the conditions used this time (type of particulate material, content, etc.) That wasn't enough exposure.
比較例3
粒子材料をアドマナノYA010C-SM1(アドマテックス)にした以外は実施例1と同様の方法で透明膜を作製した。この表面の水との接触角を測定したところ28°であった。粒子材料の露出はあったものと思われるが、粒子材料が凝集体でないために分解除去工程にて樹脂材料を除去するときに粒子材料の脱落が進行して表面における粒子材料の存在量が十分でなかったことが推察された。
Comparative example 3
A transparent film was produced in the same manner as in Example 1 except that Admanano YA010C-SM1 (Admatex) was used as the particle material. The contact angle of this surface with water was measured and was 28°. It seems that the particulate material was exposed, but because the particulate material was not an aggregate, the particulate material continued to fall off when the resin material was removed in the decomposition and removal process, and the amount of particulate material present on the surface was insufficient. It is presumed that it was not.
Claims (11)
前記フィラーは、
最表面において前記樹脂層をほぼ被覆しており、
外部に連通する表面を基準とする比表面積直径が0.8nm以上80nm以下、表面の組成と内部の組成とが異なる無機物からなる一次粒子から構成され、
脱水縮合により粒子間が結合・融着した凝集体である粒子材料を主成分とする、
親水表面。 Having a resin layer made of a transparent resin material containing filler on the surface,
The filler is
The outermost surface almost covers the resin layer,
Consisting of primary particles made of an inorganic substance with a specific surface area diameter of 0.8 nm or more and 80 nm or less based on the surface that communicates with the outside, and whose surface composition and internal composition are different,
The main component is a particulate material that is an aggregate in which particles are bonded and fused through dehydration condensation.
Hydrophilic surface.
前記一次粒子の表面を被覆する有機物からなる被覆層を有し、
前記被覆層は、前記一次粒子の表面に対して、共有結合するか又は分子間力結合するかにより結合している請求項1に記載の親水表面。 The particulate material is
having a coating layer made of an organic substance coating the surface of the primary particle,
The hydrophilic surface according to claim 1, wherein the coating layer is bonded to the surface of the primary particle by covalent bonding or intermolecular force bonding.
前記脱水縮合は250℃超での焼成により行われている請求項1~5の何れか1項に記載の親水表面。 The primary particles are composed of boehmite on the inside and silica on the surface,
The hydrophilic surface according to any one of claims 1 to 5, wherein the dehydration condensation is carried out by firing at a temperature exceeding 250°C.
前記脱水縮合は900℃以上での焼成により行われている請求項1~5の何れか1項に記載の親水表面。 The primary particles are composed of γ alumina in the interior and silica in the surface,
The hydrophilic surface according to any one of claims 1 to 5, wherein the dehydration condensation is performed by firing at a temperature of 900°C or higher.
45°~49°と64°~67°とにそれぞれ存在するピークの半値幅が0.5°以上であるか、
37°~39°と71°~73°とにそれぞれ存在するピークの半値幅が2.5°以下であるか、又は、
45°~49°と64°~67°とにそれぞれ存在するピークの半値幅が2.5°以下である、
請求項1~7のうちの何れか1項に記載の親水表面。 2θ in X-ray diffraction is
The half width of the peaks existing at 45° to 49° and 64° to 67° is 0.5° or more,
The half width of the peaks existing at 37° to 39° and 71° to 73° is 2.5° or less, or
The half width of the peaks present at 45° to 49° and 64° to 67° is 2.5° or less,
Hydrophilic surface according to any one of claims 1 to 7.
前記透明樹脂材料中又は前記透明樹脂材料の前駆体中に前記フィラーを分散させて分散液とする分散液調製工程と、
前記分散液を非処理対象物の表面にて成膜する成膜工程と、
得られた膜表面の有機成分を分解除去する分解除去工程と、
を有する親水表面の製造方法。 A manufacturing method for manufacturing the hydrophilic surface according to any one of claims 1 to 10, comprising:
A dispersion liquid preparation step of dispersing the filler in the transparent resin material or a precursor of the transparent resin material to form a dispersion liquid;
a film forming step of forming the dispersion liquid on the surface of an object to be treated;
a decomposition removal step of decomposing and removing organic components on the surface of the obtained film;
A method for producing a hydrophilic surface having
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019135729 | 2019-07-23 | ||
JP2019135729 | 2019-07-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021017557A JP2021017557A (en) | 2021-02-15 |
JP7406398B2 true JP7406398B2 (en) | 2023-12-27 |
Family
ID=74565833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020027582A Active JP7406398B2 (en) | 2019-07-23 | 2020-02-20 | Hydrophilic surface and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7406398B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241525A (en) | 2001-02-13 | 2002-08-28 | Nippon Sheet Glass Co Ltd | Hard coat-covered polyolefin resin and method for manufacturing the same |
JP2006022235A (en) | 2004-07-09 | 2006-01-26 | Asahi Fiber Glass Co Ltd | Polycarbonate resin composition and molded article obtained using the same |
JP2006070144A (en) | 2004-09-01 | 2006-03-16 | Catalysts & Chem Ind Co Ltd | Coating liquid for forming transparent film and substrate having transparent coating film |
JP2006076829A (en) | 2004-09-09 | 2006-03-23 | Nippon Sheet Glass Co Ltd | Anti-fogging article and its producing method |
JP2006219356A (en) | 2005-02-14 | 2006-08-24 | Nissan Motor Co Ltd | Anisotropic alumina particle composite, its manufacturing method, resin composition and its manufacturing method |
JP2007112861A (en) | 2005-10-19 | 2007-05-10 | Asahi Glass Co Ltd | Method for producing inorganic coating composition, hydrophilic coating film and article |
JP2008184472A (en) | 2007-01-26 | 2008-08-14 | Sumitomo Bakelite Co Ltd | Method for producing resin-adhered substrate |
JP2009255490A (en) | 2007-05-15 | 2009-11-05 | Fujifilm Corp | Hydrophilic member and hydrophilic composition |
JP2013142145A (en) | 2012-01-12 | 2013-07-22 | Sumitomo Osaka Cement Co Ltd | Weather-resistant composition and weather-resistant film using the same, and weather-resistant substrate |
WO2019168197A1 (en) | 2018-03-02 | 2019-09-06 | 株式会社アドマテックス | Particulate material and method for producing same, and transparent resin composition |
-
2020
- 2020-02-20 JP JP2020027582A patent/JP7406398B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002241525A (en) | 2001-02-13 | 2002-08-28 | Nippon Sheet Glass Co Ltd | Hard coat-covered polyolefin resin and method for manufacturing the same |
JP2006022235A (en) | 2004-07-09 | 2006-01-26 | Asahi Fiber Glass Co Ltd | Polycarbonate resin composition and molded article obtained using the same |
JP2006070144A (en) | 2004-09-01 | 2006-03-16 | Catalysts & Chem Ind Co Ltd | Coating liquid for forming transparent film and substrate having transparent coating film |
JP2006076829A (en) | 2004-09-09 | 2006-03-23 | Nippon Sheet Glass Co Ltd | Anti-fogging article and its producing method |
JP2006219356A (en) | 2005-02-14 | 2006-08-24 | Nissan Motor Co Ltd | Anisotropic alumina particle composite, its manufacturing method, resin composition and its manufacturing method |
JP2007112861A (en) | 2005-10-19 | 2007-05-10 | Asahi Glass Co Ltd | Method for producing inorganic coating composition, hydrophilic coating film and article |
JP2008184472A (en) | 2007-01-26 | 2008-08-14 | Sumitomo Bakelite Co Ltd | Method for producing resin-adhered substrate |
JP2009255490A (en) | 2007-05-15 | 2009-11-05 | Fujifilm Corp | Hydrophilic member and hydrophilic composition |
JP2013142145A (en) | 2012-01-12 | 2013-07-22 | Sumitomo Osaka Cement Co Ltd | Weather-resistant composition and weather-resistant film using the same, and weather-resistant substrate |
WO2019168197A1 (en) | 2018-03-02 | 2019-09-06 | 株式会社アドマテックス | Particulate material and method for producing same, and transparent resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2021017557A (en) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101365382B1 (en) | Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating | |
JP4841880B2 (en) | Inorganic oxide particles | |
EP0768277B1 (en) | Fine zinc oxide particles, process for producing the same, and use thereof | |
JP5378771B2 (en) | Base material with antireflection film and coating liquid for forming antireflection film | |
JP5757673B2 (en) | Substrate with transparent film and paint for forming transparent film | |
JP5546239B2 (en) | Base material with hard coat film and coating liquid for forming hard coat film | |
WO2007097284A1 (en) | Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same | |
WO2006129411A1 (en) | DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM | |
US11976179B2 (en) | Particle material and manufacturing method therefor, and transparent resin composition | |
JP2018123043A (en) | Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film | |
JP2006193376A (en) | Surface-coated hexaboride particulate and method for producing the same | |
JP5368720B2 (en) | Photocatalyst coating film and photocatalyst composition | |
JP7406398B2 (en) | Hydrophilic surface and its manufacturing method | |
JP2013136222A (en) | Substrate with hard coat film and coating liquid for forming hard coat film | |
JP5837155B2 (en) | Method for producing microring-shaped inorganic oxide particles | |
JP7343321B2 (en) | Hard coat layer, method for manufacturing the same, transparent member, and method for manufacturing the same | |
JP2013043791A (en) | Modified hollow silica microparticle | |
JP7436238B2 (en) | Hard coat layer, transparent member, and manufacturing method thereof | |
JP4539824B2 (en) | Coated hexaboride particles and method for producing the same | |
JP2022089560A (en) | Modified hollow particle and method for producing the same | |
EP3947569A1 (en) | Laminate for frost prevention, heat exchanger including the laminate, and coating agent for frost prevention | |
KR20210007709A (en) | Dispersion composition of inorganic oxide and method for preparing same | |
JP2010006647A (en) | High refractive index transparent particle and transparent composite material using the same | |
JP7523943B2 (en) | Particulate material and resin composition | |
JP2011068087A (en) | Substrate with hard coat film and coating liquid for forming hard coat film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7406398 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |