JP7405164B2 - Flow rate measuring device and method - Google Patents

Flow rate measuring device and method Download PDF

Info

Publication number
JP7405164B2
JP7405164B2 JP2022003457A JP2022003457A JP7405164B2 JP 7405164 B2 JP7405164 B2 JP 7405164B2 JP 2022003457 A JP2022003457 A JP 2022003457A JP 2022003457 A JP2022003457 A JP 2022003457A JP 7405164 B2 JP7405164 B2 JP 7405164B2
Authority
JP
Japan
Prior art keywords
flow rate
pipe
vibration
frequency
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022003457A
Other languages
Japanese (ja)
Other versions
JP2022158898A (en
Inventor
優太 坂田
健一 富永
亘 前田
陽太 藤本
諒 嘉村
純平 丸山
邦利 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022158898A publication Critical patent/JP2022158898A/en
Application granted granted Critical
Publication of JP7405164B2 publication Critical patent/JP7405164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配管の外部から配管内の流体流量を計測する流量計測装置及び方法に関する。 The present invention relates to a flow rate measuring device and method for measuring a fluid flow rate in a pipe from outside the pipe.

配管内の流体の流量を計測する方法の一つとして、差圧式流量計による方法がある(例えば、特許文献1)。差圧式流量計は、流体の流れている流路にセンサとしてオリフィス(絞り弁)を設置し、圧力損失を発生させ、オリフィス前後の圧力差を検出して流量に換算するものである。差圧式流量計に代表される、流体とオリフィス等のセンサが直接接触する流量測定方法は、確実な検量が可能で、流体検出精度が高いのが長所である。しかし、この方法は、オリフィス等のセンサを内設した配管部品を、流路となる配管の一部として組み入れるため、既設配管においては、配管の切断、交換の配管工事が別途必要となり、特に、測定箇所が少ないほど工事費が割高となるのが短所である。 One method for measuring the flow rate of fluid in piping is a method using a differential pressure flowmeter (for example, Patent Document 1). A differential pressure flowmeter is a device in which an orifice (throttle valve) is installed as a sensor in a flow path through which fluid is flowing, generates pressure loss, detects the pressure difference before and after the orifice, and converts it into a flow rate. Flow rate measurement methods, such as differential pressure flowmeters, in which the fluid is in direct contact with a sensor such as an orifice, have the advantage of being able to perform reliable calibration and having high fluid detection accuracy. However, since this method incorporates piping parts with internal sensors such as orifices as part of the piping that forms the flow path, separate piping work is required to cut and replace the existing piping. The disadvantage is that the fewer measurement points there are, the higher the construction costs will be.

一方、流体とセンサを直接接触させず、配管の加工を必要としない流量計測方法として、超音波式流量計が提案されている(特許文献2)。超音波式流量計は、配管の厚さ方向に超音波を発振する発振部と、配管内を伝搬した超音波を含む超音波を受信する受信部を、配管の外側に取付け、受信部による受信結果に基づいて気体の流量を算出する流量算出部にて、スペクトル解析などを行うことで流量を算出する。そのため、配管工事を必要とせず、流量計の取り付け、取り外しが簡便である。しかし、この方法は、流量計機器の費用が高額になるという問題がある。また、さらに発振部と受信部の取り付け位置の制約から流量計測が困難となる場合もある。なお、この方法は、配管に振動(この場合、超音波振動)を付与することから、アクティブ型と呼ばれる。 On the other hand, an ultrasonic flowmeter has been proposed as a flow rate measurement method that does not require direct contact between the fluid and the sensor and does not require processing of piping (Patent Document 2). An ultrasonic flowmeter has an oscillating part that oscillates ultrasonic waves in the thickness direction of the pipe, and a receiving part that receives ultrasonic waves including those propagated inside the pipe, which are installed on the outside of the pipe. A flow rate calculation unit that calculates the gas flow rate based on the results calculates the flow rate by performing spectrum analysis or the like. Therefore, no piping work is required, and the flow meter can be easily installed and removed. However, this method has a problem in that the cost of the flow meter equipment is high. Furthermore, flow rate measurement may become difficult due to restrictions on the mounting positions of the oscillating section and the receiving section. Note that this method is called an active type because it applies vibration (in this case, ultrasonic vibration) to the pipe.

これに対し、配管の加工を必要としないもう一つの流量計測方法として、配管に振動を付与することなく、配管と流体の相互作用で発生する振動を直接計測するいわゆるパッシブ型が提案された(特許文献3)。特許文献3のパッシブ型の流量計測装置は、配管に設けたセンサからの流体の振動を示すセンサデータに基づいて周波数と信号レベルの関係を算出する信号レベル算出部と、信号レベルに基づいて、複数の周波数帯域についての帯域信号レベルを算出する帯域信号レベル算出部と、帯域信号レベルと、周波数帯域ごとに算出しておいた流量と帯域信号レベルとの関係を表すモデルとに基づいて、周波数帯域ごとの流量を、複数の周波数帯域について算出する流量算出部と、算出した複数の流量に基づいて、流量についての推定結果を出力する推定結果判断部とを有している。この方法は、前記差圧式流量計や、前記超音波式流量計に比べて、センサや取り付けの費用が低廉で、取り付けが最も簡便である。 In response, a so-called passive type was proposed as another flow rate measurement method that does not require piping processing, which directly measures the vibrations generated by the interaction between the piping and the fluid without applying vibration to the piping ( Patent Document 3). The passive flow rate measuring device of Patent Document 3 includes a signal level calculation section that calculates the relationship between frequency and signal level based on sensor data indicating fluid vibration from a sensor provided in a pipe, and a signal level calculation section that calculates a relationship between a frequency and a signal level based on the signal level. Based on a band signal level calculation unit that calculates band signal levels for multiple frequency bands, and a model representing the relationship between the band signal level and the flow rate and band signal level calculated for each frequency band, the frequency It has a flow rate calculation section that calculates the flow rate for each band for a plurality of frequency bands, and an estimation result judgment section that outputs an estimation result regarding the flow rate based on the plurality of calculated flow rates. In this method, compared to the differential pressure flowmeter and the ultrasonic flowmeter, the cost of sensors and installation is low, and installation is the simplest.

特開2009-53083号公報JP2009-53083A 特開2013-181812号公報Japanese Patent Application Publication No. 2013-181812 特開2019-109194号公報JP 2019-109194 Publication

特許文献3のパッシブ型の流量計測装置は、流体が配管に与える振動の周波数からモデルにより流量を判別する。しかし、流体が配管に与える振動に、供給側のコンプレッサーや圧延ロール等の付帯設備による配管周りの機械振動がノイズとなって重畳する場合、この重畳した振動から、流体が配管に与える振動の周波数を信号として識別するのが困難であり、そのため、流体が配管に与える振動の周波数による流量判別が困難であるという問題があった。 The passive flow rate measuring device disclosed in Patent Document 3 uses a model to determine the flow rate based on the frequency of vibrations that the fluid gives to piping. However, if the vibrations exerted by the fluid on the piping are superimposed on noise from mechanical vibrations around the piping caused by ancillary equipment such as a compressor on the supply side or rolling rolls, the frequency of the vibrations exerted by the fluid on the piping can be determined from this superimposed vibration. It is difficult to identify this as a signal, and therefore, there is a problem in that it is difficult to determine the flow rate based on the frequency of vibration that the fluid gives to the piping.

本発明は、上述の事情に鑑み、パッシブ型の流量計測装置において、流体が配管に与える振動に、配管周りの機械振動が重畳しても、流体が配管に与える振動を容易に識別しうる流量計測装置及び方法を提供することを目的とする。 In view of the above-mentioned circumstances, the present invention provides a passive flow rate measuring device that allows vibrations exerted by the fluid on the piping to be easily identified even when mechanical vibrations around the piping are superimposed on vibrations exerted by the fluid on the piping. The purpose is to provide a measuring device and method.

本発明者らは、上記の課題を解決するために、パッシブ型の流量計測装置において、配管周りの機械振動に影響されることなく、流量を計測する方法を検討し、以下の知見を得た。
(ア) 配管内の渦を生じる箇所で配管外から配管振動の周波数を計測すると、流体が配管に与える振動の周波数と配管周りの機械振動の周波数の識別が容易となる。
(イ) 前記識別した、流体が配管に与える振動の周波数と、渦のストローハル数St=f×d/v(ただし、fは周波数、dは配管径、vは配管内流速)から、流量を求めることができる。ここで、「配管径」とは、配管の内径を指す。
In order to solve the above problems, the present inventors investigated a method for measuring flow rate without being affected by mechanical vibrations around piping in a passive flow rate measuring device, and obtained the following knowledge. .
(a) Measuring the frequency of piping vibration from outside the piping at locations where vortices occur within the piping makes it easy to distinguish between the frequency of vibrations exerted by the fluid on the piping and the frequency of mechanical vibrations around the piping.
(b) From the frequency of the vibration that the fluid gives to the piping identified above and the Strouhal number of the vortex St = f x d/v (where f is the frequency, d is the pipe diameter, and v is the flow velocity in the pipe), calculate the flow rate. can be found. Here, "pipe diameter" refers to the inner diameter of the pipe.

本発明は、上記した知見に基づいてさらに検討を加えて完成されたものであり、その要旨は、以下のとおりである。
[1] 配管内の流体の流量を計測する装置であって、
前記配管の振動の周波数f[Hz]を配管外から計測する振動計と、該振動計の計測結果に基づき前記流量を算出する流量演算手段とを有し、
前記流量演算手段は、予め取得しておいた、ストローハル数St=f×d/v(ただし、dは配管径[mm]、vは配管内の流速[mm/s])から配管内の流速vを求め、
該配管内の流速vに流路断面積を乗じて前記流量を算出することを特徴とする流量計測装置。
[2] 前記流量演算手段において、前記周波数fの帯域を500Hz以下とすることを特徴とする[1]に記載の流量計測装置。
[3] 前記流量演算手段において、前記ストローハル数St=0.2と固定することを特徴とする[1]に記載の流量計測装置。
[4] 前記振動計の設置位置を、前記配管の曲がり部、バルブ部、フランジ部及び溶接部の少なくともいずれか一つである基点部から下流側に前記配管径の5倍以下の距離を隔てた位置とすることを特徴とする[1]~[3]のいずれか一つに記載の流量計測装置。
[5] 前記振動計の設置位置を、さらに、前記基点部から上流側に前記配管径以下の距離を隔てた位置とすることを特徴とする[4]に記載の流量計測装置。
[6] 配管内の流体の流量を計測する方法であって、
前記配管の振動の周波数f[Hz]を配管外から計測する振動計測工程と、
前記振動の計測結果から前記流量を算出する流量演算工程とを有し、
前記流量演算工程は、予め取得しておいた、ストローハル数St=f×d/v(ただし、dは配管径[mm]、vは配管内の流速[mm/s])から配管内の流速vを求め、
該配管内の流速vに流路断面積を乗じて前記流量を算出することを特徴とする流量計測方法。
[7] 前記流量演算工程において、前記周波数fの帯域を500Hz以下とすることを特徴とする[6]に記載の流量計測方法。
[8] 前記流量演算工程において、前記ストローハル数St=0.2と固定することを特徴とする[6]に記載の流量計測方法。
[9] 前記振動の計測位置を、前記配管の曲がり部、バルブ部、フランジ部及び溶接部の少なくともいずれか一つである基点部から下流側に前記配管径の5倍以下の距離を隔てた位置とすることを特徴とする[6]~[8]のいずれか一つに記載の流量計測方法。
[10] 前記振動の計測位置を、さらに、前記基点部から上流側に前記配管径以下の距離を隔てた位置とすることを特徴とする[9]に記載の流量計測方法。
The present invention was completed through further study based on the above-mentioned knowledge, and the gist thereof is as follows.
[1] A device that measures the flow rate of fluid in piping,
comprising a vibration meter that measures the frequency f [Hz] of vibration of the piping from outside the piping, and a flow rate calculation means that calculates the flow rate based on the measurement results of the vibration meter,
The flow rate calculation means calculates the flow rate in the pipe from the Strouhal number St=f×d/v (where d is the pipe diameter [mm] and v is the flow velocity in the pipe [mm/s]) obtained in advance. Find the flow velocity v,
A flow rate measuring device characterized in that the flow rate is calculated by multiplying the flow velocity v in the pipe by a flow path cross-sectional area.
[2] The flow rate measuring device according to [1], wherein in the flow rate calculation means, the band of the frequency f is 500 Hz or less.
[3] The flow rate measuring device according to [1], wherein the Strouhal number St is fixed at 0.2 in the flow rate calculation means.
[4] The vibration meter is installed at a distance of not more than five times the diameter of the pipe on the downstream side from the base point, which is at least one of the bent part, valve part, flange part, and welded part of the pipe. The flow rate measuring device according to any one of [1] to [3], characterized in that the flow rate measuring device is located at a certain position.
[5] The flow rate measuring device according to [4], wherein the vibration meter is installed at a position further upstream from the base point by a distance equal to or less than the pipe diameter.
[6] A method for measuring the flow rate of fluid in piping, comprising:
a vibration measurement step of measuring the frequency f [Hz] of vibration of the pipe from outside the pipe;
a flow rate calculation step of calculating the flow rate from the measurement results of the vibration,
In the flow rate calculation step, the flow rate in the pipe is calculated from the Strouhal number St=f×d/v (where d is the pipe diameter [mm] and v is the flow velocity in the pipe [mm/s]) obtained in advance. Find the flow velocity v,
A flow rate measurement method characterized in that the flow rate is calculated by multiplying the flow velocity v in the pipe by a flow path cross-sectional area.
[7] The flow rate measurement method according to [6], wherein in the flow rate calculation step, the frequency f band is set to 500 Hz or less.
[8] The flow rate measuring method according to [6], wherein in the flow rate calculation step, the Strouhal number St is fixed at 0.2.
[9] The measurement position of the vibration is located downstream from a base point, which is at least one of a bent part, a valve part, a flange part, and a welded part of the pipe, at a distance of not more than five times the diameter of the pipe. The flow rate measurement method according to any one of [6] to [8], characterized in that the flow rate measurement method is performed at a position.
[10] The flow rate measurement method according to [9], wherein the vibration measurement position is further located upstream from the base point by a distance equal to or less than the pipe diameter.

本発明によれば、パッシブ型の流量計測装置及び方法において、配管周りの機械振動に影響されることなく、流量を計測することができる。 According to the present invention, in a passive type flow rate measuring device and method, a flow rate can be measured without being affected by mechanical vibration around piping.

本発明の実施形態の一例を示す配管等の工場レイアウト図である。FIG. 1 is a factory layout diagram of piping, etc., showing an example of an embodiment of the present invention. 図1の配管3に振動計7aを取り付け、取得した周波数[Hz]ごとの速度[mm/s]を示すグラフである。It is a graph showing the velocity [mm/s] for each frequency [Hz] obtained by attaching the vibration meter 7a to the piping 3 of FIG. 1. 図1の配管4aに振動計7bを取り付け、取得した周波数[Hz]ごとの速度[mm/s]を示すグラフである。It is a graph showing the velocity [mm/s] for each frequency [Hz] obtained by attaching the vibration meter 7b to the piping 4a of FIG. 1. 図1の配管4bに振動計7cを取り付け、取得した周波数[Hz]ごとの速度[mm/s]を示すグラフである。It is a graph showing the velocity [mm/s] for each frequency [Hz] obtained by attaching the vibration meter 7c to the piping 4b in FIG. 1. 図1の配管4cの曲がり部5dの下流側に振動計7dを取り付け、取得した周波数[Hz]ごとの速度[mm/s]を示すグラフである。It is a graph showing the velocity [mm/s] for each frequency [Hz] obtained by attaching a vibration meter 7d to the downstream side of the bent portion 5d of the pipe 4c in FIG. 1. 図1の配管4cの曲がり部5dの上流側に振動計7eを取り付け、取得した周波数[Hz]ごとの速度[mm/s]を示すグラフである。It is a graph showing the velocity [mm/s] for each frequency [Hz] obtained by attaching the vibration meter 7e to the upstream side of the bent portion 5d of the pipe 4c in FIG. 1. 図5の取得した周波数[Hz]ごとの速度[mm/s]を図6の取得した周波数[Hz]ごとの速度[mm/s]で差し引いた結果を示すグラフである。7 is a graph showing the result of subtracting the speed [mm/s] for each frequency [Hz] obtained in FIG. 5 by the speed [mm/s] for each frequency [Hz] obtained in FIG. 6. FIG. 図1の直管部8に振動計7fを取り付け、取得した周波数[Hz]ごとの速度[mm/s]を示すグラフである。It is a graph showing the velocity [mm/s] for each frequency [Hz] obtained by attaching the vibration meter 7f to the straight pipe section 8 of FIG. 1. ストローハル数Stを予め取得するためのオフライン実験の概要を示す説明図である。FIG. 2 is an explanatory diagram showing an outline of an offline experiment for obtaining the Strouhal number St in advance. 図9のオフライン実験により取得した周波数[Hz]とストローハル数St[-]の関係を表すグラフである。10 is a graph showing the relationship between frequency [Hz] and Strouhal number St [-] obtained by the offline experiment of FIG. 9. 図9のオフライン実験により取得した流速[m/s]とストローハル数St[-]の関係を表すグラフである。10 is a graph showing the relationship between flow velocity [m/s] and Strouhal number St[-] obtained by the offline experiment of FIG. 9.

以下、本発明の実施形態(以下、本実施形態ともいう。)について説明する。
本発明では、配管の振動の周波数f[Hz]を配管外から計測し、予め取得しておいた、ストローハル数St=f×d/v(ただし、dは配管径[mm]、vは配管内の流速[mm/s])から配管内の流速vを求め、これに流路断面積を乗じて流量を算出する。これにより、設置が簡便なパッシブ型の流量計測装置において、配管周りの機械振動の影響を受けることなく、流体が配管に与える振動から流量を求めることができる。
Hereinafter, an embodiment of the present invention (hereinafter also referred to as the present embodiment) will be described.
In the present invention, the frequency f [Hz] of vibration of the pipe is measured from outside the pipe, and the Strouhal number St = f x d/v (where d is the pipe diameter [mm] and v is the The flow velocity v in the pipe is determined from the flow velocity [mm/s] in the pipe, and the flow rate is calculated by multiplying this by the cross-sectional area of the flow path. As a result, in a passive type flow measuring device that is easy to install, the flow rate can be determined from the vibrations exerted on the pipe by the fluid without being affected by mechanical vibrations around the pipe.

[振動計]
配管の振動の周波数f[Hz]を配管外から計測する流量計としては、流体が配管に与える振動の周波数と配管周りの機械振動の周波数を識別するために、周波数ごとの振動の大きさを出力するFFT(高速フーリエ変換)解析機能付きの振動計が好ましい。FFT解析機能付きの振動計は一般に広く用いられており、簡単に入手できる。なお、振動の大きさの尺度として、変位、速度及び加速度があり、速度を用いて測定するのが望ましい。本実施形態では、以下、振動の大きさの尺度は速度[mm/s]とした。
[Vibration meter]
As a flowmeter that measures the frequency f [Hz] of vibration of piping from outside the piping, it is necessary to measure the magnitude of vibration at each frequency in order to distinguish between the frequency of vibration that the fluid gives to the piping and the frequency of mechanical vibration around the piping. A vibrometer with an output FFT (Fast Fourier Transform) analysis function is preferable. Vibration meters with FFT analysis functions are generally widely used and easily available. Note that there are displacement, velocity, and acceleration as measures of the magnitude of vibration, and it is desirable to measure using velocity. In this embodiment, the scale of vibration magnitude is hereinafter taken as speed [mm/s].

[振動計の設置位置]
本発明では、計測した周波数fから流量を算出する際、渦(より詳しくは、スワール渦)が生じている状態において定義されるストローハル数Stを用いる。したがって、振動計の設置位置(振動の計測位置)は、渦の生じている位置が好適である。かくして、渦の生じている位置で計測した周波数ごとの速度のデータを用いることにより、流体が配管に与える振動に配管周りの機械振動がノイズとなって重畳しても、流体が配管に与える振動の周波数fを識別して、ストローハル数Stから流量を算出することができる。
[Vibration meter installation position]
In the present invention, when calculating the flow rate from the measured frequency f, the Strouhal number St, which is defined in a state where a vortex (more specifically, a swirl vortex) is generated, is used. Therefore, the installation position of the vibration meter (vibration measurement position) is preferably a position where a vortex is generated. In this way, by using velocity data for each frequency measured at the location where the vortex is generated, even if mechanical vibrations around the piping are superimposed on vibrations exerted by the fluid on the piping as noise, the vibrations exerted by the fluid on the piping can be minimized. By identifying the frequency f of , the flow rate can be calculated from the Strouhal number St.

工場内で流体を送給する配管においては、配管の曲がり部、バルブ部、フランジ部及び溶接部の少なくともいずれか一つである基点部から下流側に前記配管径の5倍以下、好ましくは前記配管径以下、の距離を隔てた位置が、渦の発生位置となることが知られている。そこで、この位置を振動計の設置位置として採用することが好ましい。 In piping that supplies fluid within a factory, the diameter of the pipe is not more than 5 times, preferably the It is known that a vortex is generated at a distance equal to or less than the pipe diameter. Therefore, it is preferable to adopt this position as the installation position of the vibration meter.

また、より好ましくは、さらに、前記基点部から上流側に前記配管径以下の距離を隔てた位置も、振動計の設置位置とすることである。これによれば、基点部から上流側や下流側に機械振動等によるノイズがある場合、これを除去し、渦のみに由来する振動データを取得できる。 More preferably, the vibration meter is also installed at a position upstream from the base point at a distance equal to or less than the pipe diameter. According to this, if there is noise due to mechanical vibration or the like on the upstream side or downstream side from the base point, this can be removed and vibration data originating only from the vortex can be obtained.

[周波数fの帯域≦500Hz]
本発明者らによる流体通流時の工場配管の振動計測実験(流体は空気、配管径は50A~200A、配管入側の流体流量は50~550Nm3/h、流体温度は10~25℃)で得た周波数ごとの速度のデータによると、配管に渦による振動と機械振動とが同時に加わっている場合、速度を持つ周波数は、500Hz以下の帯域と500Hz超の帯域に分かれて現れる。この状態から機械振動をなくすと、速度は、500Hz超えの帯域から消失し、500Hz以下の帯域に残存する。
[Frequency f band≦500Hz]
Vibration measurement experiment of factory piping during fluid flow by the present inventors (fluid is air, pipe diameter is 50A to 200A, fluid flow rate on the inlet side of the pipe is 50 to 550Nm 3 /h, fluid temperature is 10 to 25°C) According to the velocity data for each frequency obtained in , when vibrations caused by vortices and mechanical vibrations are applied to the piping at the same time, frequencies with velocity appear divided into a band below 500 Hz and a band above 500 Hz. When mechanical vibration is removed from this state, the velocity disappears from the band above 500 Hz and remains in the band below 500 Hz.

これらの結果から、渦が生じている位置で配管周りの機械振動が加わった状態下で、周波数500Hz以下の帯域が、流体が配管に与える振動の周波数は含むが、配管周りの機械振動の周波数は含まない帯域であることがわかる。なお、この点は、流体が空気以外のガス及び液体である場合においても同様であった。したがって、ストローハル数St用の周波数fの帯域は、500Hz以下とするのが好ましい。 From these results, when mechanical vibrations around the piping are applied at the position where the vortex is generated, the band with a frequency of 500 Hz or less includes the frequency of vibrations exerted by the fluid on the piping, but it does not include the frequency of the mechanical vibrations around the piping. It can be seen that this is a band that does not include Note that this also applies to cases where the fluid is a gas other than air or a liquid. Therefore, the band of the frequency f for the Strouhal number St is preferably 500 Hz or less.

次に、500Hz以下の帯域内の複数の速度ピークから、ストローハル数Stの算出に用いる周波数f(以下、St用の周波数fともいう。)を一つ選定する方法としては、以下が好ましい。
(a)渦の顕著に発生する、前記基点部から下流側に配管径の5倍以下の距離を隔てた位置にて振動測定を実施し、周波数と速度のデータ(下流側データ)を取得する。
(b)下流側データから最高の速度ピークを示す周波数を周波数fとする。
(c)より好ましくはさらに、前記基点部から上流側に配管径以下の距離を隔てた位置にて振動測定を実施し、周波数と速度のデータ(上流側データ)を取得する。
(d)下流側データと上流側データを、周波数を揃えて重ね合わせ、重なりのない下流側データを採用する。これは、上流側及び/又は下流側で発生する機械振動等のノイズを除去するために行う。
(e)前記採用したデータの中で、最高の速度ピークを示す周波数が渦に由来する振動の周波数であるとし、これを周波数fとする。
[ストローハル数Stを予め取得]
ストローハル数Stを予め取得するには、流体の種類、温度、配管径及び設定流量を実際の配管の稼働条件範囲内として、オフライン実験により、複数水準の設定流量及び配管径d[mm]について、渦流の生じる位置を周波数及び流速の計測位置としてこの位置で、前記振動計により配管外から周波数を計測し、500Hz以下の帯域からSt用の周波数f[Hz]を一つ選定するとともに、差圧式流量計により流速v[mm/s]を計測し、St=f×d/vの式からストローハル数Stを算出する。
Next, as a method for selecting one frequency f (hereinafter also referred to as frequency f for St) used for calculating the Strouhal number St from a plurality of speed peaks within a band of 500 Hz or less, the following is preferable.
(a) Perform vibration measurement at a position downstream from the base point, where vortices are significantly generated, at a distance of five times the pipe diameter or less, and obtain frequency and velocity data (downstream data). .
(b) Let the frequency showing the highest velocity peak from the downstream data be the frequency f.
(c) More preferably, vibration measurement is further performed at a position upstream from the base point at a distance equal to or less than the diameter of the pipe, and frequency and velocity data (upstream data) are obtained.
(d) Overlap downstream data and upstream data with the same frequency, and use downstream data without overlap. This is done to remove noise such as mechanical vibrations occurring on the upstream and/or downstream sides.
(e) Among the data adopted above, it is assumed that the frequency showing the highest velocity peak is the frequency of vibration originating from the vortex, and this is set as the frequency f.
[Obtain Strouhal number St in advance]
To obtain the Strouhal number St in advance, set the fluid type, temperature, pipe diameter, and set flow rate within the range of actual pipe operating conditions, and conduct offline experiments to obtain multiple levels of set flow rate and pipe diameter d [mm]. , the frequency and flow velocity are measured at the position where the eddy current occurs, and at this position, the frequency is measured from outside the pipe using the vibration meter, and one frequency f [Hz] for St is selected from the band below 500 Hz, and the difference is The flow velocity v [mm/s] is measured using a pressure type flowmeter, and the Strouhal number St is calculated from the formula St=f×d/v.

さらに、本発明者らによる実験では、レイノルズ数Re=104 より大きい範囲で前記スワール渦が発生し、St=0.2を取ることを確認している。したがって、本発明では、前記流量演算手段において、ストローハル数St=0.2と固定することが好ましい。 Further, in experiments conducted by the present inventors, it has been confirmed that the swirl vortex is generated in a range larger than Reynolds number Re=10 4 and St=0.2. Therefore, in the present invention, it is preferable that the Strouhal number St is fixed at 0.2 in the flow rate calculation means.

[流量演算手段]
計測した周波数fと予め取得しておいたストローハル数Stとから流量を算出する流量演算手段は、パーソナルコンピュータに搭載するソフトウエアとして容易に構成できる。
[Flow rate calculation means]
The flow rate calculation means for calculating the flow rate from the measured frequency f and the Strouhal number St acquired in advance can be easily configured as software installed in a personal computer.

以下、実施例を挙げて、本発明の実施形態をより具体的に説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples.

図1に本実施例における工場レイアウト図を示す。図1に示すように、本実施例では、建屋外設置のコンプレッサー1から200A(□に数字を入れて、□Aとは配管径が□mmであることを意味する。)の配管3によって、工場2へ圧縮空気が送気されており、200Aの配管3から、50Aの配管4a、50Aの配管4b及び100Aの配管4cによって分岐され、それぞれ計装計器6a、空圧機器6b及び粉塵除去用ノズル6cでの圧縮空気の使用に供されている。圧縮空気の温度は10~25℃、圧力は5.5~6気圧である。配管3、4a~4c にはそれぞれ、曲がり部5a~5dがある。曲がり部を圧縮空気が通過する際、二次流れ形成に伴う渦を形成することが知られている。渦による振動を計測するように、曲がり部のそれぞれの付近、詳しくはそれぞれから下流側にそれぞれの配管の配管径離れた距離に隔てた位置に、FFT解析により周波数ごとの速度が取得可能な振動計7a~7dを設置した。図2~5にそれぞれ、振動計7a~7dより取得した周波数[Hz]ごとの速度[mm/s]のデータをグラフにして示す。 FIG. 1 shows a factory layout diagram in this embodiment. As shown in FIG. 1, in this embodiment, a pipe 3 of 200A (input a number in □, □A means that the pipe diameter is □mm) runs from a compressor 1 installed outside the building. Compressed air is supplied to the factory 2, and is branched from a 200A pipe 3 through a 50A pipe 4a, a 50A pipe 4b, and a 100A pipe 4c, which are used for instrumentation instruments 6a, pneumatic equipment 6b, and dust removal, respectively. Compressed air is used in the nozzle 6c. The temperature of the compressed air is 10 to 25°C, and the pressure is 5.5 to 6 atmospheres. The pipes 3, 4a to 4c have bent portions 5a to 5d, respectively. It is known that when compressed air passes through a bend, a vortex is formed due to the formation of a secondary flow. In order to measure vibrations caused by vortices, we measure vibrations that allow us to obtain the velocity of each frequency using FFT analysis in the vicinity of each bend, more specifically, at a distance downstream from each pipe at a distance that is the diameter of each pipe. A total of 7a to 7d were installed. 2 to 5 respectively show graphs of velocity [mm/s] data for each frequency [Hz] obtained from the vibration meters 7a to 7d.

図2のデータを取得した振動計7aの設置位置(曲がり部5aから下流側に200mmの距離を隔てた位置)はコンプレッサー1から十分に離れており、機械振動に伴うノイズが認められない位置である。図2では、10~200Hzの帯域で速度のピークが確認され、500Hz以下の帯域が流体の渦形成による周波数の存在領域であると認められた。 The installation position of the vibration meter 7a that acquired the data in Fig. 2 (a position 200 mm downstream from the bend 5a) is sufficiently far from the compressor 1, and is located at a position where no noise due to mechanical vibration is observed. be. In FIG. 2, a velocity peak was confirmed in the band of 10 to 200 Hz, and the band of 500 Hz or less was recognized to be the region where frequencies due to fluid vortex formation exist.

図3のデータを取得した振動計7bの設置位置(配管4aの曲がり部5bから下流側に50mmの距離を隔てた位置)は、送気先の計装機器6aの動作による機械振動に伴うノイズが認められる位置である。図3では、10~500Hzの帯域及び500Hz以上の帯域に速度のピークが確認され、図2と図3の結果より、500Hz以下の帯域が流体の渦形成による周波数の存在領域であり、500Hz以上の帯域が機械振動による周波数の存在領域であると認められた。 The installation position of the vibration meter 7b that acquired the data in FIG. 3 (a position 50 mm downstream from the bend 5b of the pipe 4a) is affected by noise caused by mechanical vibrations caused by the operation of the instrumentation device 6a to which air is supplied. This is a position where this is recognized. In Figure 3, velocity peaks are confirmed in the band of 10 to 500 Hz and in the band of 500 Hz or more, and from the results of Figures 2 and 3, the band of 500 Hz or less is the region where frequencies exist due to the formation of fluid vortices, and the frequency range of 500 Hz or more is found. It was recognized that the frequency range due to mechanical vibration exists.

図4のデータを取得した振動計7cの設置位置(配管4bの曲がり部5cから下流側に80mmの距離を隔てた位置)は、送気先の空圧機器6bの機械振動に伴うノイズが認められない位置である。図4では、10~500Hzの帯域に速度のピークが確認され、図2と同様、500Hz以下の帯域が流体の渦形成による周波数の存在領域であると認められた。 The installation position of the vibration meter 7c that acquired the data in Fig. 4 (a position 80 mm downstream from the bend 5c of the pipe 4b) has noise associated with mechanical vibration of the pneumatic equipment 6b to which air is supplied. This is a position where it is impossible to In FIG. 4, a velocity peak was confirmed in the band of 10 to 500 Hz, and similarly to FIG. 2, the band of 500 Hz or less was recognized to be the region where frequencies due to fluid vortex formation exist.

図5のデータを取得した振動計7dの設置位置(配管4cの曲がり部5dから下流側に100mmの距離を隔てた位置)は、送気先の粉塵除去用ノズル6cによる振動や周りの付帯機器(図示せず)の動作による機械振動が認められる位置である。図5では、10~500Hzの帯域に6つの大きな速度のピークが確認された。そこで、配管4cの曲がり部5dから上流側に100mmの距離を隔てた位置に設置した振動計7eで取得した図6のデータによって図5のデータから、入側及び/又は出側で発生したノイズの影響を低減し、渦の周波数を明瞭化することが可能となった(図7参照)。 The installation position of the vibration meter 7d that acquired the data in Fig. 5 (a position 100 mm downstream from the bend 5d of the pipe 4c) is affected by the vibration caused by the dust removal nozzle 6c at the air destination and surrounding incidental equipment. This is the location where mechanical vibrations due to the operation of (not shown) are observed. In FIG. 5, six large velocity peaks were confirmed in the band of 10 to 500 Hz. Therefore, the noise generated on the inlet side and/or the outlet side can be determined from the data in FIG. 5 using the data in FIG. It has become possible to reduce the influence of vortices and clarify the frequency of vortices (see Figure 7).

さらに、配管を圧縮空気が通過する際、二次流れ形成に伴う渦は形成されず、機械振動は配管に及んでいる状態での周波数の有様を調査するために、図1に示すコンプレッサー1からつながる配管3の直管部8に振動計7fを設置した。この位置は直管部8周りの付帯設備(図示せず)による機械振動が認められる位置である。振動計7fより取得した周波数ごとの速度のデータをグラフにして図8に示す。図8より、500Hz以上の帯域に速度のピークが確認され、図2及び図4と同様にこの帯域が機械振動による周波数の存在領域であると認められたが、500Hz以下の帯域に速度のピークは現れず、流体が与える振動による周波数の帯域は認められなかった。 Furthermore, when compressed air passes through piping, no vortices are formed due to the formation of secondary flow, and mechanical vibrations extend through the piping. A vibration meter 7f was installed in the straight pipe section 8 of the pipe 3 connected from the pipe 3. This position is a position where mechanical vibrations due to incidental equipment (not shown) around the straight pipe portion 8 are observed. The velocity data for each frequency acquired from the vibration meter 7f is shown in a graph in FIG. From Fig. 8, a velocity peak was confirmed in the band above 500Hz, and as in Figs. 2 and 4, this band was recognized to be the region where frequencies due to mechanical vibration exist, but a velocity peak was observed in the band below 500Hz. did not appear, and no frequency band due to vibrations caused by the fluid was observed.

図2~図8の結果より、圧縮空気が通過する際、二次流れ形成に伴う渦を形成する箇所において、500Hz以下の帯域に速度のピークが顕著に現れ、曲がり部5a~5dにおいて、流体が与える振動による周波数の取得が可能であった。 From the results shown in FIGS. 2 to 8, when compressed air passes through, velocity peaks appear conspicuously in the band below 500 Hz at locations where vortices are formed due to secondary flow formation, and at bends 5a to 5d, fluid It was possible to obtain the frequency from the vibration given by

一方、周波数f[Hz]とストローハル数St[-]の関係を予め取得しておくために行ったオフライン実験の概要を図9に示す。実験装置は、空気がコンプレッサー9より、配管10に送られ、バルブ部11及び曲がり部14を経由し、ノズル15より吐出される仕組みとなっている。差圧式流量計12により、流量計測を行い、曲がり部14にて、振動計13を用いて、流体が与える振動の周波数fを取得した。ストローハル数Stの算出式は、St=f×d/vであり、dは配管径[mm]、vは流速[mm/s]である。なお、バルブ部11の弁開度を操作して、配管内の流量を調整し、差圧式流量計12より計測した流量を配管の断面積で除して流速vを算出した。 On the other hand, FIG. 9 shows an outline of an offline experiment conducted to obtain the relationship between the frequency f [Hz] and the Strouhal number St [-] in advance. The experimental apparatus has a structure in which air is sent from a compressor 9 to a pipe 10, passes through a valve section 11 and a bent section 14, and is discharged from a nozzle 15. The flow rate was measured using the differential pressure type flowmeter 12, and the frequency f of the vibration given by the fluid was obtained at the bending portion 14 using the vibration meter 13. The formula for calculating the Strouhal number St is St=f×d/v, where d is the pipe diameter [mm] and v is the flow velocity [mm/s]. Note that the flow rate in the pipe was adjusted by manipulating the opening degree of the valve part 11, and the flow rate v was calculated by dividing the flow rate measured by the differential pressure flowmeter 12 by the cross-sectional area of the pipe.

25A~100Aの範囲で種々変えた配管12の配管径d[mm]、差圧式流量計15による流速v[mm/s]の計測値及び振動計13による周波数f[Hz]の計測値を前記ストローハル数Stの算出式に適用し、算出したストローハル数Stと周波数fの関係を図10に、算出したストローハル数Stと流速vの関係を図11に示す。ただし、図11では流速vの単位は[m/s]とした。図10、図11より、ストローハル数Stは、周波数f、流速vによらず0.2と一定であった。 The pipe diameter d [mm] of the pipe 12, which was varied in the range of 25 A to 100 A, the measured value of the flow velocity v [mm/s] by the differential pressure flowmeter 15, and the measured value of the frequency f [Hz] by the vibration meter 13 are as follows. The relationship between the calculated Strouhal number St and the frequency f applied to the formula for calculating the Strouhal number St is shown in FIG. 10, and the relationship between the calculated Strouhal number St and the flow velocity v is shown in FIG. However, in FIG. 11, the unit of the flow velocity v is [m/s]. From FIGS. 10 and 11, the Strouhal number St was constant at 0.2 regardless of the frequency f and the flow velocity v.

図10、図11の結果より、図1における工場の各設備の流量算出を、前述の流量演算手段(図示せず)にて行った。St用の周波数fとして、図2~5において、500Hz以下の帯域で速度のピークが最高である周波数(最高の速度ピークが複数ある場合は、それらのうち周波数が最大のもの)を流体が与える主な振動のものとみなして採用した。配管径dと、振動計7a~7eより取得した周波数fとを、これらとストローハル数St=0.2とから、v=f×d/Stの式で算出した流速vに配管内の流路断面積(=3.14×d2/4)を乗じて算出した流量と共に、表1に示す。 Based on the results shown in FIGS. 10 and 11, the flow rate of each facility in the factory in FIG. 1 was calculated using the flow rate calculation means (not shown) described above. As the frequency f for St, in Figures 2 to 5, the fluid gives the frequency at which the velocity peak is highest in the band below 500 Hz (if there are multiple highest velocity peaks, the frequency is the highest among them) It was adopted as the main vibration. The flow rate in the pipe is calculated from the pipe diameter d and the frequency f obtained from the vibration meters 7a to 7e and the Strouhal number St=0.2 using the formula v=f×d/St. Table 1 shows the flow rate calculated by multiplying the road cross-sectional area (=3.14×d 2 /4).

Figure 0007405164000001
Figure 0007405164000001

かくして、本発明によれば、パッシブ型の流量計測装置及び方法において、配管周りの機械振動に影響されることなく、流量を計測することができる。 Thus, according to the present invention, in the passive flow rate measuring device and method, the flow rate can be measured without being affected by mechanical vibrations around the piping.

なお、本実施例では、流体として空気を用いたが、空気以外のガス又は液体に対しても、流体の種類あるいはさらに温度に応じたストローハル数Stを予め取得しておくことにより本発明の適用が可能である。また、本発明によれば振動計設置箇所は曲がり部が好適であるが、バルブやフランジなどの同様の圧損部品についても、流体の種類あるいはさらに温度に応じたストローハル数Stを予め取得しておくことにより本発明の適用が可能である。 In this example, air was used as the fluid, but the present invention can also be applied to gases or liquids other than air by obtaining the Strouhal number St in advance according to the type of fluid or the temperature. Applicable. Further, according to the present invention, it is preferable to install the vibration meter at a bent part, but for similar pressure loss parts such as valves and flanges, it is necessary to obtain the Strouhal number St in advance according to the type of fluid or even temperature. The present invention can be applied by setting the conditions.

1 コンプレッサー
2 工場建屋
3 配管(200A)
4a 配管(50A)
4b 配管(50A)
4c 配管(100A)
5a 配管3に設置した曲がり部
5b 配管4aに設置した曲がり部
5c 配管4bに設置した曲がり部
5d 配管4cに設置した曲がり部
6a 計装機器
6b 空圧機器
6c 粉塵除去用ノズル
7a 曲がり部5aに設置した振動計
7b 曲がり部5bに設置した振動計
7c 曲がり部5cに設置した振動計
7d 曲がり部5dの下流側に設置した振動計
7e 曲がり部5dの上流側に設置した振動計
7f 直管部8付近に設置した振動計
8 直管部
9 コンプレッサー
10 空気配管(25A~100A)
11 バルブ部
12 差圧式流量計
13 振動計
14 曲がり部
15 ノズル
1 Compressor 2 Factory building 3 Piping (200A)
4a Piping (50A)
4b Piping (50A)
4c Piping (100A)
5a Bend section 5b installed on piping 3 Bend section 5c installed on piping 4a Bend section 5d installed on piping 4b Bend section 6a installed on piping 4c Instrumentation equipment 6b Pneumatic equipment 6c Dust removal nozzle 7a At bent part 5a Vibration meter 7b installed Vibration meter 7c installed on bent portion 5b Vibration meter 7d installed on bent portion 5c Vibration meter 7e installed on the downstream side of bent portion 5d Vibration meter 7f installed on the upstream side of bent portion 5d Straight pipe section Vibration meter 8 installed near 8 Straight pipe section 9 Compressor 10 Air piping (25A to 100A)
11 Valve section 12 Differential pressure flow meter 13 Vibration meter 14 Bend section 15 Nozzle

Claims (8)

配管内の流体の流量を計測する装置であって、
前記配管の振動の周波数f[Hz]を配管外から計測する振動計と、該振動計の計測結果に基づき前記流量を算出する流量演算手段とを有し、
前記振動計の設置位置を、前記配管の曲がり部、バルブ部、フランジ部及び溶接部の少なくともいずれか一つである基点部から下流側に前記配管径の5倍以下の距離を隔てた位置とし、
前記流量演算手段は、予め取得しておいた、ストローハル数St=f×d/v(ただし、dは配管径[mm]、vは配管内の流速[mm/s])から配管内の流速vを求め、
該配管内の流速vに流路断面積を乗じて前記流量を算出することを特徴とする流量計測装置。
A device for measuring the flow rate of fluid in piping,
comprising a vibration meter that measures the frequency f [Hz] of vibration of the piping from outside the piping, and a flow rate calculation means that calculates the flow rate based on the measurement results of the vibration meter,
The vibration meter is installed at a position downstream from the base point, which is at least one of the bent part, valve part, flange part, and welded part of the pipe, at a distance of not more than five times the diameter of the pipe. ,
The flow rate calculation means calculates the flow rate in the pipe from the Strouhal number St=f×d/v (where d is the pipe diameter [mm] and v is the flow velocity in the pipe [mm/s]) obtained in advance. Find the flow velocity v,
A flow rate measuring device characterized in that the flow rate is calculated by multiplying the flow velocity v in the pipe by a flow path cross-sectional area.
前記流量演算手段において、前記周波数fの帯域を500Hz以下とすることを特徴とする請求項1に記載の流量計測装置。 2. The flow rate measuring device according to claim 1, wherein the frequency band of the frequency f is set to 500 Hz or less in the flow rate calculation means. 前記流量演算手段において、前記ストローハル数St=0.2と固定することを特徴とする請求項1に記載の流量計測装置。 2. The flow rate measuring device according to claim 1, wherein the Strouhal number St is fixed at 0.2 in the flow rate calculation means. 前記配管の振動の周波数f[Hz]を配管外から計測する別の振動計の設置位置を、前記基点部から上流側に前記配管径以下の距離を隔てた位置とすることを特徴とする請求項1~3のいずれか一項に記載の流量計測装置。 A claim characterized in that another vibration meter for measuring the frequency f [Hz] of vibration of the pipe from outside the pipe is installed at a position upstream from the base point by a distance equal to or less than the diameter of the pipe. The flow rate measuring device according to any one of Items 1 to 3 . 配管内の流体の流量を計測する方法であって、
前記配管の振動の周波数f[Hz]を配管外から計測する振動計測工程と、
前記振動の計測結果から前記流量を算出する流量演算工程とを有し、
前記振動の計測位置を、前記配管の曲がり部、バルブ部、フランジ部及び溶接部の少なくともいずれか一つである基点部から下流側に前記配管径の5倍以下の距離を隔てた位置とし、
前記流量演算工程は、予め取得しておいた、ストローハル数St=f×d/v(ただし、dは配管径[mm]、vは配管内の流速[mm/s])から配管内の流速vを求め、
該配管内の流速vに流路断面積を乗じて前記流量を算出することを特徴とする流量計測方法。
A method for measuring the flow rate of fluid in a pipe, the method comprising:
a vibration measurement step of measuring the frequency f [Hz] of vibration of the pipe from outside the pipe;
a flow rate calculation step of calculating the flow rate from the measurement results of the vibration,
The measurement position of the vibration is a position downstream from a base point, which is at least one of a bent part, a valve part, a flange part, and a welded part of the pipe, at a distance of not more than five times the diameter of the pipe,
In the flow rate calculation step, the flow rate in the pipe is calculated from the Strouhal number St=f×d/v (where d is the pipe diameter [mm] and v is the flow velocity in the pipe [mm/s]) obtained in advance. Find the flow velocity v,
A flow rate measuring method characterized in that the flow rate is calculated by multiplying the flow velocity v in the pipe by a flow path cross-sectional area.
前記流量演算工程において、前記周波数fの帯域を500Hz以下とすることを特徴とする請求項に記載の流量計測方法。 6. The flow rate measuring method according to claim 5 , wherein in the flow rate calculation step, the band of the frequency f is set to 500 Hz or less. 前記流量演算工程において、前記ストローハル数St=0.2と固定することを特徴とする請求項に記載の流量計測方法。 6. The flow rate measuring method according to claim 5 , wherein in the flow rate calculation step, the Strouhal number St is fixed at 0.2. 前記配管の振動の周波数f[Hz]を配管外から計測する別の振動の計測位置を、前記基点部から上流側に前記配管径以下の距離を隔てた位置とすることを特徴とする請求項5~7のいずれか一項に記載の流量計測方法。
Another vibration measurement position for measuring the vibration frequency f [Hz] of the pipe from outside the pipe is a position separated from the base point upstream by a distance equal to or less than the pipe diameter. 7. The flow rate measurement method according to any one of 5 to 7 .
JP2022003457A 2021-03-31 2022-01-13 Flow rate measuring device and method Active JP7405164B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060107 2021-03-31
JP2021060107 2021-03-31

Publications (2)

Publication Number Publication Date
JP2022158898A JP2022158898A (en) 2022-10-17
JP7405164B2 true JP7405164B2 (en) 2023-12-26

Family

ID=83638729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022003457A Active JP7405164B2 (en) 2021-03-31 2022-01-13 Flow rate measuring device and method

Country Status (1)

Country Link
JP (1) JP7405164B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057098A (en) 2001-08-17 2003-02-26 Yokogawa Electric Corp Maintenance mechanism of field measuring instrument
JP2009072273A (en) 2007-09-19 2009-04-09 Fujifilm Corp Endoscope washing machine
JP2014163575A (en) 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Vortex suppression type inspection port
CN106706048A (en) 2016-12-19 2017-05-24 浙江大学 Flowmeter device based on liquid level jet flow vibration
JP2019109194A (en) 2017-12-20 2019-07-04 株式会社日立産機システム Flow rate measuring device
JP2020511254A (en) 2017-03-24 2020-04-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Signal processing unit for determination of intravascular blood flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057098A (en) 2001-08-17 2003-02-26 Yokogawa Electric Corp Maintenance mechanism of field measuring instrument
JP2009072273A (en) 2007-09-19 2009-04-09 Fujifilm Corp Endoscope washing machine
JP2014163575A (en) 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Vortex suppression type inspection port
CN106706048A (en) 2016-12-19 2017-05-24 浙江大学 Flowmeter device based on liquid level jet flow vibration
JP2020511254A (en) 2017-03-24 2020-04-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Signal processing unit for determination of intravascular blood flow
JP2019109194A (en) 2017-12-20 2019-07-04 株式会社日立産機システム Flow rate measuring device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中田 毅, 鄭 以勤, 桜井 康雄,AEセンサを用いた液体流量計測法,日本フルードパワーシステム学会論文集,日本,一般社団法人日本フルードパワーシステム学会,2013年05月,第44巻,第3号,pp.49-54,https://doi.org/10.5739/jfps.44.49
鈴木 延明,配管系の振動,ターボ機械,日本,一般社団法人 ターボ機械協会,1985年03月10日,13巻,3号,pp.168-173,https://doi.org/10.11458/tsj1973.13.168

Also Published As

Publication number Publication date
JP2022158898A (en) 2022-10-17

Similar Documents

Publication Publication Date Title
JP3110042B2 (en) Non-penetrating fluid detection system
CN101189508B (en) Method and ultrasonic meter system for determining pipe roughness
US7770459B2 (en) Differential pressure diagnostic for process fluid pulsations
CA2654952C (en) Sonar circumferential flow conditioner
JP2007286052A (en) Control method of coriolis-type mass flow rate measuring instrument
Gajan et al. The influence of pulsating flows on orifice plate flowmeters
CN111033191B (en) Detecting and identifying changes in a vibratory meter
JP7405164B2 (en) Flow rate measuring device and method
JP2006162417A (en) Total pressure/static pressure measuring venturi system flow measuring device
US9188471B2 (en) Two-phase flow sensor using cross-flow-induced vibrations
Mandard et al. Transit time ultrasonic flowmeter: Velocity profile estimation
US10539442B2 (en) Fluid momentum detection method and related apparatus
JP4949892B2 (en) Flow measurement method and flow measurement jig
Brahma et al. Data-based estimation and simulation of compressible pulsating flow with reverse-flow through an orifice
CN112945326A (en) Gas flow measuring device and method
JP2004020523A (en) Differential pressure type flow measurement method and differential flowmeter
JP2010286330A (en) Method for inspecting thickness reduction of pipe, and inspection device used in the same
JP2022159920A (en) Estimation device of internal state of pipeline, and estimation method of internal state of pipeline
JP3355130B2 (en) Pulsation absorption structure of flow meter
CN104550264A (en) System and method for measuring vibration situation of strip steel in gas cooling section
US10190900B2 (en) Method of fluid flow measurement using nozzle bank
JPH08304134A (en) Flow-rate measuring device
JP2003161651A (en) Acoustic measuring device
Ruggles et al. Side Branch Interaction With Main Line Standing Waves and Related Component Load Definition
JP2004251695A (en) Flow rate measuring unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7405164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150